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ABSTRACT

A formal definition of a nested dissection ordering of the
graph of a general sparse symmetric matrix A is given. After intro-
ducing some preliminary results which provide a direct relationship
between the structures of A and its triangular factor L, where A = LLT,
some results about fill for nested dissection orderings are provided.
Finally, a heuristic algorithm is described for finding a nested dis-
section ordering for an undirected graph, along with appropriate data
structures and a storage allocation scheme for a linear equation solver
to use such orderings. The ordering algorithm/linear equation solver
combination is applied to the graphs of matrices arising in typical
finite element applications, and numerical experiments are provided
which indicate that our combination of ordering and solution schemes
{s superior to standard band or envelope schemes as long as the problems

are moderately large.



81 Introduction

In this paper we consider the problem of directly solving

the system of linear equations
(1.1) Ax = b,

where A is a sparse N by N positive definite matrix arising in the
application of finite element methods. We characterize the structure
of A more precisely below. The system (1.1) {is solved using Cholesky's
method by first factoring A into the product LLT, where L is Tower
triangular, and then solving the triangular systems Ly = b and L'x = y.
When a sparse matrix is factored,it normally suffers fill.
Under the usual assumption that exact numerical cancellation does not
occur, L + LY 1s usually fuller than A. For any N by N permutation
matrix P, the matrix PAPT is also positive definite and Cholesky's
method is still applicable, so we could instead solve the equivalent

system
(1.2) (PAPT)(Px) = Pb.

A judicious choice of P can often drastically reduce fill, so if zeros
are exploited, this can imply a reduction in storage requirements and/or
arithmetic requirements for the Tinear equation solver. The objective
of this paper is to describe a heuristic algorithm for finding such a
permutation P.

In [9], the first author described a nested dissection ordering

for an n by n grid graph which reduced the arithmetic operation count for

directly solving the associated n2 by nz matrix problem from the usual



0(n4) to only 0(n3). The corresponding fill was reduced from 0(n3) to
O(n2 1ogzn). Since then several papers by various authors have appeared,
dealing with various aspects of the ordering for square and rectangular
problems [6,18]. 1In [10], it was demonstrated that these orderings could
be implemented in a highly efficient manner, with quite low storage and
computational overhead.

However, little progress seems to have been made in finding
automatic schemes for producing such efficient orderings for less regular
problems, although intuitively it is clear what the general nature of the
ordering should be. In this paper we describe a heuristic algorithm for
producing nested dissection orderings for sparse matrix problems, and pro-
vide numerical experiments which demonstrate its effectiveness when applied
to a class of two dimensional finite element problems, which we now charac-
terize. A preliminary version of this work appeared in [12].

Let M be a planar mesh consisting of the union of triangles and/or
quadrilaterals called elements, with adjacent elements having a common side
or a common vertex. There is a node at each vertex of M, and there may also

be nodes lying on element sides and faces, as shown in Figure 1.1.

Figure 1.1 An 11 node finite element mesh with 6 elements.



Associated with each node is one or more variables X3 s and for some

labelling of these N variabies we define a finite element system Ax = b

associated with M as one for which A is symmetric and positive definite,

and for which A £ 0 => x, and X; are associated with nodes of the same

i
element. The matrix problems this generated correspond in type and struc-
ture to a large class of problems arising in various scientific and engin-
eering applications [19].

An outline of the paper is as follows. In section 2 we review
some graph theory results which pertain to symmetric Gaussian elimination,
and provide some notations and results which are needed in section 3.
Section 3 contains a formal definition of nested dissection orderings, and
some results are proved about these orderings which are helpful in moti-
vating the ordering algorithm. Section 4 contains a description of the
storage scheme used in the linear equation solver which uses the ordering,
along with some implementation details. Section 5 contains a description
of the ordering algorithm,along with details on its computer implementation.
Section 6 contains a description of our test problems and numerical exper-

iments, and section 7 contains our concluding remarks,



§2 Preliminaries

2.1 Some Graph Theory Terminology

We begin by reviewing some basic concepts of graph theory which
we need in this and the next section. An undirected graph G = (X,E)

consists of a finite non-empty set X of nodes or vertices together with a

set E of edges, which are unordered pairs of distinct nodes of X. A graph
G' = (X',E') is a subgraph of G if X' c X and E' cE. For Y c X, the
section graph G(Y) is the subgraph (Y,E(Y)), where

E(Y) = {{x,y} €eE| x €Y, y € Y},

Two nodes x and y of G are adjacent if {x,y} ¢ E. For Y c X,

the adjacent set of Y, denoted by Adj(Y), is:

Adj(Y) = Ix € X\Y | {x,y} € E for some y € Y}.
When Y is a single node y, we write Adj(y) rather than Adj({y}). The
degree of the node x in G is the number [Adj(x)|, where |S| is the card-
inality of the finite set S.

A graph is complete if every pair of vertices is adjacent. A
clique in G is a complete subgraph of G.

For distinct nodes x and y in G, a path from x to y of Tength
k 1s an ordered set of distinct nodes (Vl’VZ""’Vk+1)= where x = vy and
¥ = Viyps such that v, € Adj(vi+]), i=1,2,...,k. Note that k may be 1
in which case x and y are adjacent. A graph G is connected if for every

pair of distinct vertices x, y € X, there is at least one path from x to y.

If G is disconnected, it consists of one or more connected components.

The set Y < X is a separator of the connected graph G if G(X\Y)

consists of two or more components; Y is a minimal separator is no proper

subset of Y is a separator of G. The following lemma is immediate.



Lemma 2.1 Let Y be a minimal separator of G, and suppose its removal

yields m components G(Xi) = (Xi,E(Xi)) for 1 =i =m. Then for every

y €Y, Adj(y) n X, + ¢. 0
For our purpose in the study of Gaussian elimination, it is

helpful to generalize the concept of adjacent set. Let S c X and y £S.

The node y is said to be reachable from a node x through S if there

exists a path (x, Vis Vos..esVps ¥) from x to y such that v; €S for

1 =1 =k. The reachable set of x through S, denoted by Reach (x,S), is
then defined to be

Reach (x,S) = {y € X\S| y is reachable from x through S}.

Note that paths may be only of length one, and S may be empty. When

S = ¢, we have Reach (x,9) = Adj(x), so that the reachable set of x

through S may be regarded as a generalization of the adjacent set of x.
Two notions pertinent to the study of nested dissections are

partitionings and orderings. They are now defined and some related terms

are introduced.

A partitioning Pof the graph G is a subset of the power set of

P = 1YY, 0Y, 0,

K
satisfying .0, Yi = X" and Yi n Yj =¢ for 1 § j.

Let G = (X,E) be a graph with [X] = N. An ordering (numbering,

. labelling) of G is a bijective mapping a: {1,2,...,N} + X,
An ordering o is said to be compatible with the partitioning P if for
each Y € P, a numbers nodes in Y consecutively.

Consider two node orderings o and g on the graph. The ordering

a is said to conform with 8 on P {f for x,y € Y € P, then

a(x) <aly) <= B(x) < B(y).



In other words, for each partition member in P, its nodes appear in the
same relative order in both orderings. Figure 2.1 {1lustrates two order-
ings that conform with each other on the partitioning as shown. Note

that B is compatible with the partitioning.

'@m GRO ré‘;

| U Y

cP

Figure 2.1 Two conforming orderings on a partition.

In a disconnected graph, the connected components define a
natural partitioning on the graph. For our subsequent discussion, we
introduce the following definition. Let Y be a subset of the node set X.

The component partitioning C(Y) of Y is defined as:

C(Y) = {S < Y| G(S) is a connected component in the section graph G(¥)}.

Thus, a graph G = (X,E) is connected if and only if C(X) = {X}; a subset
S {s a separator if and only if [C(X\S)| > 1. |
Another important type of graph partitioning is the class of

level structures [2]. A level structure of a connected graph G = (X,E)

is a partitioning
'£={%’LP'“¢§

of the node set X such that Adj(Lo) clys Adj(Lz) ¢ Ly s and Adj(Li) c
Li—] U Li+1 for 0 < i < &. Note that for 0 < i < 2, the set Li is a

separator of G.



In particular, the notion of a rooted level structure is an

important construct in the algorithm presented in section 5. For x € X,

the rooted level structure at x is the level structure

L (x) = {Ly(x), L](x),...,Lg(X)(x)}
where
Lo(x) = {x}

i-1
Li(x) Adj( U Lk(x)).

k=0

The quantity 2(x) is sometimes called the eccentricity of the node x. The

diameter of G is then defined as

8(G) = max {2(x) : x € X}.

A peripheral node x is one such that %(x) = &(G).

2.2 Graphs of Matrices and Symmetric Gaussian Elimination

Let A be an N by N symmetric matrix. The Tabelled undirected
graph of A, denoted by GA = (XA,EA), is one for which X" is labelled from
1to N and {x;, x;} ¢ EA {f and only if Ayj # 0. 1> 3. The unlabelled
graph of A is simply 6" with its labels removed. (Here we use the notation
X4 to denote o(i), where o is the labelling of the graph implied by A).

For any N by N permutation matrix P, the unlabelled graphs of A and PAP'
are the same, but the associated flabellings differ. Thus, finding a good

ordering for A can be viewed as finding a good labelling for GA.

Consider the symmetric factorization of the matrix A into LLT.
For 1 = 1,2,..., N let

Vi = I{Lji : Lji £ 0, j>1}.

We quote the following result from Rose [17].



Lemma 2.2 The number of off-diagonal nonzeros in L is given by

and the number of multiplicative operations required for the factor-
iation is

N

%i§1vi(vi + 3). .

In previous graph theory studies of symmetric Gaussian eli-
mination, the process has been viewed as a sequence of elimination graphs
G = GO’G1’GZ""GN—] whose node sets decrease by one at each step and the
structure of Gi reflects the structure of the matrix remaining to be fac-
tored after the i-th step of the factorization. (The interested reader
is referred to [17] for details.) The number vy is simply the degree of

node Xi in 61_1.

This approach to the analysis has the disadvantage that the
quantities of interest, namely the Vi, are in a sense only obtained
"a-posteriori”; the number v; is only known after step i-1 of the fac-
torization has been completed (or at least simulated). A much more de-
sirable situation is to have some direct relations between the numbers
vy and the original matrix A, and this is the reason for the notions and
results we now introduce.

Let 6" = (XA,EA) and 6 = (XF,EF) where F = L + L'. Here G is

called the filled graph of GA, and EF consists of all the edges A in GA

together with all the edges added during the factorization. Obviously

A

XF = XA, and the edge sets E" and EF are related by the following lemma

due to Parter [16].




Lemma 2.3 The unordered pair {xf,xj} cE if and only if'{xi,xj} ¢ P

or {%:,x.} € ef and'{xj,xk} ¢ EF for some k < min {i,j}. [
Note that this lemma does not really meet the objection raised

above since its statement is "recursive" in ET. Our objective in what

follows is to develop a characterization of the edge set ef which depends

only on GA. In this direction, we introduce the notion of the elimination

adjacent set of Xis defined by
Eadj(x;) = Reach (xi,ix],xz,...,xi_]}).
In other words, X3 € Eadj(xi) if and only if j > i and there is a path

joining X;

illustrates the definition of Eadj(xi).

to x; in the section graph G({x;,Xp,...,x;} U {x;}). Figure 2.2

Eadj (x]) = {x7}
Eadj (x2)

13

{x3,x8}
Eadj (x3) = {x4,x8}
Eadj (x4) = {xgXgsXg}

Eadj (XS) = .{X69X7,X8}
Figure 2.2 Example to illustrate Eadj.

Note that the notion of reachable set intreduced in section 2.1
1s defined for unordered graphs, but the notion of elimination adjacent set
is defined only for an ordered graph. (Recall that in the above, x; = a(i))
One of our objectives is to study the elimination adjacent sets for different
orderings, say a and B, for a given graph G. When it is not clear from con-

text what ordering is intended, we will write Eadj(x,a) or Eadj(a(i)).
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Lemma 2.4 Let o be an ordering on the graph G = (X,E) and a(i) = X;

Then Eadj(xi) = Adj(S), where S € C({xq,...,%;}) and x; €S.
Proof: For y € Eadj(xi), we have a path (xi,y],...,yt,y) where
Y € {xpseiaxg g}, Tk =t. By the definition of the set'S, y, €S
so that y € Adj(S).

On the other hand, consider y € Adj(S). If y ¢ Adj(xi),
clearly y ¢ Eadj(xi). For y ¢ Adj(s), where s € S, a path in S can be

found from x; to s and hence to y. Therefore y ¢ Eadj(xi). 0

Lemma 2.5 Let j > 1. The unordered pair‘{xi,xj} ¢ EF if and only if

X5 € Eadj(xt).

Proof: "if part": Assume X; € Eadj(x;). If X3 € Adj(x;) in G there

is nothing to prove since A E.EF. If X; f Adj(x;), by assumption there
exists a path {xi,y],yz,...,yt,xj} in G with y, e'{x],xz,...,xi_]} and
t=1. Ift=1, the result follows immediately from jemma 2.3, If

t > 1 a simple induction on t, using temma 2.3, shows that {Xi’xj} € EF.

"only if part": When i = 1, {x;.x;} € EF implies that {x;.x;} EA by
lemma 2.3, so that X; € Eadj(x]). Suppose the result holds for subscripts
less than i, and that {Xi’xj} € EF. If {Xi’xj} € EA, then clearly

X; € Eadj(xi). Otherwise, by lemma 2.3, {Xi’xj} € eF implies there exists
a k < min{i,j} such that {Xi’xk} € EF and {xk,xj} € EF. By the inductive
assumption x. ¢ Eadj(xk) and X; € Eadj(xk), so that a path can be found
from X3 to xj in the subgraph G({x],xz,...,xk} U {Xi’xj})‘ That is,

X € Reach (xi,{x],xz,...,xk}), which implies that Xj € Reach (xi,{x],xz,...
XTHI}) = Eadj (Xi)‘ i

Corollary 2.6 For i = 1,2,...,N, v; = [Eadj(xi)[. O
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Corollary 2.7 The section graph GA(Eadj(xi) U {Xi}) i{s a clique in
the filled graph 6.

Proof: For y ¢ Eadj(xi), it follows from Temma 2.5 that {xi,y} € EF.
Consider X5 X € Eadj(xi) where k > j. From definition, we
. . ]
have two paths (xi,y],...,yr,xj) and (xi,z],@..gzs,xk), where y's and
z's belong to {X1""’Xi—1}' On combining these two paths, we get
(Xj’yr"“’yl’XT’Z]""’ZS?XK) which goes from X; to x, . By definition,

X € Eadj(xj). Again, Temma 2.5 implies {Xj’xk} € EF. 0

To facilitate our discussion, we introduce these two notations
for an ordered graph:

n(G,a) = |Eadj(a(i))]

—e

~122Z 012
— —

8(G,0) =% |Eadj(a(i))| {|Eadj(ali))]| + 13.

—1

They have the following important interpretations: when G is associated
with some matrix A, n(G,a) corresponds to the number of off-diagonal non-
zeros in the triangular factor of A and 8(G,a) is the number of multi-
plicative operations required to perform the symmetric factorization of A
(see lemma 2.2 and corollary 2.6). Two orderings o and g of a graph G are
said to be equivalent if 6(Gga) = 8(G,8) and n(G,a) = n(GzR).

The following lemma is useful in establishing the equivalence of
orderings.
Lemma 2.8 Let o and g be two orderings on the graph G = (X,E). Consider
x € X where o(i)} = x = 8(j). Then Eadj(x,a) = Eadj(x,B) if and only if
there exists a subset S ¢ X with x € S such that

SN {all),...sa(i)d =S n {8(1),....8(3)},
and Adi(S) 0 {al1),...,a(i)} = Adi(S) n {8(1),...,8(J)} = ¢.
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Proof: "{if" part: Assume that such a subset S exists. Consider any
y € Eadj(xga). There is a path (x,y],...,yt,y) where y, ¢ {a(1),...,
a(i-1)}. The nodes Y €S for otherwise Adj(S) n {a(1),...,ali)} § o.
Therefore.y, €S N {a(1),...,a(i)} =S n {8(1),...,8(3)}. It remains
to show that y £ {8(1),...,8(j)}. Assume for contradiction that
y € {8(1),...,8(j)}. The node y £ S, for otherwise

y €S0 (8(1),...,8(3)1 = S n {al(l),....ai)},
implying that y ¢ Eadj(x,a). But then y ¢ Adj(yt) so that y ¢ Adj(S) n
8(1),...,8(3)}, which is again a contradiction.

Therefore y ¢ Eadj(x,B); that is, Eadj(x,o0) c Eadj(x,B). By

symmetry, we have the other inclusion.

"only if" part: Assume Eadj(x,x) = Eadj(x,B). We take S € C({a(1),...,

a(i)}) where x € S, The reader is left to verify that S satisfies the

properties in the lemma. 0
This lemma is slightly more general than we need in the sequel.

When we use it in section 3, the set S will always be as defined in the

"only if" part of the proof, that is, S € C{{a(1),...,a{i)}) and

a(i) €S.

2.3 Finding Pseudo-Peripheral Nodes of a Graph

The previous section associates symmetric matrices with un-
directed graphs so that to find a good permutation for a matrix is equi-
valent to obtaining a good ordering on the corresponding graph.

The effectiveness of many ordering algorithms, including the
one described in this paper, depends quite critically on the proper choice
of a "starting node". Experience has led researchers to advocate the use
of peripheral nodes to start some algorithms. Unfortunately, no

efficient algorithm is known to determine such nodes of a general graph.
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In [13], Gibbs, Poole and Stockmeyer devised an algorithm
which appears to be extremely effective in finding nodes whose eccent-
ricity 2(x) is close to the diameter of the graph. Such nodes will be

called pseudo-peripheral nodes. The algorithm is described below.

Step 1: Find a node r of minimum degree.
Step 2: Generate the rooted level structure at r:
Kr) = Loy Lylr)sensly ().
Step 3: Sort Lg(r)(r) in increasing order of degree.
Step 4: For each x ¢ Lz(r)(r) in order of increasing degree, generate
the rooted level structuresﬂﬂx). If 2(x) > &(r), put r « x
and go to step 3.
Step 5: r is a pseudo-peripheral node.
In their actual implementation [4], Gibbs et al introduced a
"short circuit" technique, where wide level structures are rejected as
soon as they are detected. In other words, for many of the x ¢ Lz(r)(r)
in step 4, only part of the level structures(x) will be generated.
However, for some problems, the set Lk(r)(r) will be quite
large, so that many level structures or partial level structures will be
generated in step 4. Therefore, in our implementation, instead of the
above short-circuit technique, we modify the algorithm by "shrinking" the
connected components of G(Lg(r)(r))to a single node of minimum degree.
Steps 3 and 4 are replaced by the following.
Step 3': Find all the connected components in Lg(r)(r), that is,
C(Lg(r)(r)).
Step 4': For each C ¢ C(Lz(rSr), find a node x of minimum degree in C
and generate its rooted level structure;(ﬁx). If g(x) > 2(r),

put r < x and go to step 3'.
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In addition to the above changes, we also found that an
equally good Step 1 was simply to choose an arbitrary node ry rather
than one of minimum degree, so that is what our algorithm does. For
our applications, this modification.improved the execution time sub-
stantially and did not affect the outcome much. The readers are re-
ferred to [11] for a more detailed study of these modifications. In
the sequel, we will refer to nodes found by this modified algorithm

as pseudo-peripheral nodes.



§3 Graph
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Theoretic Formulation of Nested Dissection

3.1 Nested Dissection Partitionings and Orderings

In this section, we formally define what we mean by a nested

dissection ordering, in preparation for a description of an algorithm

for producing such orderings. Some related results are also established.

A nested dissection ordering of a graph G = (X,E) is defined

as follows. Let R0 = X, and for m = 0,1,...,h until Rh+1 = ¢ do the

following:

a)

b)

c)

Determine the connected components of Rm and label them

r

1 2 m

Rm’*Rm""’Rm'

. j J Jos s
For j ],...,rmf choose Sm SRy s?ch that S 1s e1$2er.a
separator of G(RJ)or is equal to RY. DefineS_ = U S3.
m m m sy m

Define Rm+1 = Rm \ Sm.

The partitioning P = {S) ¢ X: 1= j =r_and 0 <m=h} of X thus defined

is called

a nested dissection partitioning (ND-partitioning). The quan-

tity h, defined by

h = max {m: R_ F o},

is referred to as the dissection height.




- 16 -

6 = (X,E)
Ry = X Sg = {a,b}
Ry = {c,fuh,i} s} = {f}
R = {d,e,0,9,k} s3 = fe)
RY = {d)
RS = 19,k Sh=R) §=1.,2,3.4.
RS = {i)
Ry = {c,h}

Figure 3.1 A nested dissection partitioning {S%}.
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In the study of nested dissection orderings, it is instructive

to associate a dissection tree with the partitioning P. We first make

some preliminary definitions.

A tree is a graph where every pair of distinct nodes is con-
nected by a unique path. For a tree T = (X,E), [X| = [El + 1. A rooted
tree is a tree T with a distinguished node r, called the root of T. If
the path from the root r to the node y passes through:the node x, x is
said to be an ancestor of y and y a descendant of x.

If, in addition, x € Adj(y), x is the father of y and y a son
of x. The section graph of a node x and its descendants is called the
subtree at x.

Let P ='{S%} be a nested dissection partitioning. The dissection

tree associated with P is the tree (P,T) rooted at SO where S& is the

k
mt]”

to-one correspondence between the sets {S%} and'{R%}.

father of S$+] if and only if R% > R Note that we are using the one-

Figure 3.2 contains an example of a dissection tree. It should
be noted that the subtree rooted at S% in the dissection tree corresponds
to the vertex set R%. "For example, R} is given by

1 1 2

S] U 52 U Sé,
1 1 2 1
and {Sq, Sos 32} forms the subtree at S].

Figure 3.2 Dissection tree for the nested dissection
partitioning in Figure 3.1.
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In figure 3.2, those Sé having no descendant satisfy S% = R&.

In the sequel, they will be referred to as terminal members of P. Those

S% which are separators of G(R%) will sometimes be referred to as non-

terminal members.

s e o cedy s cns e nredy
A ND-partitioning P {Sm} is said to b? complete if G(Sm) is

a clique in the graph for every terminal member S% of P. That is, in

step b of the operational definition above, a separator is chosen when-

ever pessible. From the definition of S%, we have the following lemma.

Lemma 3.1 Let S;_] be the separator chosen in G(R;_1) and R% € C(R;_]\
k crnd oK. k
Sp-1)- Then Adj(Re) < Adj(R 4) U S 4. 0

An ordering o of X is said to be a nested dissection ordering

with respect to P = {S%} if for x € S% and y ¢ R%\S%, u“](x) > u'](y).
An example of a nested dissection ordering on the partitioning of

figure 3.1 is shown in figure 3.3.

Figure 3.3 A nested dissection ordering on the nested
dissection partitioning of figure 3.1
Note that an ordering that numbers the nodes of each partition
member S% before the nodes of its father in the dissection tree is a

nested dissection ordering.
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Lemma 3.2 Let o be a nested dissection ordering for P = {S%}, a ND-

partitioning. Then o numbers nodes in R% before those in Adj(R%);

Proof: We prove the lemma by induction on m. The result clearly
holds when m = 0. Assume that it is true for all k <m. Llet R% €
OR;_]\S;_]). By the induction assumption, o numbers RE_] before

ok . kK ok k
AdJ(Rm_]), and by definition, a numbers R 4\S, ; before S, ;. But

J k ok J .ok k

RE € R 1\S_» so that o numbers Ry before Adj(R ;) US. ;. The

result then follows from Temma 3.1. 0
For a given nesting dissection ordering o on some P = {S%},

it is interesting to consider the corresponding elimination adjacent

sets as introduced in section 2,

Lemma 3.3 Let x ¢ R%. Then
Eadj(x,a) c Adj(R%) u R%. 0

Theorem 3.4 Let x € S%. Then
Eadj(x,a) © Adj(R%) U s%

Proof: Let ai) = x. By lemma 3.3, it remains to show E&dj(x,u) n

QR%\S%) = ¢, Assume for contradiction that the intersection is nonempty,
say y € Eadj(x,a) n (R%\S%). Let y belong to R5+], a component in

G(R%\S%). But this implies the existence of an edge {p,q} with p ¢ Adj(R;+i)
and q ¢ RE+1 and q_](p) < a"](q) contradicting Temma 3.2. 0

Theorem 3.5 let P ='{S%} be a ND-partitioning on G. For any nested dis-
section ordering o with respect to P, the number n(G,y) is bounded by
h T

RIS s3] (IAdG(RI + ([S7] - 1)/2}.
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Proof: Note that n(G,a) is given by

N
1 [Eadi(a(i))].

i=]

By theorem 3.1,

D [Eadj(a(i))]
ali) ¢ S%

A

[AdGRD |+ (1S3 = 1) + [Adi(R)] + (ISI] - 2) +...+[Rai(R)]

{sile [AdgRD ]+ s3] ([s2] - 13,
and hence the pesult. 0

Corollary 3.6 Let P = {S%} be a ND-partitioning with ordering a. Suppose

further that P satisfies the following conditions, where [X| = N.

1) h = ¢y Tog HN

2) ‘rm,j_Cg M

3) fsil = cy (v,
4) Adi(RI)| = ¢, [S]].

Then n(G,a) = C; N Tog ,HN.
Proof: The bound in theorem 3.5 becomes
h "m i
L1 (cy+1) e5(n/20)
m=0 j=1
h m : : m
= 2 C2 2 (C4 + T)_C3 (N/27)
m=0 R
5_C1C3(C4 + 1) 02 N logzN. 0

It should be noted that the same technique can be used to show

3
that under the conditions in corollary 3.6, 8(G,a) = o(N /2)_
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The hypotheses in the corollary 3.6 are motivated by the
problems arising in connection with two dimensional finite element
meshes such as the one depicted in Figure 2.1, along with the ob-
served behaviour of the algorithm we describe in section 5 when it
is applied to such problems. Essentially, the algorithm is simply
an implementation of the algorithmic definition of a nested dis-
section partitioning described in section 3.1. The algorithm is
designed to choose the separators S% §0 that they disconnect each
R% into (rarely more than) two components of approximately equal
size. This immediately suggests hypétheses 1) and 2) of Corollary
3.6 and these do not depend upon the origin of the problem.

Now consider the implications of the graph being derived
from a planar finite element mesh. If the mesh truly is two dimen-
sional (rather than being "long and narrow"), then the number of
boundary vertices Xg and the number of interior nodes XI’ should

satisfy an "{soparametric" inequality of the form

i 2 < < 2
(3.1) K] XB = XI = Kz XB s

for some constants K1 and KZ' Now our algorithm is designed to find
“small" separators S%, which tends to generate components which are
also two dimensional, and which therefore also satisfy inequalities
of the form (3.1) above. This immediately suggests the plausibility
of the hypotheses 3) and 4) in &orollary 3.6.

Similar reasoning for three dimensional meshes provides
the motivation for corollary 3.7 below. The proof is again a simple

application of theorem 3.5 and is omitted.
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Corollary 3.7 Let the hypotheses of Corollary 3.6 apply except for

condition .3), which is changed to

J sm2/3

3) [Sml = Cq (Né?‘) .
4/3
Then n(G,a) = C, N7
Similar arguments have recently been used by Eisenstat et. al. [7] to
establish lower bounds of the same order as those in corollary 3.6 and
3.7. Thus orderings satisfying these hypotheses yield operation counts
and fi11 which are asymptotically optimal.
In general, for a given ND-partitioning, there is a whole

class of nested dissection orderings associated with it. In what follows,
we show that many of them are equivalent in terms of storage and oper-

ation counts,

Theorem 3.8 Let g and B be two nested dissection orderings on P = {S%}.
If o conforms with g on P (see section 2 for the definition), then ¢ and

g are equivalent.

Proof: From the definition of 8(G,a) and n(G,a), it is sufficient to
show that Eadj(x,a) = Eadj(x,8) for all x € X.

Let x ¢ S% and ofi) = x, 8(k) = x. Consider the subset R%.
Since both ¢ and 8 numbers R%\S% before S%, and they conform with each

other on P, we have

RI N (1) ,eeali)E = R0 81,803
Furthermore, by lemma 3.2,
AdI(R)) 0 (1) 5. h0(i)) = 6,

and Ad(RY) 0 {8(1),...,8(K)} = ¢.
Thus, from lemma 2.8, Eadj(x,a) = Eadj(x,8). [
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Theorem 3.8 has the following important implication. In
finding nested dissection orderings on P with small 6(G,a) and n(G,a),
it is sufficient to consider the subclass of nested dissection order-
ings which are compatible with P(that is, orderings which number nodes
in s% of P consecutively). Previously we noted that an ordering that
numbers all the nodes of each partition member Si before any of the nodes
of its father in the dissection tree is a nested dissection ordering.
Theorem 3.8 says we can restrict our attention to compatible brderings
on the tree. The next section contains some conditions on P whereby all

associated nested dissection orderings are equivalent.
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§3.2 Minimal Nested Dissection Partitionings and Orderings

In this section, we consider a practically attractive subclass

of ND-partitionings. A minimal nested dissection (MND) partitioning is

a ND-partitioning P ='{S%}, where every separator S$ in G(R%) is minimal,
The corresponding dissection orderings have the following interesting

properties.

Lemma 3.9 Let P = {S)} be a MND-partitioning. For non-terminal member Si’
if X, ¥ e S%,ﬂthen v is reachable from x thﬁoUgh_Ri\S%.

Proof: Let R$+] € C(R%\S%). Since S% is a minimal separator in G(R%),

by lemma 2.1, X,y € Adj(R§+1). But G(R§+1) is connected so that a path

k

exists from x to y that goes through Rm+1'

O

Corollary 3.10 Let P be a nested dissection ordering on a MND-partitioning

P. 1f s)'is a non-terminal member, then G(S%).is_aﬁcliqué,in the f{lled graph.
Lemma 3.11 Let P = {S%}be a MND-partitioning. If Adj(R%) g Adj(R%\S%),
then for X e S% and y e‘Adj(R%), y is reachable from x through R%\S%.

0

Proof: It follows from the condition Adj(R%) c Adj(R%\S%) and lemma 2.1.
i

Theorem 3.12 Let P ='{S%}be a complete MND-partitioning satisfying Adj(R%)c
Adj(R%\S%) for all non-terminal mémber"S%. Then a1l nested dissection
orderings on P are equivalent.

Proof: Let o be any nested dissection ordering on P, and consider those
sd 4RI, By lemma 3.11, Ad§(R)) < Eadj(x,0) for x € S). Using Temma 3.9,

we have

Y |Eadi(x.a)]
. j
X € Sm

= [Adj(R%)I +(Isdl = 1)+ IAdj(R%)I + (IS%I - 2) +.__+[Adj(R%)|’
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and ) IEadj(X,a)lz

X € S%
= (IR [+ [S3] - 1%+ (Iads(R))| + 531 - 2% oladi(R) 12

which are independent of a. The above also holds for those S% = R%, Since

P is complete. This implies all nested dissection orderings on P are

equivalent. a
It is interesting to note that under the conditions in the above

theorem, the bound on n(G,n) is attained; that is,
n(Ga) =1 § SO (AR + (s3] - 1)/23.
. m J

While it is obviously. pussible for the condition Adj(R%) c Adj(R%\S%) not to
be satisfied, when the algorithm of section 5 is applied to our finite ele-
ment problems we have found that the condition is very seldom violated. Even
when {t is, it is usually true that !Adj(R%)l - lAdj(R%\S%)I is only one or
two, sp that the bound in Theorem 3.5 is quite tight for our probdéms. This
implies that the storage scheme of section 4 will be very efficient; that is,

very few zeros will be stored.
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§4 The Storage Scheme for L and the Storage Allocation Algorithm

In this section we provide some of the more important aspects
of the computer implementation of our linear equations solver. In par-
ticular, we describe the storage scheme used for the matrix factor L,
along with the algorithm for performing the storage allocation, given
the ordering o and the graph G = (X,E). We provide this information
before actually describing our ordering algorithm because the latter is
motivated in part by the characteristics of our storage scheme.

Given the correspondence that was established in section 2, a
partitioning P and a compatible ordering o of G specifies a particular
ordering and partitioning of the matrix. Such matrix partitionings are
obviously symmetric in the sense that the row and column partitionings
are 1identical.

Let p = |P|, so that A is partitioned into p2 submatrices Ao

1=vr,s =p, and Tet Lrs be the corresponding submatrices of L, where

A=LLT. Let B, be defined by
( .
L1k

(5.1) B = |M2k| ., T=k<p.
ok

Obviously Bk is simply the part of the k-th block column which lies
below Lk,k in the partitioned matrix L.

The diagonal blocks of L are viewed as comprising a single
block diagonal matrix whose rows, beginning at the first nonzero, are

stored in a single one dimensional array v.
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An additional pointer vector § of length N records the positions in v
of the diagonal components of each row, and another vector 1 of length
p records the beginning of each diagonal block in 6. For programming
convenience we set Tot] =N + 1, so that the size of the i-th partition
member (diagonal block) is given by Ty = Tj» 1 =1 =p. This scheme
is a minor variant of that proposed by Jennings [14].

As we shall see in'section 5, the ordering of each member of
P {s done so that the non-null rows in each block column (Bk) are clus-
tered together so that they form "blocks". These clusters of non-null
rows within each block-column will be referred to as blocks, although
it should be understood that they do not in general correspond to the
row partitioning specified by P. For definiteness, we assume that there
are p such blocks.

The storage scheme which is naturally suggested and which we
use is illustrated in Figure 4.1. The u off-diagonal blocks are stored
column by column in consecutive locations in a one-dimensional array £.
The pointer vector y points to the origins of these blocks in &, and the
paraliel vector p indicates the row number in L of the first row of each
block. In order to specify which block cédumn of L a particular block in
& belongs to, we generate a vector o of length p which points into vy so

that the origins of the blocks in & contained in block-column i of L are

~given by YL; 9 <4< Oip1- Again for programming convenience we set

$ﬁ+] = |g) + ¥ and Oy = H t 1. Note that for o, <% ¢ 0., the number
of rows in the block stored at EY‘ is given by (Yg+] - Yz)/(Ti+] - Ti),

2
so the row dimensions of the off-diagonal blocks do not have to be ex-

plicitly stored. The overhead storage obviously consists of that needed
for the wectors ¢, T, v, p, and o, which is a total of N + 2p + 2u + 3

items. (See the remarks in section 6 about primary and overhead storage.)
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It is interesting to note that our linear equations solver

involves no computation with matrices stored in other than standard

dense format.

Apart from "driver" subroutines which determine the

origins and dimensions of the blocks, all the subroutines operate on

either dense matrices stored in standard columby column format, or

else in the now familiar envelope storage format due to Jennings [14].

We now describe our storage allocation algorithm. Let P =

{Y],Yz,...,Yp} be the ordered partition of X induced by the compatible

ordering o obtained by the algorithm of section 5., The algorithm used

to determine the vectors o, p and y, which are necessary for the storage

scheme, is given below. The vector T is provided by the ordering al-

gorithm, and the determination of & is trivial.

1. Set Z

2. For i
2a)
2b)
2¢c)

= ¢ and gy = 1.
= 1,2,...,p do the following:
SetZ=17u Yi

Determine the set C = Adj(C), where G(C) is the component
or components of G{Z) containing Yy

Sort {a"1(v)| v € C} and determine the strings of con-
secutive integers; these correspond to the consecutive
blocks within the block column of L corresponding to the

partition member Yi' This provides o.,, and the numbers

i+]

0y and Yg» 04 << 0541
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§5 A Heuristic Algorithm for Automatic Dissection

The results of the section 3 suggest that what we should do
is to recumsively apply the following heuristic: find a "small" sepa-
rator which disconnects the graph into two or more components of
approximately equal size. The algorithm of this section is essentially
an efficient implementation of this heuristic.

How do we find a small separator which disconnects a given
graph into components of approximately equal size? Our strategy is to
generate a level structure of the graph, rooted at a pseudo-peripheral
node, and then to choose a minimal separator from a "middle" Tevel. We
root the level structure at a pseudo-peripheral node because this will
tend to produce a structure with many levels, and the levels will tend

to have relatively few nodes,
Given a graph G = (X,E), the dissection algorithm is as follows.
1. Set P=¢, R=X, and N = |X].

2. If R = ¢, stop. Otherwise find a pseudo-peripheral node y in
a connected component of G(R), say G(R;).

3. Generate the rooted level structure Z(y) = {LO’L]""’LQ}
spanning G(R;). If & =1, set SE = Rg and go to step 5.
Otherwise set j = [(& + 1)/2].

4, Determine the set S$ o Lj such that Sg is a minimal separator
of G(R).

5. Label S; from N - |S;| + 1 to N using the reverse Cuthill-McKee

algorithm [15] applied to the subgraph G(Sg). Set N =N - ISEI.
6. set R = ¥, P = P U (sK1, and go to step 2.
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Step 4 in the dissection algorithm makes use of the following

observation.

Lemma 5.1 Let £(x) = fLgsbysevvsly(x)} be a rooted level structure at
x. For 0 <Jj < &(x), the set

is a minimal separator of the graph.
Thus, in step 4, we obtain Sg\from Lj by simply discarding nodes in Lj
which are not adjacent to any node in Lj+].

It should be clear that the order in which the Sg are deter-
mined corresponds to a certain pre-order traversal of the dissection

tree. That is, fathers are visited before their sons. Thus, we obtain

k

a nested dissection ordering o, compatibie with p by labelling each Sm

as it is determined, in decreasing order beginning with N.

Wy Tabel the SK using the reverse Cuthill-McKee (RCM) algo-
rithm, which is designed to produce a small bandwidth or profile? First,
when S$‘= Rg, so that S; is a terminal node of the dissection tree, the
envelope (or profile) of the diagonal block of the correspondingly or-
dered matrix will be preserved during the factorization. Since we use
Jennings' storage scheme for the diagonal blocks, ordering these teymin=
al membersusing the RCM algorithm will tend to reduce primary storage.

When S; is a minimal separator, we showed in section 3 (coro-

1lary 3.10) that the corresponding diagonal block will completely fill

kK
m

required for the diagonal blocks of L corresponding to Sﬁ. However, the

in, so the ordering of S will have no effect on the primary storage
way we number the SE can substantially affect the amount of overhead
storage required by the storage scheme we use in our linear equation

solver, described in section 4.
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k
m

nodes 1in Adj(R;) in the filled graph 6 = (X,E'). Moreover, if

In general, the nodes of S will be connected to some or all of the
Adj(RE) f ¢, it must consist of one or more sets §g, where §i g_Sg
and £ < m.

Now our storage scheme will be most efficient if the non-
null rows within a block column (corresponding to S; say) are clus-
tered together, forming only a few blocks. It turns out that
for our finite element applications, the Sg's corresponding to se-

parators typically consist of node sets lying on edges sequences of

the finite element mesh. If these node sets are numbered consecu-
tively, beginning at one end of the edge sequence, the non-null rows
within each block column will be bunched together, as desired.
Furthermore, our version of the RCM algorithm, which uses a pseudo-
peripheral node as a starting node, will provide precisely this end-
to-end ordering of the separator. Our implementation can be concisely
described as follows:
Step 1: Determine a pseudo-peripheral node r and assign it to Xq-
Step 2:  For i = 1,2,...,N, find all the unnumbered neighbors of the

node X, and number them in increasing order of degree.
Step 3: The RCM ordering is given by: XN Xyopo e 0Xge

The points above are illustrated by Figure 5.1, where the
fi11 is the same for 0 and O 5 but ag yields only 9 off-diagonal
blocks compared to 15 for ay. This difference is due to the different
numbering of So- Since the overhead storage increases with the number
of off-diagonal blocks, this clustering of the non-null off-diagonal
rows in each block column reduces overhead storage, although as pointed
out previously, it has no effect whatsoever on primary storage. The

data structure for L is being used to select one of many equivalent

nested dissection orderings compatible with P.
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Figure 5.1 An example illustrating the effect of the ordering of the
partition members on the number of off-diagonal blocks
within each block column.
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§6 Numerical Experiments

In this section we present some numerical experiments
demonstrating the performance of our automatic nested dissection
algorithm. Our first item of interest is to investigate the quality
of the ordering produced by the algorithm when it is applied to the
standard "benchmark" n by n grid problem, where N = n2. The matrix
problem corresponds in structure to that obtained when one applies
a 9-point difference operator in connection with obtaining an app-
roximate solution to an elliptic boundary value problem on a square
domain. The figures in Table 6.1 compare the automatiéally produced
ordering and the standard (explicitly prescribed) nested dissection

ordering as described in [6,10].

v Standard Standard ordering Automatically ReTative
N {ordering from [10] N Tog N produced ordering | difference
100 1,010 2.19 1,072 .06
225 | = 2,778 2.28 2,854 .03
400 5,988 2.50 6,443 .08
625 10,418 2,59 10,765 .03
900 16,434 2.69 17,127 .04
1225 24,096 2.77 25,006 .04

Table 6.1: Numbers of nonzeros in the triangular factor L for the
standard nested dissection ordering of the n by n grid,

compared to that for the automatically generated ordering.
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The entries in Table 6.1 provide us with some reassurance
that the ordering produced by our algorithm yields an L having ap-
proximately the same number of nonzeros as the factor corresponding
to the standard ordering. Since it has been proven that for the
standard erdering, the number of nonzeros in L is O(N log N), it
seems safe to conclude that our automatically produced ordering has
the same property. Note, however, how slowly the ratio to N Tog N
converges. This is due to large negative subdominant terms in the
expression for the number of nonzeros in L, as a function of N, See
[10] for details.

Of course, the fact that our algorithm produces an efficient
ordering for the n by n grid is of 1ittle practical interest, since it
isatrivial exercise to write a program which will produce a nested
dissection numbering of any rectangudar grid. Our motivation in de-
veloping our algorithm was to enable us to find similarly efficient
orderings for irregular mesh problems, where the required numbering is
less obvious, and not so easily automated, even if it is known.

In order to gain some insight into the asymptotic behaviour
of the algorithm and the execution times of the solver, we applied them
to problems derived from the graded L mesh shown in Figure 6.1, sub-
divided by increasing subdivision factors s, yielding 52 as mampy tri-
angles as in the original mesh. The numerical results are reported in
Tables 6.2 and 6.3.

In Table 6.2 we include both primary storage and overhead
storage; that is, the storage used for actual numerical values and that

used for pointers etc. associated with the matrix sparsity structure.
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Flgure 6.1: Graded L mesh.
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Since one pays for storage regardless of the way it is employed, it is
unfair in any practical study to‘ignore the overhead component. We do
however distinguish between the two uses because on some computers
having a large word size, it may be sensible to "pack" two or more
pointers into each word. Our experiments were performed on an IBM 360/75
in single precision, and both pointers and the matrix entries were stored
using 32 bits; however, by reporting primary and overhead storage separately,
the reader can gauge their relative importance on other computers.

In our numerical experiments we also separate out 1) the execution
time due to the actual determination of the ordering and data structure

set-up, 2) the time required for the factorization of A into LL', and 3) the

time required for the triangular solution given the factorization

(i.e., solution of the triangular systems Ly = b and LTx = y). We do this
for two reasons. First, in some situations, many different problems having
the same zero-nonzero structure must be solved. In this case, it may be
quite reasonable to ignore the ordering and initialization time in comparing
methods. Second, in the solution of some middly nonlinear or time dependent
problems, many systems having the same coefficient matrix but different
right hand sides must be solved. In this context, the cost of solving the

problem, given the ordering and the factorization, may be the primary factor

in comparing methods.

In Table 6.3, operations mean multiplications and divisions. We

report both execution times and operation counts to confirm that the oper-

ation counts are an accurate reflection of the amount of computation being
performed. Since sparse matrix computations often involve rather sophisti-
cated data structures, one must be assured that the computer time associated
with data structure manipulation is at worst proportional to the amount of
arithmetic being performed. Otherwise, comparing methods on the basis of

operation counts makes no practical sense. A1l execution times are reported

in seconds on an IBM 360/75 computer.
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Several aspects of the information in Tables 6.2 and 6.3 are

of interest:

1) The execution time of the ordering algorithm appears to be
proportional to N log N. This is typical of such "divide and
conquer" algorithms E]]. Unfortunately, we do not have a proof
that the orderings we find always satisfy the hypotheses of
Corollary 3.5. Such.a proof would immediately provide a proof
that the execution times of both the ordering algorithm and the
storage allocator are O(il log ). Again, the results in Table 6.2
suggest that the execution time of the storage allocation is
O(N Tog N).

2) The storage overhead appears to grow linearly with N. This
contrasts with many sparse matrix storage schemes, where
storage overhead i{s proportional to the number of nonzeros in
L. Here it seems clear that overhead storage/primary storage
+ 0 as N » o,

3) Although we believe the operation counts for the factorization
grows as NS/Z, it is difficult to be sure from the tables that
this is indeed the case. Similarly, although it seems plausible
from Table 6.1 that the primary storage (hence also the solution
operation count), is proportional to N log N, the numbers in
Table 6.2 are not completely convincing. We are reassured by
the fact that the second column of Table 6.1 can be proven to
grow as O(N log N), and its ratio to N log N also converges very
slowly. The explanation appears to be the existence of very large
subdominant terms in the expression for the operation and storage

counts, as functions of N.
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4) Even for problems of quite large size, the execution time
required for the ordering algorithm is a significant portion
of the overall time required to solve the problem. However,
as mentioned earlier, there are circumstances where ordering
time can be ignored because numerous problems with the same
structure must be solved.
In practical terms, one is usually interested in comparing methods

so as to determine the meéthod which will yield the lowest computer charges.

How does one measure cost? Clearly the real cost C is some function of

execution time T and storage used S. Since the use of one method rather

than another may simply increase T and reduce S, the function C(S,T) will

be fundamental in determining which method results in the lowest chargés.

Computer memory continues to be a relatively expensive resource, so com-

puter charging algorithms are usually designed to discourage large storage

demands. Typically, C(S,T) is of the form Tx p(S), where p is a polynomial

of degree = 1. Thus, we contend that storage reduction should be regarded

as at least as important as reduction in execution time. It is frequently

the case that a method which doubles the execution time and halVes the

storage requirements of another method yields a net reduction in computer

charges. Another important related point is that a reduced storage require-

ment may allow one to avoid using auxiliary storage. The value of this is

hard to assess quantitatively, but the cost of data transfer can be substantial.
In order to gain some insight into how our new ordering algorithm/

solver combination compares to more standard approaches, we solved the se-

quence of graded L problems using the reverse Cuthill-McKee ordering algorithm

(RCM) [15] and a standard linear equations solver using the envelope storage

scheme due to Jennings. A large amount of experience with finite element

problems has established this combination as the industry standard.
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For purposes of comparison, we assumed a computer charging
function which is proportional to the product of execution time and
the storage used. The comparison is summarized in Table 6.4, where
"envelope" refers to the combination of the RCM ordering algorithm
and the Tinear equation solver using Jennings' envelope storage schéme,
and *dissection" refers to our new ordering algorithm/solver,

As a one-shot method for solving the problem, the new scheme does not
compare favorably to the standard method until N ~ 1500. This is be-
cause the execution times for the ordering algorithm and the data struc-
ture initialization are substantially larger than those for the RCM
algorithm and the data structure set up associated with the envelope
scheme. The storage requirement for the new algorithm is also slightly
higher than for the RCM algorithm.

In those situations where the initial cost of finding the or-
dering and initializing the data structures can be ignored because many
different problems having the same structure must be solved, the cross-
over point drops to N ~ 1200.

Finally, in cases where many problems differing only in their
right' hand sides must be solved, the cross-over point does not occur until
N ~ 2300. The theoretical cross-over point (based on operation count ra-
ther than execution time ) is much lower, butthe increased data structure
complexity of the new scheme with the consequent execution overhead makes
it Tess efficient than the standard scheme. The same remarks are true for
the factorization, but the overhead associated with accessing each block
is not so important there because much more computation is performed on

each block.
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Similar results to those in Table 6.4 have been obtained for
numerous other mesh examples, although as one would expect, the actual
cross-over points depend on the mesh characteristics such as whether

it has appendages, holes, etc. The results in Table 6.4 are, however,

quite representative.
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§7 Concluding Remarks

We have formally defined nested dissection partitionings

and orderings of an undirected graph. We have also introduced the

notion of elimination-adjacent set Eadj(x) of a node x in a label-

led graph G, which is important because it provides a direct re-

lationship between the structures of a matrix and its Cholesky

factors.

We then provided some results about the fill suffered by

matrices whose graphs are labelled by a nested dissection ordering.

We then described an automatic scheme for finding nested

dissection partitionings and orderings. We also described a data

structure

for Cholesky factors of matrices thusly ordered which

facilitates the design of an efficient linear equations solver.

equations

numerical

Finally, we applied this ordering algorithm/linear

solver to some finite element problems, obtaining some
results which suggest that for these problems that:

the execution time of the ordering algorithm is O(N log N).
the number of nonzeros in the Cholesky factor for the or-
dering produced is O(N Tog N).

the operation count for the factorization is 0(N3/2).

the overhead storage required for the data structure for L
is 0(N).

under some reasonable assumptions about computer charges,
our ordering/solution package appears to be preferable to

the standard band oriented approach provided N is reasonably

large.
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