A PROPOSAL FOR AN IMPERATIVE COMPLEMENT
TO PROLOG

By

M.H. van Emden
CS-76-39
DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF WATERLOO
WATERLOO, ONTARIO, CANADA

August 1976

A PROPOSAL FOR
AN IMPERATIVE COMPLEMENT TO PROLOG

ABSTRACT :

It 1s argued that it 1s useful to be able to interface subroutines
written in an imperativé program language with programs written in a
descriptive language such as predicate logic. An imperative language
based on flowgraphs is sketched, together with a proposed interface
for the PROLOG system for logic programming. Prerequisites for this

report are: principles of logic programming [2,3;5], PROLOG [41], and
flowgraphs [6,71.

1. Imperative complements to descriptive program languages

A language 1s called descriptive when it can be made clear from
a program written in it what 1is done by executing it. Such a program
typically does not reveal the details of how the results of the
computation are achieved; these belong to the imperative aspect of
algorithm specification. It follows that a descriptive language
allows the programmer little direct control over efficiency of
execution.

A language like pure LISP, where the programmer can specify the
computations to be executed by writing recursive function definitions,
is an extreme example of a descriptive language. At the imperative
extreme would be a language which restricts programs to assignations,
tests, Jumps, and the invocation of primitive functions.

It is useful for a program language to allow the composition of
both descriptive programs (where understandability is critical) and
imperative programs (where efficiency of execution is critical). This
capability is inherent in the design of a language like Algol 60.

In LISP, where the design is modeled on recursive function definitions,
the imperative component has been added as the PROG feature.

The importance of LISP derives from the fact that its recursive
function definitions in a mathematical style afforded a unique
opportunity for running descriptive programs. Predicate lcgic used
as a program language caﬁ be called descriptive for the same reason
as LISP: programs can be written to reflect faithfully recursive
definitions. An implementation such as PROLOG has a relationship to
predicate logic which 1is similar to the one between LISP and the
lambda-calculus. The recursive definitions of logic programs define
relations rather than functions; the relations are of arbitrary arity
defined over a data space of terms of arbitrary complexity.

I believe that it is important to be able to write both descriptive
and imperative programs in a given language. The PROG feature of LISP
is not just a concession to programmers' inherent perversity. The
persistence of FORTRAN is not just a symptom of the power of commercial

interests and of conservatism on the part of programmers. For a

certain range of applications the imperative may well be the

appropriate mood for expressing useful solutions to programming problems.
And it 1s not clear whether the distinction between imperative and
descriptive is always useful: when programming with verification
conditions [7] one can fluently combine the understandability of the
descriptive mood with the efficiency attainable in the imperative

mood.

The purpose of the present report is to propose a method of
imbedding an imperative sublanguage into a logic-based program language.
The utility of the method is based on the advantages of programming
with verification conditions. The feasibility of the method is based
on the fact that verification conditions are sentences of logic and
on the simplicity of translating certain sets of verificatioﬁ

conditions to assignations, tests, and jumps.

2. Recursion and iteration in logic programs

Consider the following example of a recursive definition of
the exponentiation relation

exp(x,y,z) 1ff x) =z

The following properties of integer exponentiation are taken as the

defining ones:

1 i.e. ¥ x . exp(x,0,1)

%
]

and

y-1

y X + X

It

X i.e. ¥x,y,z . exp(x,y-1,z) >exp(x,y,x.z)

It is taken for granted that the following defining property can be
added without altering the relation defined and yet making the
" definition more "efficient':

x2y = (x2)y i.e.

¥x,y,z . (exp(x.x,y/2,z) A even(y)) > exp(x,y,2)

The above relational definitions can be transcribed to the following
PROLOG program, where div, mult, moins, and reste are primitive

predicates for the required arithmetic operations.

+exp (¥x,0,1).
+exp (*x,*y,*z) -even(*y) - div(*y,2,*y by 2)
-mult (*x,*x,*xsq)
-exp (*xsq,*y by 2,%z).
+exp (*x,*y,%z) -moins(¥*y,1l,*ymin 1)
-exp (*x,%ymin 1, *zl)
-mult (*zl,%x,%z).
+even(*y) - reste(*y,2,*r) - eqﬁals(*r,O).
+equals (*x,*x).
+fin,
-exp(2,10,%z) - sorter(¥z) - ligne.

The first procedure call causes the following sequence of calls to exp:
-exp(2,10,%z).
—exp(4,5,%z).
-exp(4,4,%21) - mult(*zl,4,%z).
-exp(16,2,%z1).
-exp (256,1,%z1).
-exp(256,0,%2z2) - mult(*z2,256,%z1).

The last call to exp succeeds without calling another procedure. It
causes the substitution *z2 := 1 to be made. At this point there are
5 other calls to exp. As the stack is dismantled the partial results
*z2 = 1, *z1 = 256 . *z2, and *z = 4 , *z1 are gathered together to yield
¥z = 1024.

Let us compare the computational behaviour shown above with that

of the following program in logic:

=S(x) - Wy (*x,*y) + P(*y).
-P(*x) - VEQO(*x,*y) + H(*y).
-P(*x) - VNEO(*x,*y) + Q(*y).
Q(*x) - UV(*x,*y) + Q(*y).
~Q(¥*x) -~ VW(*x,*y) + P(*y).
+H(*y)

I

sorter(*y) - ligne.

+Wi(*u.*v,*u.*v.l).

+VEQO (*u.0.%w,*w). ‘

+VNEO (*x,*x) - not(VEQO(*x,*y)).
+UV (*u.*v.%w,*ul . %vl , *w)

—even(*v) - div(*v,2,*vl) - mult(*u,*u,*ul).
HUW (*u.*v.*w,*u.*vl , %wl)

-moins (¥v,1,%*vl) - mult (*u,*w,*wl).
+even(¥x) - reste(*x,2,*r) - equals(*r,0).
+equals (*x,*%x).
+not (*x)-*x-/-qqq.
+not (*x).
+fin,

The above program computes 210 by means of the following sequence of

procedure calls:

+5(2.10).
+P(2.10.1).
+Q(2.10.1).
+Q(4.5.1).
+P(4.4.4).
+Q(4.4.4).
+Q(16.2.4).
+Q(256.1.4).
+P(256.0.1024).
+H(1024).

At the end of the computation the result is already completed.
The procedure calls on the stack hold no information that is required
later on, and they need not be retained; in fact the procedure calls
can be treated as jumps: the procedurés are only entered and need
never be exited from. As a result the second program is more efficiently
executable than the first one.

What is the secret of discovering a logic program with this

desirable behaviour? Consider the following flowchart for

exponentiation.

2

In order to prove partlal correctness of this flowchart according to
Floyd's method one has to prove the validity of the following

verification conditions:

{s} real w := 1 {P}

{P & v=0} { H}

{P & v20} {Q}

{Q & even(v)} u,v := u x u,v/2 {Q}

{Q &1even(v)} v,w :=v -1, u x w{P}

Eéch of these implications of logic has a representation in clausal
form, which is expressed in the first five lines of the above PROLOG
program. The remaining lines contain logic specifications of the
assignations and tests of the flowchart.

Apparently, flowcharts are expressible in logic via verification
conditions and the resulting logic programs are efficiently executable,
but only if treated as a special case. This possibility is the basis
of my proposal for obtaining an imperative complement for logic as a
program language. There are two choices for realizing this possibility.
According to the first, one relies on a suitable compiler to recognize
that certain segments of_a logic program are the verification conditions
of a flowchart, which then receives special treatment. To use this
possibility is counterproductive: first the programmer disguises the
imperative program as logic and then the compiler, which had to be
made extra clever, has to do extra work to see through the disguise.

According to the other choice, which I prefer, one writes an
imperative subroutine in a different language. The change of language

is signalled by an escapesymbol, like the PROG of LISP.

3. A proposal for subroutines in PROLOG

The proposal 1s to interface PROLOG with subroutines, i.e., with
subprograms written in an imperative language. In PROLOG the activation
of a goal either causes it to succeed immediatély, or it triggers the
execution of a logic subprogram, which consists itself of goals. A goal
succeeds immediately if it matches an assertion in the user's program,
or if its predicate is an "evaluable" predicate. The activation of
a goal formed with an evaluable predicate causes an effect (a '"side"
effect) which would be difficult or impossible to get by means of a
logic program. o

In the present form of PROLOG there is no possibility for a user
to change the given repertoiré of evaluable predicateé. I propose to
allow the user to introduce an arbitrary number of arbitrary identifiers
as evaluable predicates, and to call them imperative predicates. Each
such predicate is associated with a subroutine, which is executed as
the result of activating a goal (an imperative goal) formed with the
predicate. In the following I sketch

a) how to use the imperative goal to tranmsmit input to the
subroutine before its execution and how to retrieve the
output afterwards

b) how to associate a subroutine with an imperative predicate

c) how to write the body of the subroutine

é) In BNF notation:
< imperative goal > ::= ~< imperative predicate >
(< actual input vector >, < actual output vector >)
<actual input vector > ::= < actual input component > |
< actual input component >.< actual input vector >
<actual input component > ::= < logic variable > |< constant >
< actual output vector > ::= < logic variable > |

< logic variable >. < actual output vector >

Note that the Iinput and output vectors can be regarded as terms of

PROLOG written with an infix function symbol ".", and associating

from right to left (at least, this alternative seems to harmonize with
the above grammar). The precedence of "." will also have to be
specified.

At the time of activation of an imperative goal any variables of
the input vector have to be instantiated with constants, each of a
‘type specified by a declaration in the subroutine associated with the
imperative predicate. None of the variables in the output vector may
be bound. It follows that the actual input vector and the actual
output vector must be disjoint. On success of an imperative goal,
' the variables of the actual output vector are instantiated with

constants of types determined by declarations in the subroutine.

b) An imperative declaration assoclates a subroutine with an

imperative predicate.

< imperative declaration > ::=
+PROG(< imperative predicate >:
< formal input vector > + < formal output vector >
, < declarations >;
< gtatements >
).
< imperative predicate > ::= < identifier >

< formal 1nput vector > ::= < formal vector >

A

formal output vector > ::= < formal vector >
< formal vector > ::= < identifier > |

< identifier >. < formal vector >

Apparently, an imperative declaration has the form of an assertion
(with predicate symbol PROG) of logic programming, which associates an
arbitrary identifier as imperative predicate with the subroutine
specified by the second argument of PROG in the assertion. The
occurrence of such an assertion in a PROLOG program makes it possible
to activate a subroutine via a goal containing the imperative predicate
and an input vector acting as a vector of actual parameters for the

subroutine.

10

Note that the first argument of PROG can be regarded as a term
of logic, which 18 composed of the function symbols ":", "-»", and
".". It will be seen that the second term of PROG, which specifies

the subroutine, can also be regarded as a term of logic.

c¢) For the subroutines a separate language has to be designed or
adopted. Anything will do that specifies binary relations from input
vectors to output vectors. The literature contains much useful
information on such languages, whereas my knowledge in tﬁis area is
but little. This 1s therefore the least important part of the
proposal: its defects do not cast doubt upon the proposal as a whole.

A rudimentary imperative language with only characters, integers,
reals, and arrajs of these as data types, some primitive functions,
assignation, together with composition, test and jump as aids to
sequencing, is already useful as an imperative complement to PROLOG.
This is because PROLOG, among other high-~level features, provides
powerful facilities for calling and defining procedures and also
provides fancy data structures. But it would be interesting to
introduce a less rudimentary imperative language with some high-level
features that overlap with features of PROLOG to see which preferences
develop in the practice of programming.

The design of an imperative language is interesting in its own
right. 1In the introduction I have contrasted descriptive languages,
where sequence control is hidden, which can be easy to understand
-and to write 1n, but which allow little control over efficiency of
execution, with imperative languages which, allegedly necessarily,
have the opposite characteristics, because sequencing has to be |
controlled explicitly by the programmer. The contrast is misleading
because by programming with verification conditions and then translating
these to an imperative language [7], it is possible to get the best of
both worlds.

11

One does not need to design a new imperative language to be able
to experiment with this interesting method: I have shown [7] that even
FORTRAN is adequate. However, when designing an imperative complement
to PROLOG, one might as well make 1t easier to translate from
verification conditions. I therefore propose to use the language of
flowgraphs [6,7] because of thelr powerful pragmatics and their close
relationship to verification conditions, as the basis for an imperative
complement in PROLOG.

An imperative subroutine may be regarded as a binary relation
between actual input vectors and actual outpﬁt vectors. The possible
presence of variables local to the subroutine slightly complicates the
relation. The body of the subroutine accesses not only the locally
declared variables, but also those of the input and output vectors.

All these variables belong to the state manipulated by the body of the
subroutine. All of them have their type declared in the subroutine
and may be initialized at declaration. For the variables of the input
vector it is difficult to see what use such initialization can have,
because it would overwrite the actual parameter. But why explicitly

forbid those acts of which I, now, do not see the use?

actual caput veler

call L(D

S l unk eena { SEale i3

LU c-f Aocals and

exece Ly l e} of furmid injput Gl
' owtput vecters

U \

reftuern

K»“—Mn_—~_1 Gotveal owfput viclor

12

The formal input vector need not be disjoint from the formal output
vector. The stateménts of the subroutine specify a binary relation
on ''state vectors'. The relation is referred to by the arrow labelled
2; the state vector is the union of local variables and the union of
formal input and output vectors.

Programs in the form of flowgraphs are described in [6,7]. The
statements of a subroutine may be regarded as a flowgraph. Here I only
describe a certain text representation of flowgraphs.

The commands, which label the arcs of a flowgraph, can be

(parallel) assignations, which are of the form
xl,...,xk S fl""’fk

where XpseeeX) are variables and fl,...fk are primitive functions of

~sets of variabies. A command can also be a relational expression, as
in Algol 60. The meaning of such a command in the semantics of
flowgraphs 1s a subset of the identity relation: the set of states
where the relational expression yields true. It is tempting to
consider the generalization of relational expressions to the ''goals”
of logic programming, thus returning in full circle to PROLOG.

For the flowgraph

S Halt
5P @—')—-—v

I will write
Ss:C.

For the (composition) flowgraph
S N Halt
NGy

S : C1 > CZ'

Read '"'go on with" for "»'". Here ¢y and C2 are commands. In place of
a command a node may also appear: for the graph

S T Halt
c*@-}-&?@—ﬁ

I will write

13

I write

If during execution a label 1s encountered instead of a command,
execution continues at a defining occurrence of the label. ‘In the
above example ''go on with" acquires the meaning of ''goto".

"Go on with" may also acquire the meaning of a procedure call.

For instance, consider

S : C1 > T > C3.

T CZ'

3
now + T is followed by "go on with', execution resumes there after

where S and T are nodes, and Cl, Cz, and C, are commands. Because

the subcomputation, which started at T:, terminates. Note that the
above two statements have no graph representation. This is because
one corresponds to a production rule of type 2 in the grammar model
of programs [6].

For the possibly indeterminate branch:

{CD e

I will write

S:¢C, |IC

1 2°

where the bar is borrowed from BNF grammars. The usual

S : if c then C1 else 02

appears as

S :c > Cl' | e > CZ.
which 1s a special (the determinate) case of the indeterminate branch.
It may not be desirable to let the programmer disguise as an indeterminate
branch something never intended as such and then to make the compiler

do extra work to recognize it as an if ... then ... else It seems

useful to have a determinate branch also available, as well as a branch

such as the cases of PASCAL. For the time being I lump them together.

14

For the flowgraph

D).

\\ —E : Halt

are disjoint lists of values (hence the branch is

Sd

where 1 cesl

1" k
determinate) of the same type (which must also be the type of the
expression e).

I write

1k - Ck'

This contruct has in common with the cases of PASCAL that one does not
need to repeat the expression e. This economy is not the only advantage

(IR 1]

if the remaining signs act as unambiguous terminators for

c1""’ck—1'
Some further examples:

oL...
K<
M

1s written as

K:~>L |]>M,

15

1s written as

L1 : C1 + L.
L2 : C2 -+ L,
L :C M.
M e

4. Concluding remarks

There are but few interesting programs using only unstructured
data. On the other hand, the kind of program for which one would use
an imperative subroutine, typically uses only arrays. It is therefore
desirable to have arrays available as data structure for imperative
subroutines, either as a local or as a parameter. Actual parameters
exists in the logic part of the program, and therefore have to be
terms of logic. Formal parameters have to be data types of the
imperative language. To a formal parameter specified as a type

array a sa there will have to correspond as actual parameter a

10"
term of logic. An obvious choice seems to be a term of the form

a, ~/
. AN
S

where f is a distinguished 2-place function symbol, @ is a distinguished
constant, and aj,.+.,a are type constants.

It should be noted that the entire declaration of an imperative
subroutine is to be given as the two arguments of PROG, that is, as
two terms of logic., It could just as well have been done as only one
term, or as more terms. The point is here that programs in a language,
with a syntax defined like the one of Algol 60, are quite naturally
represented as terms of logic. Hence, a language with terms as data
type (or recursive data structures in the sense of Hoare [1]) can treat

as data programs, in the same language or in another. The use of terms

16

for this purpose would give an improvement with respect to LISP, where
LISP programs can be data. LISP has a very restricted repertoire of
terms: there is only one function symbol (the dot) and very few
constants. As a result LISP programs, in order to be a LISP data
structure, have to be represented as such restricted terms, albeit
embellished by the list notation for certain "dotted pairs". This
situation accounts for the monotonous aspect of LISP programs.

The role of verification conditioﬁs in this proposal has two
aspects. A mathematical semantics for the flowgraph language can
be obtained by a simple translation to a sentence of logic which is
a conjunction of implications, each of which is a verification condition;
the minimal model of this sentence represents the computations of
the program [6]. The other aspect concerns the method of programming
with verification conditions [7], which can be regarded as a pragmatics

for flowgraphs.

7.

References

C.A.R. Hoare:

R.A. Kowalski:

R.A. Kowalski:

17

Recursgive data structures, Research Report STAN-CS-73-400,
Dept. of Computer Scilence, Stanford University.

Predicate logic as programming language, Proc. IFIP 74,
North Holland, 1974, pp. 569-574.

Logic for problem-solving, Memo no. 75,
Dept. of Computational Logic, University of Edinburgh, 1974,

P. Roussel: PROLOG manuel d'utilisation, Groupe d'Intelligence
Artificielle, U.E.R. de Luminy, Marseille, 1975,

M.H. van Emden:

M.H. van Emden:

M.H. van Emden:

Programming in resolution logic. To appear in
"Machine Representations of Knowledge' published as
Machine Intelligence 8 (eds. E.W. Elcock and

D. Michie) by Ellis Horwood Ltd. and John Wylie.

Verification Conditions as Programs, in 'Automata,
Languages, and Programming' (eds. S. Michaelson
and R. Milner), Edinburgh University Press, 1976.

Unstructured Systematic Programming, Research Report Cs-76-09,
Dept. of Computer Science, University of Waterloo, 1976,

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

