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Abstract

Dealing with the strongest Floyd assertions of programs allows a
simultaneous verification of the strongest partial correctness, the
termination and the nontermination of programs. No auxiliary constructs
such as well-founded sets or Toop counters are required. The method works
equally for correct and {ncorrect programs since it provides a way of the
"computation" of the actual properties of programs.

Mathematically the method uses the algebra of binary relations.
It is proved that for any iterative program the strongest Floyd assertions
exist, are unique and constitute the least solution of a fixed-point set of
equations. A problem-oriented calculus allows to find the least solutions
and to transform them into such a form where the termination domain and
the input-output processing are described explicitly. The method was
tested on several hardware microprograms of a floating-point arithmetical

unit of a computer.




1. Introduction

For a better explanation of the present approach let us start with
a short review of the original Floyd's method (Floyd [6]; see also Manna [9]
for a formal exposition). Given a program Il operating on a vector y of

variables one first replaces it by the program

where x and z are vectors of variables which do not appear in I and which

are called the input vector and the output vector respectively. These two

auxiliary vectors of variables are necessary in order to formulate

partial-correctness properties which say that if some intput predicate ¢{x)

1s satisfied and the program eventually terminates then some output predicate

P(x,z) must also be satisfied. To carry out proofs of such properties one
introduces so-called cut-points O s ve sl of H], which are in fact some

selected control states of this program, and one associates with each of

them a so-called inductive assertion Py (x,y). These assertions are auxiliary
i

(intermediate) propositions about the relationship between the initial and

the current state of variables and allow to proceed from the assumption ¢{x)

to the conclusion y(x,z). For technical detail see Sec.4.

The method of Floyd, although quite widely used in experimental
program-verifiers, has some inconveniences pointed out by other authors

(cf. Katz and Manna [8]; Grief and Waldinger [7]):



1) The method requires that the predicates cj>(x),q)(x,z),pm](x,_y),...,pOLn
be all known in advance before we proceed to the proof of correctness.
This is especially cumbersome if our program is not correct, i.e. if it
does not satisfy the "intended" properties.

2) Proofs of termination require the introduction of so-called well-
founded sets and of additional predicates. These sets and predicates
also must be known in advance which offer the same type of inconvenience as
in 1). Moreover, proofs of termination are totally different from proofs
of partial correctness which require new mathematical techniques in a
program-verification system.

3) The technique described in 2) cannot be used to prove non-

termination of a program.

In [8] Katz and Manna propose a solution of the problems mentioned
above. First of all they show several heuristic methods for generating

inductive-assertions. Next they show that each of the following problems:

a) partial correctness w.r.t. ¢(x) and ¥(x,z)
b) incorrectness w.r.t. ¢{(x) and y(x,z)

c) termination w.r.t. ¢](x)

d) nontermination w.r.t. ¢2(x)

can be reduced to the problem of the existence of an appropriate set of
assertions (which satisfies appropriate conditions). In each case the set of
assertions is different, but in each case the assertion-generation method

is helpful in its construction. To summarize, Katz and Manna's method

allows the use of just one assertion-generation vehicle for all the four

(x,y)



problems a)-d). But the proofs must be carried out independently. In
particular, the failure of proving a) does not prove b) and vice-versa;
the failure of proving c) does not show that ¢(x) is not a termination
condition. Also, if we succeed to prove that ¢(x) implies termination it
does not necessarily mean that ~¢(x) implies nontermination. In effect,
a full verification of a program requires three independent proofs:

of a), of c¢) and of d). And in each of the three cases another set of asser-

tions must be generated.

Concerning our approach to the Floyd method we must stress first
of all that its philosophy is slightly different from that developed in
other approaches. Its main point is that the application of mathematics to
computer science (to the theory of programs in particular) can be similar
to the application of mathematics to other sciences or fields of engineering.
For instance, if one wants to mathematically verify an electrical circuit,
one shall probably start with the corresponding Kirchoff equations, one shall
solve them and obtain formulas which describe several physical properties
of this circuit. One shall proceed in a similar way in verifying any other
technical object: a car engine, a bridge, an optical device etc. No engineer
would mathematically verify a technical device in such a way that he assumes
some properties of this device, then tries to prove them and in the case of
failure he modifies the assumed properties and tries to prove them again.
The actual properties of the device "comes out" in the process of mathematical
analysis and only when we know them we make the comparison with the required

properties and decide if our device is acceptable or not. It is our belief



that the mathematical verification of programs can frequently be developed
along the same lines. Given a program, we do not assume any properties of
it but simply "compute" these properties and only when we know them we decide
if our program is the required one. Precisely speaking, we attempt to get
an explicit description of the input-output function F of our program. The
domain Dom(F) of this function describes exactly the domain of termination,
1.e. we know that our program terminates everywhere in Dom(F) and that it
does not terminate everywhere outside of Dom(F). The "body" of F describes
exactly what the program does. In this way, the process of "computing" the
formula which describes F provides at the same time the proofs of partial
correctness, termination and nontermination. Theproblem of proving in-
correctness simply disappears since the very concept of incorrectness makes

sense only with respect to a program property assumed in advance.

Technically, we deal in our approach with the minimal (the strongest)
Floyd's assertions. Since these assertions are unique we can develop a
systematic way of "computing" them. Of course, this way is not free of
heuristics but these heuristics are restricted now to the search of an
appropriate description of F, while F itself is unique. Observe that in the
traditional approach to Floyd's method the predicates ¢(x) and y(x,z) are
not unique for the program, nor are the inductive assertions pa](x,y),...,pun(x,y)
unique for ¢(x) and ¥(x,z).

The mathematical vehicle used in the present approach is the algebra

of binary relations equipped with fixed-point methods. The set of minimal

Floyd inductive assertions turns out to be the least solution of a left-linear



system of fixed-point equations. Coefficients in this system of equations
are relations (functions if the program is deterministic) describing the input-
output meanings of "boxes" (assignment statements, tests etc.). By a simple
and standard method we can find now the minimal Floyd's assertions described
in terms of these coefficients and three standard operations of our algebra
(precisely speaking, we get these assertions described by regular-like
expressions). In this way, we get the assertions in an implicit form. To
transform them into an explicit form (i.e. where the domain of termination
and the data processing are "evident") we use the problem-oriented calculus
developed in our algebra and some standard mathematical techniques such as
proofs by induction. Of course, this last step is the most difficult and
crucial in the process of analysis. In particular, all the heuristics
appearing in our approach appear there. These heuristics do not require,
however, any auxiliary constructs such as well-founded sets [6] or loop-
counters [8] and is strictly limited to the search of the form rather than

the "content" of assertions.

Concerning the applicability of our approach to the construction of
program-verification systems it should not offer more technical difficulties
than the traditional approach (for more details, see Sec.6). On the other
hand, it is our opinion that the construction of program-verification
systems 1s just one of many other goals of the mathematical theory of programs.
Two other evident goals are the better understanding of phenomena appearing
in programs and the improvement of the process of design and documentation.

The more we can know about programs the better we can understand, design
and document them. And once we deal with the strongest Floyd's assertions

we get a complete information about the input-output properties of programs.



To complete this section let us mention that the practical
aspects of the method were quite successfully tested by a group of hardware
engineers designing a floating-point arithmetical unit of a computer
(see Blikle and Budkowski [4]). Of course, the method is not free of

technical inconveniences which are briefly described in Sec.6.

2. The algebra of binary relations

The algebra of binary relations offers a natural mathematical
language of dealing with the input-output properties of programs. Below
we describe some preliminaries of this algebra together with the notation
used in the sequel. Although we are going to apply our approach to determinis-
tic programs, whose input-output relations are functions, we shall also use

extensively nonfunctional relations to describe Floyd's inductive assertions.

Let D be an arbitrary nonempty set called the domain and interpreted
as the set of all possible states of the vector of variables in a program.

By Re1(D) we denote the set of all binary relations in D, i.e.

Re1(D) = {R|R < D x D}

For any a,b in D and R in Rel(D) we shall write aRb for (a,b) ¢ R. By ¢
we shall denote the empty relation, and by I the identity relation, i.e.

I = {(a,a)|a « D}.

Basic operations in the set Rel(D), which we shall use in the sequel,

are defined below. Let R],R2 e Re1(D).



Ry u R,y = {(a,b)[aR]b v aR,b} - union

Ri°Ry = {(a,b)[(3c)aRyc & cRyb} - composition
R? =1 , - 0-th power
R] = R} TR, - n-th power
RY =1 u Ry uR°Ry U RR%Ry UL, = n§0Rq - *_iteration
Ry = Ry U R°Ry U RPPRP°Ry uiw. = § R] - +-iteration

n=1

Fig.1 shows the interpretation of these operations in terms of flow-

chart constructs. Below we Tist the most important properties of these

R
, . R2
Ry

Fig.1



operations. Here and in the sequel we shall omit the symbol "°" of

composition and write Rij instead of Ri°Rj.

1) R1(R2R3) = (R1R2)R3 associativity

2) R](R2 u R3) = R4R, v R]R3 finite distributivity

(RZ U R3)R] = RZR] y RSR]
3) RO(jE]Ri) = 1.OEJ,}ROR]. - infinite distributivity
(iglRi)RG = 1‘=]R1.R0
4) RI = IR =R - the unit property of I
5) Rd = ¢R = ¢ - the zero property of ¢
6) R*=1yR"
R" = RR* = R*R

In dealing with concrete programs and carrying out their analysis
we shall need an explicit notation to specify concrete relations in Rel(D).
We shall distinguish between two cases: the general case of arbitrary
relations and the particular case of partial functions. Of course, the
former case covers the latter, but practical experience shows that calcula-
tions on functions are easier than these on relations, and therefore it is
desirable to have the "functional" case distinguished. We shall start with
the notation for functions introduced by Mazurkiewicz [5].

Let f:D » D be an arbitrary partial function and let p:D » {true,false}
be an arbitrary partial unary predicate such that if p(d) = true then f(d) is
defined. We denote by

[p(x)[x := £(x)] = {(d;,d,)[p(dy) = true & d, = (d))} (2.1)



Of course, [p(x)[x := f(x)] 1s a partial function whose domain is
{d|d ¢ D & p(d) = true}. The variable x in (2.1) is bound (as "bound by a
quantifier") which means that [p(x)|x := f(x)] and [p(y)]y := f(y)]

denote the same function. For the sake of simplicity we shall also write

[x := f(x)] for [true|x := f(x)]

and

[p(x)] for [p(x)|x := x].

0f course, [p(x)][x := f(x)] = [p(x)|x := f(x)]. Also note that every
function of the form [p(x)] is a subset of the identity function I.
Consequently, these functions are used in our approach to describe tests
in programs. The following rules are useful in program verification (all

can be easily proved from (2.1)):

1) [p(x)|x := F(x)1Lq(x)[x := g(x)] =
= [p(x) & q(f(x))|x := g(f(x))]
2)  [p(x)[x = £(x)] v [q(x)|x = F(x)] =

[p(x) v q(x)[x = f(x)] (2.2)
3) [p(x)1Lq(x)] = [q(x)1lp(x)] = [p{x) & q(x)]
4) If p(x) = q(f(x)) then [p(x)[x := f(x)I[q(x)] =

= [p(x)|x = f(x)].
5) [p(x)]x := f(x)]" =
= [{(v1 <1 < n)p(fi'](x))lx = f(x)] for n > 1

As we shall see in Sec.5 (Examples 5.1 and 5.3) the rule 5) allows the

elimination of induction proofs in the consideration of loops.
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Now we introduce the more general "nonfunctional® notation.
Let p:D x D ~ {true,false} be an arbitrary partial binary predicate. We

denote by:
[Rlp(X,x)] = {(d;,dy)[p(dy,d,) = truel. (2.3)

The character R appears here to indicate that we are dealing with the new

notation. In fact, we must be able to distinguish between the three follow-

ing relations:

[p(x)] = {(d},dy)[dy = dy & p(dy) = true}
[Rip(x)] = {(dy.d,)[p(d,)
[RIp(X)T  {(d;.d,)[p(d,)

true}

true}

The variables X and x in (2.3) are bound in the same sense as x is bound in
(2.1) and can be interpreted as the initial and the terminal data vector

of the corresponding program. Of course, the former notation can be defined

in terms of the latter:
[p(x)[x := £(x)1 = [R]p(X) & x = £(X)] (2.4)

where we still must assume that p(d) implies d ¢ Dom(f). We also have

the obvious rules for calculation:

1) [RIp(x,x) 1[R[ q(X,x)] = [R](3y)(p(X,y) & qly,x))]
2) [Rlp(Xx,x)] u [R]q(X,x)] = [R]p(X,x) v q(X,x)] (2.5)
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3) U [Rp(X,x,c)] = [R[(3c e €)p(X,x,c)]
ceC

4) [a(x)[x = f(x}IMR]p(X,x)] = [R[q(X) & p(Ff(X),x)]

5) if f is reversible, i.e. if #~1 is a function then:
[RIp(X,x)1a(x)[x := f(x)] =

[R[p(%,F71(x)) & a(f7(x)) & x e Dom(£™")]

where Dom(f"]) denotes the domain of f']. The rules 1)-4) are fairly

obvious. We prove 5) below, mainly to show how our calculus works:

[RIp(X,x)1[q(x)[x := f(x)] =

[R[(3y) (p(X.y) & q(y) & x = f(y))] =
IRl (I) (p(R.y) & a(y) 8y = £71(x)]
[RI (3y) (p(R,£71(x)) & q(F1(x)) &y = £71(x)] =
[RIP(R,F1(x) & q(F71(x)) & x  Dom(£™1)]

1}

In the last step we eliminate the quantifier (3y) by substituting
"x ¢ Dom(£~1(x))" for " @y)(y = £(x))".

3. The mathematical models of programs

In order to describe the Floyd's method in terms of our algebra
we shall need a rigorous mathematical concept of a program and of its
input-output relation. To this effect we shall use here the Mazurkiewicz
algorithms [5] and shall define their operational semantics. In the
general case these algorithms are nondeterministic devices but the determinis-

tic programs appear simply as the particular case.
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By an algorithm we shall mean any system A = (D,V,0,,3) where

D is an arbitrary nonempty set called the domain of the
algorithm and is interpreted as in Sec.2,

v ='{a1,...,an} 1s a finite nonempty set of elements called
labels of the algorithm,

0y is a distinguished element of V called the initial label of

the algorithm,

B . 2
7 = {(ui,Rij,aj)]Rij € Rel(D); i, <n} is a set of p = n

triples called instructions. It is implicit in the notation above that

for any o; and oj there is exactly one Ry such that (ai’Rij’“j) eJ.

Usually many of the Rij relations will be empty. An instruction with Rij = ¢

describes the fact that there is no direct "arc" between o¥ and aj in the

program. Given an instruction, the corresponding s Rij and o5 are

called the entrance label, the action and the exit Tabel.

Interpretation. As mentioned before, the algorithms of

Mazurkiewicz are used to formalize flowchart programs. The labels ai's

are usually interpreted as control states, but in this case we can interpret
them as the Floyd's cutpoints. Each action Rij describes the data processing
effected between o and 0y The choice of cutpoints in a flowchart is
arbitrary, but once these cutpoints has been chosen the corresponding
algorithm is unique. Consider the flowchart of Fig.2. The set of cutpoints
'{a],...,a7} is "maximal", in a sense, for this flowchart. The corresponding
set of instructions is the following (we omit, of course, all the instructions

with Rij = ¢):
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1
R
J'az
F
|
— p(x)
01,3}[_ Oy
Y
P Q
0‘51"
F Y
q(x) ).___ ( stop )

Fig. 2
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(@],R,az)
(ays[p(x)Tsa) s (aps[~p(x)1504)
(a3,P,0)
(ag,Q505)
(ags[q(x) 1), (ag.[~a(x)],04)
(oG 5F»0)

The same flowchart can be described with a smaller set of cutpoints

{u1,u2,a3,a7}. The corresponding algorithm will be, of course, different

from the former:

(0‘1 aR:az)
(Obzs[P(x)JaOb3) s (Otz,ENP(X) ]Q su7)
(43290 TFa0) s (g PL-a(x) s .

Now, we shall establish the operational semantics of Mazurkiewicz
algorithms. Consider an arbitrary algorithm A = (D,V,u],fﬂ) where
V="{ays...,0.}. For any 05505 € V, by an (ui,aj)-fgg.we shall mean any

sequence of instructions of J:

(as HRys0s )3 oows (o LR S0 ) (3.1)
1 1 I T k Ik

such that G T 045 05 = 0y and a, = 0y for p < k-1. Of course, an

(ai,aj)—run is simply a path in the graph of A. The corresponding

sequence of actions (R],...,Rk) will be called an (ui,d.)-symbolic execution

J

J.) denote the set of all the

(ai,uj)-s~executions in A. The (ai,aj)-resu1ting relation is defined as

(abbreviated: s-execution). Let Exec(ui,a

follows:
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Res(ai.,ocj) = U{R]"....ka (R]""’Rk) € Exec(oc.i ,oaj)} (3.2)

This is of course the input-output relation of A under the assumption that o
is the input label and 05 is the output Tabel. Indeed, d]Res(ai,ocJ.)d2

iff there exists an (ui,aj)-37-executlon (R],...,Rk) such that d,R;°...°R d,.
Observe that in any (af,aj)-run the control of the algorithm may pass

through o and 05 many times.

By the definition of A the label 0 is assumed to be initial
which means that we shall be especially interested in the relations
R(a],aj) for j = 1,...,n. HNevertheless, we shall also use the other

R(“i’“j) in our approach.

Now suppose we are considering an algorithm A where o, has been

chosen to be the terminal Tabel and suppose that we have proved
Res(u],un) = [p(x)|x := f(x)]. (3.3)

By the definition of Res(ai,uj) this implies the following about A:

1) for every initial d « D the algorithm terminates if and only if
p(d) is satisfied,

2) for every initial d ¢ D, if the algorithm terminates, then the

output value is f(d).

Of course, 2) is the strongest partial correctness property of A
and 1) defines exactly the domain of termination. Consequently, (3.3) is
the strongest possible total-correctness property of A (see also the next
section). Observe that p(d) implies termination and ~p(d) implies non-

termination. In the next section we show how to prove properties of the

form (3.3) in a systematic way.
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4. An algebraic approach to Floyd's method

In this section we describe and discuss the Floyd's method in

terms of our algebra of relations.

Let A = (D,V,a],:B) be an arbitrary algorithm with V = {ay,...,0,}
and let o € V. By an g{—invarfant of A we shall mean any relation Q e Rel(D)

which satisfies

Res(a],ui) c Q (4.1)

The inclusion (4.1) says, that given an arbitrary input d, if this input
leads to some output d; at o, (i.e. if d Res(a],ai)d]), then the input d
and the output d; are in the relation Q (i.e. de]). Of course, Q is simply

a Floyd assertion corresponding to the cutpoint 03+

Now, consider a vector of relations (Q1,...,Q ) such that each Q;

n
is an ui-invariant of A. This vector will be called a consistent vector of

invariants (abbraviated CVI) iff

Q;Res(as,05) < Qi for i,j < n. (4.2)

J J

The following theorem describes the Floyd method in our terms:

Theorem 1. A vector of relations (Q],...,Qn) is a CVI iff

1) Ryj < Qi for i < n
2) QiRij = Qj for 1,j = n O
n3en
Proof. The "if" part. Let (Ri]j1,...,Rimjm) € Exec(ak,ap).

By 1) and 2) we get therefore
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R: & °...°R, Q. R

. . %00%R. . < Q. PRy 2.2 Qe = Q
BUE : 1mJ_m J1

2 - 0‘.
1232, ; 1m;|m
If this is true for any execution 1in Exec(ap,uk) it must also be

true for Res(uk,ap) (cf. (3.3)). This proves (4.1). The proof of (4.2)

is similar.

The "only if" part. Since the one-element sequence (Rli) is an

element of Exec(1,i) we have
Ry; <€ Res(a],ai)
which proves 1) by (4.1). The proof of 2) by (4.2) is similar. 0

Observe that the inclusions 1) and 2) are Floyd's verification
conditions. In particular, 1) corresponds to the verification condition
with the input predicate in the premise. In this case the input predicate
is true everywhere in D, which means that we are considering all possible inputs.
If we wish to restrict the set of inputs to these satisfying some
predicate p(x), we have to modify the algorithm A by adding new label o
and new instruction (ao,[p(x)],a]) and by assuming that ag 1s the initial

Tabel in the new algorithm. In this case we shall have, of course,

Res(uo,ai) = [p(x)]Res(u1,ai) for all 1 <1 <n.

Now, consider the set of all CVI's. It is not difficult to prove
that this set is closed under arbitrary (componentwise) union and inter-
section. In particular, therefore, the greatest and the least element in

this set must exist. The greatest element is of course the vector
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(DxD,...,DxD}), which 1s - evidently - of no interest for the purpose of
proving correctness. The least element {s (Res(u1,a1),...,Res(d],an).
The proof is very simple. This vector is a VCI since
Res(“]’“T)Res(ui’“j) = Res(a],aj) and it is smaller than any other CVI
by (4.1).

The Teast CVI is of course of particu]ar interest for the proofs
of correctness since it offers the set of strongest Floyd's assertions.
Moreover, by the definition of Res(a],ui), it defines unambiguously the
domain of termination. We shall show below how to get the Res(a],ui)
relations expressed in terms of Ri.'s and the operations of union, composi-

J
tion and iteration.

Lemma 1. A vector of relations (Q],...,Qn) is a CVI iff it satis-

fies the following set of inclusions:

QRy5 U ven v Qani U Ry S Qi for i <n (4.3)

Proof is immediate by Theorem 1.

Theorem 2. The vector of relations (Res(a],u1),...,Res(a],an))

is the Teast solution of the following set of equations:

= X]R11 U ... U Xan] U R]]

(4.4)

Xn = X R]n U ... U Xann U R]n
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Proof. The set (4.4) results from (4.3) by replacing inclusions
by equalities. It i{s a well known mathematical fact (see Tarski [10])

that the least solutions of (4.4) and (4.3) are the same. 0

Now, we shall describe a systematic way of solving (4.4) and
getting the (least) solution expressed by the coefficients Rij and the
operations "u", "e" and "*". This way is based on two following variable-
elimination transformations:

1) Substitution: The substitution of X

]R1i U oo U Xan] U R]i
for an arbitrary occurrence of Xi on the right side of (4.4).
2) Iteration: The replacement of the equation

X; = X{Ryq U vv U X R U Ry
by the equation

X; = (X1R]i U vou U X1—1R1—11 u Xi+]Ri+1i U «vs U Xan.i u R]i)R¥1

Each of these transformations is applicable to any set of equations
Tike (4.4) and yields another set of equations of the same form. As can
be proved (see Blikle [3]) the new set of equations has exactly the same
least solution as the former. To solve a given set we keep applying
our transformations as Tong as there are some unknowns (variables) on the

right side.

Example 1. Consider the set of equations corresponding to the program

of Fig.2 (empty components are of course omitted):
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Xp= ¢

Xy = XgF U R

X3 = X[p(x)] v Xg[~q(x)]

Xy = Xo[~p(x}] (4.5)
Xg = XqP

Xg = XsLa(x)]

X7 = X0

Observe that the number of components in the i-th equation equals the
number of arrows entering the Tlabel 0 - Therefore, X] = ¢ in our case.

Now, suppose that we only wish to find Res(a],a7). In such a
case the process of solving (4.5) can be simplified by omitting some
unnecessary equations. First, let us perform substitutions for X6’ X5 and

X4:

>
H

1=

5 = X3P[q(x)]F u R

= Xolp(x)1 u X5P[~a(x) ]
7 - XZ[NP(X) ]Q

> > ><
(9%}
1 1 1

This set of equations corresponds precisely to the "reduced" algorithm with
the cutpoints 0 50 5013507« As we see, therefore, the process of solving
(4.4) 1s equivalent - in a sense - to the process of removing cutpoints
from the program. Now, by the iteration for Xy we get (we-tan also omit

X]=q>):



>
t

? - X3P[Q(X)]F u R

X3 = X,[p(x)I(PL~q(x)1)*
Xz = X[~p(x)1Q.
Therefore,
Xo = X,[p(x)J(PL~q(x) 1) *P[q{x) IF v R

X

;= X[ ()10,

Hence by iteration and substitution:

X; = R([p(x)I(PL~a(x) 1) *P[q(x))F)*[~p(x) 1Q.

By Theorem 2, the right side of this equation equals Res(a],a7). a

5. Examples of program verification

In this section we discuss three examples of the verifications
of programs. The first and the third example were taken from [9] and [8]
respectively. This should allow the reader to compare the "traditional"
Floyd method with our approach. For a more "practical” example the reader
is referred to [4]. In our examples we show two different techniques of
calculations. The first is based on the relational notation (2.3) and
expresses the input-output functions implicitly (first and second example)
the second uses the functional notation (2.1) and expresses the input-
output functions explicitly (third example). It is difficult to say at
the present stage which of the techniques is more efficient. Most probably

a combination of them would be an optimum.
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‘Example 5.1 (fnteger division [9])
Consider the program given by the flowchart of Fig.3. The

corresponding algorithm is defined by the set of instructions

{ START )

¥
%1

| |
| yj =0
o o,

T ’ F
Yo 2 k
(y]:YZ) = (Y1+]ay2”k)

Fig. 3

(note that we use here simultaneous assignmeht statements):

(a1,[y] = 0],&2)
(0"2 s[yz 2 kl (y'l :yz) = (.Yf“] syz‘k)],ocz)
(uzs[yZ < k],&3)

where [y, := 0] stays of course for Llyysyp) = (0,y,)1. The corresponding

set of equations is:
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>
-
3

¢
= X1[Y1 = O] u Xz[y2 2 kl(YstZ) = (Y1+19y2‘k)] v [y] = 0]
X3 = Xoly, < K.

><
no
1

Therefore, we get immediately

ReS(a],dz) = EY1 e O][yz z kl(y]:yZ) = (y]+1sy2'k)]*
Res(u],a3) = Res(u1,a2)[y2 < k].

Now we have to transform the formulas above into an explicit form [R|p(x,x)].
To do so we shall use the rules for calculation described in Sec.2. In the
following we shall assume that YysYy and k range over arbitrary integers.

Comments in parentheses explain the performed transformations:

Res(u],az) =

(the definition of "*")

= [y == 01T v nog][yz 2 k| (yq275) = (yq*1y,-K)1") =
(the distributivity of "°")
=[y; :=0]u nctj][y] 1= 010y, 2 k| (ysy,) = (yy*1,y,-K)1" =
(the rule 5) of (2.2) and composition with [y] := 0])
S by = 01w U Dy (-0 2 Kl yavp) o= (nyponk)] -
(the same in the relational notation)
=y, =01 nog][RlS?Z 20k & y; =n &y, = y,-nk] =
(elimination of fu")
=Ly =0 v IRI@En=NE, 2nk&y =ndy,=§-k]-=

(the substitution of yq for n)



Y

Rl

[.Y'I = 0] v [RI(E“'I 2 1)(5’-2 =3 .V‘]k & ¥] =né& Yo = .)?2‘ Y]k)] =

(quantifier elimination: "(3n = ])(y] = )"

is equivalent to "y] > 1")

= [.Y] = 0] v [Rlyz 2 y]k & Yy 2 134 Yo = yz‘Y"]k] =
(the substitution of y2+y1k for §2)
=Ly, =01 v IRy, 208&y; 218&Y, = yytyK]

The formula above gives us an explicit specification for the
strongest Floyd invariant associated with the cutpoint 0o « This invariant
says that at any time the control of the program arrives in Gy, ONE of the
two conditions must be satisfied:

1) either the current value of 2 equals 0 in which case the current
value of Yo equals the initial value of Yo
2) or the current value of Y1 is greater or equal to 1 in which

case the current value of Yo is non-negative and 52 = y2+y]k holds.

Observe that the initial value i] does not appear in our formula
which actually means that this value is irrelevant for the values of Y1 and

) at %

Now, we have one easy step left to get an explicit form of

Res(a1,a3):

Res(u],a3) = Res(a],qz)[yz < k] =
= [yz < k[.V-l = 0] u [RIG Sy'z <k & .y] =1 & 5;2 = y2+y]k]

This formula gives the complete description of the input-output properties

of our program. We shall analyse it in two separate cases:



1) k < 0. In this case [R|O

IA

y2<k&y]2]&y2=.)/2+y]k]=¢
since there are no y, with 0 <y, < 0. Therefore

Res(a],u3) = [y2 < k1y1 := 0].

This means the following:
i) the program terminates if and only if initia11y‘y2 < k (hence if
Y, = k at oy then the program does not terminate) ;
ii) if the program terminates, then the data processing can be described

by the assignment (y],yz) = (O,yz).

2) k > 0. In this case

Res(a],a3) = [y2 < k[y] = 0] v

[Rl0O < Yo <k &y, =18 ¥y = Yoty k]

The domain of this function equals the domain of the first component - which
is {(¥;.9,)1¥, < k} - plus the domain of the second component - which is
UT1:9) 103y 09, (0 < yp < K & yy 218§, = yyty K)}= {(37,5,) 15, = k3.
Consequently, the domain of Res(a1,a3) equals IntxInt where Int denotes
the set of all the integers. In terms of our program we have therefore
the following:

i) the program always terminates,

ii) if the program terminates then the terminal value of Yy is the
required integer quotient and the terminal y, is the corresponding remainder.

This accomp]fshes the full proof of the strongest total correct-

ness (and nontermination) of our program. Of course, our method can also be
used to prove partial correctness of the program, in which case the calcula-

tions will be much simpler. E.g. if we wish to show that the relations
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QZ [y] = 0] u [Rlyz 2 0 &,y] z 18 92 = y2+y1k]

and

Q3 = [y2 < kly] = 0] u [RIO S Yy < K & y1 =1 & 92 = y2+y]k]

are Floyd's assertion in our program, then all we have to do is to show that

they satisfy the following inclusions (Lemma 1):
Qz[yz,z kl(y]ayz) = (y]+1,y2-k)] u [y] := 0] ¢ Q2
Qz[yZ <k] ¢ Q3

This is an easy task, however, if we usethe rule 5) of (2.5).

Example 5.2 (integer square root)
Consider the program given by the ftowchart of Fig.4. This

example will be discussed with fewer comments. We shall only show the most

( START )

Fig. 4
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important points. First of all, we can omit the specification of the

Mazurkiewicz algorithm and proceed directly to the equations:

><
1

1° ¢

Ky = X{Rqyp U XoRoo U Ryp

X3 = XaRa3

where Ryp = [(xy) = (0,1)]
Ryp = [(x,y) = (x+1,y+2x+3) 1y < n]
Ryz = [(xpy) = (xt1,y+2x+3) [y > n]

Therefore, we get
Res(ay.03) = RypRzpRp
and we proceéd to the main step of our analysis:
Res(ay,a3) = 1.EooereR;szs = RigRe3 v 1§1R12R22R23
We shall consider both components separately. First
RioRog = [(x,y) = (1,4) 1Ly > n] = [n < 4[(x,y) := (1,4)]
Next
i§1R12R;2R23 -

(by induction on 1)

[(xsy) := (i,(i+1)2)][y < nJRyq =

co

=1

il

[RIGFTzN(x=18&y-= (i+1)2 &y < nlRys =

(the substitution of x for i and the elimination of the
quantifier)
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n

Rlx=18&y-= (x+1)2 &y < nlRys =
(the application of 5) in (2.5): here
f'](x,y) = (x-1,y-2x-1))

[R]x-1 = 1 & y-2x-1 = x2 & y-2x-1 <n &y > n] =

(arithmetical transformations)

)2 & x% <n g (x+1)% > n] =

n < (x+1)2].

[R] x
[Rly

v

2 &y = (x+1)° & x

IA

(x+])2 & x =2 & x2

[l
n

IA

Therefore,

(1,4)7 v
X=2 & x2 £n < (x+1)2]

1

Res(u],u3) = [n < 4] (x,y) :
[Rly = (x+1)%

R

Now, if n < 4, then the second component above is empty since in this case

X =2 & x2 < n is never satisfied. This proves that for n < 4 the program
always terminates and performs (x,y) := (1,4). If, in turn, n = 4 then the
first component is obviously empty and the second component says that the
terminal value of x is the integer approximation of /n. Since for every n > 2
such an integer approximation exists and is unique, the second component is

a total function. This proves that our program always terminates.

Example 5.3 ( hardware integer division [8])

Consider the program given by the flowchart of Fig.5 (for short,
we use simultaneous assignments already in the flowchart). This program
performs a well known integer-division algorithm which is widely applied in

electronical and mechanical arithmometers. It divides N by ¥, and stores the
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l

' F

(y1.74) = (y7-¥,.54%y5)

Y

(.st.V3) = (.yZ/Za.Y3/2)
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result div(y],yz) and the remainder res(y],yz) in Yq and ¥y respectively.

It computes ﬁhe same function as the program of Example 5.1, but now the
computation time is much shorter. To explain the idea of this algorithm let
§1 and ;2 denote the initial values of Y1 and y,. At the first step, after
(ys,y4) := (1,0) has been performed, the algorithm enters the upper Toop
which is iterated some number n = 0 of times (this corresponds to the left shift
of the binary representation of yz). At the exit of this loop we have

¥q = y] < 2“&2 =Y and Y3 = 2", Now, the algorithms enters the lower Toop
where it "tries" to subtract Yo from ¥y If it succeeds to do so (i.e. if

¥y 2 yz), then this subtraction is "worth" 2" subtractions of iz from Yy
Consequently, the number 2" is "loaded" to Yo and Y1 becomes res(i],znyz).

If it does not succeed (i.e. if ¥y < y2) then y, and y, are divided by 2
(shift right) and the algorithm "tries" to subtract Yy, from " again,

In the k+1-th iteration of the lower loop the algorithm "tries" to subtract
2"'&92 from y, = res(§1,2n'k+1§2) and in the case of success adds 2N-k to

the current value of Y- After exactly n iterations (y3 must‘descend from

2" to 1) the algorithm tries to subtract 92 from ¥y and exits the Toop at G«

As we see therefore, this is the well known shift-and-subtract algorithm.

For the sake of our program's verification we shall define the
functions "div" and "res" and shall establish some of their properties. We
assume that the arguments of these functions range over non-negative integers

and that the function themselyes satisfy the following four axioms:
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A.1 Yy = div(y],y2)y2 + res(y1,y2) for ¥y 2 0, Yy > 0
A.2 div(y],yz) >0 for ¥120,y,>0
A.3 div(0,0) =0

A4 0= res(y],yz) <Yy

It is a well known mathematical fact that the functions satisfying A.1-A.4

exist and are unique. The following properties of these functions will be

used in the sequel.

1) Y1 = Yy # 0= divly ,y,) = 1 & res(yy.y,) =0
2) Yy< Yy = divlyay,) = 0 & res(yquy,) = v,
0; res(y;,2y,) <y
3) div(res(y] ’2‘y2) ”y2) = e 2
15 res(y;,2¥5) = ¥,
4) res(yy,2y,) 2 ¥, = res(yy,2y,)-y, = res(y;,y,)
5) res(y;,2y,) <y, = res(y,,2y,) = res(y;.y,)
6) for all n = 1, if 2“']y2 <y < Zny2 then

it s iy
n-1i ]yz),Zn 1y2)2n 1

n

div(y,.y,) = ) div(res(y,,2
These properties are general mathematical facts which must be known in
order to design our program. In fact, 3) and 6) describe the main point
of our a1gor1fhm.

For the sake of calculations that follow we shall slightly modify
our notation. First we assume to omit trivial assignment statements Yi T Y.
E.g. we shall write [(y1,y4) = (y]-yz,y4+y3)] instead of [(yi,yz,y3,y4) =
(y]-yzgyz,y3,y4+y3)]. Next, dealing with longer formulas, we shall

write expression (2.1) vertically, i.e.
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_ *
- *
Res(a1,u3) = Res(u],uz)st(R34R43)
- *
Res(u],a4) = Res(a],az)R23(R34R43) R3a
Res(a],as) = Res(u],a4)R45
We shall elaborate our R(a],ai)'s successively.
[ n _
U RypRop =

n=1
(rule 5) of (2.2))

Res(a],uz) = R]Z u

@ n-1 _ (oh n -

0

o Uly> 2Ny, [ (v oygoyg) = (275,2",0)] (5.1)
n:

R

Now, we proceed to the main step of our verification which deals with the

lower loop. Let
(y15¥2:Y3¥4) 1= Flyq2¥52¥35¥4505K)
denote the following (simultaneous) assignment statement:

yy o= res(yq 2" yy)

vz = 2"y,
-k (5.2)
= 2
Y3 : ‘
g = d1'v(\res(y],2n'1+]yz),2'"'13/2)2“'1

i=0
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We shall prove that for all k = 0

K -
Res (07 505 )R 3(R3yRy3) "Ryy =
= [yq s ¥y & k=0l (yqsunyg) 1= Flyqse oy 0K v
U

][Zn'1y2 <y s gnyz & k < n|(y],...,y4) = f(y],...,y4,n,k)] (5.3)
n_

For k = 0 compute first
RysRaq = Lyy = ¥l (ypayg) = (0uygty3) 1 v [y <yl
and now

Res(a1,oc2)R23R34 =

= [y = Yol (yysygoyg) 1= (0,111 u Lyg < y,l(yg5y,) = (1,001 u

ng'l[y-l > 2n-13'2 & Y'I = znyzl(}’] "yZ’yB"yil) = (O:Zn.stznazn)] U
*® n-1 n n n
ng][y1 > 277y, & yy < 2ol (yp.yg0y,) 1= (27y5,27,0)] =
= [y = Yo &0 = 0[(Yqsenusyy) = FlYqs.005¥750,00T v
1 2 ] 4 ] 4

[y] < .VZ & 0 = Ol(y]s---ay4) e f(y],...,y4,0,0)] u

Uy - 2ol (yys-nea¥g) 1= F(¥psenesygoni0)]

e

U1[2"']y2 <yy < 2, (ygseeeayg) = Flyqseens¥qan,0)] =
n:

[yy < ¥y & 0= 0[(ypsuenyy) 1= Flygsenyy0,00 ] v

U

n-1
o ][2 y2 < ‘Y] < znyz &0 < n](y],...,y4) = f(y1,=y4,na0)]
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Now, let (5.3) be satisfied for some k = O:
Res (050 Rp(RaqRys) Ry =
= Res (07,0 )Ry (RagRy3) Ry (Rygyg)
Compute first
RysRaq =
= Lyg # 1 & yy 2 yo/2](y1.¥0.Y35,) =
1= (Y0l 2:¥5/2,¥3/2,y,%y5/2)] v
[y3 # 1 & yq < ¥p/2[(yp.y5) = (v,/2,y5/2)]
Now
KR

Res (aq 509 Ry 3(RgyRy3) ™ Ry =

= [y] <Y, & k=0 & 141 & ...]u these two components vanish

[y, < ¥y, & k=0 & 171 & ...1 because 1 # 1 is false

© ron-1 n n-k n-k n-k-1
n51[2 Yo <¥1 =52y, 8ksn&2 £18& res(y],z yz) > 2 yzl
yq = res(y],2n'ky2)-2n'k']y2
_ oh=k=1
Yp 12207,
y3 := 2n-k--|

k . . .
7 1_zodiv(res(y],2“"1'”3/2),2"']_\/2)2n'1+2“'k"1] u

u [2"']y2 <y = Zny2 8 k <n & 2"k #1& res(y],2"'ky2) < 2n-k-1y2|
n=1
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yy = res(y],zn"kyz)

y, = 2n-—k-1y‘2

yg = 2n-k-—]

Yy i § div(res(y1,2"‘1+]y2)’gn-iyz)zn-i] i}

=0
(by the properties 1)-5) of "div" and "res")

> Zn-k-]

U [2”'1y2 <yq s 2ny2 & kt1 < n & res(y1,2n'ky2)

Yol
n=1 2

(yyseeayg) = Flypsee ook ]

k

? [2"']y2 <y s 2ny2 & k+¥1 < n & res(y],zn' y

< 2n-k—]y
n=1

) 2l

(y]s~--=Y4) = f(y'ls--os.V4anak+])] =

= 31[2”"y2 <yq =2, & kel <l
n:

(y]s--~sy4) = f(y]:--~:.Y4snsk+1)]

This coincides with (5.3) since k*1 # 0 and therefore the first component

of (5.3) vanishes. To get the formula for Res(a],a5) we compute

_ k
Res (ag505) = kSOReS(“1’“2)R23(R34R43) R3aRg5

UO([y] <Y, & k=0 & 1=]|(y],...,y4) = f(y],...,y4,0,0)] u

.

n-k

U 1]

1[2n-]y2 <Yy s 2ny2 &k<na&?
n_

1)

(Yyseeea¥g) = Flyqseygonkl 1)

(since k = n & -T2 7z2q= k)

[y; < ¥p (Yyseenayg) 1= Flygsennnyg:0,001

I

« n"] g n .z =
ng][Z Yp < ¥q 229, (yaeeayg) = Flygseygonan)

(the application of (5.2) and of property 6))
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= [y] < YQ[y] = res(y],yz)
Vg = ¥
y3 = |

<

y4 = div(y]ayZ)]

U][zn‘]y2 <Yy s 2ny21y] = res(y],yz)
n=

Yo = Y2

Y3 = |

.y4 = d'lV(.V] ayz)]
Now observe that

o ron=1 n _
[y],g yz] U ng][2 Yo <¥q1 = 2 y2] =

1

A

[y] yZ] U [yZ < y] & y2 # 0] =

1]

[y] =Yy < 0v Yo 7 0]
Finally,
Res(aq,ag) = [yy =y, = 0 vy, # Oly; := res(y;.y,)
Yo =Y
2.7 72 (5.4)
Yy =1
g 1= divly;,y,)]
This equation describes completely the input-output properties of our
program. It says in particular that the program terminates for all (y],yz,y3,y4)
except the case where Y3 #0& Yo = 0. In the latter case the program does
not terminate. Observe that the equations (5.1)-(5.4) give quite complete

documentation of our program.
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6. Final remarks

As mentioned in the introduction the method was tested on several
hardware microprograms of a floating-point arithmetical unit of a computer
[4]. This proved that the method is applicable to at least some "practical®
examples (the largest program consisted of 20 assignment statements and 20
tests), even in the case all the calculations are performed manually.
Despite this positive experience, the method is not free of many technical
inconveniences. First of all if the number of variables in the program
is large, then the formulas [R|p(X,x)] become long and therefore cumbersome
for manual calculations. Also large programs offer technical problems
since the corresponding set of equations is usually as large as the program
itself. On the other hand, our approach is compatible with the techniques
of structuralization. In fact, once we can structure our program into
smaller modulus we can analyse each of them separately and then represent
each of them by the corresponding relation Res(a],an). Since these relations
provide complete descriptions of input-output properties they are always
sufficiently strong to perform the analysis on the higher level.

0f course, to deal with really large programs a computerised
system is required. Our present experience shows that such a system is not
unrealistic. No doubt that this must be an interactive system since many
heuristics certainly cannot be eliminated from the approach. What the system
can be expected to do (at the present stage) is of course the transformation
of programs into equations and the solving of these equations. It is also
hopeful that many simplifications of formulas (e.g. substitutions,

elimination of quantifiers; standard induction applying 5) of (2.2))



-39 -

could be performed by such a system. What the system should leave for
humans are certainly the nonstandard induction proofs (1ike in Examples
5.2 and 5.3) and the choice of functions (or relations) which are going to
be used in these proofs (1like "div" and "res" in Example 5.3). Also the
general strategy of the process of verification cannot be expected to be

established by a system.
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