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ABSTRACT

A graphical deduction system is described for performing linear
deduction in first-order predicate calculus. No ordering is imposed on the
solution of subgoals, and structure is shared in such a way that economy
of representation is maximal, consistent with the full use of 1emmas. An
efficient unification algorithm is used which allows substitution to be
avoided, and allows the source of conflict to be located when a subgoal is
found to be unsolveable, so that backtracking can be intelligently
performed. Because of the graphical structure, only the offending parts
of the deduction need be removed in backtracking, rather than the entire

proof which was constructed after the cutting point.



1. INTRODUCTION

wfth the advent of Robinson's resolution system of first-order
logic in 1965 [21], there was much enthusiasm and optimism concerning the
future of mechanical theorem proving. However, it soon became obvious that
this optimism was largely i11-founded, when early theorem proving programs
were found to be unab1e to prové any but the simplest theorems without
exceeding their usually generous storage limits. Consequently, there
followed in the late sixties a rash of strategies for limiting the size of
the search space generated by the resolution rule [17]. Unfortunately,
Tittle improvement was obtained, énd many researchers, disillusioned with
predicate logic as a problem-go]ving tool, took a more pragmatic approach.
As a result, some new programming languages were developed especially for
problem solving, for example [8, 18 and 23].

An important feature of these new problem-solving systems, was
their use of problem reduction, a technique whereby a problem to be solved
is replaced by a set of subproblems, the simultaneous solution of which
implies the solution of the original problem. In the late sixties and
early seventies, a more promising refinement of resolution appeared which
also used this goal-subgoal structure, and is generally classified as
"linear resolution" [15, 19]. These syétems in turn have led to the
development of programming languages based on predicate logic [6, 7, 10, 11].

Unfortunately, when the power of linear deduction systems is
increased by introducing new deduction rules, in particular, a rule which
allows the use of lemmas to obtain shorter proofs, it becomes necessary to
impose a strict ordering on the solution of subgoals to preserve complete-
ness [13, 14, 16]. Consequently, one of the most attractive features of the

problem reduction approach, the parallel processing of subgoals, is lost.



Furthermore, linear deduction, 1ike other resolution systems, suffers
from two problems associated with "backtracking". Firstly, when a sub-
problem is encountered which cannot be solved, the system must return to an
earlier point in the proof to try an alternative solution for an earlier sub-
problem. The usua1 way of doing this is to return to the last point at which
there was an alternative solution: this may not, in fact, be the right place
to try an alternative, and although the correct point will eventually be
found, much effort will be expended in exhaustively generating an irrelevant
part of the search space. Secondly, when backtracking occurs to a particular
point, the entire proof after that point is discarded even though some of it
may be correct. |

The system propoSed in this paper retains the power of the linear
systems, but does not suffer from any of the problems described above.

Most theorem proving systems also suffer from the proliferation of
data due to unnecessary repetition. Some attempts have been made to reduce
this repetitiousness by structure-sharing, e.q. [4]; these attempts,
however, have concentrated on representation but have not solved any of the
other problems of theorem provérs. Fortunately, economy of representation is
a natural by-product of our solution to these problems.

In section 2 of this paper, we present some preliminary definitions,
define our notation, and quote some well-known results.

In section 3, the structure of &-graphs is defined, and results
toncerning the soundness and compieteness of 4 -graph deduction are quoted.

We discuss unification in section 4, and show how the algorithm we
use may be modified to guide backtracking.

Finally, in section 5, we demonstrate the advantages of our

deduction system.



A1l proofs have been omitted from this paper, and will be supplied
in a later publication.

2. PRELIMINARIES

2.1 Notation for graphs

Definition: a labelled, directed graph I' is an ordered triple

<N, A, T>, where N is the set of nodes, T is the set of
labels, and A < N x T x N is the set of arcs.
To avoid confusion at times when several graphs are being considered,
we will use the expressions N(I') and A(T) to refer to these sets. Since T
is mostly constant throughout the discussion, we will use T(F) instead of T
only when ambiguity is likely.
Definition: If r is a labelled, direct graph and n e N(T), the
in-degree (out-degree) of n is the cardinality of the set
{(x,Z, n) | (x,Z, n) e A(T)}
( {(n,Z, x) | (n,Z, x) e A()} )
Definition: T' is a subgraph of a graph I' if I'' is a graph, and
N(T') = N(T), and A(T') < A(T).

2.2 Notation and vocabulary from theorem-proving

A1l words such as "literal", “"clause", "substitution", "variant",
"term" and "expression" are used with their standard meanings familiar to
readers of the literature on mechanical theorem-proving. The reader should
refer to [21] for clarification.

Substitutions will be denoted by lower-case Greek letters. The
composition of substitutions will be denoted by the symbol o, as in ooY.
The application of a substitution o to an expression e is written ec.

A substitution is a set of ordered pairs {<v1,e1>,...,<vn,en>}

in which the vi's are distinct variables and the ei's areAexpressions. We



will normally write such a substitution as {v; +« €15..usV * en}.
If % is a literal, & denotes the literal identﬁcal to 2 except for
sign.
2.3 Unification
Some familiar definitions and results are presented here.
Definition: A set of expressions E = fe;,...,e } is unifiable iff

there is a substitution ¢ such that ejo = ... = €.

o is called a unifier of E. o is a most general unifier
(mgu) of E iff it is a unifier of E, and for any
unifier Y of E, there is a substitution u such that
Y = gop
If E is a set of expressions and o is any substitution, we use Eg
to denote the set of expressions obtained by applying ¢ to each element of
E. In the case when o unifies E, Eo will also be used to denote the single
expression in the set E .
Lemma 2.3.1: If Y and o are both mgu's for a set E, then Eo is a
variant of EY,
The notion of unification is extended as follows.
Definition: If €= {El,...,En} is a set of sets of expressions, &
is unifiable iff there is a substitution o which is a
unifier of each of the sets Ei' o is called a unifier of

€. o is a most general unifier of & iff it is a unifier of

€ and for any unifier Y of €, there is a substitution u
such that Y = ogou.
Lemma 2.3.2: If & = {E1,...,E } is a set of sets of expressions,
there exists a set E = {el,...,ek} of expressions such that & is

unifiable with mgu o iff E is unifiable with mgu o.



Lemma 2.3.3: If E; and E, are two sets of expressions, and if o is an
mgu for E, and Y is an mgu for E;o v E, o, then oY is an mgu for
E1 u Eg.

Corollary 2.3.4: Applying Temma 2.3.2 to lTemma 2.3.3, we obtain the

analogous result for sets of sets of expressions.

3. DEDUCTION GRAPHS

In this section, the rules for constructing deduction graphs are
given, and results concerning the soundness and completeness of our deduction
system are quoted.

Definition: Ifd is a set of clauses, a deduction graph from .o

(f-graph) is a labelled, directed graph I = <N, A, T>,
where:
(a) T = {REPL, SUB, RED, FACT}
(b) TOP € N, and TOP 1is a symbol which does not occur
ind.
(c) T is constructed recursively, using only those rules
defined below.
Before we can define the rules for constructing J-graphs, we must
digress with the following four definitions.
Definition: If I' is an d-graph, the top clause of T' is the set
{n | (TOP,Z, n) e A (I')}
Definition: If T 1s‘anx!—graph, and n, n, ., € N(T'), then n, is said
to be an ancestor of Mt iff there exists a sequence of

arcs a,...,a€ A(T') such that a, = (ni,ii., n. ) for

0 (R b
1=0,...,k. Such a sequence of arcs is called a path from
n, to Ny

+1+ The path is said to have labels 1%, for

i=0,...,k.



Definition: If T is an 4-graph, and n, m e N(T), then n is said to be

a direct ancestor of m iff there is a path from n tom

having no Tabels from the set {FACT, RED}.
Definition: If I' is an d-graph, and T' is a subgraph of T which is
also an&-graph, then I'' is called a sub-{-graph of T.
Certain objects are associated with each.d-graph: namely, the set

of solved nodes, S(T'); the set of leaves, L(I'); and the constraint set, C(I).

The constraint set is, in fact, a set of sets of expressions, and if it is
unifiable, we denote its mgu by o(T).
We now define these objects, and the rules for constructing d-graphs,

as follows:

(0) If £-= {nl,...,nk} is any clause in &, then Ty is an g-graph, where:

N(r,) = {TOP} v %
A(r,) = {(TOP, SUB, n.) | i=1,...,k}
(1) S(Fo) is empty
(i) C(T,) is empty
(1i1) L(Fo) = &

(1) If Ty_q s an J-graph, then Ty is an Jf-graph, where I\ is derived from
Pk_] by the application of one of the following rules:

Rule (1) Replacement

A. Simple replacement

If (a) ne L(Fk_])

(b) & = {21,...,£m} is a variant of some clause in «, and contains

no variables which occur in any nodes of T\ ;.



() C(Tyq) v {in, &,}) is unifiable for some j e {1,...,m)
N(kal) v 5

then N(T, )
A(Fk)

AT _q) v {(n, REPL, xj)} |

u {(mj, SuB, Li) lie {1,...,m} - {j}}
B. Ancestor replacement |
If (a) n e L(Fk_1)

(b) € = {21,...,2 } is a variant of L(I') where I'' is a sub-g-graph
of I_7» and C(r'')" is the corresponding variant of C(I''), such
that no variables of & and C(I'')' occur in C(Pk_1) or in any
nodes of T, ;. |

(c) C(Pk-1) u {{n, zj}} u C(Tr'')" is unifiable for some j e {1,...,m}

then N(Pk) and A(Fk) are defined as for simple replacement.

(1) s(r,) = s(r,_¢) v {n}
(ii) c(r

C(Fk_1) u {{n, Ej}} for simple replacement
C(Pk) = C(Fk_1) u {{n, Ej}} u C(r')"' for ancestor

replacement.

(i11) L{r ) = (LT, _4) - {n}) v ({2a0,..000 - {zj})

We say that n is replaced by subgoals zl,...,zj_l, £j+1""’ﬁ

m.
Pictorially, we have:




Rule (2) Reduction

If (a) nel(r,)
(b) me S(r,_;) is a direct ancestor of n
(c) C(ry_q) u {{n, m}} is unifiable

(d) For every p, q ¢ N(Pk-l)’

if (1) (p, FACT, q) e A(T, ;).
(i) either q = n, or there is a path from q to n which
does not pass through m

then m is a direct ancestor of p

Then: N(T ) = N(Ty_q)
A(Fk) A(T _1) v {(n, RED, m)}
(1) s(r ) = s(r,_;) v {n}
(1) c(r) = C(r,_{) v {{n, m}}
(iii) L(r,) = L(r, ;) - {n}

We say that n is reduced tom

Pictorially:




Rule (3) Factoring

Like replacement, factoring divides into two cases. Since for both
cases, the definitions of N, A, S, C and L are identical, we give the two
sets of conditions followed by the single set of definitions.

A. Simple factoring
If (a) p e L(Fk_])
(b) a e L(T, _4)
(c) C(r,_4) v {{p, a}} is unifiable.

B. Back factoring

If (a) pe L(Fk_])
(b) q e S(r,_q)
(c) C(Fk"]) v {{p, q}} is unifiable.
(d) Either g is not an ancestor of p
Or every path from q to p contains a RED label,
and for every n, m ¢ N(Tk_])
if (i) (n, RED, m) € A(Fk_])
(ii) either n = q or there is a path from q to n

which does not pass through m

-then m is a direct ancestor of p.

Then: N(Fk) N(T

A(rk)

k1)
ATy _1) v {(p, FACT, q)}

(1) s(r,) = s(r, ) v {p}
(i1) C(rk) = C(r _4) v {{p, q}}
(111) L(r,) = L(r, ;) - {p}

We say that p is factored to g
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Example:

SuB
RED

Py

\ FacT (2)

If we assume that the two FACT arcs were the last arcs constructed,
then FACT (2) is an example of simple factoring, and FACT (1) is an example

of back factoring.

3.1 Some notes onkf-graphs

Definition: If T is and-graph, the clause L(T)o(T) is called the

clause deduced by I.

If L(I') = ¢, then L(r)o(r) 4s O, the empty clause, and
I' is said to be closed.
Every node of an «f- graph, except TOP, has in-degree 1; TOP has

in-degree 0. Leaves have out-degree 0, and sq]ved nodes have out-degree 1,
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in fact, solved nodes are former leaves, each of which has been moved from
L{r) to S(I') by one application of a rule.

We defined a sub-#-graph of an &-graph T to be any subgraph of T
which is also a &-graph. This implies that TOP ¢ N(I''), if I'" is a
sub-d-graph of I" . Also, if (n, REPL, m) € A(T''), then every arc of the
form (m, SUB, p) in A(T) must also be in A(T'). Note, however, that if

were to contain clauses % = {m, P1s-..52:} and £, =86, u {8 .22}, then

s+1°°”
this condition would not hold, since %, could be used for replacement with

the literal m, thus:

In this case we could include arcs {{(m, SUB, Ri) 1 4=1,...,8} in
A(T') but exclude the other SUB arcs out of m. In effect, we are doing a
replacement with £, in I'' rather than with £, as in I'. Since, however, the
omission of a subsumed clause from a set 4 of clauses does not alter the
satisfiability or unsatisfiability of &, we can assume that the above
condition on sub-f-graphs holds.

In every #-graph, there are nodes which are neither solved nodes
nor Teaves: TOP is one of these, and the others are the Titerals in
clauses from « which are used in applying the replacement operation to

leaves.
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If 4 contains the empty clause, 0, then we may use [J as the top

clause for constructing an.d-graph, and we obtain the graph:
r = <{TOP}, ¢, T>
for which L(T) = ¢. So that T is a closed J#-graph.

Rules (2) and (3) for the construction of J-graphs are intimately
related. In the absence of rule (3), condition (d) on rule (2) can be
removed. Similarly, in the absence of rule (2), the or part of condition (d)
on rule (3)B can be removed.

Although rule (3)B, back factoring, allows greater flexibility in
constructing .f-graphs, it is unnecessary in that we can construct exactly
the same graphs without it. More formally, we have:

Lemma 3.1.1: If T is any J£-graph, then T' can be generated by rules

(1), (2) and (3)A.

3.2 Soundness and completeness of deduction using Jf-graphs

Initially we restrict our attention to of-graphs constructed using
only two of the rules presented above: namely, reduction and simple
replacement. We will quote without proof, lemmas establishing the
equivalance of deduction using such restricted #-graphs, with the model
elimination deduction system due to Loveland [13, 14, 16]. A brief account
of the Tatter system is now presented.

3.2.1 Model elimination

Definition: A chain is an ordered finite set of literals. The

Titerals of a chain K are divided into two disjoint sets,
AK and BK, the elements of which are termed A-literals
and B-Titerals of K, respectively.

Definition: An elementary chain is one containing no A-literals.




Definition:

Definition:

Definition:

13.

A chain is preadmissible iff:

(1)

(i)

(iii)

any two complementary B-Titerals are separated by
an A-literal;

no B-literal identical to an A-Titeral appears to
the right of the A-literal;

no two A-literals are identical or complementary.

A chain is admissible if it is preadmissible and its Tast

literal is a B-Titeral. The empty chain is defined to be

admissible.

If M is a set of elementary chains, a finite sequence

Ko,

from M

Kl’

.,..,Kn of chains is called an ME-deduction of Kn

if Ko e M, and for i=1,...,n, K_i is derived from

K1 by one of the following rules:

(1)

(i1)

Extension

If K1_1 is admissible and the last literal £, of
Ki-] is unifiable with 2, with mgu o, where %,

is a Titeral of some chain K € M; derive Ki from
Ki-] by deleting 2,0 from Ko, and concatenating
the remaining chain to the end of Ki_q 0. Each
literal in K. which derives from K;_q inherits the
classification of its parent literal in Ki’ except
for 2,0, which is an A-literal. A1l 1iferals
which come from chain K are B-literals.

Reduction

If K;_y 1s admissible and the Tast Titeral £,
unifies with Ez, where 2, € AK , and if ¢ is an

- i-1
mgu of {%; .}, then Ki is formed by deleting the



3.2.2
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last Titeral from K. ; o. Each literal in K
inherits the classification of its parent literal
in Ki—]‘

(iii) Contraction:
If Ki-l is not admissible, derive Ki by deleting
all A-literals that follow the Tlast B-literal in
K;_y- The classification of the remaining

literals is as in Ki-]‘ Note that Ki may be empty.

Definition: If «f is a set of clauses, then any set of chains

obtained by imposing some ordering on each clause of &,

is called a matrix set of .

Definition: A clause & is said to be ME-deducible from a set of

clausesef, if there exists an ME-deduction Ko""’Kn
from some matrix set M of &, such that L= By -
n

Theorem 3.2.1.1: (Loveland) f is unsatisfiable iff the empty

clause {] is ME-deducible from 4. This is proved in [14].

The soundness and completeness of -graph deduction

Lemma 3.2.2.1: If a clause £ is ME-deducible from &, then there

exists an #-graph I', constructed using rules (1)A and (2) only,
such that L(Tr)o(r) =¢.

Lemma 3.2.2.2: If there exists a closed &-graph, constructed using

(1)A and (2) only, then there is an ME-deduction of the empty
clause [0 from ..
Combining these two lemmas, we obtain the following:

Theorem 3.2.2.3: & is unsatisfiable iff there exists a closed

#-graph, constructed using rules (1)A and (2) only.

We now extend the soundness property to general &-graph deduction

through the following two lemmas.
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Lemma 3.2.2.4: If there exists a closed #-graph, constructed using

rules (1)A, (2) and (3) only, then & is unsatisfiable.
Lemma 3.2.2.5: If there exists a closed #-graph, then # is

unsatisfiable.

3.2.2.1 Minimal complete sets of rules

As has already been shown in lemma 3.2.2.1, #-graph deduction
with rules (1)A and (2) is complete. Obviously, no subset of this set of
rules provides us with a complete deduction system.

There is one other subset of the rules which provides us with a
complete deduction system, and is minimal in the sense that we lose
completeness by taking any subset of it: namely, rules (1) and (3). Rules
(1)A and (3) together provide a deduction system which is equivalent to
ordinary linear resolution without the use of centre clauses as side clauses,
which is not complete. Similarly, rule (1) alone is equivalent to binary
linear resolution, with the use of centre clauses as side clauses; and of
course binary resolution is not complete. Rules (1) and (3), however,
provide a system which is equivalent to ordinary linear resolution, Which is
complete.

3.2.2.2 Summary of soundness and completeness results

The results of this section are summarised by the following
partial-ordering of f-graph deduction systems. The completeness of lower
members implies the completeness of higher ones; the soundness of higher

members implies soundness of lower ones.



(1)
(2)

(3)

Replacement

Reduction

(1) Replacement

(3) Factoring

Factoring

(1)
(2)
(3)

A. Simple Replacement

Reduction

Factoring

16.

(1) Replacement

(2) Reduction

(1)
(2)

A. Simple Replacement

Reduction

4. CONSTRAINT PROCESSING

In this section, we demonstrate the need for an efficient method

of processing the constraint set C(T') of an&-graph I'.

We then digress

with a discussion of unification algorithms, presenting an algorithm which

is particularly suited to our purposes, and show how it may be modified to

allow detection of arcs in the &-graph which block the solution of later

subproblems.

Example 4.1

Let & be the set of clauses:
-P(y, a), -P(y, w), -P(w, y)
P(x, a), P(x, f(x))
P(z, a), P(f(z), z)

In this, and all following examples, we adopt the canvention that

lTower case letters from the end of the alphabet, with or without subscripts,
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denote variables, while those from the beginning of the alphabet denote
constants.

Figure 4.1.1 11lustrates a closed J-graph. The arcs which
introduce constraints are numbered, and the corresponding constraints
(Figure 4.1.2) are Tabelled with these numbers.

The constraint set of Figure 4.1.2 is unifiable, so the set & is
unsatisfiable. This can be verified by applying one of several well-known
unification algorithms to the set of constraints. We have, however,
presented the above J-graph as a fait accompli, ignoring the fact that at
each application of a rule we must check that the constraint set is still
unifiable when the new constraint is added. Obviously, we would prefer
not to re-unify the whole set at each additon. Similarly, if, during the
construction of the &-graph, it had been necessary to remove some arcs
from the graph, we would prefer not to re-unify the set after the removal of
the corresponding constraints. Furthermore, if ununifiability occurs at
some stage, we need to be able to determine the cause in order to remedy the
situation: most existing unification algorithms merely return the answer
"ununifiable" in such cases. |

Obviously, the utility ofgf-graph deduction depends heavily on
efficient processing of the constraint set, and with this in mind, we now
digress a little with a discussion of unification algorithms.

4.1 Unification

As has already been mentioned in section 2.3, unification is the
process of determining whether two expressions have a common instance, and
is an integral part of any system which makes logical deductions.

Robinson [21] gave an algorithm for determining whether or not two

expressions are unifiable, and for producing their most general unifier.



Figure 4.1.1

FAET (1) FACT (2) REPL (3)
P(x, a)

SUB
P(x, f(x))

REPL (4)

SUB

FACT (5) (-P(y1, w1)

REPL (6)
(P(f(2), z)

SUB

(P(z, a)) RED (7) _,)

A closed f- graph for the set & of .example 4.1

18.



19.

Figure 4.1.2

1: {-Ply, a), -P(y, w)}

2: {-P(y, w), -P(w, y)}

3:  {P(w, y), P(x,a)}

4:  { P(x, f(x)), P(wi, y1)}
5: {-P(y1, w1), -P(y1, a)}
6:  { P(y1, a), P(f(z)}

7:  { P(z, a), P(w,y)}

The constraint set for the &-graph of Figure 4.1.1

Unfortunately, this algorithm is an exponential one; that is, its
execution time and storage requirements depend exponentially on the Tength
of the expressions under consideration. This inefficiency has long plagued
theorem-proving programs.
Since the introduction of Robinson's algorithm, various improvements
have been made [2, 3, 20, 22, 24], and at present there exist two
efficient algorithms. One of these [20] is Tinear, and the other [3] is
almost Tinear, its execution time being proportional to nG(n), where n is
the sum of the lengths of the input expressions. G(n) is an almost constant
function of n, being, for example, Tess than 5 when n is less than 265536
The Baxter‘a1gorithm is particularly suitable for our purposes,
since it allows us to add new constraints to a constraint set which has
already been unified, with a minimal amount of reprocessing. The Paterson
and Wegman algorithm, on the other hand, requires that the new set resulting
from the addition of a new constraint be entirely reunified; this is an
obvious waste of time. The report [3] contains a detailed description of

the Baxter algorithm; however, a short description is included here so that
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we may describe how the algorithm may be modified to suit our purposes.

4.1.1 The Baxter unification algorithm

The algorithm divides unification into two stages, the trans-
formational stage and the sorting stage.

The transformational stage takes as input a set of pairs of
expressions to be simultaneously unified; a set of constrafnts in fact.

The output is a collection of sets of expressions. In the following
abstract description, we use S to denote the set of pairs of expressions
yet to be unified, and F to denote the current output collection of
expressions.

The following algorithm is taken directly from [3], where S is
initially SI’ the original constraint set to be unified; F is initially the
set {{e} | e is a subexpression from SI}

repeat until S is empty:

begin delete any pair {e,, e,} from S;

let e; € Ty and e, € T, where
Ty, T2 € F3
if T: contains a term f'(ef,...,e')
and
T> contains a term f"(e¥,...,e")
then if f' # f"
then UNIFICATION FAILS

else add to S the pairs

{ei,el},...,{en,en}
merge Ty and Tz, that is replace
T1 and Tz by T] 8] Tz in F;

end ,
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Note that constants are treated as 0-ary functions.

We now give a simple example to illustrate the above algorithm.

Example 4.2

Let S; = {{x, fly, 2)}, {x, f(g(a), gy))}, {y, g(w)}}

Then the table of figure 4.2.1 demonstrates the application of the
algorithm. The numbers in the columns labelled "added" and "deleted" indicate

the cycle at which sets are added to and deleted from S and F.

The sorting stage of the algorithm takes the output set F0 from the
transformational stage and constructs a directed graph G from it. The nodes
of G are the elements of Fo’ and the arcs are constructed as follows: if
Te Fo’ select one term of the form f(el,...,en) from T (i.e., a term which
is not a variable), and for each i=1,...,n construct one directed edge from
T to Ti’ where e; € Ti'

If the resulting graph can be topologically sorted, then Fy (and SI)
is unifiable, and we can construct the most general unifier from the
resulting partial order. Otherwise F0 (and SI) is unifiable.

The directed graph constructed from the output set of example 4.2
is illustrated in figure 4.2.2. Figure 4.2.3 shows the result of theAtopo-
logical sort of this graph, and figure 4.2.4 gives the most general unifier

obtained from the partial order.
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Figure 4.2.1
0 E% F o g% S
5|4 HE
0 1 {x} 0| 1] {x, fly, z)}
0 1| {fly, z)} 0| 2| {x, f(g(a), g(y))?
0 3| (y} 0] 3| {y, g(w)}
0 51 {z} 2 | 4| {y, g(a)}
0 2 | {f(g(a), gly))} 2| 5 1z, gly)}
0 4 | {g(a)} 4 6 { {w, a}
0 6 {a}
0 5 | {9(y)}
0 3 | {g(w)}
0 6 | {w}
1 2 | {x, fly, z)}
2 {x, fy, z), f(g(a), g(y))}
3 4 1 {y, g(w)}
4 {y, g(w), g(a)}
5 {z, g(y)}
6 {a, w}

The algorithm terminates with S being empty, and F containing the

four undeleted sets in the left column.
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Figure 4.2.2

(100, 2, 7lta), 59013 )

{y, g(w), g(a)}j>

{z, g(y)}

{a, w}

The directed graph constructed from the output collection of sets

G—O—D—O

The Tinear ordering produced by the topological sort of the graph

of example 4.2.

Figure 4.2.3

of figure 4.2.2.

Figure 4.2.4

The most general unifier for the set of constraints of example 4.2

iS 0 = ¢} o Op o O3 o Oy, Where:

o, = {x « f(y, z)}
o2 = {z < g(y)!}

o3 = {y « g(w}}

oy = {w « a}
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4.1.2 Data structures

We now describe the data structure used in [3],'since it too is
particularly suited to our purposes.

Expressions are represented as trees in which common variables are
shared: the pointers from any vertex of an expression tree, point to the
subexpressions of the expression represented by that vertex.

Example 4.3

Suppose F is a binary function symbol and G is a unary function

symbol, then the expression F(G(G(x)), F(x, G{y))) is represented by the

tree:

Obviously, the arcs from a vertex to its subexpressions are ordered,
so that we know which argument is which. For instance,'in the above example,
the left descendent of the topmost (:) node is the first argument of the
function F represented by that node.

We will consistently use the double-headed arrow —> to denote sub-
expressions.

Sets of expressions are also represented as trees in which each
vertex is an expression of the set, and the arcs join members of the set.

In the unification algorithm, it is necessary to know if a set of expressions
contains a term which is not a variable. Consequently, there is a special

arc from the root of the tree to a particular non-variable term, if one exists.
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Example 4.4
The set of expressions {x, F(y, G(y)), F(y, z)} is represented by

the tree:

F(y, G(y))

(F(ya;ZD

Note that such a representation is not unique. We have arbitrarily

chosen the expression x as the root of the tree, and the expression
F(y, G(y)) as the distinguished expression of the set.
We will use the single-headed arrow - to denote the membership
of an expression in a set, and the double arrow == to denote the distinuuished
expression of a set.
The near-linearity of the unification algorithm depends on these
trees of expressions being balanced: that is, having depth approximately
equal to the logarithm of the number of nodes. For instance, although the
trees of figure 4.5 both represent the same set, only the right-hand one is

balanced.

Figure 4.5

Unbalanced and balanced tree representations for the set of

expressions {e;, e,, €3, €4}
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4.1.3 The FIND and MERGE algorithms

These two procedures, which are fundamental to the transformational
stage of the unification algorithm, are described in detail in [3]. We now
give an informal description of both.

FIND Tlocates the root of the tree to which a given expression belongs. It
does this by tracing the path leading from the expression to the root. Also,
in order to assist in balancing the trees, it replaces every arc it encounters
with a new arc pointing directly to the root. This is illustrated in figure

4.6.

Figure 4.6

The left-hand tree is transformed into the right-hand tree during

the FINDing of eg. |

MERGE  connects two trees by creating a new arc directed from the root of

the "smaller" tree to that of the "larger" tree, where the size of a tree is
defined to be the number of nodes it contains. Arcs created by MERGE will
from now on be referred to as "merge arcs". That is, every arrow of the

type -p 1is a merge arc. The distinguished expression of the new tree which
results from a MERGE, is the distinguished expression of the larger input
tree, or if that tree has no distinguished expression,'it‘is the distinguished

expression of the smaller tree. If neither input tree has a distinguished
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expression, then neither does the new tree. MERGing is illustrated in

figure 4.7.

The tree on the right results from MERGing the two trees on the

Teft.

4.2 The use of the Baxter algorithm in constraint processing

After example 4.2, we discussed constraint processing, and
presented the following criteria for a good constraint processing system:
(A) Reprocessing should be minimal following the
addition of new constraints.
(B) The cause of any un-unifiability should be easy
to find.
(C) Reprocessing should be minimal following the
removal of constraints.

4.2.1 Criterion (A)

If we use the Baxter algorithm to process the constraint set,
criterion (A) is satisfied, at least for the transformational stage of the
algorithm. This is because the constraints are processed serially, so that
the work done in unifying a set of constraints, adding a new constraint, then
unifying it with the original set, is exactly the same as would have been

done in unifying the whole set.

Similar economy can be obtained in constructing the directed graph



28.

to be sorted in the sorting stage of the algorithm. If sets T0 and Ty in F

are merged, yielding T,, we obtain the new directed graph by:

(i) replacing all arcs of the form (T, TO) and (T, Ty)
by arcs of the form (T, T,);
(i1) replacing all arcs of the form (Ti’ T) by arcs of
the form (T2, T), where the distinguished term of
T, is the distinguished term of Ti (i=0, 1);
(ii1) removing all arcs of the form (Tj, T) where j=0
if i=1 and vice versa.
This is illustrated in figure 4.8
Fortunately, we do not in general need to re-sort the whole
directed graph. Suppose the linear ordering of the nodes of the current
directed graph is:

T EY Tl,.--,T

o n

When a new constraint is added, the transformational stage of the algorithm
will cause a number of merges to be performed. If Ti and Tj are respect-
ively the least and greatest elements in the above linear ordering which
are involved in these merges, then the new directed graph contains nodes

] b
TO’TI,...’T'i—], T_i,-o"TJ-, Tj+-|,-o-,Tnc

Note that {T%,...,Tj} contains less elements than {Ti""’Tj} . vaious]y,
we need to sort only the subgraph consisting of nodes {T%,...,Tj}, and arcs
of the form (Tx, Ty), where T  and Ty are in {T%,...,Té}.
This 1is shown in figure 4.9.
In the example of figure 4.9, we see that more computation is
involved in sorting graph (a) then (c), than in sorting graph (b) directly.

It is hoped that further research will reduce the amount of extra processing

required in the sorting stage when a new constraint is added.
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Figure 4.8

(a)

Q fg(a), x); w, fly, g(b))})

(b)

When the marked sets in (a) are merged, the directed graph (b)
results. The distinguished term in each set is underlined. Note that this

merge will cause the sets {g(a)} and {y} to be merged.
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Figure 4.9
(a)

(b)

The directed graph (b) results from merging e; and es , and

e, and e; in graph (a).

CO—() )

(7)

Graph (c) is all that requires sorting.
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4.2.2 Criterion(B)

Definition: If T is ankf—graph, we call the associated graph built
by the transformational stage of the unification algorithm,
the unification graph, U(I'). Note that U(T) is not
unique since its structure depends on the order in which
C(r) is processed (i.e., on the order in which nodes of |
I' are solved).

Criterion (B) requires that we are able to locate the cause of any
un-unifiability that may arise. To facilitate this, we will introduce a
system of labels for the merge arcs of a unification graph. It is also
necessary that in each set of expressions in F, the variables are kept
separate from the other terms, which will be referred to as "non-variables"
from now on. This requires some modifications to the transformational stage
of the unification algorithm. The abstract description of the algorithm
remains as before, but the MERGE procedure must be altered.

We will now assume that all trees of expressions either:

(i) have all variable nodes;
or (ii) have all non-variable nodes;
or (iii) have nodes of both types, and

(a) the root is a variable;

(b) the root has only one non-variable parent, which
is the distinguished term;

(c) the parents of any variable node other than the
root, are variables;

(d) the parents of any non-variable node are non-

variables.
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With these restrictions in mind, for any tree T of expressions,
with root v(T) and distinguished term e(T), we will denote the tree of
variable nodes rooted in v(T) by V(T); and the tree of non-variable nodes
rooted in e(T) by E(T). Note that if T is of type (i), then V(T) = T, and
E(T) is empty; similarly, for T of type (ii), V(T) is empty and E(T) = T.

If we use MERGE; to denote the old merging procedure, then the
new procedure is defined as follows:

To MERGE T, and T,

(1) Delete merge arcs (e(T;), v(T:)) and (e(T,), v(T,))

(2) MERGE; V(T,) and V(T.), obtaining V(T)

(3) MERGE; E(T,) and E(T.), obtaining E(T)

(4) Add merge arc (e(T), v(T))

(5) e(T) is the distinguished term of T

Figure 4.10 illustrates this procedure.

We must, of course, allow for the possibility that some of the
trees in the above description are empty. The effect on the procedure is
obvious, and will not be described here.

It should also be obvious that if the two trees being merged
obey the restrictions described above, then so does the tree output by the
MERGE procedure.

FIND also requires a minor modification. When FIND traverses the

path b,, bz,...,bn to root node bn while FINDing b;, then:

(1) if b; and bn are either both variables or both non-variables,
each arc (bi’ b1+]), i=1,...,n-2 is replaced by arc (bi’bn)

(2) otherwise, each arc (bi’ b:,,) 1=1,...,n-3 is replaced by

i+
arc (b;, b _;). Note that in this case, by must be a non-

variable.



Figure 4.10

(c)

MERGing (a)} and (b) gives (c)

33.
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It is easy to see that this modified FIND procedure, like the
modified MERGE, preserves the restricted form of the trees on which it
operates.

The time bound for the modified algorithm is still of order nG(n)
since the time required to execute a MERGE is constant if the time for a
MERGE; is constant, and the FIND procedure still operates on balanced
trees, so the time analysis of [1] quoted in [3] holds.

4.2.2.1 Merge arc labelling

From now on we assume that the algorithm does not delete constraints
from S, but merely marks them as having been processed.

Definition: A primitive merge label is an ordered pair <a,b> or

<a,a> where {a,b} is a constraint on S. Recall that
S is the set of constraints processed in the con-
struction of U(T'). If & = <a,b> is a primitive merge
label, we define:
tail (o)
head (%)

H
ol

il
o

Definition: A merge label is
(i) the identity label 1;
or (ii) a primitive merge label
or (iii) (21 + 22) where 2, and %, are merge labels

such that:

head (%,) = head (%,), and

tail (1) = tail (L,):

in this case head ((2; + 2,)) = head (%;)

and tail ((2; + 2,)) = tail (2;)
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or (iv) (%; * %,) where %, and %, are merge labels

such that:

head (21) = tail (22)1

in this case head ({2, * %2,)) = head (2,)

and tail ((2; * 2,)) = tail (2,)

or (v) 2 where % is a merge label:

in this case head (%) = tail (1)

and tail (R) = head ()

Note that for each constraint, there are two primitive merge
labels, which are "complementary": that is, if {a,b} is a constraint in S,
then <a,b> and <b,a> are both primitive merge labels, and <a,b> = <b,a>,

<b,a> = <a,b>.

tail (1).

it

The identity label, 1, has the property head (1)

n iff m can be

il

Definition: If m and n are mérge labels, then m
can be transformed into n by a finite number of
applications of the transformation rules which follow.
In each rule, the double arrow, <> , indicates that
the transformation may be performed in either direction.

(i) Distributivity:
(@) (21 ¢ (R2 + 23)) < ((21 * R2) + (21 * &3)
(b) ((&1 + 22)* 23) < ({21 * 23) + (2 * 23))
(i1) Associativity:
(@) (21 + (22 + 23)) < ({21 + %2) + £3)
(b) (21 * (%2 + £3)) < ({21 = 22) * 23)
(iii) Complementation:
(@) (21 + 25) = (R4 + L)
(b) (21 + 22) = (22 = Wy)

(c) L e g
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(iv) Commutativity:
(1 + 22) < (82 + 21)
(v) Contraction:
If head (2) = tail (&)
then 2 « 1
(vi) Identity:
(a) (2« 7) <1
(b) (1 «2) =2+ (&+1)
(€) (1+8) <1
(vii) Absorption:
(2 + 1) < 2

Lemma 4.2.2.1.1: = is an equivalence relation.

Example 4.11

(<b,a> + (Z&,b5> + (<b,c> + (<a,d> - <C,d3))))
= (<b,a> + (Ja,b> + (<b,c> « (<a,d> + <c,d>)))) (ii1) (a)
= (<b,a> + (<a,b> + ((<a,d> + <c,d>) + <b,c>))) (1i1) (c) & (b)
= (<b,a> * (<a,b> + ((<a.d> - <d,c>) - <c,b>)))

(iii) (c) and two primitive label complementations

((<b,a> + <a,b>) +(<b,a> » ((<a,d> ¢« <d,c>) * <c,b)))) (i) (a)

i

(1 +1) - two applications of (v)

1 by (vii) or (vi) (c)
Note that this conclusion could have been reached immediately
after the first transformation by noting that:

tail (Sa-b>)

and head (<a>b>)

head (<b,a>)

1]

tail (<bsa>)
Therefore, by the definition of -
tail (&) = head (<bsa>)
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and head (2) = tail (<b a>),

where % is the second label in the product. So, by contraction, the entire

label is equivalent to 1.

Because of associativity, we will henceforth write extended

products and sums without brackets. Also we will assume precedence of - over

+, so that products do not need to be bracketed in sums of products.

Definition:

A merge label

211'212'...'21)\1 +,..+8 oL

k1 k2t
is said to be in canonical form iff:

knk

(i) each 213 is primitive
(ii) no two products are identical
(iii) for each i=1,...,k there is no s and t
such that 1 < s <t < ni, and

tail (&;.) = head (2:4)

Theorem 4.2.2.1.2: If & is a merge label, there is a merge label k

in canonical form such that & = k, and k is unique modulo

commutativity of +.

Definition:

If S contains constraints
{ala az} ’ {aZs a‘S} LI Y {an_]s an} ) {ana al}

such that a; # aj if 1 # j, then the ordered n-tuple

(a1, az,...,an) is called a circuit of U(I'), and each of

the above constraints is called an adjacent pair of the

circuit. Note that the above set of constraints
actually gives rise to 2n circuits of U(T'). If c; and
c, are two circuits generated from the same set of

constraints, we write ¢; ~ C,.
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Definition: If & is a merge label and ¢ is a circuit, we define
c(2) as follows:
(i) (1) =1
(ii) c(<a,b>) = <a,b> if {a,b} is not an adjacent

pair of ¢
(i11) cl<ar, a>) = (<a;, a >+

@1, > ¢ <@z, A3>e...t<@ g, an>)

<a. >) = (<a. >
_C( 410 Y )= 3410 2
+ <a. . > .
a'l'”’ a'l+2 *... <an_], an>
¢ <8, A1>e...%<a, .
n> “1°° MEL

where ¢ = (al,...,an)

c(21) + c(22)

c(21) » c(22)

(iv) c(a: + ;)

c(ly * 22)
c(R) = c(¥)

Lemma 4.2.2.1.3: If ¢ is a circuit and ¢ is a merge label,

head (c(2)) = head (g) and tail (c(y)) = tail (g)

Lemma 4.2.2.1.4: For any circuits c;, c, of U (T):

Cy ~ C2 iff c1(&) = c2(2) for all merge labels 2.

Corollary 4.2.2.1.5: . is an equivalence relation on the set of

circuits of U(T). We denote the set of equivalence classes under
~ by Cy(py,
From now on, we use the term "set of circuits" to mean
"set of equivalence classes of circuits". Consequently, we call

CU(F) the set of all circuits of U(T').

Definition: If K is a set of circuits, we define K(2) for any merge
label & as follows:

If K is empty, K(&) = 2
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otherwise (i) K(1) =1

(i1) K(<a,b>) = + c(<a,b>)
c ek

K(21) + K(22)

[

(ii1) K(2; + %)

K(21) * K(22)

K(21 + 22)

K(Z) = K(2)

Lemma_4.2.2.1.6: If % and p are two merge labels such that % = p,

then K(2) = K(p), where K is any set of circuits.

Example 4,12

<a,b> + <b,c> » <a,d> « <¢,d> = <a,b> + <a,d> « <d,c> + <c,b>

Let kK be the cycle (c, b, e, d)

Then:

k(R.H.S.) = <a,b> + <a,d>+[<d,c> + <d,e>+<e,b>+<b,c>][<c,b> + <¢c,d>+<d,e:<e,b>]
and

k(L.H.S.) = <a,b> + [<b,c> + <b,e>-<e,d>-<d,c>]-<a,d>-ff§,d> + <c,b>‘<b,e>~<e,§§ﬁ

<a,b> + <a,d> <[<c,d> + <c,b>+<b,e>-<e,d>]*[<b,c> + <b,e>+<e,d>+<d,C>]

i

<a,b> + <a,d> +[<d,c> + <d,e>-<e,b>-<b,c>]*[<c,b> + <c,d>*<d,e>°<e,b>]
= k(R.H.S.)

Definition: Let M be the set of all merge labels. A constraint label

is any subset of M U A'(T), where A'(T) < A(T') is the
set of all FACT, RED, and REPL arcs of I.
If x is any merge arc or constraint, we will use label(x) to
refer to its label. We will also use (a,b) to denote the merge arc joining
node a to node b.
If b is an expression, we will refer to the tree in U(T') to which
it belongs as t(b); we will also abbreviate v(t(b)) and e(t(b)) to v(b) and

e(b) respectively. So v(b) and e(b) are the variable root and distinguished
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term of the tree containing b. We also define:
r(b) ={'v(b) if b is a variable

e(b) otherwise.

The labelling procedure

As T and U(T') are constructed, we also construct a set K ) of

u(r
circuits of U(I'), and label the merge arcs of U(T) and the consiraints of
S. We assume that Ku(r) is initially empty: we also adopt the conventions
that if s is a constraint not already in S, then label(s) 1is empty, and
that Tabel ((x,y)) is 1 if x = y. The Tabelling procedure is as follows:
(1) If {a,b} is placed in S because of the addition of arc x to T (where
x is a FACT, RED, or REPL arc) then 1abel({a,b}) := 1abel({a,b}) u {x}.
(2) If FIND is applied to an expression b;, causing the addition of new
merge arcs (b,, b}, (b2, bn)""’(bn-Z’ bn) to U(T), then for each
i=1,...,n-2

label ((by, b)) := Tabel ((bs, by ;) + Tabel ((byy1s> biyo))

*...t Tabel ((b, ;5 b))

(3) If {a,b} is selected for processing from S, then:

(i) if t(a) # t(b), then t(a) and t(b) will be MERGED. Suppose

v(x) is MERGED; to v(y) and that e(u) is MERGED, to e(w),

where u, w, X, y € {a,b}, and u # w, x # y.

Then:

(a) Tabel((v(x),v(y))) := Tabel((x,r(x))) - TabeT((r(x),v(x)))
T Xy> - Tabel((y,r(y))) - label((r(y),v(y)))

(b) Tabel((e(u),e(w))) := label((u,r(u))) - Tabel((e(u),r(u)))
" <u,w> + Tabel((w,r(w))) - TabeT((e(w),r(w)))

(c) Tabel((e(w),v(y))) := label((w,r(w))) - Tabel((e(w),r(w)))
© <wWsy> - Tabel{(y,r(y))) - Tabel((r(y),v(y)))
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(ii) if t(a) = t(b), let k be the canonical form of:
Ku(r) (1abel((a,r(a))) =<r(a),r(b)> - label((b,r(b))))

then:
KU(P) i= KU(F) u {[(a, al,...,an,b)]!<a, a1>-<él, a,> ...
"<a,_ys @ >+<a ,b> is a product in k}
where [ ] denotes an equivalence class under -
(4) 1If {a,b} is added to S because of merging trees T, and T,, during
which the arc (e(T:), e(T2)) is created, then if we abbreviate this new

arc as (e,, €):

label({a,b}) := Tlabel({a,b}) u {label{(e,, e,))}

Example 4.13

Let C(I') be the set of constraints:
{w, e} {a,}
{u, e} {a,}

{e,, es} {as}
{y, x} {a,}
{x, z} {as}
| {x, u} {agl
{z, ey} {as}

where e; = f(w, z), e, = f(x, x}, es = f(y, y) and a;,...,a; are the arcs

in T which give rise to the constraints. The sequence of diagrams of
figure 4.13.1 illustrates the construction of U(T), the labelling of

constra}nts and merge arcs, and the construction of Ku(r)'

I' ,...,Ty =T is the sequence ofkf—graphs generated by the construction

o’
of the arcs a;,..., a7.
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Figure 4.13.1

The construction of U(T) from the constraints of example 4.13 is
illustrated here. In the Sequence of diagrams, a merge arc is labelled

only the first time it appears.

(a) (i) U(Te)

(K udelu,; 8,0 <€ s

x

(ii) S: *{w, e;} {a;}
*{u, e} {az}
*{ez, esl} {as}
*{y, x} {ay, <ez, e3>}
*{x, z} {as}
*{x, u} {as}

*indicates that the constraint has been processed.

(1) Ky, = ¢
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(b) = (i) Status of the unification graph after performing the merge

indicated by the Tlast input constraint.

S A= DT AEREDEE CREPIE S

A

(ii) S is as in (a) (ii) with the following additions:
* {z, ey} {a;}
{w, y} {221}
{z, y} {22}
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(c) (1) Status of graph after processing the first constraint produced

by the merge of (b).

@(M‘f9>-<"a‘n>-<ﬂ‘><>-<x‘K>

(ii) The first seven elements of S are as in (b) (ii); the rest are:
* {w, y} {221}
{z, y} {221}
(ii1) This is case (3) (ii) of the labelling procedure. We have:

Ku(r) (1abel ((w,r(w))) = <r(w),r(y)> - Tabel((y,r{y))))

= ]'<W,W>‘<y,X>‘<X,U>'<U,e?'<91,W>

= <W,€1>0<e,U> <, X> <X, y>

o . KU“? = {(Wa €1, U, X, Y)}
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(d) (i) U(T,) is the same as the graph in (c) (i).
(ii) S is as in (b) (ii) except all constraints are marked as
processed.

(iii) Again we have case (3) (ii) of the labelling procedure, and:

Ky(ry (1abel((z, r(z))) -<r(z), r(y)> - Tabel({yr(y))))

K <Z, X> * <X,U> ¢ <U,0;> ¢ <@1,W> * <W,W> * <W,e;> * <gp,u> -

<ULX> * <X,¥>)

mn

KU(I‘) (<Z$ X> o <X5.y>)

<z, x> o[<xX,y> + <X,u> ¢ <U,e1> ¢ <epL,w> ¢ <W,y> ]

I

<Z, X> * X, Y> 1 <Z,X> = X, ,U> +» <U,e1> ¢ <B1,W> * <W,y>

o Ky, {(w, €1, Uy X, ¥), (Z, X5 ¥)s (2, X, U, €1, W, y)}

Lemma 4.2.2.1.7: If (a, b) is a merge arc of U(T) then:

head (Tabel(a, b)) = b
and
tail (label(a, b)) = a

Lemma 4.2.2.1.8: KU(F) = CU(F)

Theorem 4.2.2.1.9: If (a,b) is a merge arc of UT') let k be the

canonical form of CIXP) (label((a,b))). Then <@, ap>...c<a 0, a >

n-1> "n
is a product in k iff there exist constraints {ao, al},...,{an_], an}

in S where ap = a, a, = b and a; # aj ifi#].

Corollary 4.2.2.1.10: As for the above theorem but with CU(r)
replaced by KU(F)'
Example 4.14

Consider the merge arc (e;, ep) of U(I'y) in example 4.13

label ((el,‘ez)) = Qy <W,elS * <zZ,ep> ¢ 1 -1

<EPMN> o <W,e > ¢ <@ ,U> ¢ <ULX> ¢ <X,Z> ¢ <Z,e,>

T <R1LU> ¢ <ULX> ¢ <X,Z> + <Z,ep>
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. e KU(F) (1abel((e:, e;))) B[ <ep,Us  + <@p,W> ¢ <WLY> o <y,X> » <X,U>
<@y ,W> 0 KW,LY> o XX,Z> ¢ <Z,X> {x,u> ]
o[ <cu x>+ <u,e,> o <@1LW> 0 <WLY> o <YLX>
U p1> * CELLW v <W,Y> o <Y,Z> ¢ <Z,X> ]
o[ <x,Z> F <x,y> » <Y.2>
F <X, Us o <U,81> ¢ <@ L,W> ¢ <W,Y> o <y,z> ]
. <z,ez'>
2[ @1, U> o <U,X> + <B1,W> ¢ <W,y> = <Y,X>
+ < WS ¢ CW,Y> ¢ <Y,Z> ¢ <Z,X> ]
[ <xy2> + <x,¥> + <Y,Z>
<X, Uu> ¢ <U,e1> ¢ <B1,W> ¢ <W,y> » <y,z> ]
s <Z,€,>

o[ <e1,U> ¢ <ULX> ¢ <X,Z> t <@ U> ¢ <ULX> ¢ <X,Y> ¢ <Y,Z>

[}

+ <@, W> o <W,y> o <y,z>
+ <@, W> ° <W,Y> o <Y,X> 0 <X,Y> 1
¢ <Z,8,>

<@qp U>c LUX> © <X,Z> » <Z,e2>

+ <@y, UP * SULX> ¢ <X,Y> o <Y,Z> » <Z,e,>
+ <el,W> e <W,LY> = <Y,Z> - <Z,e,>
+ <@j,W> - SWLY> o <Y, X> ¢ <X,Z> * <Z,e,>
The reader should check each of the products in this canonical
form to satisfy himself that the corresponding set of constraints is
actually in S, and that there exists no set of constraints in S defining
any other path between e; and e,.
The above theorem shows that we have partially achieved our goal of
modifying the Baxter algorithm to satisfy criterion (B). It says that if we

process the label on a merge arc with the set of circuits generated during
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the Tabelling of U(I'), and convert the result to canonical form, we can
determine exactly which constraints must be removed from S in order to
remove each path between the nodes that the merge arc connects. This is
still not sufficient for our purposes since not all the constraints in S
are placed there as the result of a new arc being constructed in T, so
that we are still unable to determine from a merge arc label, exactly
which arcs of T must be removed in order to delete the merge arc from
u(r).
Definition: Let B(X) be the set of all Boolean functions over a
set of variables X. We now define a function
Q: Mo B({al,...,an}) where M is the set of merge
labels, and {al,...,an} is the set of RED, REPL and
FACT arcs of I'. Q is defined as follows:
(i) (1) =0

(ii) Q(<a,b>) = a, +a. *...ca, *Q&;)s...+0(2,)

where label ({a,b}) = {ai seeesls s Biseiisl
1

<a,a>) = 0

2(21)- 2(L2)

it

(i11) (2 + 2,))
(iv) (2 = 22))
(v) AR) = ()

il

Q(21) +Q(22)

Definition: If & is the merge label of arc (a,b), the Boolean

expression Q(KU(F) (2)) is called the covering expression

of &, and also, the covering expression of (a,b).

Definition: By the usual techniques for manipulating Boolean
expressions (see [5]), we reduce the covering expression

of a Tabel 2 to a unique sum of products of the form:
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| g e

a.2d., ...%4a.
i=1 il i2 1k1

(where I denotes Boolean sum) such that
(i) for each 1, T and
(i1) for each i, there is no j such that

{aj],-'-,ajk.} E {a,i-ls...,a_ik'}
J i
This sum-of-products Boolean expression is called the

reduced covering expression of %, and also the reduced

covering expression of (a,b), if Tlabel{(a,b)) = 2.

Theorem 4.2.2.71.11:

If 2, and %, are two merge labels, let E; and E,
be their reduced covering expressions,then 2y = o => E, = Ep,
modulo commutativity of Boolean sum and product.

Since we are uitimately interested in the reduced covering
expressions of labels, rather than the labels themselves, this
theorem allows us to simplify merge labels at our convenience.

We now state the central result of this section.

Theorem 4.2.2.1.12:

If (a,b) is a merge arc of U{r}, and

n
% a EERRL I is the reduced covering expression of (a,b),
= i

then (a,b) is deleted from U(r') iff the arcs L L

deleted from I for some i ¢ {1,...,n}

Example 4.15

Using the unification graph U(T;) constructed in example 4.13,

we have, from example 4.14:
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@ LU> 0 <ULX> * <X,2> ¢ <Z,ey>

label((e,, e

Kyr,y (1abel((er, e2)))
<@ ,U> ¢ <ULK> 0 <X,¥Y> ¢ <Y,Z > ¢ <Z,€3>
+ <@ ,W> * <W,Y> o <Y,Z> ¢ <Z,ep>

+ <@y L,W> ¢ <W,Y> ¢ <YLX> ¢ <X,Z > ¢ <Z,e3>

Now Q<e,,w) = a
Q(<u,x>) = as
Q(<x,z>) = as
Q(<z,e2>) = ay
Q(<x,y>) = ay + 9(<ez,e3>) = ay * as
2(<y,z>) = a(2.)
= Q<e; w> * L) ¢ <Z,85>)
=a; + (%) + a;
= a; + Q(L1) + ay
= a; + Q(<Z,W> ¢ <X,U> * <U,e> + <ep,w>) * 3y
=a; +tas +as ta +ta +ay
= ai +a; tas +as + ar
Q(<e,,w>) = a;
Ql<w,y>) = Q(22)
=a; +a +as +tas *+ ay
Now let k be the canonical form of KU(T7) (Tabel({e1,e3))).
Then Q(k) = (a; + ag + as + ay)

» (a; +ag +ay »az * (a; +ay +as+agt a;) + ars)
- (a, + (ay +ap +as +ag +ay) + (a; +a, +as+astay) +ay)

- (a, + (a; +a, +as +ag +ay) + a, * az t+as + ay)

a, t as +ag + ay
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But by theorem 4.2.2.1.11, since k = 1abel((e,, e,)), this
Boolean expression is the reduced covering expression of label ((e;, e;)).
Consequently, by theorem 4.2.2.1.12, removing any of the arcs a,, as, as
or a; from I'; will cause the deletion of (e;, e,), and possibly some other
arcs of U(T,)

4.2.2.2 Using merge arc labelling

If, during the construction of an &-graph I', we encounter a leaf n,
which has become unsolveable, we can use the labelling of merge arcs as
described above, to determine which arcs of I' must be removed in order that
the attempted solution of n will work. Obviously, we do not wish to remove
any arcs of I which solve direct ancestors of n, since n itself will then
disappear. In order to keep track of these arcs, we label every leaf and
solved node of T with a Boolean expression from B({al,...,ak}) where
a15...,3) are the REPL arcs of I', as follows:

label(n) := 0, if (TOP, SUB, n) ¢ A(T)

otherwise

1l

label (n) := a + label (m)

where (m, REPL, x)

and (x, SUB, n) & A(T)
for some x e N(T')

Now suppose the solution .for n being attempted, causes the
transformational stage of the algorithm to build a merge arc (f(el,...,es),
g(tl,...,tr)) where f # g. Now the reduced covering expression of this arc
is of the form a + 151 ai]""'aiji’ where a is the FACT, RED or REPL arc
which supposedly solves n, and aip # a for any i and p. The expression must

have this form since the constraint set was unifiable before the addition of

arc a to I'. We now obtain a new Boolean expression E, thus:
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k

(i) Let E; = (151 ail""'aiji) + (label(a))"

where ' denotes Boolean complementation.
(i1) Let E; = sum of products form of E;, with all products containing

complementary literals deleted.

(iii1) Let E E> with all negated variables deleted.

P
I b

Say E .1%...°b,
421 ir,

Deleting all the arcs bi1""’b for some i will remove the un-

ir.

i
unifiability without removing n from I', so that the current attempt at
solving n will succeed.

Example 4.16

Let & be the set of clauses:
(i) P(x, y), R{y), R(b)
(1) -P(u, v), -Q(f(a)), -Q(f(u))
(i) Q(w), -P(z, w)
(iv) -R(s)
where a and b are constants.
Then the graph of figure 4.16.1 is an &-graph.
For simplicity, we reduce the constraints by removing the predicate
symbols, and unifying the corresponding arguments. Hence we have the

following set of constraints and labels for the £-graph of figure 4.16.1:

{y, b} {a1}
¥y, s} ~{az}
{x, u} {as}
{y> v} {as}

{f(a), f(u)} {au}
{f(U), w} {as}
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{z, x} {ag}

{w, y} {ae} .

The construction\of the unification graph ﬁs illustrated in
figure 4.16.2. | f,

Figure 4.16.1

-P(z, w)

An #-graph for & of example 4.16.
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Figure 4.16.2

(a) The unification graph U(T's), where T'; is the §-graph of figure 4.16.1

with arc a¢ deleted.

A

N

*

3

<+

v

Flu)

(b) S for U(rs)

*{.ys b} {31}
*{y’ S} ‘[az}
*{X, U} {ag}

*{y, v} {as}
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*{f(a), f(w)} {as}

*{a, u} {<f(u), f(a)>}
*{f(u), w} {as}

(c) The attempted unification graph for T'¢ of figure 4.16.1. The

unsuccessful merge is indicated by the dotted line.

(d) S for U(Tg) is as for U(T's) with the addition of *{z, x} {as}
*'[W, .y} {aﬁ}
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The reduced covering expression for the failed merge arc is
Q(<b,y><y,w>e<w,flu)>+<f(u),f(a)>) =a; + ag + as + ay
Also label(-P(z, w)) = a; + as

So following the above construction:

E; = (a; +as +ay) « (a; + as)’

"E2=31‘a§'aé+aq‘aé'aé

.
.
m
il

a; + a,

Hence, to construct as we must first delete either a; or a,.

With the modifications described in this section, then, the
Baxter algorithm satisfies criterion (B) at least for cases of unifiability
detected during the transformational stage. As yet it is not clear how
ununifiability detected in the sorting stage is to be handled. Reséarch is
proceeding on that problem.

4.2.3 Criterion (C)

When an arc is removed from ' and all the corresponding arcs
removed from U(I'), several unfortunate things may happen to the unification
graph. For example, nodes which should be in the same tree may not be.

In example 4.16, for instance, if a, is removed from I', nodes b and y of
U(D will be in different trees, although the constraint {y, b} is still

in S. Trees may also become unbaianced, impairing the efficiency of further
applications of the unification algorithm. It is hoped that further
research will produce a method for repairing U(T') with the minimum of

reprocessing.
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5. & -GRAPHS IN MECHANICAL THEOREM PROVING

In this section, we will attempt to show that;f—graph deduction
has definite advantages over the Tinear deduction systemson which it is
based.

5.1 The problem reduction approach

It has long been realised by those researching automatic deduction,
plan formation, question answering systems, etc., that an extremely
powerful technique in probiem solving, is the method of problem reduction,
in which a problem is replaced by a set of (hopefully simpler) sub-
problems, which must be simultaneously solved. Many of the new languages
of artificial intelligence are based on the problem-reduction method; for
example [6, 8, 10, 11, 18].

A major difficulty with using problem reduction in predicate
calculus, is that the subproblems are rarely independent: finding a certain
solution to a particular subproblem may destroy our chances of solving one .
of the other subproblems. Consequently, to take full advantage of the
problem-reduction method, we must process the subproblems fn as parallel a
way as possible, so that if our work on subproblem A blocks the soluticn
of subproblem B, then this fact is discovered as soon as possible, before
great effort is expended on a solution for A that will eventually have to
be erased.

Simple Tinear deduction, that is, linear deduction with factoring
and ancestor resolution [16], allows subgoals to be processed in any order;
however, it lacks the power of &-graph deduction, in that its use of
lemmas is restricted (see section 5.2) and it has no reduction rule. If
reduction is used in an ordinary linear format, then to ensure completeness
an ordering must be imposed on the subgoals, and the system then suffers

from the shortcomings mentioned above.
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Every leaf in an &-graph is a current]y unsolved subproblem,
and the leaves may be solved in any order so Algraph deduction has the
"parallel processing" advantages of simple linear deduction, but is still
more powerful than the more sophisticated linear deduction schemes.

5.2 Use of lemmas

Most linear deduction systems allow the use of lemmas: that is,
any clause which has been deduced in the course of the current proof, may
be used as an input clause. In féct, simple linearAdeduction requires
this for completeness. In every linear deduction system which allows the
use of lemmas, however, the very linearity precludes the use of many
lemmas which we have available for use in &-graph deduction.

Each £-graph actually corresponds to a set of linear deductions;
in fact, each possible sequence of rules for building I', corresponds to
one Tinear deduction of L(I')o(T). Consequently, if I'; is any sub-¢-graph
of T', then L(r,;)o(r,) is évai]ab]e for ancestor replacement in T,
regardless of whether or not T'; was actually generated during the
- construction of T. ‘

Example 5.1
Let f be the set of clauses:
-P(x), Q(x)
-Q(x), P(f(x))
P(x), -Q(h(x))
-P(f(f(a)))
Q(h(h(a)))

Then figure 5.1.1 illustrates a closed #-graph, and the associated
constraint set.

Note that in no other system of linear deduction, would the

clauses o and 8 both be available for use as lemmas, because in such a
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system, once -P(x) in the top clause is solved, it is no longer available
for use in a lemma; similarly for Q(x). However, one of these subproblems
has to be solved first, so that only one of the two lemmas used in the

#&-graph deduction of figure 5.1.1 is available.
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Figure 5.1.1
falx,), alx1)} {a,}
{P(xo), P(x2}} {as}
8 ‘r {Q(xs), Q(xu )} {as}
~ {P(f(x1))}, P(xs)} {as}
REPL P(F(x4)), P(F(F(a)))}  {(au}
{P(xs), P(xe)} {as}
{Q(h(x2)), Q(xs)} {as}
. {q(h(xe)), Qh(h(a)))} {ae}
el
REPL {a;
/ ]
| . ;
|
«' 1SUB E ISUB :
; ! ' 18
, (P(F(x4))); (AU (x6)))
\_ - SI==-
REPL {a, REPL }as
“P(f(f(a))) Q(h(h(a)))

A closed £-graph and associated constraint for & of example 5.1.‘
Note that the constraint set is unifiable. Some explanation of the ancestor
resolutions is in order. Consider the ancestor clause marked 8in the graph.
We rename Xo and x; in B as x; and x4, respectively, obtaining 8' subject to
the constraint set {{Q(xs), Q(x4)}}. & is used in replacement as, and the

resulting constraint, together with the constraint on B' is added to the

constraint set.
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5.3 Economy

& -graphs attain an economy of representation which is maximal;
consistent with the unrestricted use of lemmas described in section 5.2.
This is because one does not know a prioni whether or not a given literal
may be of use in a Temma, so that every literal must be represented at
least once.

The sharing of structure in theorem—pfoving programs has been
attempted before. Boyer and Moore in [4], suggested a method for
representing resolvents of clauses by a system of pointers to parent
clauses, and to the Titerals resolved upon. In their system, as in ours,
each T1iteral is represented only once; however, theirs is strictly a
method of representation, and solves none of the problems associated with
efficient backtracking, use of lemmas, ordering of subgoals etc. Although
clauses are not explicitly created, they exist implicitly, so that in order
to perform a resolution, one must make a recursive search through the
structure to carry out the necessary unification and (implicit) construction
of the resolvent.

Kowalski in [12] presents a deduction system cailed "connection
graphs", which solves many of the inherent problems of linear deduction
systems. In connection graphs, however, literals are repeated, substitutions
are performed explicitly, and factors are introduced regardless of whether
or not they may be required. Also, depending on the order of processing
the arcs of the connection graph, clauses which could be used as lemmas in
obtaining a short proof are sometimes deleted.

In #-graph deduction, substitutions are never performed: whenever
an £-graph is closed, we have a refutation, and need know only that all

the constraints are simultaneously unifiable. In this regard, our system
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is similar to the higher-order constrained resolution system of Huet [9].

5.4 Backtracking

A problem that has always plagued mechanical theorem-proving
systems is that of deciding what to do when the particular line of reasoning
currently being pursued, leads to a dead end. The solution usually adopted
is most unsatisfactory: namely, when a dead end is encountered, back up to
fhe last point in the deduction where there was a choice of solutions, and
try the next solution, assumming that at each choice point, the possible
solutions are ordered in some way. This can lead to exhaustive and
unnecessary searches in irrelevant areas of the search space.

Example 5.2
Let & be the set of clauses:

(1) P(x), R(b), R(x)
(2) -P(x), Q(x)
(3) -P(x), H(x)
@) -Q(x), K(x)
(5) -Q(x), N(x)
(6) -H(x), K(x)
(7) -H(x), N(x)
(8) -K(x), M(x)
(9) -K(x), s(x)
(10)  -N{x), M(x)
(1) -N(x), S(x)
(12)  -M(x), -B(x)
(13) -S(x), -B(x)
(14)  -R(x)
(15) B(a)
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Suppose a proof of unsatifiability of this set is attempted
using ME-deduction with factoring. To determine the order of choice at
branch points of the search space, suppose that:

(1) Rules are ordered thus: contraction, reduction,

factoring, extension.

(i1) Input clauses for extension are taken from 4 in

the above order.

The following deduction is generated, in which A-literals are

framed:
(1) P(x), R(b), R(x)
(16) P(b), R(b) Factoring
(17) P(b), Extension with (14)
(18) P(b) Contraction
(19) ,» Q(b) Extension with (2)
(20) [ P(b) ], [Q(B) ], K(b) Extension with (4)
(21) ’ > » M(b) Extension with (8)
(22) [P(b) }.[Q{b) ], [K(B) ], [M(B) ], -B(b) Extension with (12)
Backtrack to (20)
(23) [P(b) ], [Q(b) |, [(K(B) ], S(b) Extension with (9)
: three backtracings occur here
(59) [P(b) |, [H(b} ], [N(b) |, [S(B)], -B(b) Extension with (13)
Backtrack to (1)
(40) P(x), R(b), Extension with (14)
(41) P(x), R(b) Contraction
(42) P(x), [R(b) | Extension with (14)
(43) P(x) Contraction

(44) ,» Q(x) Extension with (2)
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(45) LP(x) 1, LQ(x) §, K(x) Extension with (4)

(46) [ P(x)], » [K(xL] ., M(x) Extension with (8)
(a7) [P(x) ], [Q0x) |, (KO T, [MOx] ] -B(x) Extension with (12)
(48) [P(a) ], | Q(é) I, [XK{a) ], [M(&)] ., [=B(a)] Extension with (15)
(49)

: Contractions

(53) ©

Using the same ordering for alternative solutions, however, our
system produces theﬂf-graph of figure 5.2.1, assuming that the same order
is chosen for attacking subgoals as in the‘above ME-deduction.

When the construction of a, is attempted, the constraint
processing system detects un-unifiability, and indicates that a; must be
removed to allow construction of a, . This having been done, there is
only one solution for the remaining subproblem.

& -graph dedution has yet another advantage over ordinary theorem
provers, also related to backtracking. Namely, when it becomes impossible
to solve a particular literal, and the source of the un-unifiability has
been located, our system discards only the offending piece of proof.

Other theorem provers on the other hand, on backtracking to the source of
the problem (once it has been located, which, as shown above, involves

large amounts of blind search in existing systems), will discard the

entire proof from that point on.‘ This is a very wasteful procedure, since
some harmless and possibly correct subproofs will be removed, and later must
be reconstructed. This is illustrated in the above example 5.2 whenever

the ME procedure backtracks: for instance, when it backtracks from clause
(39) to clause (1), the entire proof after clause (1) is lost, although it

constitutes a perfectly valid solution to the subproblem P(x). Note,



Figure 5.2.1

SuB

SuB

SuB

-B(x4)

REPL ja~y

Anxf-graph for the set of
clauses of example 5.2,

The dotted arc a; is removed
in order to make a; possible,

and the node R(xo) is then

~ solved by arc as.

64.
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however, that the corresponding backtrack in the,dlgraph deduction preserves

the proof of P(x), removing only the offending arc a;.
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