ON A TERNARY MODEL OF GATE NETWORKS

by

J.A. Brzozowski M. Yoeli

Dept. of Comp. Science Dept. of Comp. Science
University of Waterloo Technion

Waterloo, Ont., Canada Haifa, Israel

Research Report CS-76-40
September 1976

This work was done when the second author was
visiting the University of Waterloo. This
research was supported by the National Research
Council of Canada under Grant No. A-1617.



ON A TERNARY MODEL OF GATE NETWORKS

by

J.A. Brzozowski and M. Yoeli

Abstract

In this paper we formalize a ternary model which is being
used to study the behavior of binary sequential gate networks. We
first introduce a general binary model which is capable of a detailed
description of network behavior, but invoives a number of steps that
grows exponentially in the number of gates. The complexity of the
ternary model is linear in the number of gates; however, only partial
information is obtained in general. A mathematical theory is developed,
making precise these two models and the comparison between them. A
number of examples illustrate these results. This work generalizes

previously reported research.



1. Introduction

Eichelberger [EIC] has shown how ternary logic can be used
in order to detect hazards in combinational gate networks, as well
as races and oscillations in sequential networks. The mathematical
theory of hazard detection was further developed in [BR-Y0]. The
methods described in [EIC] have been used in [JE-MC-V0], [PU-RO], and

elsewhere for implementing a ternary simulator of digital systems.

However, a variety of "pitfalls" of such ternary simulators
have been encountered by their users. An informal explanation of
some of these pitfalls is given in [BRE]. In [Y0-BR] we extended
the binary GSW (General Single Winner) race model of [BR-YO] to
ternary gate networks. This framework enabled us to establish a
mathematically precise result indicating the limitations of Eichel-

berger's race detection techniques.

This paper provides further insight into the features of
ternary simulators based on Eiche]bergerfs method. First, we introduce
a more general binary race model, namely the GMW (General Multiple
Winner) model. We then generalize the result obtained in [Y0-BR],
and provide a detailed proof. Finally we give a detailed comparison

between the results obtained by the binary and ternary models.



2. The GMW Model

We are considering networks constructed from gates such as

INVERTERS and multi-input AND, OR, NAND and NOR gates shown in Fig. 1.

However, the mathematical theory need not be restricted to these

gate types; in fact, any n-input, one-output combinational network

can be considered as a generalized gate. With each such gate we

associate a Boolean function f:B" - B, where B g {0,1}. (The symbol

2 means 'is by definition'.)

GATE TYPE ~ SYMBOL

INVERTER ;ﬁ@._%y
X
1
AND N@——) y
Xn/
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NOR 5 (:) >y
Xn

Fig. 1 Gate symbols
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Figure 2 shows the logic diagram of a gate network (a NOR
latch with inputs tied together, to keep the example simple). When
x = 1, the state Yy =¥, = 0 is stable. Our problem is to predict
the behavior of a network when it is started in some such stable
stafe y and the input changes {to x = 0, in our example). We
assume that the new input value will not change until the network
reaches a new steady-state condition. Under these assumptions,
the complete analysis of any gate network can4be carried out by
repeating the analysié for all such states y for each input x .

For a more detailed discussion of the analysis problem see [BR-YO].

More formally, let the network have n binary inputs

STERPRE and s gates G],...,GS whose outputs are Yyse-esy
A A A
let x = x],...,xn s Y = YyoeeesYg and ¥ = Y]""’Ys’ where

x

Yi 4 fi(x,y), fi being the Boolean function associated with gate
Gi‘ We call Y the excitation of the network. The entire
logical structure of the netﬁork can béAconcisely described by a T

network function F:B" x B+ BS. Let [F(x,y)]i, the ith coordinate

of F, be the Boolean function f1 associated with gate Gi'

‘kx

———
Fig. 2 Network N] T
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In our example, we have the excitation equations:

Yy = (xtyp)! Ya = (xtyy)!

The network function F is given in Fig. 3.

X
y’ 0 1

00 11 00
01 01 00
10 10 00
11 00 00

Y(x,y)

Fig. 3 Network function for N1.

A state y of a network is primary iff there exists an input
x ¢ B" such that F(X,y) = y; i.e. (X,y) is a stable total state. We
assume that we are interested only in analyzing the behavior under
any input x when the network is started in a primary state y . This
analysis is carried out with the aid of a binary relation Rx on the
set B of gate states. We now define this relation for the GMW

{(General Multiple Winner) model of races.

Let y,y € B® be gate states. We define the interval

[y,y] between y and y as follows:

[y,y] = {z « lezi =y;orz;= &i for a1l i € {1,...,s}}.
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For example, [00,01] = {00,01}, and [1100,1111] = {1100,1101,1110,1111}.
We will be using the interval between a state y and its excitation
YX = F(x,y). This interval [y,Yx] consists of all the states that
can be immediate successors of state y under input x, on the
assumption that any subset of unstable gates cah change simultaneously
(multiple winners of a race are allowed). We now define the GMW
relation R . For ¥,y « B>,

YRy iffy = F{x,y)
and for y # y,

y R Y iff ¥y e [y,Flx,y)].

The relation Rx is conveniently represented by its relation

diagram, where nodes correspond to internal states and an arrow

from node y to node y 1indicates that y is related to Y,

i.e. y Rx y. The relation diagram of R0 for the network of Fig. 2

is shown in Fig. 4. This is obtained from the x = 0 column of Fig. 3
by applying the definition of interval. In Fig.r4 we show that

gate Gi is unstable, i.e. Yi # ;o by underlining P If the

network starts in the primary state y = 00 with x = 0, both

variables are unstable. This is a race. It is seen that it is
possible to reach two stable states, 01 and 10, depending on the
relative magnitudes of the gate defays. Such a possibility is called

a critical race. If the delays are equal it is possible for the

network to oscillate between the states 00 and 11. However, it is
unrealistic to assume that this oscillation will persist indefinitely,

since it is unlikely that the gate delays remain perfectly matched.
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This indicates that the GMW model may be somewhat pessimistic, since

it predicts an unlikely oscillation.

Q0

01 10

QO

for N,.

Fig. 4 GMW relation R0 1

A second examplie of an oscillation that is.un1ike1y to persist

is provided by the network N2 of Fig. 5 (a). Note that F(0,011) = 011.
Hence 0171 is a primary state. The GMW analysis of this state for x =1
is shown in Fig. 5(b). Note that we only show thét part Rx(y) of the
relation RX in which all nodes are reachable from the primary state y;
the remaining states are of no interest. Figure 5(b) shows the cycle
{011,010} indicating an oscillation. Observe, however, that the first
gate is unstable in both states of the cycle and its output will
eventually change from 0 to 1. The network will then stop oscillating

and reach the unique stable state 101.

Fig. 5(a) Network N2



100

Y 101
O

Fig. 5(b) Relation Ry (011) for N, -

A third type of oscillation is illustrated in Fig. 6(b)
for the network N3 of Fig. 6{(a). Here the oscillation will continue

indefinitely.

We now return to the more formal approach. The relation
diagram is always finite since the set BS is finite. Consequently,
if we start with y and follow any directed path in the diagram
we must reach a cycle. We say that a cycle C 1is sustained
iff for all y in C, F(x,y) differs from y 1in no more than one
coordinate. '(Seé Fig. 6.}. A cycle is transient iff there exists
i, 1 <1 <Ssuch that gate Gi is unstable and Y5 has the same value

for all the states in the cycle. A cycle C is match-dependent

iff there exist states y and z in C such that =z is the successor
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of y inCand y and z differ in at least two coordinates.

Fig. 4.)

X

y
—0—0
Y Y2 B!

Fig. 6{a) Network N

101
/ .
100 ¢ \\. 0Q1

110 011

N\

Q10

Fig. 6(b) Relation R (101) for N,

(See
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Given any set S and a binary relation R on S, define for

any y « S:
*
cycl (R,y) iz es|lyR zand z R 23,

where R* and R* are the transitive and the transitive-and-reflexive
closures of R respectively. Thus cycl (Rx,y) for x « B", y e BS is
the set of all cyclic states reachable from y, where a state is
cyclic iff it appears in some cycle of the relation diagram of Rx.
Also let trans (R ,y) 89z e cycl (R,»y)|z appears in only transient

A
cycles of Rx(y)} and gg;_(Rx,y) = cycl (Rx,y) - trans (Rx,y).

The set out—the "outcome" of state y under input x — represents
the set of all states that the network can be in, under non-transient
situations. We can distinguish the following cases:

1) A unique stable state, i.e. cyc1(Rx,y) = {2z} for some z ¢ B°.
This is usually the desirable case, when a transition takes place
from y to z under input x and this transition is independent

of the relative delays of the gates.

2) cycl(Rx,y) consists of a single cycle of length more than one.
Note that this cycle is necessarily sustained. This represents

an oscillation that will continue until the input changes again.

3) out(Rx,y) contains two or more cycles. Here the behavior

depends on which gate wins the race, and the race is critical.

We interpret transient cycles as follows: it is possible

for the network to "go around" a transient cycle several times.
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However, eventually, the network will leave the cycle. We point out
tﬁat match-dependent cycles are somewhat similar to transient cycles
because it is improbable that the network will remain in a match-
dependent cycle indefinitely. Disregarding match-dependent

cycles will therefore result in a more optimistic model. One such
model is the GSW (General Single Winner) model [BR-YO], in which

y R, y implies that y and y differ in at most one coordinate.

As we shall see, the ternary éimu]ation results will provide

some information about out (Rx,y).
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3. Ternary Model
In this section(we introduce a ternary model of binary

gate networks and describe the corresponding simulation procedure.

Let T g {0, %3 1}. Intuitively, %-represents the fact that
the value of a binary signal is unknown. We introduce a partial

order relation C on T given by the relation diagram of Fig. 7.

oF
A N\e

Fig. 7 Relation diagram of c .

Thus, we have tc t, for every t e'T, as well as 0 ¢ l-and ]g;-l

2 2’
We now extend the partial order C to Tm, m > 1, in the usual way;

namely, let t,r ¢ Tm, then
tcr iff t; cr; for every i e {1,...,m}.
1 1 1 1
For example, (0, 5, 1, 1) £ (5 5 1, )

Next, we set {0} = 0, uf{1} =1 and u{0,1} = %3 and for any nonempty

subset A of Bs, s > 1, we set
A ,
UA - (“A'IQ‘°"UAS)

A
where A, = {a1|(a],...,as) e A}, 1 =i <5,
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For example,
W(0,0,1),(0,1,00 = ut(0,0,0),(0,1,1)} = (0,55).

Clearly, if a ¢ A < Bs, then a © pA.

With any function F:B™ » BS (m=1, s >1) we associate its

ternary extension _E:Trn + T%, where for every t ¢ T"

F(t) = u{F(x)|x ¢ B™ and x C t}. Note that for
t < B%, F(t) = F(t). For example, if F is the NOR function,

F = (x1 + xz)', then F is given by Fig. 8.

t
0 5 1
of1[% | o
3| & x| o
1{olo | o
F(ty.t,)

Fig. 8 The ternary extension F of F = (x1 + x2)'

Let now F:B"xB® + B be the network function for some
binary gate network N. Let (x,y) be a primary total state of N, i.e.
F(X,y) =y for some X e B". To obtain information about the
behavior of N, starting from its total state (x,y), the following

algorithms A and B may be applied (cf. [EIC]).
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Algorithm A.
1. Set p « u{x,x};

2. Set r «y;
3. If F(p,r) = r then stop; else
set r « F(p,r) and repeat step 3.

We show in Section 5 that this Algorithm must terminate. The value r

obtained by Algorithm A is used as the initial value in the following:

Algorithm B.
1. Set t + r;

2. If F(x,t) = t then stop; else
set t « F(x,t} and repeat step 2.
The termination of this algorithm will also be shown in Section 5.
The main result of this paper is the following result:

(*) Let t be the value obtained by Algorithm B; then y C t for every

y € out (Rx,y). See Section 5 for the proof of this result.

We now illustrate Algorithms A and B and (*) by several

examples.

Example 1. Network N] of Fig. 2.
Note that F(1,00) = 00. Let X=1 and x=0. For Algorithm A

we have:



Step 1. p« uf0,1} = %

Step 2. r <+ y =200

Step 3.  F(1,00) = &+ # 00

P . __29 22

Step 3 F(l
. _2,

For Algorithm B we get
Step 1. t «

) = %—%—; stop.

PO| et PO —

Step 2. F(0,

Clearly (*) is satisfied. Note also that for this example

u(out(RO,OO)) = %—%—. Compare the outcome of the ternary procedure

with Fig. 4. We shall return to this example later.

Example 2. Network N, of Fig. 5. Note that F(0,011) = 011.

Let x=0, x=1, and y=011. The reader will verify that Algorithm A
yields r = %—%-%-and Algorithm B yields t=101. Compare with Fig. 5.
Example 3. Consider the network N4 of Fig. 9.

X.I X2

Yo

Fig. 9 Network N4 .
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Let x=01, x=10, y=00.

One easily verifies that

cycl(Rx,y) = {00} = Out(Rst)

The outcome of Algorithm A is r =-%

PO| =

and of Algorithm B is t = 0% .
Here, t # u{out(R ,y)).

Example 4. Consider the network N5 of Fig. 10, where
the 1-input AND gate represents a delay. Let x=01, x=10, y=001. One
verifies that

cyc](Rx,y) = {000,010} = out(Rx,y)

consists of two stable states (critical race). The outcomes of

Algorithns A and B are r =y 5 and t = 0 0, i.e.

t = u(out(R,,y)). X,

Fig. 10 Network N5 .
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4. Evaluation of the Ternary Procedure

In this section we compare the ternary procedure described
in Section 3 with the GMW-model. This comparison will clarify both

the advantages as well as the limitations of the ternary procedure.

Refer now to Algorithm A, and let r be some intermediate
value of r. In Section 5 we show that r ¢ F(p,r). Thus E(p;F),
the next value of r, is obtained from r by changing some of its
binary entries into %Js. It follows that Algorithm A must terminate
after at most s applications of Step 3. A similar argument (see
Section 5) shows that A]gorithm B must terminate after at most s
appiications of Step 2.' Thus the complexity of the ternary procedure
grows linearly with s , whereas the complexity of a procedure based
on the GMW-model grows exponentially with s because there are 2°
states. This is, of course, the basic advantage of the ternary

procedure.

Assume now that the outcome t of Algorithm B is binary,

i.e. t « BS, as in Example 2 of Section 3. In view of (*),
out(R,.y) = cycl1(R ,y) - trans(R,.y) = {t}.

Thus, cyc](Rx,y) consists of a cycle of length 1, namely { t}, and,
perhaps, one or more transient cyc]és (see Fig. 5(b) for an example
with one transient cycle). It follows that the network in question
will eventually reach the stable state t . Hence the ternary
procedure provfdes, in this case, complete information about the

steady-state behavior of the network.
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However, if the outcome t of Algorithm B is not binary,
i.e. teTS - BS, the interpretation of this outcome is not straight-
forward. We consider the various possibilities leading to a non-binary

outcome t .

1) out(Rx,y) consists of a single cycle of length more than one
(see Fig. 6). This indicates that the steady-state behavior of the
network consists of an oscillation. It easily follows from our theorem

(see also Section 5) that

u(out(R,y)) e t .

Hence t must have one or more %-- entries. If the occurrence of
%-- entries in t 1is interpreted as "critical race or oscillation",
then the outcome of the ternary procedure in case of an oscillation

can be considered satisfactory.

2) out(Rx,y) contains at least two cycles which are not match-dependent
(as is the case in Fig. 2). This indicates a critical race. Again,
since

u(out(R,,y))c t

t cannot be binary, and the outcome of the ternary procedure can be

considered satisfactory.

3) Consider now the Network N1 of Fig. 2 with the addition of an

AND-gate as shown in Fig. 11.
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Y3

Fig. 11 Network N6

Let x=1, y=000, and x=0. The outcome of Algorithm B is t = %—2-%-.

—

The corresponding relation RO(OOO) is shown in Fig. 12.



C

101

Fig. 12 Relation RO(OOO) for Ne

Since we may assume that the network will not move along match-dependent
cycles infinitely many times, it follows from Fig. 12 that Y3 will
eventually become 0. However, this fact will not be detected by the
ternary procedure, since t3 = %-. Indeed, the ternary procedure treats
match-dependent cycles in the same way as sustained cycles. This4is

the kind of 'pitfall' of the ternary procedure, referred to in [BRE].

(4) Next consider Example 3 of Section 3. Here out(Rx,y) ={00}. Since
out(Rx,y) consists of a single cycle of length 1, one would expect the

outcome of Algorithm B to be binary. However, t = 0% .

On the other hand, if one compares Example 3 with Example 4,
it become; evident that the GMW-model does not take into account line

delays. In order to account for such delays one must inc]uderthem
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explicitly in the model, as in Example 4. As for the ternary procedure,
one-easily verifies that this procedure always takes into account line
delays, even if such delays have not been explicitly included in the
representation of the network. This explains the outcome of the ternary
procedure in Example 3. Whether this feature of the ternary procedure
is desirable or not, will depend on the particular technology in use.
Frequently, 1ine delays may be neglected. In these cases the feature

in question constitutes a limitation of the ternary procedure.

5) The network N5 (see Fig. 10) of Example 4 is obtained from the
network N4 (see Fig. 9) of Example 3 by the addition of an input Tine
delay. However, the preceding discussion is not limited to input line

delays. To illustrate this, consider network N, of Fig. 12.

7

Fig. 12 Network N7 .

Let x=0, y=101, and x=1. In the GMW-model we obtain cycl(Ry,y) =

out(Rx,y) = {011}, whereas the outcome of Algorithm B is t = %..

N —
N~
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However, if we insert a Tine delay in the connection indicated by *
in Fig. 12, the GMW model will yield a critical race. This shows

that the ternary procedure also takes into account internal 1ine delays.

In summary, we point out the following:
1. The ternary procedure disregards transient cycles. From the point

of view of steady-state behavior this is the desirable approach.

2. Match-dependent cyé]es are treated by the ternary procedure in the
same way as sustained cycles. In view of the fact that oscillations
resembling match-dependent cycles can appear in certain networks
(the "glitch phenomenon® [CH-MO]), the feature of the ternary model
may be quite useful. On the other hand, match-dependent cycles
are unlikely to persist, and the ternary model is overly pessimistic

with respect to the steady-state behavior.

3. The ternary model does not distinguish between oscillations and
critical races, where by critical race we mean that it is possible
for the network to reach two or more nontransient cycles. This is

probably acceptable for most purposes.

4. The ternary model takes into account line delays. This may or may

not be applicable, depending on the technology.

It follows that, if the outcome of the ternary procedure
is a binary state, the steady-state analysis is complete. Otherwise,

further analysis (using, the GMW model for example) may be required.

Note that we have not given a precise characterization of the

result of the ternary procedure. We conjecture the following:
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Let N be a gate network, and let N be the network obtained from N by
inserting line delays in all fan-out connections and in all input lines.
Let ﬁx be the GMW relation for N under x. Then for y ¢ B>,

ulout(R ,y)) = t

where t 1is the outcome of the corresponding ternary procedure applied

to N.
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5. Mathematical Theory

In this section we develop the mathematical background required
to prove the theorem. We will need the following properties of the partial

order C .

Proposition 1. Let F:8™ > BS, m,s = 1, be a function and let

_E:f" > T° be its ternary extension. Then

(a) q c r implies F(q) c F(r) for all g,r ¢ ™
(b) t T r and g e [t,r] impliestCc q Cr;

(¢) t,r c u and q e [t,r] implies q C u.

Proof This is easily verified. [

From now on we use the notation given below without explicit

reference.

We consider a network function F:B" x B> = B%, s=>1,n=> 1.

'Fof x ¢ 8", y € BS the relation Rx is the GMW relation defined by (F,x),
and Rx(y) ={(z,z) ¢ RX|yR;z}. The ternary extension of F is

E;Tn x TS > T%, Forpe ™, Bp denotes a relation analogous to R,, and

defined by (F,p) as follows:
Ry iff q = F(p,q), and for q 7 q

aR 4 iff 4 ¢ [9.E(p,a)],

—p

where the interval is as defined in the binary case.

For p ¢ ™ and q e TS, we say that q 1is positive in
(F,p) iff q c F(p,q). Similarly, q 1is negative in (F.p) iff

q 2 F(p,q), where 2 is the converse of L .
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Lemma 1 Let p e T and let g,r e T° be such that q 1s positive

*
in (F,p) and q Bp r. Then g ¢ rand r is positive in (F,p).

Proof g B; r implies g BE r for some k > 0. The proof is by
induction on k . If k=0 then g=r and the lemma holds. Now assume
k-1

k > 0, and suppose q Bp t, and t Bp r. By the induction
hypothesis q C t and t is positive. Now t Bp r implies
re [t,F(p,t)]. Since t is positive t ¢ rC F(p,t), by

Prop. 1(b). By Prop. 1(a), F(p,t) c F(p,r). Altogether,
qctcrc F(p,t) E F(p,r). Thus the lemma holds. [

Lemma 2 Under the conditions of Lemma 1, let u ¢ T5 be such that

q ¢ uand F(p,u) =u. Then r C u.

Proof Again assume q Bg rs k=0 and proceed by induction on k.

k-1

The basis, k=0, is trivial. Hence suppose g Bp- tand t R_r.

p=]

By the induction hypothesis t C u. Hence F(p,t) = F(p,u) = u. Since
*

a R,
(F,p). Now t Bp r implies t Cr ¢ F(p,t). Thus r C F(p,t)c F(p,u) = u,

t, we can apply Lemma 1, yielding qo t and t positive in

and the lemma holds. 0O

Lemma 3 Let q ¢ TS be positive in (F,p). Then cyc](Bp,q) ={r}, for

some r e Ts.

Proof Suppose r,t e cycl(Bp,q) appear in the same cycle, i.e.

r B; t and t B; r. Clearly g B; r. By Lemma 1 r is positive. Also

by Lemma 1 (since r B; t), r ct. By symmetry t Cr, and it follows
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that r=t. Hence every cycle reachable from g 1in Ep is of Tength 1.

; rand q B; u, where {r} and {u} are two

cycles of length 1. By Lemme 1, g ¢ u. Also F(p,u) = u. By Lemnma ?

Next zuppose g B

rCou. By symmztvry, 4 C v, Hence u=r. [J

It is aasily verified that Prop. 1 and Lemmas 1, 2 and 3
remain correct 11 the relation ¢ is replaced by the converse
relation 2, and "positive" is reniaced by "negative". We will

refer to thess "duat! vosulis as Proposition YD and emmas 1“,
D
?S and 37,

fl

Corollary 1 Let X ¢ & and y ¢ B> be such that y = F(X,y) and X C p.

o=

Then cyci(RU,y} = v} Yor some voe T,
¥

Pronfe y = FOLY) = FOy) ¢ Flpoyls by Prop. 1. Hence y s

sositive in (F.p) end the claim follows by Lemma 3. [

i

3] I LS 2 - i - "S - . A - oy
Sorollary 2 Lot p e and v ¢ T7 ba such that v=F(p.r) and p 3 x.

o . Foa S
fhen cycl{R vy = {8, for soue € ¢ 17,
A

proaf: v oo Flpae) 0 Flxur), by Prop, 1. Hence v is negative in

(F.x). The claim foliows by Lemma . o

: 5
Lewna 4 Suppose y o B

is positive in (F,p). ¥ Ri y for some ¥ ¢ B°,
and y gz ¢ for some v ¢ T° sush that r = F{p.r). Then x ¢ p implies

g .

=

Proof:  We must have y gi y tor some k = 0. The proof is by induction

on k, If k=D, ysy. Since y is positive in {F,p) and y Bgrrg we have
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y Cr, by Lemma 1.

Assume now that y Ri“l

y and y R, ¥ . By the induction
hypothesis, y cr. Now ¥y e [¥,F(x,y)], and F(x,¥) T F(x,r)

c F(p,r) =r. By Prop. 1(c), ¥y cr. O

Lemma 5 Let x « B" and let C be a nontransient cycle of Rx“ Let r e T°
be such that r s negative in (F,x) and r 2y, for every y in¢C .
Suppose r R: t for some t ¢ T>. Then t3 y; for every y in C .

Proof We must have r Rk t for some k = 0. We use induction on k.

=X
k-1

If k=0, the claim is obvious. Otherwise, let r Bx u and u Bx t.

By the induction hypothesis u Dy for every y in C . By Lemma 1D,
u is negative in (F,x). Thus u 2t 2 F(x,u) since u Ex t. We will
show that F(x,u) 2y, for each y in C . Suppose this is not the
case. Then z, 4 [F(x,u)]; must be in {0,1} and y, = z;. Now u 3y
implies z; = [Eﬂx,u)]ig [F(x,y)1;. Since z, e {0,1}, we have

z; = [F(x,y)]i. Hence y, # [F(x,y)]i._ Since the cycle C 1is non-
transient there must exist y e C such that §1 = [F(x,&)]i. Since

y Cu, &i = [F(x,&)]i c [E_(x,u)]i = z;. Consequently there must

be two states in C, say y and y, such that y Ry ¥s &i =z,

z%. But y ¢ [y,F(x,y)] and y; = [F(x,9)]; = z;. Hence

Yi = Zys which is a contradiction, and the Temma holds. [J

and ¥;

Theorem Let x,x « B" and y < BS. Let p = u(x,x), and assume

F(x,y) = y. Then
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(A) cyc](Bp,y) ={r} for some r TS,
(B)  cycl(R,,r) ={t} for some t e T°,

(C) Let C be a nontransient cycle of RX reachable from y, and

let y e C. Theny Ct.

Proof  Since X c u(x,x) = p, Corollary 1 yields (A). Similarly
x C p, and (B) follows by Corollary 2. Since y = F(x.y) € F(p,y), ¥
is positive in (F,p). Also y R: Y, ¥ _; r and r = F(p,r) yields
y cr by Lemna 4. Finally r = F(p,r) 2 F(x,r). Thus r is negative

in (F,x). By Lemma 5 y Ct.

The mathematical results above are applied as follows.
Part (A) of the Theorem applies to any primafy state y and any input
X . It states thaf, in the ternary model, the result of starting
the network in state y with inbut p = u(Xx,x) is a unique stable
ternary state r . This resulting state r is independent of the
path chosen from y in Bp (y), and this justifies Algorithm A,
where we take the "maximum winner" path i.e. the path consisting of
steps of the form t Bp F(p,t). Similarly, Part (B) justifies

algorithm B, and part (C) provides a proof of (*) of Section 2.
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