DEDUCTIVE INFORMATION RETRIEVAL
ON VIRTUAL RELATIONAL DATA
BASES
M.H. van Emden
Research Report (S-76-42
Department of Complbter Science

University of Waterloo
Waterloo, Ontario, Canada

August 1976

1. Synopsis
The gynopsis . 1is divided into several subsections, each introducing

a topic of the present paper.

1.1 Some practical problems in connection with data bases

It is the ambition for a central data base of an organization to be
the repository of information required‘for all aspects of operation. Many
of these aspects are intimately related. A data base capable only of
reproducing explicitly present information must be highly redundant. If
for no other reason, deduction is valuable in an information retrieval
system because it allows elimination, or at least control, of redundant
information.

Consider the analogy of a computer program requiring values of the
logarithmic function. Such a program need not incorporate a bulky table
of logarithms, but it uses instead a compact subroutine which computes the
required values. Likewise, data bases typically contain in tabular form
large numbers of explicit facts which could be deduced from a compactly
stored rule.

Thus, a University might decree that all graduate courses have a
course number of at least 500, thus making it redundant to store for
courses thus numbered the fact that they are graduate courses. The
redundaney can be avoided if the data base can store besides facts a rule
such as this and if the redundant facts thus suppressed ean be deduced on
demand. As another example, all first-year engineering students may have
to take a course named Math 129; the deductive use of this rule would
appreciably shorten in the data base the list of students taking Math 129.

There are problems also in connection with the query language. For
example, the difficulties of the typical casual user with Codd's query
languages have prompted Zloof's ''query-by-example' as a method of
interrogating a data base. Another example is the fact that the data
retrieved by queries are often not required for inspection by humans, but
serve as input for programs, for example for statistical processing. Such
usage places high demands on the interface between query language and

program language.

1.2 A logical model for information representation and retrieval

The various aspects of a data base system are represented in terms
of the clausal form of first-order predicate logic and a resolution
refutation procedure. In this respect the paper is self-contained; it
includes all material required for a full understanding by those not
familiar with resolution thesrem-proving. The main points of the

representation are as follows.

Virtual relational data base:

A set DB of clauses, each with one positive literal.

Query:

A clause Q containing no positive literal.

Affirmative response:
Occurs if DBu {Q} is found to be inconsistent by the refutation

procedure.

Negative response:
Occurs if non-existence of refutation from DBu {Q} can be shown by

the refutation procedure.

Answer to a query:
In case of an affirmative response the refutation procedure determines
a substitution © such that DB'u {Q8} is inconsistent, where DB'
is a set of instances of clauses in DB. From Q0 the answer to Q

may be extracted; the answer is logically implied by DB.

Relation retrieved:

Each different refutation of the same query Q contributes one tuple

to the relation retrieved by Q.

1.3 The virtual relational data base

In the relational view of a data base the data items are organized
as sets of similar tupleg ©Of items. Each such set is a relation according
to the usual mathematical definition. In the existing concept of a
relational data base new relations are composed by queries, but only by
queries. In the present model such composition is defined by ''rules"
also stored in the data base. A rule defines a relation which is not
present as a get of tuples, yet any of its tuples can be deduced on
demand by a query. Hence a virtual relational data base. Some queries
are answered by look-up only: the required tuple is stored. Other
queries may require a lengthy deduction, using a rule many times before
a stored tuple can be used. In a typical information retrieval
application look—up will be the rule, and rulé application the exception.

But it is not necessary to use a virtual relational data base this way.

1.4 A relational model for both data and computation

A function can be viewed as a set of (argument, value) tuples.
Because the set is often very large (or not even finite) it can only
exist as a data base if the data base is virtual. TFor example, the data
base (6.2) stores a rule recursively defining the factorial function and
the tuple (0,1) for terminating the recursion. Deductive information
retrieval computes the factorial function for arbitrary values in much
the same way as other models of computation do. In our model information
retrieval and computation differ in degree rather than in kind. If
answering a query involves mostly look-up, then it is retrieval in the
usual sense. If it involves mostly deduction, then it is cémputation in
the usual sense. Deductive information retfieval on a virtual relational
data base is therefore a model of computation. This model originated
with Kowalski, who called it logic programming. It has been shown [12]
to generalize other computation models in an interesting way, and to have
a simple semantics related to the usual fixpoint semantics [96]1. A
practically useful program language (PROLOG) is ‘based on it. In our
approach the query language is essentially this program language. In
this way the problem of the interface between query languages and program
language is solved in a particularly elegant way: the languages are

the same.

1.5 Minimal model semantics

It is useful to distinguish "first-order queries' from "second-order
queries'. 1In order to answer a first-order query, a composition of
relations of the data base is computed. Eﬁamples are the compositions called
projection or join in Codd's relation algebra. Answers to such queries
are true in all models.

Certain other queries are expressed by an inclusion among relations
retrieved by first-order queries, and are therefore called second-order
queries. Examples are those queries expressed by the "division'" operation
in Codd's relatdon algebra. Answers to these queries are not true in all
models, hence are not logical implications, but they are true in the
minimal model. We show that the minimality of the model here plays the
same role as the minimality of the fixpoints in Scott's approach to the

theory of computation.

2. Related work

A more powerful system for deductive information retrieval has been
designed by R. Reiter [19]. 1Internally it uses the clausal form of
first-order predicate logic, but the query language is a non—clausél logic
geared to translation from natural language input. Indefinite facts can
be stored in the data base and can be provided as answer.

Kowalski himself applieé logic programming to information retrieval [14].
His research involves the design of a data base concerning all aspects of
the operafton of his university department. The emphasis in Kowalkki's
project is on flexibility in data base structure. For instance, it is
easy to add or delete a domain of a relation. The query language is
clausal form; Kowalski‘shows that a few minor syntactical enhancements
suffice to make queries so easy to understaad that natural language is
hardly worth having.

J. Minker [8 1 was early to make use of the basic fact that in
first-order predicate logic one cannot help adopting a relational view of
data and that resolution theorem-proving can provide a powerful query
language for a relational data base.

Our work is distinct from the above approaches in being based on the
premiss that the design of the refutation prodedure used as language

interpreter in PROLOG can be adapted to efficient information retrieval by

incorporating the indexing schemes and search algorithms used in
implementing existing relational data bases. The objective is to obtain
a useful query language which is a powerful program language in its own
right.

The most important previous work is Green's on the application of

resolution theorem-proving to question-answering [9] and Kowalski's on

high-level language.

the application of logic to programming in-

3. Syntax and informal semantics

We will use the clausal form of first-order predicate logic as the
abstract pepresentation of a virtual relational data base. Terms of
logic will represent objects; the clauses will represent the answers that
constitute the data base. ‘

A syntax for the clausal form of first-order predicate logic can be
specified as follows: Let a non-empty sequence of letters or digits be
called an identifier. A constant is an identifier and should be read as
denoting an unstructured object. For example

Math
129
Glotz
A term is a simple term or a composite term. A simple term is a
~constant or a variable. A variable is an identifier preceded by an
asterisk, A composite term is f(tl""’tn>’n > 1, where f is a

function symbol and tl""’t are terms, the arguments of the composite

n
term. A function symbol is an identifier or one of the operator symbols
A A T I
A substitution is the replacement of all occurrences of a variable
in an expression (a term; or other expression described later) by a term.
1f e, is the result of applying a substitution to an expression e

1
then e is called an instance of e

2 1’
A composite term is to be read as denoting a structured object; the
function symbol indicates how the components of the structured object
are assembled. A term containing variables is to be read as an incompletely
specified object: it is not specified which of its variable-free instances

it denotes.

For example
:(.(C,.(Y,K)),Cheng)
has as components the composite term .(C,.(Y,K)) and the simple term Cheng.
For a two-place function symbol which is an operator, infix notation
is permitted, so that we may write
C.Y.K: Cheng
instead of
:(.(C,.(Y,K)),Cheng)
provided it has been made clear somehow that . and : are two-place
function symbols, that . has higher priority than :, and that .
associates from right to left, i.e. that, for example, C.Y.K stands for
C.(Y.X) rather than (C.Y).K.
A sentence is a set of clauses.

A clause is a set {Ll,...,Ln}, n = 0, of literals written as

L, ... L for n >0
1 n

and as
a forn=0

The empty clause is often called the null clause.

A literal is +A (and then it is a positive literal) or —-A (and then
it is a negative literal), where A is an atom. An atom is P(tl""’tk)’
k = 0, where P 1is a k-place predicate symbol and t1se+0st, are terms,
the arguments of the atom. A predicate symbol is an identifier.

Table 3.1 shows a seﬁtence with several kinds of clauses, all of
which afe special cases of

+Al ...+An—Bl ...—Bm e (3.1)

In the casé, where n 21 and m 2 0, the clause is to be read as

for all xl,...,xk,Al OYr...0T An
if there exist yl,...,yj such that Bl and...and Bm

where yl,...,yj are the variables of Bl""’Bm and Xqsee X are the

k
remaining variables.

In this paper a sentence is often viewed as a data base, and the
clauses in it as answers to potential queries, or as rules for answering

such queries. A clause such as the above plays the role of an

indefinite;, conditional rule for answering. Indefinite because it does
not say which, if any, of A ,...,An is false. Conditional because
A1 of...or An can only be used as an answer if the query

B ?
m

do there exist yl,...,yj such that Bl,...,

is affirmatively answered. It is a rule for answering rather than an
answer in case the clause contains variables.

A definike clause will mean a clause with one positive literal and
zero or more negative literals, that is, n must be 1. A definite
sentence is one where all clauses are definite. For reasons to be explained
later, a data base has to be a definite sentence.

Example Clause (1) in Table 3.1 is to be read as

for all x, x takes Math 129

if x is first year and in the engineering program
Clause (8) in Table 3.1 is to be read as

for all x, x is a graduate course
if there exists a y such that y dis the

course number of x and y dis greater than 489

That is, we have for answering certain queries the rule: Graduate courses
have numbers greater than 499.

If in the clause (3.1) we have n =-1 and m = 0, then we have an
unconditional answer. If such a clause has no variable in it, then it
unconditionally asserts one specific fact. The subset in a sentence of
all variable-free clauses containing one’positive literal’and no negative
literal and having the same, say k-place, predicate symbdl, is called an
array. The reason for this is that the set of‘k—tuples of arguments
sbecifies a relation in the same way as it is done by an "array" in the

sense of Codd [2 1.

The usual relational data base consists of arrays only. The presence
of rules provides the possibility of answers which are not explicitly
present, hence makes the data base virtual. We owe the idea of having
rules coexdst with arrays to Reiter [19], where the collection of arrays
is called the extensional data base and the rules are called the
intensional data base. Reiter's system is not restricted to definite rules
or facts.

Table 3.2 shows an example of an array in set notation.

Table 3.3 shows the same array in a less redundant notation and
this is also used in the arrays of table 3.4.

The clauses containing one positive literal and no negative literals
are more general than the tuples of a conventional relational data base
because they may contain variables. For example, the term #*x:%*y in (6)
and (7) of Table 3.1 is an incompletely specified object, the general
form of the name of a person; (6) states that what comes before the colon
is the sequence of initials of the name, like J.F in J.F:Glotz; (7) states
that what comes after the colon is the last name of the name, like Glotz
in J.F:Glotz.

RULES *) =
(1) {+Takes(*x,Math!129) - Year(*x,1) - Program(*x,Engineering)
(2) ,+Year(*x,*z) ~ Student(*ﬁ,*y,*zl) - Minu§(1977,*zl,*z)
(3) ,+Program(*x,*y) - Student (*x,*y,*z)
(4) ,+Courseprefdx (¥x!¥*y,*x)
(5) ,+Coursenumber (*x!%y,*y)
(6) ,+Initials(*x:%y,%x)
(7) ,+Lastname(*x:%y,*y)
(8) ,+Graduatecourse(*x) - Course number (¥*x,*y)
- Greaterthan(*y,499)
(9 ,+Conflictl(*xl,*x§) - Scheduled(*xl,*y,*z)
- Scheduled (*xz,%y,%z)
- Different(*xl,*xz)
}
Table 3.1
*)

We”$r§pefully acknowledge Kowalski's departmental data base as the source

5l

of inspiration for the present example.

{ +Takes (M :Adiri, Math!129)
,+Takes (C.Y.g:Cheng, Math!225)
,+Takes(T.L :Cook , Math!129)
,+Takes(T.L :Cook , Math!225)

}
Table 3.2
Takes
M :Adiri Math!129
C.Y.K:Cheng Math!225
T.L :Cook Math!129
T.L. :Cook Math!225

Table 3.3

10

Teachesg
J.F:Cletz | Math!129
J.F:Glotz Math!225
“Student
T i
N.A :Buczek
C.Y.K:Cheng
T.L :Cook
| G.C :Giusti
% A :Hammer
E K.L :Mensink !
Scheduled
Math!129 | Phy@3009 | 2:30
Math!301 Phy@3009 2:30

Table 3.4

wéidiéé§d“;nWW

Recreation
Physics

Engineering
Engineering
Child Care
Kinesiology

1974

1976
1976
1975
1976

| 1973
. 1973

11

12

4., Semantics for clausal form

The semantics of first-order predicate logic determines whether a
sentence is true. 1In a later section we will use the clausal form of
first-order predicate logic to represent the facts and the rules of a
virtual relational data base, and also the queries that can be submitted
to it. The semantics defined in this section, which is the usual one in
substance (though the elegantly simple form is due to Kowalski [61), will
be used to determine which are twuthful answers to queries.

The set of all variable-free terms that contain only constants or
function symbols occurring in a sentence S, is called the universe of discourse
of S. The set of all atoms that contain only predicate symbols of S and
terms of the universe:gf discourse of S, is called the universe of atoms
of S. An interpretation for S is a subset of its universe of atoms. Now
it shall be determined whether S is true in an interpretation I.

A sentence is true in I if no clause is not true in I.

{ Hence a sentence should be read as the conjunction of its
clauses}

A clause is true in I if all its variable-free instances are true in I.
A clause C' is a variable-free instance of C if €' is obtained by
replacing wvariables in C by terms firom the universe of discourse. Different

occurrences of the same variable are replaced by the same term.

A variable~free clause is true in T if at least one of its literals is true:
in T.

{Hence a clause is to be read as the universally quantified
disjunction of its literals; the null clause is true in
no interpretation}

A variable~free literal +A is true in I if A ¢ I.

A variable-free literal =A is true in I if A ¢ I.

It is not always most helpful to read a clause as a disjunction, although
that is most obviously correct. Let us verify that it is also correct to

read a clause

+A,...+A -B
n

1 l...—Bm, n >0, ees (4.1)

(where yl,...,yj (3 2 0) are the variables in Bl,...,Bm and

where L ERRERE R (k =2 0) are the remaining variables)

13

as

for all XyseeesX A, or ... or A if
n

k’> "1

there exist yl,...,yj such that B, and ... and Bm e (4.2)

1

Suppose that (4il) is not true in an interpretation I. Then, according to

the formal semantics there exists a variable-free instance, say (+Al...+An
—Bl...—Bm) 0, of (4.1), say with terms xi,...,xé, yi,...,y&k as values
for x;,.. X, yl,...,yj,'which is not true in I. Hence A, B ¢Ifori=1,...,n

and Bie e I for i =1,...,m. Therefdre, there exist yl,...,yj (namely

1 \
yl,...,yj) such that Bl and ... and Bm and not (Al or ... or An) for some
KiseeesrXy (namely xi,...,x'k); this contradie¢ts (4.2)., The converse is left
to the reader.

B

For n = 0, the clause (4.1) is true in T if at least one of B,,...,
1 m

is néot true in I. Hence the clause is to be read as

for all yl,...,yj, not (Bl and ... and Bm)

A sentence is consistent if it is true in at least one interpretation.
Such an interpretation is called a model for S. A sentence Sl is a logical
implication of a sentence 82:

Sztﬂ Sl

if Sl is true in all models of 82' Let Si be a negation of Sl in the sense

that S1 and Si have the same universe of atoms and Si is not true in every

interpretation where Sl.is true. Then Szp: Sl iff Sth Si inconsistent,

provided 52 is consistent.

14

5. Logic representation of an information retrieval system

As soon as it is possible for an information retrieval system to produce
answers not explicitly present in the data base, it is important to know
exactly in what sense such answers are warranted by the contents of the
data base. As a first approximation we are interested in answers which are

logical implications of the data base when the latter is regarded as a sentence

of first-order predicate logic. We have already defined precisely, as a
semantic notion, logical implication. The problem remains how to compute
just those logical implications which can be regarded as an answer to a
query. For such computations we need a proof procedure.

The proof procedure will be the logical model of the retrieval component
of the information retrieval system., In the clausal form of first-order

predicate logic the question of logical implication of Sl by 32 is expressed
'

1 1
for demonstrating inconsistency is called a refutation procedure. We

as the inconsistency of SZLJ Si, where S is a negation of S A procédure

consider refatation procedures which refute S§ by constructing a sequence
SS""’Sn of sentences such that So = 8, M(Si> = M(Si—l)’ for i = 1,...,n,
and [0 ¢ Sn' Here M(x%) denotes the set of models of x. Each Si has been
obtained from Si—l by applying a rule of inference to Si'

The rule of inference obtains Si by replacing in Si—l a clause

A ... -A, ... —An, nz1l1l,1<ic<n,

1 i
which is one parent in the inference, by
(—Al...-Ai_l -Bl...—Bm —Ai+l...-An)6
whenever Si—l also contains a clause
+A —Bl...—Bm

which is the other parent in the inference, such that AC = Aie, where O is

the most general unifier of A and Ai' A unifier © of atoms kl and k2 is a
substitution of terms for variables such that k0 = k26; the unifier is

also a most general unifier if for any unifier 0' of kl and k,, kle' = kze'

is an instance of kle = kze. J.A. Robinson showed [20] that whenever a unifier
exists, a most general unifier exists, and that this unifier is essentially
unique. He also found an algorithm that either constructs the most general
unifier, or shows that none exists. Paterson and Wegman [18] have published

a unification algorithm that requires an amount of time and space which is

15

linear in the length of the input expressions.

Ai is the unique result of applying the selection rule of the refutation

procedure to the parent

—Al e "An

The selection rule severely restricts the number of dififerent applications
of the inference rule,

The rule of inference is a refinement of J.A. Robinson's resolution
princdple [20], which was developed by Kowalski and Kuehner [15], Kuehner [16],
and Kowalski [13].

The fact that M(Si_l) = M(Si& expresses the "soundness" of the rule of
inference: the inferred sentence Si is true in exactly those situations
where Si_lis. It is in thig sense that an information retrieval system, as
described here, will not "tell a lie".

The logic representation of the various aspects of an information

retrieval system can be summarized as follows.

Virtual relational data base:
A set DB of clauses ("answers" of various kinds), each with one positive

literal.

Query:
A clause Q = —Al “es —An (n =2 0) containing no positive literal.
Affirmative response:

Occurs if DBuU {Q} is found to be inconsistent by the refutation procedure.

Negative response:
Occurs if nonexistence of a refutation from DBuU {Q} can be shown by the

refutation procedure.

Answer to a query:
In case of an affirmative response the refutation procedure determines
a substitution 8 such that DB'u {Q6} is inconsistent, where DB' is a set of

instances of clauses in DB. The inconsistency of DB'u {Q6} is equivalent to

16

DB hﬁ{+Ai83 for i =1,...,n. The sentence {+A16,...,+An8}?is an:-‘answer
to query @. The clauses +A16,...,+An8 are answers that may b6r may not
belong to the set DB. In the latter case such a clause has been deductively

retrieved. 1Its presence in DB would be redundant.

Relation retrieved:
In case of an affifrmative response to a query, with variables LSRR N
(k =z 0), there may be more than one substition 6 as described above. Each

such 0 determines a k-tuple of terms substituted for x The set of

ERRREE:

K
these tuples is the relation retrieved by Q.

Retrieval procedure:
Resolution refutation procedure for first-order predicate logic in
clausal form. '
Note that an So = DBuU {Q} contains one clause, namely Q, without a
positive literal and all its other clauses (those of DB) contain exactly
one positive literal. With such an SO all sentences Si of a refutatdon

have the same property, inffiact, S, = DB LJ{Qi} with Qi containing no

i
positive literal. Apparently the refutation procedure acts as an
information retrieval procedure by successively transforming the original

query Q to queries Ql,...,Qi,... until the empty query is obtained.

Exgmple 5.1.
Let DB = TAKES u TEACHES u SCHEDULED u STUDENT u RULES

as given in Tables 3.1,...,3.4.
Let Q0 = -Takes(*x,Math!129).

The rule of inference will use as parents Q0 and
+Takes(M:Adiri ,Math!129) e TAKES

and produce Q1 = [, the empty clause, in this case the empty query. The
unifier 6 substitutes M:Adiri for *x. Thus, there is an affirmative

response, and the answer 1is
+Takes (M:Adiri,Math!129)

exactly a clause of the data base. 1In order to obtain the relation retrieved,
the refutation procedure constructs all possible refutations. In a similar

way the answer

17

+Takes (T.L:Cook,Math!129)

is produced, another clause from the data base. 1In an attempt to find yet
another refutation,the rule of inference is now applied to Qo and the

conditional rule

+Takes (*x,Math!129) - ¥ear (*x,1)

- Program(*x,Engineering)

which is a clause in RULES (8ee Table 3.1) saying that all first-year

engineering students take Math 129. The original query Qo is now replaced
by

Ql = -Year (*x,1l)-Program(*x,Engineering)

Starting from here the refutation procedure produces all first year
engineering students. Let us suppose for convenience that the selection
rule always selects the leftmost literal in a query. This part of the

query is tackled by using as parent
+Year (¥x,%z)-Student (¥x,%y,*z"')-Minus (1977 ,%z,%z")

a conditional rule, which refers queries about "Year" to the STUDENT array
and to an imaginary array MINUS, supposed to contain all triples Ny,0,,0,
of integers such that n;-n, = nj. The last column of the student array
gives the year of first registration. The second argument of '"Year" tells
that the current year (1977 according to the rule) is for a student with
name x the z-th year of study. The array MINUS is imaginary because it is

too large to be stored and queries to it can be answered by a simple computation.
Q2 = —Student (¥*x,*y,*z')-Minus(1977,1,%z"')-Program(*x,Engineering)
The first embtry of the STUDENT array is now used as parent, resulting in
Q3 = -Minus(1977,1,1974)-Program(M:Adiri,Engineering)

At this point no application of the rule of inference is possible. The
refutation procedure backtracks to Q2, the last point where there was a choice
of parent. It finds another triple from the STUDENT array, and invokes MINUS
to check whether this is a first-year student. Apparently, this refutation
procedure generates successive answers to the first part of the query, and
then checks each answer with the second part,.but here it would be better to

work the other way around.

18

In this example it would be better to execute
-Minus(1977,1,*%z")

first, because there is a unique answer, which is then used to search
STUDENT for all whose first year of registration is 1976. We assumed that
the selection rule always selects the leftmost literal in a query. Although
this has the advantage of simplicity, it is apparently not always optimal{

To summarize and complete the example, the query
Q = -Takes(*x,Math!129) |
gives an affirmative response when
DB = TAKES u TEACHES u SCHEDULED u STUDENT u RULES
The query has several answers, namely

+Takes(M:Adiri,Math!129)
+Takes (T.L:Cook,Math!129)
+Takes(G.C:Giusti,Math!129)

one for each possible refutation of DBu{Q}. The first two answers are in
the data base. The third answer has been deductively retrieved; its
presence in_the data base would be redundant.

The relation retrieved is the set of all substitution-tuples for the

tuple of variables in the query, namely
{M:Adiri,T.L:Cook, G.C:Giusti}

Query-by-example [25] has a high degree of similarity with the queries
defined here. This will be illustrated by means of the example queries
Q’Ql’ and Q2 discussed above. DNote that there only Q originated with the user,
which was then transformed by the refutation procedure successively to
Ql,Qz,... . But Ql and Q2 could also have originated from a user, and can

hence be usefully taken as example queries.

In query by example Q would be

Takes | Name Course l

s
]

x ¥ Math!129
l

19

Note the following differences. The columns have names, whereas in logic

the arguments of an atom are identified only by their order. Variables

are distinquished by underlining instead of by a preceding asterisk.

In query—by—examplef,Ql would be

Year

Program 7

§7 1 X Engineering

except that this time the required column names have been omitted.

In queyy-by-example Q2 would be

Minus |

l 1977

Student |

|
a
1
J

| i

1

|
; !
x| 2L
E

L3

(.

Program

X Engineering

Here we see an interesting feature of query-by-example:

the variable second
argument of Student need not be named.

Independently, D. Warren of the
University of Edinburgh has introduced the same feature into the program

language PROLOG under the mame "anonymous variable'.

20

6. The relational model of computation

The relational model is not only useful for data, but also for
computation. Consider the following example of a data base intended to

answer queries about the values of the factorial function.

{ +fact(0,1) ,+fact(1,1),+fact(2,2) . (6.1)
,+fact (3,6) ,+fact(4,24),...
1

This is an actual relational data base without any opportunity for deductive

information retrieval. Another possible data base is

{ +fact(0,1)

,tfact (*x,%y) - minus(¥x,4,*x")
- fact(*x"*y') : “cs e (602)
- times(*y',*x,%y)

}

As in example 5.1, the presence of an imaginary array MINUS is required.
This time also, and in a similar way, an imaginary array TIMES. With the latter

data base queries of the form
—fact (u,*y)

where «o 1is a nonnegative integer, are, usually deductively, answered. The
deduction mirrors exactly a computation according to the common recursive
definition of factorial. It should be noted that refutation prodedures as

described here will not answer most queries of the form —fact (%x,0) with the
data base (6.2).

This example shows that the difference between computation and deductive
information retrieval on a virtual relational data base is a difference in
degree rather than in kind. 1In exaﬁple 5.1 table look-up is the dominant
operation, hence we have information retrieval. Here deduction is dominant,
hence we have computation. The whole subject ofvlogic programming [12,13,7]
may be viewed as information retrieval on virtual relational data bases without
any bias towards dominance of either look-up or deduction.

Michie's idea of a memo-function [17] should be mentioned in connection

with this. Memo-functions are function definitions that contain an algorithmic

21

part (our rules) and a data base part (our arrays) containing ("remembered')
(argument ,value) tuples that were computed previously. When calling a
memo—function the user would not know whether he obtained a newly computed
value or a retrieved value computed earlier. A memo-function autonomously
deletes from»ﬁnd inserts into the data base in an attempt to optimize
response time.

The relational medel is not new to the theory of programming. Superficially,
the object of computation is usually thought of as being a functiomn. But
nontermination in computation, and more generally in the execution of
formal function definition, forces one to admit functions which are not
everywhere defined, Also, indeterminacy in programs is incompatible with the
single-valuedness of functions. Rather than to start speaking of partial,
multivalued functions, it is preferable to realize that functions are total,
single-valued binary relations, so that binary relations in their full
generality are the appropriate model of what is computed. An important
feature of Scott's method [22,1] in the theory of computatdon is the
explicit use of relations as sets of tuples, for example in the definitdén
of the notion of approximation: a relation R, is an approximation to R2

1

if Rl c RZ’ as sets of tuples.

22

7. PROLOG

As should be apparent from the previous section, a system for deductive
informatdon retrieval on virtual relational data bases modeled on the
clausal form of first-order predicate logic will also be a system for (legic)
programming. Apart from any applicability to information retrieval, logic
programming, as for example embodied in PROLOG [4 ,21], is an important
development in language design and programming methodology. Even with a
fairly crude implementation good results have been obtained in computer
understanding of natural language [4], robot plan formation [26], symbolic
mathematical computation [11], and in compiler writing [4 1. To this
should be added Warren's results [24] in compiling PROLOG, which show that a
language for logic programming is implementable at least as efficiently as
LISP.

But all versions of PROLOG have an extreme bias towards deduction and
away from retrieval. We believe this is not inherent in the logical model,
but rather feflects the application that PROLOG implementers had in mind?
symbolic computation. We believe that the indexing schemes and search
algorithms required for efficient information retrieval are compatible with
the overall design of existing PROLOG implementations and that there is a
realistic prospect of a system for deductive information retrieval on a
virtual relational data base that is at the same time a superior program
language.

In the remainder of this section we will try to give the reader an idea
of what kind of program language PROLOG is. Only superficial remarks will
be made; for a proper understanding the reader is referred to an account
of KbéWalski's '"procedural interpretation" of first-order predicat logic in
clausal form [12,13]. There are two ways of looking at PROLOG: as an
interpreter for a program language and as an implementation of a resolution
refutation procedure.

Regarded as a program language, PROLOG occupies a position similar to
LISP: what the lambda-calculus is for LISP, first-order predicate logic
(in clausal form) is for PROLOG. There are two ways of praising a language:
to describe the valuable features the language has and to list the

questionable features that are lacking.

23

To start with the latter category: PROLOG has no goto statements, no
assignment statements, indeed no statements of any kind, being a declarative
rather than an imperative language. PROLOG does have procedure‘call by
pattern matching. Both procedure declaration and procedure call are in
several respects simpler and more general than, say, in Algol 60. This is
appropriate since the lack of most of the usual features leaves the procedure
mechanism as the programmer's only tool. The data structures are similar
to Hoare's "recursive data structures" [10]. None of this would be of any
use without PROLOG's library of system—defined procedures for input and
output, arithmetic, runtime additions to or deletiomns from a program,
programmer—-defined deviations from the normal course of control, runtime
interrogatdon of the state of the computation, and more.

The other way of looking at PROLOG is as a resolution refutation procedure
as described in section 5. A surprisingly large part of the advanced
language features of PROLOG arise in the course of the normal operation
of the refutation procedure. This phenomenon has been discovered by
Kowalski who called it "the procedural interpretation of first-order
predicate logic'. We will mention here only the following aspects of the
procedural interpretation: unification is pattern-matching, resolution is
procedure call, substitution is the mechanism for replacing formal by
actual parameters.

The method followed in this paper echoes Kowalski's procedural
interpretation. The method could well have been called "the data-base
interpretation of first-order predicate logic". The existence of both
interpretations implies that an analogy exists between data-base manipulation
and programming: a:same concept of logic has beenlboth interpreted as a
data-base concept and as a program-language concept. The analogy pairs
"answers" with procedure declarations, negative literals with procedure
calls, and queries with procedure bodies. Much earlier this analogy
‘already made its appearance in the PLANNER family of languages, which also

predated several important features of logic programming.

24

8. Answers which are not logical impliecations

Up till now we only considered correct those answers which are logical
implicatdons of the data base. However, not all answers which one would
like to be correct are logical implications. Take for example the sentence
DB = TAKES U TEACHES (see tables 3.3 and 3.4), acéording to which Cook takes
all courses taught by Glotz, that is,

¥y ., Teaches(J.F:Glotz,y) > Takes(T.L:Cook,y) ...(8.1)

The query to check whether indeed Cook takes all courses taught by Glotz

would have to be the negation in clausal form of the above implication:
P = {+Teaches(J.F:Glotz,y0), —Takes(T.L:Cook,yo)}

where Yo is a constant which does not occur in DB. In order for a
refutatdon of DBU{ P} to exist, the rule of iInference has to be applied
with —Takes(T.L:Cook,yo) as one parent, which is not possible. Because of
the completeness of the refutation procedure, it follédws that DBu{ P}

is consistent.

A semantical reasoning to show consistency of DBuU{ P} may be more
enlightening. DB is a definite sentence and hence has a minimal model, say
Io' In IO J.F:Gloté teaches only Math!129 and Math!225, and T.L:Cook
takes only Math!129 and Math!225. Let I, = IoLJ{Teaches(J.F:Glotz,yo)}.

In Il’ which is alee a model of DB, J.F:Glotz teaches Yo but T.L:Cook does
not take yo*)-Apparently, the fact (8.1) is true in some models, but not

in all: this fact is not a logical implication. Why would one consider it
true?

We consider the fact (8.l) to follow from DB because we implicitly
assume that Glotz teaches only what is listed in DB, that is, we assume
that whatever cannot be proved is false. This assumptdon was recognized and
discussed by R. Reiter [19], who called it the "closed-world assumption'.
He showed that it cannot always be made, but that for a definite sentence
as data base, the closed-world assumption will not lead to contradictions.

One way o6f - showing this is to use the fact that for a definite sentence,
the intersection of 41l modéls is itself a model [1. The intersection
of all models contains exactly the provable facts. To consider the
intersection as an interpretation is to assume to be false whatever cannot
be proved. To find the intersection itself a model means to be free of

contradiction.

*) Il is not an interpretation of DB because Y, is not in the universeiof

discourse of DB. The same reasoning can be given correctly by replacing
Yo by some constant of DB.

25

It seems that for certain queries truth in the minimal model is a more
appropriate criterion of correctness of an answer than truth in all models.
We therefore have to ensure the existence of a minimal model. Hence the
restriction of a data base to definite clauses. The refutation procedure
gives answers which are true in all models, hence true in the minimal model,
hence correct under both criteria. In what way can answers be obtained true
in the minimal, but not all models? This can be done by means 6f a special
predicate symbol 'mot". ‘

Suppose that '"not" is defined in such a way that the refutation procedure
gives an affirmative response to a query -not(L) whenever a query -L would
give a negative response. Let us use as example the'query which asks for
the names of all students that take all courses taught by Glotz. Because
"not" is restricted to one-literal queries we prepare by defining some

intermediate concepts. We add temporarily torthe data base
+A (*x)~Teaches (J.F:Glotz,*y)-not(Takes (*x,*y))

The relation retrieved by the query —-A(*x) is the set of names of students

who do not take some course taught by Glotz. We also add
+B (*x) ~-Takes (*x%,*y) -not (A(*x))

The relation retrieved by the query -B(*x) is the set of names of students
who take all courses taught by Glotz.

This last example is considerably less simple than the ones discussed
in section 5. This situation is not restricted to our approach to information
retrieval. For instance in the use of Codd's relational algebra [3,5] as
query language, the present exémple is expressed by the particularly opaque
"division" operatdon. It might seem preferable to be able to use instead
a formula of logic not restricted to clausal form. Yet the findings of
Thomas [23] show that users typically make the most hilarious mistakes in
the choice between existential and universal quantifiers. Perhaps we have
to face the fact that some queries are more complex than others and that
for the complex queries it is acceptable to have to build up step by step the
desired relation, much as one builds up a simple program. It may well be
that in this way users find it easier to keep track of what they are doing
than when required to enter a single formula with quantifiers, which they

would anyway have to build up step by step on a piece of scratch paper.

26

In the days before data bases, when only "files" existed, information
was retrieved by a special program for each retrieval. One of the improvements
offered by a data base system is that exactly the right choice of information
can be retrieved by entering a single formula in a query language instead of
Ahaving to write a program. It seems that formulas are not always better

than programs, not when, for example, the formula has to use opaque operators

and the program can be in PROLOG.

27

9., First-order versus second-order queries

It is instructive to see what exactly makes the query discussed in
section 8 more difficult to handle than the ones in section 5. Let us
look at the first-mentioned query in another way. We want the set of
students who take all courses taught by Glotz. Let Rl(u) be the relation
retrieved by the query Ql(a) = ~Takes(0,*y), where O is a constant. Let
R2 be the relation retrieved by the query Q2 = -Teaches (J.F:Glotz,%*y).
Now Ql and Q2 are queries of the type discussed in section 5 (the fact
that Q1 and Q2 each have only one literal is not essential). Their
answers are logical implications, true in all models. The name of a

student taking all courses taught by Glotz is a solution for o of

Ry e R

Both Rl and R2 are determined by the minimal model because the corresponding
answers are logical implications. The above inclusion therefore holds only
in the minimal model.

Apparently the query of section 8 involves two relations such as would be
retrieved by the usual kind of query and also an inclusion relation between
the relations. It is this last circumstance that makes the query belong to
second-order rather than first-order logic. TIt-should not be surprising that
it is not straightforward to express such queries when one has to make use
of an accidental feature which happens to transcend first-order logic, such
as "not" in PROLOG, or "division" in Codd's relation algebra.

The role played lhere by the minimal model is the same as the one played
by the minimal fixpoint in Scott's method for the theory of computation. The
connection has been established in [6], but there the emphasis was on
computation rather than on information retrieval. To make clear that the
minimal model here plays the same role as the minimal fixpoint in [g1, we
shall discuss heve a "computatdonal" example.

Consider the following data base

DB = { +P1lus(0,*y,*y)
»FtPlus (s (*x) ,*y,s(*z)) -Plus (*x,*§,%z)
,tLessovequal (0,*y)
,+Lessorequal (s (*x),s(#y))-Lessorequal (*x,*y)

}

28

Composite terms without variables have the form s(s(...s(0)...) = gn(O);
SN —

n times

thisrone represents the nonnegative integer n. A query
~Plus(s2(0),82(0) ,*z)

will give an affirmative response, with answer
+P1us (s2(0) 82 (0) 8% (0))

In this way the first two clauses of DB constitute a program for addition.

Suppose we want to prove a property of the program, for instance~that, whenever

an answer
+Plus (0,B,Y) .

is returned, that then o is less than or equal to Y, according to the program
for "lessnor equal” in DB,

Let Rl be the (infinite) relation retrieved by Ql = -Lessorequal (¥x,%z).
Let R2 be the relation (likewige infinite) retrieved by Q, = -Plus(*x,%*y,*z).
The property is expressed by the second-order assertion Rl > R!, where R

2
is the projection of R2 on the subspace spanned by the first and third

2

coordinates.
Now

P = +Lessorequal (*x,%*z)-Plus(%x,*y,*z)
means

for all x and z, x less or equal z if

there exists a y such that x plus y equals z

P is a first-owder assertion.. It may be verified that P is not true in all

models of DB, but that it’ds true in the minimal model of DB.

10. Acknowledgement

The research reported here was supported by the National Research Council.

11.

10.

11.

12,

29

References

J.W. de Bakker and D. Scott
" A theory of programs, IBM seminar, Vienna, August 1969

E.F. Codd
A relational model of data for large shared data banks
Comm. ACM 13 (1970), 377-387

E.F. Codd
Relational completeness of data base sublanguages
R. Rustin (ed.) Data Base Systems, Prentice Hall 1971, pp. 65-98

A. Colmerauer
Les Grammaires de Metamorphose
University of Marseille~Luminy, 1975

C.J. Date
An Introduction to Database Systems
Addison-Wesley, 1975

M.H. van Emden and R.A. Kowalski
The Semantics of Predicate Logic as a Programming Language,
Journal ACM, 23, pp. 733-742, (Oct. 1976)

M.H. van Emden
Programming in resolution logic. To appear in 'Machine Representations
of Knowledge' published as Machine Intelligence 8 (eds. E.W. Elcock
and D. Michie) by Ellis Horwood Ltd. and John Wylie

D.H. Fishman and J. Minker
Pi-Representation
Artificial Intelligence 6 (1975), 103-127

C.C. Green
Theorem-proving by resolution as a basis for question answering systems.
Machine Intelligence 4,B. Meltzer and D. Michie (eds.), Edinburgh
University Press, 1969

C.A.R. Hoare
Recursive data structures
Research Report STAN-CS-73-400, Dept. of Computer Science, Btanford University

Kanoui, Henry]
Application de la demonstration automatique aux manipulations alfebriques
et a 1l'integration formelle sur ordinateur.

Groupe d'Intelligence Artificielle, U.E.R. de Luminy, Univ. d'Aix-
Marseille, 1973.

R.A. Kowalski
Predicate logic as programming language
Proc. IFIP 74, North Holland, 1974, pp. 569-574

13.

14,

15.

16.

17.

18.

19.

20,

21.

22.

23.

24,

25‘

26.

30

R.A. Kowalski
Logic for problem-solving
Memo no. 75, Department of Computational Logic
University of Edinburgh, 1974

R.A, Kowalski
Logic and data bases
Department of Computation and Control, Imperial College, London

R. Kowalski and D. Kuehner
Linear resolution with selection functiom.
Artificial Intelligence 2 (1971), 227-260

D. Kuehner
Some special purpose resolution systems
Machine Intelligence 7, B. Meltzer and D. Michie (eds.),
Edinburgh University Press, 1972

D. Michie
Memo functions and machine learning
Nature 218 (1968), 19-22

M.S. Paterson and M.N. Wegman
Linear unification
IBM Research Report RC 5904, 1976

R. Reiter
An approach to deductive question-answering
Technical Report, Bolt, Beranek, and Newman Inc.,
Cambridge, Mass.

J.A. Robinson
A machine-oriented logic based on the resolution principle.
J. ACM 12 (1965), 23-44

P. Roussel
PROLOG: manuel d'utilisation
Groupe d'Intelligence Artificielle
Universite de Marseille~Luminy, 1975

D. Scott
Outline of a mathematical theory of computation
4th Annual Princeton Conference Information
Science & System (1970), pp. 169-176

J.C. Thomas
Quantifiers and question-asking
IBM Research Report RC 5866 (1976)

D.H.D. Warren
Implementing PROLOG
Dept. of Artificial Intelligence, University of Edinburgh, 1977

M.M. Zloof
Query by example '
Proc. Nat. Comp. Conf., AFIPS Press, 44 (1975), 431-438

D. Warren
WARPLAN: A system for generating plans

Memo 76, Dept. of Artificial Intelligence, University of Edinburgh, 1974

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

