OPTIMIZATION ANALYSIS OF PROGRAMS IN LANGUAGES
WITH POINTER VARIABLES

by
Hendrik Jacobus Boom
Research Report CS-76-32
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

June, 1976

OPTIMIZATION ANALYSIS OF PROGRAMS IN LANGUAGES WITH POINTER

VARIABLES.
by Hendrik Jacobus Boom

A'tﬁesis subﬁitted‘in partial fulfillment of the»réquirements of
the degree of
DOCTOR OF PHILOSOPHY
at the
University of Waterloo

Waterloo, Ontario
Department of Applied Analysis and Computer Science

1974 July

R T

v

copyriéht 1974 by Hendrik Jacobus Boonm

. The University of Waterloo requires the signatures
using this thesis.
Please sign below, and give address and date.

K Pasenmtth, A0SCS, AW Nov 1975,

6f all persons

I hereby declare that I am the sole author of this thesis..

1T authorize the University of Waterloo to lend it to other
jnstitutions or individuals for the purpose of scholarly

research.,

signature %\ 1
[]

i
%

R SR ST88

I would like to thank Professor Florentin and Professor

Cowan for helping to teach me to formulate my thoughts.

A technique ié'preéented'for analysingfprograms,to detetmine
information‘about the data structures they'créate and maintain.
It identifies the variables that can be treated by standard‘
optimizing technigques, despite the presence of pointer variables.
It emphasizes the difference between values, models of values at
compile time, and the names used for values in the program. The
feasibility of the technigue has been demonstrated by an
implementation} The analysis téchnique may be useful for
designing optimizing compilers and for proving progran

correctness.

Computing Reviews categories: 4.12, 5.24.

— —————

Key words and phrases: ALGOL 68, pointer variables,

optimizing compilers, compilers, proving program correctness.

H
1
%
1

Table of contents.

1
y
5
6

12

12

16

17

22

25

27

30

33

- 34

36
40

490
42

4o

46
52
56

60

Title'and formal declarations.
Thanks.
Abstract.
Table of contents.
Chaptér 1. Introduction.
1.1 Introduction to the introduction.
1.2 Prospectus.
1.3 Representatives.
1.4 Individuality.
1.5 Nstates. |
1.6 An example.
1.7 Conditionals and merging.
1.8 Loops.
1.9 Jumps.
1.10 Procedures..
Chapter 2. Description of the language and presentation
the,consistegéy conditions.
2.0 Introduction.
>2.1 PurpoSerf the siﬁple language, restrictiomns.
2.2 Syntax of the simple.programming language.
‘2.2.1 Abstract syntax.
2.2.2 Concrete syntax.
2.3 The state‘of the machine.

2.4 Examples.

of

60
65
74
78
8l
90
90
93
93
95

100

103
104
105
106
107
107
108
108
110
111
112
114

115

2.4.1
2.4.2

2.“.3

Straight line code.
A loop.

Effects.

2.4.4 Use of effects.

2.5 Mstate sets.

2.6 pfecise correspondence between mstate sets and

2.6.1

2.6.2

2.6.2.

2.6.2.

Specifications.
Example.

1 Execution.

2 Analysis.

2.7 Outline of the complete analysis algorithnm,

consistency, conditions, and proof outline.

2.8 Preliminaries.

2.8.1
2.8.2
2.8.3
2.8.4
2.8.5
2.8.6
2.8.7

2.8.8

Passing through.

Quickly reaches.

Ultimately reaches.

Corollary.

Escaping.

Garbayge collection.

Pop1;.trues, falses, jumps, and unjumps.

Merging.

2.9 Execution and analysis.

2.9.1

2.9.2

Identifiers.

Generators.

2.9.3 Conditionals.

states.

116

117

118
122
123

130

132
134
135
136
138
143
144
145
147
149
150
151
153
159
159
162
164
166

168

2.9.4
2.9.5
2.9.6
2.9.7
2.9.8
2.9.9
2.9.10
2.9.11

2.9.12

Iterations.

Gb to.

serials (blocks).

Routine denotationmns.

Calls.

Assignment and link setting.
Dereferencing.‘

Boolean dénotation.

Declarations.

2.10 Merging.

2,11 T

heoren.

2.12 Proof.

2.12.1
1 2.12.2
2.12.3
2.12.4
2.12.5
2.12.6
2.12.7
Chapter‘3
3.1 In
3.2 Co

3.2.1

part 1. , " g
Part 2.

Part 3.

Part 4.

part 5.

Part,6.

Part 7.

outline of analysis algorithm.

trqduction.

nditions that force convergence.

Representation of histories.

3.2.2 Lemna.

3.2.3

Lemma.

169 3.3 Anélysis of an individual routine denotation.

171 "3.3.1 Merging 3.3.1.1 Merging'msfate sets.
171 '3.3.1.1 Merging mstate sets. ‘

172 3.3.1.2 Merging mstates.

174 3.3.1.3 Examplé.

176 3.4 Analysis of the entire prograﬁ.
178 = 3.5 Summary.

179 Chapter 4. Implementation.

179 4.1 Purpose and limitations of the progran.
181 Q.ZFExternal data representation.‘ |
181 4.2.1 Program representation.
182 4.2.2 Representation of mstate sets.

; 184 4.3 Internal data representation. |

; 184 4.3.1 Progran representation.

é 187 ﬂ,3.2 Representation of mstate sets.

% 187 4,3.2.1 Mstate sets.

% 187 4.3.2.2 lstates.

| 188 = 4.3.2.3 Mvalues.
189 4.,3.2.4 Efgécts directories
189 4.3.2.5 Histories.

190 4.4 The program.

190 4.4.1 Map.

192 4.4.2 Macro extensions to Algol W.
197 4,4.3 output routines.

199 4.4.4 Input.

B

200

4.4.5 Merging.

201 4.4.6 Copymstates.

202 h.u.7 Mstafe selectors. .

203 4.4.8 Analysis.

204 4.4.9 Effects hendliné procedures.

204 4.4,.10 History handling procedures.

206 4.4.11 Miscellaneous procedures and variables.
208 4,5‘Empirical resultg. | |

209 4.5.1 Discussion af examples.

212 4.5.2 Execution time and storage spaéé.

213 4.6 Improvements and comments.

213 4.6.1 Data representation.

214 4.6.2 Program representation.

215 14.6.3 Programming language in which the analyser is
written.

216 Chapter 5. Extensions and further research.

216

217

217

219
220
220
221
223

225

5.1 Summary.

5.2 Handling further language features.

5.2.1 Procedure variables and procedures as parameters.
5.2.2 label variables and labels as parameters.

5.3 New techniques.

5.3.1 Merging and universal algebra.

5.3.2 Optimum representation of histeries?

5.3.3 Bit matrix technigques.

5.4 Applications.

225 5.4.1 List structures and capability.

227 5.4.2 Scopes.
228 " 5.4.3 Storage allocation optimization;
229 References.

231 Appendices.

Chapter 1.

Introduction.

1.1 Introduction to the introduction.

Optimizing compilers have been found useful for programming
1angdages like FbRTRAN. Inexperienced programmérs, however, tend
to have excessive faith in optimization, and fail to write
effi¢ient‘code themselves. They believe, rather naively,‘that the
machine will compensate for théir own‘bad code. Experienced
programmers, who are properly 3ceptical of mechanical abilities,
can use optimizing compilers to gdod effeci, They'lei the
optimizer use méchine-dependeﬁt techniques to generate good
object code, techniques which high-level language programs cannot
express directly. They do not expect the optimizer to replace
their algorithm by a better one, nor to make other major changes
in their source code. The chief constraint on optimizing
compilers is the language they translate. It is folly to expect
an optimizing compiler to detect the ci;cumlocptions used to
express qperationé’not provided in the language, and then compile
efficiently the program that the programmer would have written

had the language permitted it.

On the other hand, new features, such as dynamic storage
allocation and pointer variables, that allow a programmer to
state his intentions clearly, can also hinder an optimiiing

compiler, by interfering with the principles by which present

optimizers work.

Much previous work has been done on optimizing compilers,
post of it for Fortran-like languages. [Cocke 1] contains a
rather extensive coverage of the state of the art as it is
applied in production compilers. [Allen 1] contains a method for
handling pointers which is different from the one presented here.

It is briefly mentioned inm section 5.3.3.

Existing optimizing compilers need to know when the values
of variables are set and used. Without this, it is impossible to
know when to store variables in fast registers or when to perform

common subexpression elimination. If a variable is set via a

pointer, it may be very difficult for an optimizing compiler to

know whether that variable is also involved, possibly under a

different name, in a common subexpression.

Consider the following fragments from an ALGOL 68 program:

In this example, "x", "t", and "u" are identifiers for real

variables. "yy" is the identifier for a "reference-to-real"
variable; i.e. a variable whose values are pointers to real
variables. The line "ref real(yy) := 6" specifies that the real

variable pointed to by‘the pbinter in "yy" is to receive the

value 6.

Is the second computation of "x * 20 fedundant? One cannét
tell without knowing whether the pointer variable yy points to x.
If it does, a new value is referred to by the variable x’in the
second occurrence of "“x * 243 if not, the second computation is

redundant.

Some of these problems also obstruct the verification of
program correctness. The presence of pointer variables can make
r
programs exhibit extreme combinatorial complexity. Nonetheless,

analysis algorithms may yield information that is useful for

verification. If, for example, an algorithm could detect that a

5, certain group of variables were unchanged in a segment of codé,
any predicate that involves only those variables and is true at
the beginning of the segment will still be true at the end of

that segment. A detailed formal proof, wvhich might be extremely

complicated, would no longer be needed. Algorithms developed for

granm optimization might well uncover relijable and useful

. pro

jnformation which can aid the process of verification.

This thesis sets forth a technique for the analysis of

prdgrams with pointer variables. It distinguishes a class of

'yariables for which information can be obtained by examining

source text. A simple programming language with pointer variables
is presented‘as an'example, and the algorithm for analysis of its

programs is also presented. The correctness of this algorithm is

‘demonstrated by a proof, and its feasibility is demonstrated by

an implementation.-

The rest of Chapter 1 discusses the problems encountered,
and 1nformally suggests some of the techniques used. Chapters 2
and 3 describe the simple programming language, and specify in
detail how these techniques apply to it. Chapter 4 describes an
ALGOL W [Wirth 1, Sites 1] program that implements the algorithns
of Chapters 2 and 3. Chapfer 5 describes extensionsﬁthat might be
made to these analysis techniques.

i/

-

1.3 Representatives.

The first thing to reqognize is that the program analyser in
an optimizing compiler does not deal with the values (e.g.
integers, real numbefs, and pointers) and‘variables (i.e. pieces
of storage) themselves, since they exist only at run time,'but
with (compile~time)"representatives"of {run-time) values and
variables. A representaﬁive of a variable consists of the
ihformation the coﬁpilet ﬁses at_compile‘time to keé? track of
the variable that will exist at rum time. This might consist of a
symbol-table entry, the;location and data type of‘a
compiler-geneiated tenporary, the fact that several identifiers
possess oﬁerlapping stérage (e.9., the.FORTRAN equivalence

statement, or the ALGOL 68 .identity declaration), information “ ;

indicating how a value is to be found at run time, etc.

A single compile-time representative of a variable might
well represent different variables at different moments during
execution (variables are created and‘déstroyed at block‘entry and

exit), and'may even represent several different variables at one

time (recursion).

The distinction between variables andAreprésentatives of
variables is of little practical importaﬁce for languages like
FORTRAN and BASIC. Since.they are usﬁally impiemented with
completely static storage allocation, there can be a one-to-one

correspondence between variables and representatives of

variables. In this thesis, which discusses more general

1anguagés,,the distinction between things and representatives of

things will be crucial for clear discussion.

The prefix f'm-! will be used as a linguistic tool to
indicate representatives. Thus, an tpvalue! is a representative

of a value.

ALGOL 68 deliberately blurs the distinction between
variables and values. It treats the class of variables as a

subset of the class of values. It does this by identifying a

" vyariable with the pointer pointihg to it. Variables can thus be

treated as freely as any other kind of value: pointers are

~objects that can be passed‘as parameters, copied, and so forth.

Many olde: languages already pass a variable as a parameter to a
subroutine by passing a pointer. Variables will often bé called
‘references'. The ALGOL 68 Reporf confuses the issue by calling
them 'names'. They can be assignéd, passed as paranmeters,
compared for equality, etc. To reflect‘this simplification of
concept, we shall henceforth consider representatives of values
to include representatives of variables as a special case. Thus,

every mvariable is an mvalue.

Let us consider an extended example:

S—

These are variable declarations.

Each of_them creates a variable

whose values must be real numbers; and gives it an identifier.

One variable is named "x", and the other is named "y". We

sometimes also say that such a variable is ‘possessed! by the

jdentifier.

= e

This is an identity declaration,
synonymous with "x". "z" and "x"
piece of storage. At this point,

three names for thenm.

real count = 6 + y;

which defines "z" to be
will be two names for the same

there are two variables, and

This is another identity declaratiomn. It causes six to be added

to the current value of y. The sum is permanently (well, until

block exit) given,the name "count". The value of "count" may not

herecafter be altéred; it is a constant. The identifier "“count"

possesses a real value, not a variable.

= (ref real u, real v) void:

. then pla, v - 1)

This is a recursive (and not very useful) procedure. A
froutine' is created, consisting of some executable code, and an
environment; the environment will enable the routine to access

the values of the nonlocal identifiers "y" and “p".

p (x,6)

The routine is called, providing it with a real variable and the
vdlue six as parameters. Note that a single variable is now named

by the three identifiers "u",‘“x", and “z".

After p calls itself once, the identifiers "a® and "u" will
each possess two variables. Thus, |
| A single value can be named by several identifiers.
As a special case, a single variable can bé hamed by several
identifiers. |
An identifier can name several values (even at the same

tinme) .

Existing optimization‘techniques do not clearly distinguish .
between identifiers (the strings of letters and digits coded by a

programmer to denote objects in the run-time machine), the

variables and other values possessed by identifiers, and the

values referred to by these variables. Thus, in a FORTRAN
program, the sequence of characters "ABC" might be considered to

be

1) a name chosen by the programmer, possibly for mnemonic

reasons,
2) a piece of storage in the computer, or

3) any of the values residing in that piece of storage from

time to time.

This semantié confusion certainly does not'hélp‘an analyser
attemptlng to analyse a program that uses pointers. I shall
maintain a sharper dlstlnctlon between these meanlngs. The name
coded by thé,programmer will be called an 'identifier'; the piece
of storage (which I identify with a pointer) will bg called a
tvariable' or a 'referehce'; the values residing in that piece of

storage are said t6 be 'referred to' by the variable.

Furthermore, it will be clear that éompilers manipulate

models of run-time objects, and not the objects themselves.

D s e e . A, e . et b S

Once we have recognized the difference between values and
mvalues, two possibilities come to mind. A value may be

represented by one mvalue, or by more than one nvalue.

For example, consider the procedure declared below:

This procedure receives two real variables as parameters, and
assigns to one of them. The outcone of the procedure depends on
whether the two variables are the same, as in the procedure call:

¥

real q;

p(d, @

An optimizing compiler will have to take great care before

treating the second occurrence of "x + 2" as redundant.

Undetected synonymy, such as between x and y above, can cause

severe troubles for an optimization algorithm. Synonymy can also

arise (and be even harder to detect) through the use of pointer

variables. It is important to find methods for discovering the

amount of synonymy that is possible in a particular progranm.

If the analyser knows thetia value is represented by only
“one mvalue, and (except for recursion) that this mvalue
represents only one value, wve call the value and mvalue
tindividual!', and otherwise, 'nonindividual!. Individual values
"have the property that the analyser knowe,‘at compile time, when‘
and how they are accessed. Once we‘haVe discovered which mvalues
are individual, we can apply standard optimizing techniques to
the individual mvalues. One of the main themes in {his thesis is
eh attempt to reach a precise understending of individuality and'

related concepts.

First, we may notice that individﬁality is of no importance
for some data types. The value '65' may appear on;y‘once, or at
many places in the run-time machine. It makes no difference
whether it is repfesented by a single mvalue or by many, nor
whether it occurs in the source program as an explicit number or
is computed at run time. Each occurrence of '65' is, so to speak,
independent of all the others. Performing operations on one of

them has no effect on the others.

For some data types, this is not the case. For example, -
individuality is important for references and semaphotes[Dijkstra

1]. If a value is assigned to a variable at one‘point in a

program, it certainly does affect the

that variable at another point in the
whether the éompiler can detect it or
dependence 1is their very function, to

between different processes.

value obtained by using
program; dependence exists
not. For semaphores, such

control communication

Individuality is a simple property of values and mvalues.

More complex situations are possible.

For example, if certain

list structures are considered to be single values (like SNOBOL's

patterns) and are represented by single nvalues, one might care’

wvhether two mvalues represent the same list structure, partially

overlapping list structures, disjoint

list structures, whether

one is embedded in the other or whether they contain cycles. The

complex and intereéting situations of this paragraph will not be

discussed further in this thesis.

1.5 Mstates.

‘For each ptogramming language, one can construct an abstraét
machine which is tideal! for that languége, in that it provideé
just those data structures and operations which are necessary in
any implementation of'fhe language. Abstrac£ machines of this
sort are quite uéeful in defining programming languages [Landiﬁ
1,'Wirth 1, Lucas i, Van Wijngaarden 1]. An implementation is-
obliged to provide these constructs in some form. Often, these
abstract data structures and operations may appear quite
different in their concrete representation because of various

optimizations that the compiler may perforn.

These abstract machines are guite different for different
programming languages. The absfract machines for LISP, SNOBOL,
and ALGOL 68 resemble each other in very few ways. They can
nevertheless all be represented concretely on a single real
machine. |

IJ - .
The analysis algorithm presented in later chapters

constructs 'mstates', i.e., represeﬁtatives of the states of the
run-time machine, and tattaches' them at various points in the
program. These mstates will consist of representétives of the
values, of representatives of the felations between values, of
representatives of the naming cOnventiohs, of representétives of
parts of the control structure, and of models of other relevant

abstract components of the run-time machine. An mstate for an

‘ALGOL machine might well have representatives for procedures,

cariables, values, and the relation between identifiers and their
vafiables. These representatives will of course be called

-mprocedures‘, ‘gvariables', etc.

As in any simulation problem,. the representatives need not
pe exact replicas of the things represented; they need only

contain an amount of information sufficient for the analysis.

We say that the re?resentatiQes ‘represent' the things being.
represented. An mstate attached at-a point in the ptogram must
properly represent the state of the abstract machine at each
-moment that control passes that point of the program. In the
comlng chapters, representatlon is a dynamic relation, deflned
 between static representatives comnstructed by the program
‘analyser and the dynamic, ever-changing, run-time state df the

abstract machine.

Because the analysis algorithm constructs representatives
for abstract machiﬁes, and the abstract machine depends on the
programming language, the details of the analysis algorithm
necessarily‘depend‘on the language. In the next few chapters, a
simple programming languége is presenteq as an example to.

illustrate the principles behind the analysis techniques.

:
;
i
{
¥
i
g

e b epgpa i 3

1.6 An example.

Consider the following ALGOL 68 real closed claﬁsé:

real (yy)

If we execute this clause, we pass through a

states. The next page illustrates an execution of

succession of

the program.

In

a case as simple as this one, states and mstates are isomorphic.

‘Therefore, only the mstate is drawn.

Prc‘g\-a ™m

|

xef veal (xx) 1= 6,

e real vy,

¥y iz x%;

. 4,,

wf real () 125

w G

)

e me‘o‘der‘

g,’ 6 o Ai'ﬁ‘ﬁml values

28

| ms-'c;a-i-es between lines .
(the some 395 +the states of

4he maching, in this simple

wL=

yi=

P ¥

vYE |

xLs

XX E

... PUECE e@s‘orage- R

c.asﬁ)

o L

\{ ol

WY,

i AR

ﬁote that it was possible to detect that the value of the

expression obtained via yy was the same 5 assigned in an earlier
line, -even though the variable to which the 6 and the 5 were both
assigned does not have an identifier of its own, and is accessed

via pointérs from two different identifiers. Such detection is

‘beyond the ability of most optimizing algorithms, since they

equate identifiers with mvalues. The algorithm in this thesis
does detect this. This might enable an optimizer to replace the

entire program segment by a 5.

1.7 Conditionals and merging.

Consider

N

Matters go as in the last example until we get to the-
conditional clause. A picture of the mstate before the

conditional clause is

Note that the value read into b is unknown, and so is not

included. After the then clause we have

e

[2]

L= N
| é
i '._ —
Yy =
‘5""

After the else clause we get
axs; | e—p—= 6
o _.
yy =) L —
b=

place after the entire conditional. We might like to get

The dotted lines indicate possible, instead of certain,

31

instead. These are not the same. Yet we must find some mstate to

32

gruth. The algorithms presented in this thesis will, however,

give only

P--—w

portustrm—— .

b= d

The dotted lines here indicate that the mvariable has become

nonindividual; i.e., in principle, at some time during execution,

the variable might independently become repfesented.by another

mvariable,” but the analyser will not know this. It can no longer

tell when the value referred to by the variable that the mvalue

represents is changed.

This new mstate is called the result of *'merging' the

mstates obtainéd from the then and else clauses. An mstate

obtained by mergiﬁg other mstates must be capable of representing

all machine states that can be represented by any of the other

nstates. In general, merging will destroy isformation from the

original mstates.

Fm..

33

1.8 LOOpS-

A loop, such as the one in
. a

while B do C o4;

D
causes difficulty for the attempt to construct representatives.
The mstate after C is most naturaliy computed from that before C,
which is most naturally‘combuted from that after B, which ... is
computed from those after A and C. The circularity here results
from suppressing the time dimension. It is possible to handle
this case by assuming no information at all in the mstate before
B. Unfortunately, this is unsatisfactory, since most programs
contain loops.lchapter 3 outlines a better algorithnm fof finding
mstates that satisfy the correctness cdnditions presented in

Chapter 2, despite such circularities.

s

P

o

34

1.9 Jumps.

The go to statement is a common method for constructing
loops, although its extravagant.ﬁse is rightly deplored by
many[Dijkstra 1]. B go to causes a few problems for analysis,
because it terminates execution of‘all parts of thé-program
between it and its target. Sbmehow, the mstate before the go to

-—

statement must be transmitted to the target of the go to.

A systematic method is used in this thesis. when a go to
statement is executed, a speciql kind of value, a 'jump', is
placed on the run-time stack. Jumps are recognized as special
cases and are Simply passed outwards through Syntacticllevels,
with the stack and/or the environment suitably trimmed, until the
junp finally reaches the clause containing the Jjump target;

Normal execution resumes at the jump target.

Analysis is analogous. When analysing a go gg‘statement, the
analyser places a representative for the jump on the mstack. The

resulting mstate is recognized as a special case, and is passed

‘outwards, with its mstack and menvironment suitably trimmed,

until it reaches the jump target. This‘is implemented by
attaching more than one mstate after some phrases in the progranm
~- one for the normal flow of control, and one for each go to
statemenf that might terminate execution of that phrase by
jumping out of it. For this reason, we shall distinguish between

'mstates', which we have been discussing so far, and 'mstate

“‘%~__ [

sets?, which are disjunctions of mstates. Normally, one of these

mstates will correspond to normal fiow of control, and the others
to paths of éontrol created by go to statements. An mstate set
will be considered to describe the state of the run-time machine
iff at least one of its mstates does. It is in fact mstate sets

that are attached to points in the progranm.

36

i e

1.10 Procedures.

?rocédures cause severe problems. A procedure‘behaves like a
piece of code that may be inserted at many poinis throughout.the
program, including within itself. One hight try to analyse
procedures by attaching at the beginning of the procedure body an
mstate obtained by'merging all mstates appearing before calls to
the procedure, and placing after éach call a copy of the mstate

at the‘end of the procedure.lﬂowever, this technique destroys
information correlated with the point bf call, a quite

undesirable effect.

For example, consider:

proc p = yvoid: skip;

end of p, which is the null procedure

v := 1;

|

a = v; L
¥

v 1= 23

P

a :=.a + v

If the above approach were used, merging would destroy‘the
information that at one call to p, v was 1, but at the other

call, v was 2. The mstate at the start of the routine, and also

those placed after each call, would have no information about the

value of v, despite the fact that v is not altered by p.

We must find some cher scheme. A procedure will be
analysed, independently of any calls to it, to produce an
reffects directory'. The effects directory describes the-wéys
that the procedure can alter nonlocal variables. Each*possibleA
alteration is described by an teffect!'. An effect consists of an
 identifier, which may be a nonlocal identifier or a formal
parameter identifier, a route through the run-time data structure
starting at the idenfifier, and an action performed on the value
at the end of the route. The action may be 'set! or ‘escape'. If
the action is 'set!, then the value may be the destination of an
assignment. If the action is tescape', then the value escaées;

i.e., it can no longer be represented by an individual mvalue.

Consider the folloﬁing procedure:

proc p = (cef real x, ref ref real y) void:
'x' and 'y' are parameters.
*x' is a real variable.:

ty! is a variable whose values are real variables

ref real z;. # the values referred to by z are real

variables #

iH
o
I+h
ind
[0}
et
_
N
L X}
i
W W
e

The effects directory of this procedure contains

set x

" set dereference(y)

i. e., the variable x and the variable referred to by y are both

assigned to.

The identifiers used in these effects are either the formal
parameters of the procedure, or identifiers global to the
procedure. Since, as demanded in Chapter 2; procedures may not bé
actual parameters and may not be referred to by variables, there
"is no way for a procedure to be‘called from a point in the
program where its 5&6ba1 jdentifiers are unknown. Thus, the

effects are in a notation meaningful at every point of call.

In order to compute these effects, each mvalue has
associated with it a t'history', which describes all the ways that
the run-time machine might be considered to have reached the
value repfesented by the mvalue. A hi#tory is a set of 'tracks'.

Each track describes one of these ways, and consists of an

jdentifier and a sequence of primitive language operators that

describe a route through the run-time data structure. In the
above example, the destination of the last assignment would have

the history ‘dereference (y) '-

These effects are applied to the mstate at each point of

call.

1Oy

hapter 2.

ggscription of the language and presentation of the consistency

L e e e T i e A i i

2.0 Introduction.

*Analysis' is the attaching of an mstéte set to each point-
of a program, by éxamining the program's source text.‘These
mstates can be used direétly for, for example, the
constant-propagation optimization (This optimization can be of
great value wheh applied to program text resulting from macro
processing or from in-line expansion of procedures). In
constructing these mstates, the analysis‘algbrithm alsd isolates
a class of variables, the individual variables, whose interaction
with pointer variables is sufficiently simple that they can be
treated by conventional optimization techhiques. Tt will likely
- be fdund that the majority of variables occurring in ordinary

programs will be individual.
s

These methods will also be of use with other optimizing
techniques, since the problem of side effects of procedures is
settled, at least for the individual variables. Once this is
done, there is sufficient information for most conventional

optimization analyses to be performed.

In order to be certain that these mstate sets correctly

represent the corresponding states at run time, they are required

to satisfy certain conditions, called consistency conditions .

A very simple programning 1ahguage is used in order to‘ﬁake
discussion concrete. One can infer the treatment of other
1anguages from this example. The congrete and abstract syntax of
the language is,presenfed, and the semantics of ﬁhé language is

described using an abstract machine.

The reader'may‘well‘findAhis mind boggling at the number and
complexity of the definitions neceésary to define the many -
concepts in this chapter. If this hapéens, he is advised to
examine the lengthy‘examples in sectionAZ.u, which provide the
concrete details needed-by the intuition to grasp the abstract
jdeas involved. The mstate sets and their precise correspondence
‘to the states of the abstract machine aré also presented. Section
2.9 describes the execution of programs and the consisiency
conditions on mstate sets. A number of theorems are proved, to
show that the consistency conditions imply correctnéss of the
nstate sets. The usg bf the consistency cqnditions in performing

the analysis is explained in Chapter 3.

2.1 purpose of the simple language, restrictions.

The simple language vas designed to illustrate the analysis
algorithm. To this end, any lahguage feature that would
conplicate the analysis without proViding additional insight was
omnitted. The following language features have been‘provided:

procedures and procedure calls

boolean values

pointers and variables

while -- do -- od

if -- then -- else -- fi

identity declarations

block structure

go to and labels

Example.

Here is a sample progdgram:
(let makelist =
(proc (a, b, e):

(a 3= b;

43

let d = gen;

- ——

makelist (d, gen, gen)

In this program, "makelist" is the identifier of a procedure
with three parameters, "at, ithw, and Wet, and one nonlocal
identifier, "c". It chains "an®, "b", and "e" into a small tree
whose leaves contain the values "true"™ and "false". "c" and "agn
are declared as new variables: the identity declaration for "c";
"let ¢ = gen", declares "c" to possesslthe value of the
expression after the equals sign. In this declaration, that
expression is a generator, which creates a new variable by
allocating storage and yielding a pointer to it. Thus "“c" will

possess this new variable. The declaration of "d" is similar.

The variabies in this languaée have two fields each, a 'val!
field, ard a 'link' field. Each field may céntain either a
pointer or a boolean value. The val field is set by the
assignment operator, and the link field by the t'setlink!

operator. The list structure constructed by the call to makelist

is:

L R e

Lalse

handled like boolean.

It is unnecessary to provide additional primitive data

'types, such as integer, character, etc., since they can be

Label variables‘(such as those in PL/1) have not been

provided, because they greatly confuse control flow. There is,

There is one major restriction. Procedures cannot have
pfocedures as parameters, nor may procedures be referred to by
variables. If these were permitted, global identifiers used in a
procedure call might be unknown at the point of call. The

following ALGOL 60 program violates this restriction:

s e e il S e

o e e e can e e

end

The procedure 'p' is one which, when called, calls its
afgument, 'q1', which is a ptocedure.'However, 'p' is called fronm
a block where an extra identifier, 'x', is known. ‘'q‘', the actual

parameter, can, and does, know this extra identifier.

At the syntactic pbint where‘q1 (wvhich equals g at fun time)
is called from p, this nonlocal identifier x is not known, even
‘though it is still meaningful at a lower level on the run-time
stack. It is difficult to summarize the effects of calling 'qt!
exclusively in terms of identifiers known at the point of call.
This is why the restriction was imposed.

A o .
Thus, in the simple programming language, we have reasonable

control structure, adequate for most normal programming, and ve

have pointers, but we have a severe scarcity of data types.

It is not intended to define the language with the rigour
that would be required of an international standard; since that

is not necessary for this exposition.

2.2 Syntax of the simple programming language.

2.2.1 Abstract syntax.

This section contains the abstract syntax of the simple
janguage, in a notation reminiscent of that used by Peter Landin

[Landin'1].

A program is an expression in which each identifier is
~defined in a declaration or as a formal parameter. We say that an

identifier 'identifies' its defining declaration.

In this syntax, 'identifier', 'label', ‘completer', 'true',
and 'false' are primitive notions in terms of which the others

are defined.

An expression is
a serial (sometimes called a block), of
a conditional, or
a call, or
. . i
an assignment, or
a link setting, or
an iteration; or
a go to, or
a dereferenéing, or
a delinking, or |

a generator, or

an identifier, or

a routine denotation, or

a boolean denotation.

A declaration has

a formal parameter,

which is an identifier, and

an actual parameter, which is an expression.

Without loss of generality, it is required that all

declarations and formal parameters declare different

jidentifiers.

Examples:
let makelist =
(proc (a, b, e):
{ a :='b;‘

a setlink e;

b := true;
e := false;
’/

c := a));

This‘declaration declares

routine.

This declaration declares

variable.

'makelist?! to possess a

d to possess a new

A serial is a'sequénce of phrases, label definitions, and

conpleters.

Example:

let ¢ = gen; if e then go to 1 fi; e := false; e. 1l: c :=

—— - cnran

A completer causes premature termination of

execution of a serial. The value of the serial is the

value of the phrase before the'completer; In the above

example, the value yielded by the serial is the

variable te', unless the completer is

bypassed by 'go

to 1'. If the completer is bypassed, this particular

serial will loop.
A phrase is a declaration or an expression.

A conditional has
a condition, which is an expression,
. P
a then part, which is an expression, and

an else part, which is an expression.

~Example:

if a then b else c fi

A call has
a function, which is an expression, and

~a sequence of actual parameters, which are

expressions.

Example:

nakelist(d, gen)
if foo then makelist else destroylist f£i (4, gggj
Note that the choice of which procedure to call may be

made dynamically.

An assignment has
" a destination, which is an expression, and
a source, which is an expression.

Example: a := b

~ In this example, 'a' is the destination, and 'b' the source.

A link setting has
a destination, which is an expression, and
a source, which is an expression.

Example; a setlink b

Assignments and link settings are identical, except
that assignment changes the fval' field of a variable,

whereas link setting changes the 'link' field.

An iteration has
a condition, which is an expression, and
a body, which is an expression.

. Example: while b do ¢ od

A go to has a label.

Example: qo to 1

A dereferencing has an argument, which is an expression.

Example: val b

'val' is used to extract a value that has been assigned

to a variable by t:="'.

A delinking has an argument, which is an expression.

fdelink! is used to extract a value that has been assigned

A generator is used to produce a new variable. There is only one
way of writing a generator.
Example: gég |
p,
A boolean denotation may be
true, or

false.

A routine denotation (the text of a routine) has
a sequence of formal parameters, which are identifiers, and

a body, which is an expression.

Example:

(progc

2.2.2 Concrete syntax.

Abstract syntax is convenient when
it eliminates a great deal of confusing
of semicolons, commas, etc. In orderlto
on paper, however, some concrete syntax

representing abstract progranms.

This section contains the concrete
language.
{program>
::= <expression>
<expression>
::= <serial>
't <phrase>
<serial>
t:= <serial> ; <phrase>
{ <serial> ;A<labe1 place>
i <seria1$ <completer> <phrase>
| <phrase> ; <phrase>
| <phrase> ; <label place>
{ <phrase> <completer> <phrase>
<label definition>

1:= . <identifier> :

one discusses semantics:
verbiage about positions
be able to write programs

mnust be selectad for

syntax of the simplé

<completer>

[
- & -

<phtase>

. -
. o

<unit>

{ <declaration>
<declaration>

1:= let <identifier> = <unit>
<unit>

HEES <$econdary>

| <assignment>

| <link setting>-
<assignment>

::= <primary> := <unit>
<link setting)l

::= <primary> setlink <unit$
<secondary>

::= Lprimary>

| <dereferencin§$

| <delinking>

{ <go to>

{ <call>
<dereferencing>

1 := val <secondary>

<delinking>

::= delink <secondary>
<go to>
1:= go <identifier>
<call>
::= <primary> <actual parameters>
¢actual parameters>
::= (<unit list>)
L)
<unit list>
::= <unit>
| <unit list> , <unit>
<primary>
::= <conditional>
{ <loop>
| <denotation>
| <closure>
| <identifier>
| <generator>.
<conditional>
::= if <expression> then <expression> else <expression> fi
<loop>

::= while <expression> do <expression> od

<denotation>‘

::=‘<boolean denotation>
| <routine denotation>

<boolean denotation>

e e e e wr

<routine denotation>
= (gggg <parameters> : <unit>)
<pafameters> | ‘ ’
2= <emptf> |
| (<parameter list>)
<Kparameter list>
::= <identifier>
| <parameter list> , <identifier>
<closure>
::= (<expression>)
<generator>

1:1= gen

2.3 The state of the machine.

The semantics of the simple programming language will be
aescribed bj specifying.its interpretation by an abstract machine
[Landin 1, Lucas 1]. This section describes the architecture of
the abstract machine. The semantics is described in sections

2.9'*‘1' X'_- 1'..0,11;

When a program is being executed, the machine passes through
a succession of states, each determined by the previous state and
the program. In this section, we aescribe the state of the
abstract machine. The state of the machine, as deséribed below,

does not include control structure; that is handled.separately.

A state has
a stack of levels,
a collection of values (which contains all the values
contained in all parts of the state), and
tvwo mappings,,éalled trefer!' and 'link', from a subset of

the collection of values into the collection of values.

Each level corresponds to a procedure currently being
executed, and contains its parameters, local and nonlocal

identifiers, and other information.

trefer' and 'link' model the two fields of a variable, and

will be described presently.

; level -has

a stack of values (commonly called the stack of
compiler-generated temporaries), and
an environment.
An environment is a set of pairs, pairing identifiers with

values.

The environment holds the values of local and nonlocal
jdentifiers. The set of pairs can be considered as a mapping
which maps each identifier to its value. An identifier is said to

tpossess! its value.
p

We shall often speak of fthe top of the stack', meaning the

top of the value stack at the top of the level stack.

A value is
the undefined value, or
a reference value, or
a routine value, or
a boolean value, or

a jump.

The undefined value is used whenever a value has not yet
been provided; for example, newly created variables refer to the

undéfined value.

Reference values have been provided in the simple language

in order to nodel both the names’(references) of ALGOL 68 and the

two-field cells of LISP. For the ALGOL 68 analogue, one can
consider 'refer' to model the mapping that maps a vériable onto
its current value, or maps a pointer onto the value it points to.
For the LISP analogue, the trefer' and 'link' mappings model the

mappings ‘'car' and ‘'cdr’.

A reference value may refer and/or link to a value.

In the rest of this thesis, we shall often discuss the
'refer' mapping only, since the '1ink' mapping is entirely
analogous.

A routine value has o
a routine denotation, and

~an environment.

The routine denotation contains the code to be executed when
the procedure is called, and the environment associates the

nonlocal identifiers with their values.

A jump has

a label.

When a go to statement is eiecuted, it leaves a special kind

of value, a jump, on the stack.

This section contains a number of examples intended to help

explicate some of the technical terms used in this thesis.

2.4.1 Straight line code.

We shall consider the following program:

This program{is similar to the one in section 1.6. Its
execution is just‘like that in section 1.6, except that "true" is
used instead of "6", and "false" instead of "5". Here is é
picture of the state of the abstract machine at'the moment when
both operands of the assignment 'yy := val xx' have been

executed, but the assignment itself has not been performed.

enVifonrhen*'_;_f

xXx =

yy:.

N

| s&Qxck'cAZ;Qaiuésf
top

P

N d
s
—_l M

1

i bottom

L "o

Fig 2.4.1(1)

On the stack have been placed, in order, the

igg; xx' of the assignment,

of the assignment. All that
the assignment is to copy a

destination, and to replace

and the value of

remains to do in
pointer into the

the top‘tuo valu

valﬁe of the source
the'destinatién tyy!
order to complete‘
first field of the

es on the stack by

the value of the assignment (which is the destination), thus:

£

environment | o S
o . o
- .

e Dk -
Lo Q
s*ack‘oc tnvaiues

W T e

i bottom @——
Loy L

Fig 2.4.1(2)

According to the rTules for analysis, mstate sets are
prefixed and postfixed to each phrase in the program, in the

places indicated by the pillows below:

o (=
alet xx = =genss;
saXXe = mdehes;
anval aXxsm 3= struems;
alet yy = eden=a;
emyye := esVal eXXexx;
enval wxxem (= wfalsesa;
RXXm

®)a

Mstates are compile-time objects which contain information

known to the compiler about run-time machine states. The formal

definition of mstates is given in section 2.5.

For obvious reasons, all of these msiates will not be drawn.
Instead, let us examine one of them, namely, that indicated by
the lozenge below:

weyyno = syval sXXsas;

In an example és simple as tﬁis one, each mstate set has
only one mstate. Because the progranm is‘so simplé, everything
about it can easily be discovered by the analyser. The picture of
an mstate will be identical to that of thes state, except for the
prefix 'm'. Here is the mstate (at the lozenge) that represents

the machine state:

menvi ron merﬂ‘

Xx= ‘ongg\\ » __7‘ | } ; ;
we=)
| ’ ek\\\\\\\\" d/”—’—-f—s\E?Lc .?“

mstack of mva lues \ '

dop .0*“-..“ %
bottom ©- :

Fig 2.4.1(3)
*xx' and ;yy' are identifiers, which mpossess two mvalues. The

mvalue mpossessed by 'xx' is an mvariable, and mrefers to another

mva

riable, which mrefers to the mvalue *true'.

The parts of the mstate represent the corresponding parts of

the machine state in figure 2.4.1(1) .

20‘"-2 A .]:.QQE'

1ist t'list? for a cell whose val field does not contain ‘true'.
When‘one is found, the previous cell in the list is returned in
the variable 'v' as result. There must be at least one such cell
for the routine to terminate. If the first cell is the one found,
a new cell must be created to serve as previous cell. In

addition, all cells before the one found have their ‘'val' fields

set to 'false'.

(proc (list, v):

A

-

et current = gen;

o

et previous = gen;

{4

et newcell = gen;
newcell := false; newcell linkset

previous := mnewcell;

current := list;

previous := val current;

current := lipk val current

The purpose of the following routine is to search the linked

list;

The following mstate is the only one in the mstate set

prefixed to the while statement:

I
mstack o :
. ‘ n : s f
{empty) e T
' //" o SR S d :
, 2 |
“tnenvivonment” 17
ICurmr\"‘ : 13 — ‘ ','.'.6...1...-'1.1:,.
previouvs /ﬂ"“&lse emd o g
neweell | ‘

Fig 2.4.2(1)

In this mstate, two mvalues represent the variable 'list'.
The analyser is unfortunately too stupid to recognize that they
repreéent the same variable., Fortunately, it knows that it is too
stupid, and therefore the two mvalues are nonindividual. This is
indicated by the éotted lines. Each mvalue has a history‘beside
it; only the nonindividual mvalues in this mstate have a
nontrivial history, héwever. This history consists of a single
track. This single track has a start, 'list', and the empty

sequence of operators.

list

Lomere=———— 4 ltewm==--d
operators start
Lerr - e e cem oo - J

track ,
Lo o ot o o or o o e e]
history

The history indicates that the mvalue may represent, at run
time, é value which is possessed by the nonlocal identifier
t1ist'. Notice that the other mvalues have no histories; their
origins are pﬁrely local. Sincé histories are used by the
analyser only for the discovery of the nonlocal effects of a

procedure, there is no point in providing any history.

After computing mstate sets for all places in the program up
to the start of the loop, the analyser is faced with a problenm:
- two paths of control co#verge. It appears that it cannot £ind the
mstate set to préfix to the condition of the loop without knowing
the mstate sets along both of these paths. Furthermore, the
nstate sets from the path of control from the end of the loop

will not be known until the entire loop has been analysed.
The solution used is this:

The analyser blithely ignores the extra path of control
until it has an nstate set for it. When it finds one, the
analyser performs the analysis of the loop again. If this causes
the mstate set on the extra path to change, it performs it yet

again. Iteration continues until the mstate sets cease to chénge.

Therefore, as a first try, the mstate prefixed to the

condition is the same as that prefixed to the loop, the ome in

figure 2.4.2(1).

Mstate sets are then computed for the rest of the loop,

giving the following for the end of the body of the loop:

mstack

{one en}fy>' a\\kﬁ'
7*’

i 24

Q

o
L
22 25
s
L

menv ronmen"’ / og® - Lo
? 23 ‘ 26 I
{ current e'////, 2o -~ S

\.

o false | R U RS |

?rev;ous
hevwcell

Fig 2.4.2(2)

Notice the history of mvalue 24:

delink list
L-; -------- 4 L===J
sequence start
with only

one operator

The *delink' results from delinking the o0ld value of 'current' to

obtain a new one.

This mstate must now be used in constructing a new nstate

~ get for the start of the loop. The new mstate set is computed

using an algorithm called 'merging', which is defined precisely
in section 2.10. 'Merging' is the construction, given two or more
'original'Amstafes, of a new mstate that can represeﬁt all the
nachine states that either of the‘original mstates can. In this
example, the mstates merged are the one in figure 2.4.2(2) after
one entry has been removed from its mstack, and the one in figure

2.4.2(1) . The resulting merger has one mstate:

rns+nckli ;'f o | ' : P
 Lemptr) ' Al -t
o A "L d = dddlink st

3% A |

menyirenment 1.3 ;| L
i current §3L - S L
- Ty - 0T

newcell : p”’k, ' L :

;" } : !

Fig 2.4.2(3)
Mvalues in the old and new nstates correspond in the following

manner:

from: Fig. 2.4.2(1) Fig 2.4.2(2) to: Fig 2.4.2(3)

1 C 21 31

12 22) 32

13 : 23,25 | 33

15 24 | 34

16 ‘ 26 absent

chis merging causes the following effect to be placed in the

effects directory of the routine:

escape 1ist
Lem———— I 3 Le==J
action = segquence start

of operators

effect

(Effects are further discussed in the next exanmple. This effect
is mentioﬁed here for completeness.) This effect appears because

mvalues 16 and 26 have no corresponding mvalue in 2.4.2(3) (s=e

condition 2.10.11).

Using this new mstate, new mstates are constructed for all

the phrases in the loop, producing the following to suffix to the

body of the loop:

mstack

t

re-—- 1Ael:ﬂk (st

S” L o Jdeliak delink list
| r == T list
menviron ment / 7 " o o adelink list
current | o///// - o
previous . /"’L -t | -
newecel| -

Fig 2.4.2(4)
The history of mvalue 45 has two tracks:
delink list
delink delink list

Merging this new mstate (after deleting the mstack entry) with

the one prefixed to the loop (figure 2.4.2(1)), we get:

[° === (st .
> - B delink List :
b = =delink delink List

D

o

f : ! l : i '1

L S T
‘ . PR H i) - |. [
" e —— ‘ : 5 . i .

.

]
|
. o . i : e
previous / T
neweell ‘ ' : S

Fig 2.4.2(5)
Exéept for the history of mvalue 54, this is remarkably similar
to 2.4.2(3). It is plain that thelahalyser could ccntinue
" forever, merely adding another track to’the history of mvalue 54
each time around the loop. Instead, it takes spécial measures,
and sooner or later makes the giant leap to an infinite history.
How this is done is described in Chapter 3. The history becomes
the regular language defined by the regular expression

delipk * list
The history is the infinite set of tracks:
list

delink list

s s e s e S

delink delink delink list

2.4.3 Effects

Let us discuss one more matte; regarding this procedure. The
procedure has nonlocal effects, namely, setting the fields of thé
linked list to false (strictly, speaking, it also causes the
anaiyser’to forget a variable. This is also an effect). Knowledge
of these side effects must be a#aildble_to the analyser when it

‘analyses any program that calls this procedure.

This is accomplished by an"effects.directory', which
summarizes the nonlocal effects of the procedure. These include
straightfofward effeqts,.such as assignment and linksetting, énd
also subtler ones, such as 'escaping'. 'Escaping' is, strictly
speaking, an artifact of the analysis algorithm. An effect that
announces that some variable escapes is a warning to the analyser
that it can no longer‘tell when that variable is used. Mvariables

representing such variables are called fnonindividual'.

To describe an'effect, it is necessary to specify what is
done, and what it is done to. Wha£ is done is specified by the
taction' of an effect, which is 'set!, ‘'setlink', or ‘escape’.
What it is doﬁe to is specified by a ‘'track'. This track
identifies the object of the action by giving an algorithm by

which the object may be found. This algorithnm is a sequence of

operations (each of which is 'dereference' or ‘'delink!') applied

to some identifier.

such tracks are obtained from the history of the mvalue to

which the action is performed. This history contains'a'éomplete
record of all defeferencing and delinking used within the
procedure to reach the value affected. Sigce the procedure that
performs the action could locate the value by a séquence-of
operations, so can the caller of thé-procedure, aﬁd therefore the
analyser can:use'the track to find the value when it is analysing

the call to the procedure.

Let us reéonsider the routine of section 2.&?2. Its effects
arise from three causes:
1. An escape results from merging, asAalteady‘mentioned in
section 2.4.2.
2. A class of §§§ effects results from the assignment
val val current := false.
3. The effect tset v' results from the assignment

v := val previous.

¢

Let us examine the second cause.

The mvalue that represents the destination 'val val current!

of the assignment is:

Co
et List
r-T , _] delink . \\.5’\7

L—— -—-..._- ._lde\m\: delu\k ly'&'_&

‘
-

i

Fig 2.4.2(6)

Since the variable it represents is assigned to, we obtain

the effects:

set list

set delink list:

set delink delink list

This can be summarized finitely as

set delink* list

Thus, the effects of the routine are the following:

escape list
set delink * list

set v

| | |
i .

We shall now consider a program that

section 2.4.2: -

et
Te]

o 1o
o
I

tet

1a
o
=]

(list, v):

let current = dgen;
let previous = gen;

let newcell = gen;

routine of

calls the

newcell := false; newcell lipkset list;

previous := newcell;
current := list;
while val val current

do val current := false;

o ——— —————

et
Q
i

b 15
e+
-
"
la 1o
io
i

w
l
lct
i
le
o
-
=3
”e
n

p(a, w))

This program constructs a linked list to pass to ‘pt, The
mstate set postfixed to the 'p' in the call corresponds to the
moment of execution affer‘the pardmeters and the function have
been executed, but just before the routine is actually invoked.

The mstate is:

rogkne with
effects:
escape List

P e
T | setdelink® st |
B
v é‘
Pl

Fig 2.4.4(1)

To compute the mstate postfixed to the call, we must apply
the effects of 'p'. These were

set v

escape list

'§eg list

set delipk list

set delink delink list

Let us consider the effects with action 'set!' first.

Consider 'set v'. 'v! is a formal parameter, which
corresponds to the actual parameter 'w'. 'w' mpossesses an mvalue
which will represent the variable to which 'p' may assign a

value. This mvalue acquires a 'set' mark (see figure 2.4.4(2)).

rThe 'set' mark will indicate that the value represented by the

pvalue may be assigned to.

similarly, 'list' corresponds to 'a', and so the mvalue

ppossessed by 'a' acquires a 'set' mark.

The effect 'set delink 1! tequires the following. One starts

,ﬁith the mvalue represented by 'list' (because of the 'list'),

this mvalue is the one which acquires the 'set' mark.

The effect 'set delink delink 1' requires the following. One

_starts with the mvaiue représented by 'list' (because of the
'1ist'), one finds the mvalue it mlinks to (because of the
‘delink'), one finds the mvalue it mlinks to (because of the
*delink'), and this mvalue is the one which acquires the 'set!

nark.

. e e
4

This infinite sequence of effects would seem to require an
infinite amount of analysis. However, sooner or later, there are
no more mvalues left in the mlinked list for the sequence of

delinks to be used on, and then the analyser can stop.

Furthermore, the effect 'escape list ' causes the mvalue

mpossessed by 'a' to acquire an ‘escape' mark.

m¥a’i’§ l/

boblom o)

/ routine with

meﬂv\rOnmén+ / Clects:
. .oK L. / €scape list :
{ ..L.:- | set delink™ list
| ¢ . / setv

d } i e

w. . e

P. @ ® R

Fig 2.4.4(2)

Now that the necessary mvalues have been located, the

actions are performed. Each 'set'! causes the 'yal' fields to be

forgotten:
T ——
ms'!'ag,k o 0//""
S
bettom '
// ° rou}!ne‘ with o
menyironment Z// : effects ' ;i“
a . escape list
b o 4/-’ set delinl® list
¢ . | 7 set v
d Rl
. P Ll e ,

Fig 2.4.4(3)

Fach 'escape' causes the mvalue to cease to be individual,

ca

causes any mvalues formerly mlinked to or nreferred to also to

escape.

uses it no longer to mlink or mrefer to other mvalues, and

/—f""
r—---e

—

, o s
e G

| '“Z/* I
=

mstack ¢
fop !
bottom

/?e”l;-_a

et ————

- £ oon o ?
-
]

vouline with

effects

| escape list

st delink™® list
set v

Fig 2.4.04 (4)

After deleting the mstack entries corresponding to the parameters

and *'p', we have the mstate of the mstate set postfixed to the

call. '

.

2.5 Mstate sets.

- The analysis algbrithm presented in this thesis attaches to
each point in the program text an mstate set, which is a partial
picture of the state of the abstra&t_machine. Before describing
the algorithm, it is necessary to define mstate sets in a
rigorous manner, not merely in the informal manner of Chapter 1.
Thé cdrrespondence between mstate sets and states is defined in

section 2.6.

An mstate is a (partial) descriptidn of that.part of £he
state of the machihe accessible from a Single level. It thus
contains representatives for some values, for the local part of
the environment, and for the temporaries stack. Furthermore, it
keeps records, called histories, of the means ﬁhereby these

represented values might have been obtained.

An mstate set consists of a number of 'mstatest.

~An mstate consists of

a collection of mvalues,

an mstack, which is a‘stack of mvalues,

an menvironment, which maps identifiers into the collection
of mvalues, and

a predicate, 'individual', specifying which mvalues of fype

reference are individual.

85

For the meaning of individuality, see section 1.4. Mvalues
,represehting values freshly created by generators ate individual.
The analyser attempts to keep as many mvalues as possible

individual.

An mvalue consists of
| a history, and
a type, which may be t*boolean', *'jump', 'routine',
'reference', or 'unknownt.

A history is a set of 'tracks'.

A history describes all the nonlocal ways that a
program might be considered to arrive at a value
represented by am mvalue. Each track describes one of

these ways.

A track has
a start, which is an identifier, and
a sequence of operations, each of which must be 'link(or

‘val'.

The program,‘in reaching a value, might have
started with the 'start!', and applied each of the

operations in order, until it reached the value.

A boolean mvalue may {(but need not) have one of the attributes

g\:{m"ﬁtm,,

86

Ytrue' or 'falset.

-

If it has neither attribute, it indicates that the
analyser cannot discern whether the mvalue represents

the run-time value 'true' or 'false'.
4 jump mvalue has a label (the jump target).

An mvalue of type 'routine' has an effects directory (see below).
This will describe the possible effects of the routine value

it represents.

If an mvalue of type 'reference' is not null and is

individual, then it may 'mrefer' or 'mlink' to some mvalue.

An unknown nvalue is used when nothing is known about the

value it represents.

An effects directory is a set of effects.

An effect consists of
a track, and

an action, which may be 'set' or 'escape!'.

The difference between an effects directory and a history is
these actions. 'Set' ('linkset') means that the procedure can

assign (linkset) to the variable at the end of the track.

87

tEscape' means that the procedure can perform some deed that
pakes it impossible for the analyser to continue treating the

vyalue as individual.

Tracks might be consideréd as the footprints left in the
data structure by the program in reaching a value. Hdwever,
instead of rigorously adding overhead to the run—timé system to
maintain tracks; they are computed,as well as is possible at
compile time. Thus, a track becomes a way, starting from the
tstart' and applying thé operations in order, that the analyser
thinks the run-time machine might arrive at a value represented

by an mvalue.

Tracks are written on paper in the notation usually used fér
a sequence of unary prefix operatorsAapplied to an operand. The
operators are wfitten first, in reverse order, followed by the
operand. We shall speak of the %first?! and ‘last' operators in a
track in the order of application, not the order written. Thus,

the first (applied) operator will be the textually last one.

Example: 'val val i' might be a track of an mvalue representing a
value obtained by twice dereferencing the value possessed by
the identifier t'i‘.

Example: The following declaration is similar to one in section

1.10.

let p = (proc (X, ¥y):

——— — — ———

(let z = gen;

z = X3
val z := true;
= true))

yal y = LrLug

The destination, 'z','of the assignment 'z := x', has
an empty history. This is because it is a local variable,

and is not obtained in any nonlocal manner.

The destination of the néxt assignment‘will have the
- history 'x'. This indicates that the value of the
destination might be the value possessed by thé.parametér
tx', Note that the analyser is qabable of distinguishing
that 'x' is involved here, even though it is not explicitly
mentioned in thé statement. There will be an effect ;§§§(x)'
in the‘effects directory of p, since 'x' is (effectively)

the destination of an assignment.

The destination of the third assignment will have the
history tval y', since it is obtained by dereferencing the
value possessed by the parahéter~'y'. There will be an

effect 'set (val(y))' in the effects directory of p.

The effects directory of 'p' is
'set(x)!

*set(val(y))"'.

- 89

e Wy

2.6 Precise correspondence between mstate sets and states.

2.6.1 Specifications.

The mstate set can be cbnsidéred to be a statement about the
state. This section describes the precise interpretation of the
mstate set. The proofs in the latter part of this chapter will
establish inductively that the mstate set associated with a point
in the program will be a true statement each time that control

passes that point in the program.

At any instant during ?rogram éxecution, the'program will
have one or more levels on its level stack. Each level
cbrresponds to a procédure being executed ({except the bottom
level, which corresponds to the‘so—called main program). Each
point of program execution (one at each level) will have a
tcurrent' mstate set attached to it. Since an mstate describes
the state from the viewpoint of a single level, we require that
each mstate set be a correct description at its own levél, i.e.,

~using the environment and stack that belongs to its level.

There may be ﬁany mstates in an mstate set, each a possible
descriptibn of some level of the state. Because of practical
limitations that will be discusged in Chapter 3, however, we
shall have at moét one msfate for the normal flow of control, and
at most one for each label. We require that at least one mstate

(the one corresponding to the flow of control) hold at any time.

C e

91

An mstate set is correct at a level of a state iff at least

one of its constituent mstates is correct at that level of the

state.

An mstate is correct at a level iff the following conditions

hold:

1. There is a relation between>the mstack entries and
nvalues of the mstate, and the stack entries and values of

the state. We denote this relation by "represents".

2. The i-th stack entty of the mstack of mvalues
représents the i-th stack entry of the stack of values at

the level.

3. For every mvalue v there exists a value w such that

v represents w.

4. If v is an individual mvalue, and v represents u and

w, then u = W .

Let the mvalue v represent the value v!', and the mvalue w

represent the value w'. Then:

5. If v is individual, and " is an other mvalue, then

vt # W',
6. If v mrefers to w, then v' refers to w'.

7. If v mlinks to w, then v' links to w'.

E

92

8. If v is of type boolean (jump, routine, reference),

then v' is of type boolean (jump, routine, reference).
9. If v is true, then v' is true.
10. If v is false, then v' is false.

11. If v is a jump mvalue, then v' is a jump with the

same label.

12. If v is of type ‘*routine', then v' consists of a
routine denotation and an environment. The effects directory
of v must contain the effects directory of the routine

denotation.

Note: We shall often speak of an individual or nonindividual
value, meaning a value represented or not represented by an

individual mvalue (see section 1.4).

e,

93

(let a = gen;
let b = gen;
let p = (proc: a := (val b
(1) === e e e e > *
}) s
b := gen;
(2) —==-==-=mmmee- > %
p{)
(3) ===memmmmmmm - > %
:)

S . v e . e e e

The state of the abstract machine when execution reaches

point (1) during execution of the call p{() is:

. .bop ‘G‘Jel . ' l . V
L stack : ' o o -
p i . o
5 . ; o
i l eavi ronme nt o
il B M o
boHor_n léve' Z
. stack |

. ;-. P

L l; grwironmiy

| :) ; !

P N Y ;

| b a”/// .1 The ‘Link' Ficld is
T op / o

rowhing v §

|

AN

of no interest on

Ahis example; therelors,

o s nwot drawn.

94

Let us examine how this state arises. Execution of the
prograr is started. The progranm contains local declarations of a,
b, and p. The identifiers a and b are each made to possess
freshly created variables; hence, we have possession pointers
from a and b on the bottom level fo reference values. The boxes
in the diagram for these reference values can be considered as.
pieceé of storage, and a and b possess pointers (these pointers
are of course identified with theApieces of storage as usual).
tp' is made to possess a routine. The body of 'pf is ﬁot executed.
at this time. The variable possessed by b is then assigned
another freshly created variable, and so the piece of storage
possessed by b acquires a pointer to yet anothervpiece of

storage.

The routine p is then called with no parameters. This
produces the top level. The environment of the routine is that of
the»bottom level; this is copied and becomeé the environment at
the t&p level also. Since p contains no local identifiers itself,
1O new identifiers are added at the top level. At the moment at
wvhich the snapshot is taken, execution is at point (1) in the
middle of an assignment. At intermediate steps in executing the
assignment, the variable possessed by b has been Stacked, and

then this variable has been dereferenced.

95

2.6.2.2 Apalysis.

In the following diagrams, boxes will representvmValﬁes. A
box will contain 'It on the left if its mvalue is.iﬂdividual. In
the centre of the box is the type of the mValué, and on the right

is the history.

The following mstates might be attached at points (1), (2),

and (3) in the program'tekt.

S
prese .

P T TR T T B T T T 0 TR VT TNt . im0y

96

(")

mstack

o

; ‘ : e unknown

<
o
o

|

meny (vonment

Cempty)

Since procedhres are analysed conpletely indepéndently, the
identifiers global to p do noi appear in the menvironment.
However, one mvariable does appear on the mstack, representing
the corresponding variable on the stack of the top level. It is

i nonindividual here, since its origin lies outside the procedure,
and therefore nothing is known about it. Its history, indicated
at the right of the box, shows that the it was obtained by

dereferencing the mvariable possessed by b.

s g o sl R e T T

ST

R BT R 1 g

(2)

o ' — : !
: S
mer\vivo":’y | T lreference o
o 5 '
b : T |reference v
o o
| | ; [
' ' N i 4
Cmstack | | T | reference |
: i . : '
Sempty) | | ¥
) R | .
e . T
! i | i
_ o |

The mstack is empty

statements: there are no

because point (2) is between two

temporaries when execution is here.

97

Ty,

ezt

98

(3)

} . . b

|-
' T jreference S

1 . menvironment R

hE reference '

.} b) o= ' o I . j.i

. L P ' \ .A,.!.,.
o ‘ - : vouting : l’
. ' !
Cmeback | []

\ ’ void

These two mstates at points (2) and (3)'illuStrate the loss

of information caused by a procedure call.

Within p, the value obtained by executing 'val b' is
assigned to 'a'. Because procedures are analysed independently,

when the analyser is analysing the procedure 'p', it does not

know about ‘a', which is declared outside p. Thus ‘val b' is

assigned to a variable about which the analyser knows nothing.

This causes the effect 'escape val b' to be in the effects

directory of p, because the analyser can no longer tell which
objects will refer td the value 'val b' after a call to p. (e.g.
at (3)) The track 'val b' allows the analyser to find the mvalue
affected at point (2), and the '‘escape' indicates that the nvalue
is no longer individual. The mstate at point (3) reflects this

Change. Another effect, 'set a', which indicates that 'a' was

TR

[

99

aséigned to; was also logged, but it was of little imp§rtance‘in
this example. However, this‘effect'would be of interest if the
mvariable mpossessed by 'a' had mreferred to some'otﬁer
mvariable. The mreference ffom ta' to this other mvalue would

have had to be deleted.

g

T Py
s T T R T 8 1T

100

2.7 OQutline of the complete analysis alqorlthm, consistency

conditions, apd proof.

The analysis algorithm constructs, by iteration, a set of
nstate sets, one mstate set fdr the‘beginning and one mstate set
for the end of eaéh expression. The mstate set attached before an
expression will be called its tprefixed! istate, and the omne
attached after an expression will be called its 'postflxed'
nstate. The prefixed mstate must correctly represent the state of
the machine whenever executiOn of the expression is commenced,
and the postfixed mstate must do so yheﬁever execution of the
expession is terminéted. The algorithm also constructs, by
iteration, an effects direétory for each routine‘dgnotation
(i.e., the definitior of a routine). The iteration terminates
when the mstate sets and effects directories satisfy a certain
set of conditions, the 'consistency conditions'. It is these
consistency conditions that will guarantee the correctness of the

mstate sets obtained by the algorithm.

The consistency conditions are stated in sections 2.9.x.2,
for x from 1 to 11. The methods used to ensure termination of the

analysis are set forth in Chapter 3.

The consistency conditions are relations that must be
satisfied on the prefixed and postfixed mstate sets. MNost
consistency conditions are expressed as algorithms for computing

the postfixed mstate set from the prefixed nstate set.

necessary

analysis.

necessary

practical

execution
one state
execution
(partial)
execution
attached.
proofs of

execution

e

s = :

One thing must be kept in mind throughout the ensuing
discussion. It is always possible to discard information. Doing

this is simply increasing one's ignorance. It may indeed be

to discard information to ensure termination of the

The analyser must not be swamped by infinite amounts of

information. This will occasionally lead to the blatant dropping
of mvalues from the mstate. However, when representing an

infinite class of machine states of unknown complexity, it is

to drop information in order to have a finite and

representation.

The proof of correctness of the consistency conditions takes
the following form. Sugpose that (somehow) mstaté sets have been
attached that satisfy the consistency conditions. We must show
that these mstate sets correctly describe run-time states.

Consider execution of the program. This involves a sequence of

steps, each of which brings the abstract machine from
to another; It is proved by induction on the number of
steps so far executed that each mstate set is a correct
description the state of the machine each time

passes the point in the program where the mstate set is
The proof consists of a number of theorems. In the
these theorems, the preceding theorems are used for

steps up to and including the 'curreat! one, and any

theorem, even a later one, may be used for execution steps

102

preceding the 'current' one. The circularity here is only

apparent. It is precisely the apparent circularity of any proof

by induction.

Bt

2.8 Preliminaries.

This section contains a number of explanations of concepts

that are needed in later sectionmns.

The relations 'passing through', 'quickly reaches', and
tyltimately reaches! are used in applying effects directories to |
the prefixed nmstate set of a procedure call in order to construct

the postfixed mstate set. An effects directory describes an

effect by specifying a path through run-time data'structure and
an action to be performed on the mvalue at the end of the path
(The action 'escape' will of course have to be performed on the
nvalue representing that value). A path is specified by giving a
starting point and a sequence of operators to be applied, one
after the other, to the starting pcint. These relations are used
in following thése'paths through the mstate(s) at the point of

call.

In Example 2.6.2.2, to apply the effect ‘escape val b' to

the mstate at point (2), the mvalue indicated by 'val b' had
first to be found. This was done by starting at the mvalue
mpossessed by 'b', and applying the operator 'val' to it. The
action 'escape! was then applied to the mvalue at the end of the

path by making it nonindividual.

\W“"’T‘Fam

104

2.8.1 Passing through.

The relation 'passing through' is used to app;y a séquence
of_the operations 'val!' and ‘*delink' to an mstate to find where
the sequence leads. The operations are applied starting at some
mvalue, one after the other, to follow a path through the mstate.
At any moment during this application, some of these operationé

nay be *left over', i.e., not yet applied.

A sequeﬁce of o?erators'T, applied at an mvalue A, passes
through the m?alue B with a sequence of operators S left over,
iff

. A = Band S = T, or

2. A is a reference mvalue, the first (see end of 2.5)

operator of T is val, A mrefers to C, and the sequence
of operators T' obtained from T by deleting its first
operator (T = T' val), applied at C, passes through B
with S left over, or

3. A is a reference mvalue, the first operator of T is

—— s e,

over.

A track T (which has a start and a sequence of operators),
starting with the identifier A passes through the mvalue B with S

left over iff its sequence of operators, applied at the mvalue

i
T

105

mpossessed by A, passes through B with S left over.

A history passes through an mvalue iff at least one of its

tracks does.

2.8.2 Quickly reaches.

tPassing through' does not iequire that one éo to the very
end of the path. 'Quickly reaches' follows the path 5passed
through! as far as possible within one mstate. Note that it may
not be possible to follow the entire sequence‘of operators in one
nstate, since the operators may‘lead to values not all

represented at a single level.

A track T quickly reaches the mvaiue A with S left over iff
it passes through A with S left over, and either S is empty, 6r
the first operator of S is 'zg;; and A does not mrefer to any
mvalue, or the first operator of S is *'delink' and A does not

rlink to any mvalue.

A history guickly reaches an mvalue iff at least one of its

tracks does.

L.

106

2.8.3 Ultimately reaches.

'Ultimately reaches! is meaningful only at execution time.

It follows paths where *quickly reaches!' cannot -- from one

mstate at one level of the stack to another mstate at another

level of the stack. The stack of levels exists only at run tinme.

The significance of !tltimately reaches' lies in proposition -

2.11.6. Since tracks are used in describing effects, it is

necessary to know that they suffice for accessing mvalues

representing mvalues at other levels. Proposition 2.11.6

establishes this.

A track T ultimately reaches (or, more briefly, ‘reachest')

the mvalue B starting at some level I iff at that level,

1. T guickly reaches B with nothing left over, or

2. T quickly reaches C with S left over (S may be empty or

nonenpty), the history of C quiékly reaches D on the
level below 1L, and the history H' reaches B, where H!
is the history S D= { SR | R is a‘track in the
history of D }, or

quickly reaches C with Q 1left over, one track 07T of
the history of C starts with a formal parametef
identifier I, and there exists some track P J in the
history of the corresponding actual parameter D such

that Q O P J reaches B, or

4. the start of T is not in the menvironment of L, and T

107

ultimately reacles B starting at the level below L.

A history (ultimately) reaches an mvalue iff-at least one of

its tracks does.

An mvalue reaches another mvalue iff its history does,

starting at the level of the first mvalue.

For mvalues A, B, and C, if A reaches B and B reaches C,

then A reaches C.

2.8.5 Escaping.

In the rest of this thesis, it will often be stated that
some mvalue 'escapes'. An mvalue escapes when it is no longer

clear to the analyser which things might refer to or possess the

value the mvalue represents.

When an mvalue escapes, any other mvalue it mrefers to also
escapes. If the original mvalue is a reference mvalue, it is made
nonindividual and is made to mrefer to the 'unknown! mvalue. Each
track in the original m?alue's history that is nonlocal to the
smallest procedure P containiﬁg the point of‘the program being
analysed must be in the effects directory of P with the operator

tescape!.

108

2.8.6 Garbage collection.

Occasionally, there may arise an mvalue in an mstate which
is useless: it,cahnot be reached from the menvironment or from
the mstack. One is tempted simply to discard such mvalues.
Indeed, this Ean be done. If the mvalue is'individual, this
deletion need not even make the mvalue escape, because the value
it-représents must be simil;rly inaccessible, and so can have no

further efiect on execution.

Note also that it might well be efficient for a compiler to
compile explicit storage freeing for such values, and not leave

it to a run-time garbage collector.

2.8.7 popl, trues, falses, jumps, and unjumps.

The precise description of the analysis algorithm requires
several functions: ‘popl', 'trues', 'falses', 'Jjumps', and
*unjumps'. Their meaning will become more clear where they are

used in section 2.9.

Popt is a function from mstates to mstates. If M is a state,

pop1(ll) is M with the top entry removed from its nstack.

‘trues', *falses', 'jumps' and 'unjumps' are functions used
by the analyser from the set of mstate sets into the set of
mstate sets. Each has an mstate set as argument, and constructs a

new mstate set consisting of those mstates from the argument

R

N

pmstate set that satisfy a particular condition.

'Trues! selects those mstates on top of whose mstacks there
is an mvalue which might represent 'true', i.e., which is of type

thboolean' and does not have the attribute *'false'. .

tPalses' selects those mstates on top of whose mstacks there
is an mvalue which might represent 'false!; i.e., which is of

type 'boolean' and does not have the attribute ‘'true'.

tTrues' and 'falses' are used, for example, to select those
msttates which should appear at the start of the then part and of
the else part of a conditional from the postfixed mstate set of

the conditidn.

'Jupps' selects those mstates with a jump on top of their
mstacks. We say that such nstates are 'jumping' mstates (see

section 2.5).

'Unjumps' selects those mstates without a jump on top of

their mstacks. We say that such mstates are 'unjumping' mstates.

110

2.8.8 Merging.

Occasionally, paths of control flow together in a program.
This happens, for example,at the beginning bf the body of alloop,
and at the end of a conditional. When we need an mstate to placé
at this join; it will be constructed by 'merging! tﬁe nstates on
the various confluent paths. This is the operation introduced

intuitively in section 1.7. Precise specifications for merging

are stated in section 2.m. Further demands are made on merging in

Chapter 3. An algorithm for merging that satisfies all the

specifications and demands will be presented in Chapter 3.

111

2.9 Execution and analysis.

In this section appear the recursive rules for the execution

of a program. These rules define the actions of the abstract

machine. The consistency conditions, which are the rules for

analysis, are interleaved with the rules for execution. In most

cases, the correctness of the consistency conditions can be

readily seen by comparing them with the rules for execution. Just

as execution of an expression changes the abstract machine from

one state to another, the analysis of an expression constructs a

postfixed mstate from a prefixed mstate. In most cases, the

algorithm for analysis is obvious from the consistency

~conditions. Sometimes, a
the form of an algorithm

prefixed one.

For x from 1 to 12,
2.9.x.1, and analysis in

extra sections providing

consistency condition is even stated in

which computes a postfixed mstate from a

execution is described in sections
sections 2.9.x.2. There are occasional

further enlightenment.

-, y o

112

2.9.1 Jdentifiers.

——— o — AT— it v

Push the value paired with the identifier inm the environment
of the top level of the stack onto the value stack at the top

level of the stack.

If the value pushed onto the stack was the 'undefined!

value, then the program is incorrect.

o e Zaee e e s

To construct the postfixed mstate set of an identifier fron
the prefixed mstate set, perform the following steps on each

mstate:

Let I be the identifier.

1. If I is paired with an mvalue in the menvironment, push
this mvalue onto the mvalue stack, and we are done.

2. otherwise,‘if I is declared in a declaration whose actual
parameter is a routine denotation, create a new mvalue
of type 'routine' which consists of the effects
directory of the routine denotation, and go to step 4.

3. Otherwise, create a new nonindividual mvalue of type
consists of a single track whose start is I and which

has no operations.

oo,

4. Push this new mvalue onto the mvalue stack.

114

s e o e e e S o

- — e e ot e e s S

push a new individual value of type ref onto the top of thé

value stack at the top of the level stack.

To compute the postfixed mstate set from the prefixed mstate

set, perform the following operation on each mstate:

Push a new individual mvalue of type ref and empty history

ontc the mvalue stack.

LG

2-9-3-1
1.
2.

3.

] prefixed mstate set (then part)

£i)
Execution.

Execute the condition of the conditional.

Consider the value at the top of the stack.

If it is a jump, execution of the conditional is

conplete.
Otherwise, pop it from the stack.

If it was true, execute the then part.

6. If it was false, execute the else part.
7. If it was neither a jump, true, nor false, the progran
erroneous.
2.9.3.2 Analysis.

prefixed nstate set (condition) = prefixed mstate set (

conditional);

mstate set (conditiomn)))

*

prefixed nstate set (else clause) = popl (falses (

postfixed mstate set (condition)));

postfixed mstate set (conditional) = merge (

postfixed mstate set (then part),

postfixed mstate set (else part),

jumps (postfixed mstate set (condition))).

115

2.9.3 Conditionals (if condition then then part else else part

is

popl (trues (postfixed

116

2.9.4 Iterations: while condition do body.

2.9.4.1 Execution.

1. Execute the condition.

2. If the value at the top of the stack is false or a jump,
execution of,the iteration is complete.

3. therwise, pop this top value from the stack.

4. Execute the body.

5. If the value on the stack is a jump, execution is
complete,

6. Pop the top value from the staék;

7. Go back to step 1 and continue.

2.9.4.2 Apnalysis.
prefixed mstate set (condition) =
rerge (pop1l (unjumps (postfixed mstate set (body)
)).
prefixed mstate set (iteration));
prefixed mstate set (body) = popl (trues (postfixed
mstate set (comdition)));
postfixed mstate set (iteration) =
merge (jumps (postfixed mstate set (body)),

jumps (postfixed mstate set (condition)),

falses (postfixed mstate set (condition))).

e

D

117

2.8.5 Go to.

2.8.5.1 Execution.

Place a new value on the stack. This value is a jump. Its
label is the 1abel.from the go to statement. If the label

definition is outside any procedure now being executed, the

- program is erroneous.

e e s e s e S

The postfixed mstate set is obtained from the prefixed

mstate set by performing the following operations on each mstate:

Push a nev mvalue onto the stack. This mvalue is a jump. Its

label is the label from the go to statement.

o

118

2.9.6 Serials (blocks).

The complexity of this section is entirely because it is
necessary to mimic the behaviour of the program's go ig
structure. This section would be much simpler if no go to

statemnents were allowed.

2.9.6.0 Definitions.

We define several relations on the phrases of the serial.

A phrase is a ‘*‘terminal' phrase iff it is the last phrase of

the serial or is followed by a completer.

If and only if a phrase is not a terminal phrase, it has a
'natural successor!', the next phrase in the serial. For each
unjumping mstate in the postfixed mstate set of the given phrase,
we say that the next phrase 'succeeds' the given phrase 'by* that

nstate.

A phrase has a second phrase as 'forced successor' iff the
postfixed mstate set of the first phrase contains an mstate that
is a jump to the second phrase. The second phrase is said to
succeed the first phrase by that mstate. This second phrase will
be the target of some go to statement in the first phrase, and
the mstate will be the mstate associated with the path of control
through the go to statement. Such mstates must be merged into the

prefixed mstate set of the next phrase; we shall define this

119

presently.

A phrase has a second phrase as 'possible successor! iff it

has the second phrase as a natural or forced successor.

2.9.6.1

1.

Ezggézigg-

For each declaration of the serial, add to the
environment at the top level an identifier possessing
an undefined value.

Consider the first phrase of the éerial.

Execute the considered phrase.

If the top value on the stack is a jump, and its label is
defined in this'serial, then consider the phrase which
follows the label definition, delete the top value from
the stack, and go to s;ep 3.

Otherwise, if the top value on the stack is a jump, and
its label is not defined in this serial, delete the
environment pairs that were added in step 1, and
execution of the serial is complete.

Otherwise, if the top value‘on the stack is not a jump,
and the phrase is a terminal phrase, remove from the.
environment the pairs that were added in step 1, and
execution of the serial is complete.

Otherwise, if the top value on. the stack is not a jump,
and the phrase is‘not a terminal phrase, then consider

its natural successor instead, pop the top value fromn

pTE

120

the stack, and go to step 3.

2.9.6.2 Apalysis.

We obtain the postfixed mstate set of a serial in a nunmber

of stages.

First, to obktain the 'modified prefixed mstate set' of the
L serial, modify the prefixed mstate set by making the following

change to each mstate:

To the environment add pairs that pair each identifier

declared in the serial with the undefined mvalue.

Next, we obtain the prefixed and postfixed mstate sets of

the phrases in the serial.

If p is the first phrase,
prefixed mstate set(p) = merge (
nodified prefixed mstate set (serial),
popl(m), for every mstate m in the postfixed mstate set
of every phrase q of the serial, such that p
succeeds q by m)
If p is an other phrase,
prefixe& nstate set (p) = merge (
popl(m), for every mstate m in the postfixed mstate set
of every phrase q of the serial, such that p

succeeds q by m)

121

Next, the 'draft postfixed mstate set' of the serial is
obtained by merging the postfixed mstate sets of all the terminal
phrases, together with every mstate of any mstate set of any

phrase of the serial whose value is a jump outside the serial.

Finally, the postfixed mstate set of the serial is obtained
by deleting, for each mstate of the draft postfixed mstate set,

the environment entries corresponding to the declarations in the

serial.

et

b,
.,

122

2.9.7 Routine denotations.

e s s

Flace on the stack a new value, a routine value, which
consists of the routine denotation, and the top level on the

level stack.

Place on each mstack a new mvalue of type *routine!'! which

has the effects directory of the procedure denotation.

123

- S s i s e it G

1. Execute the actual parameters of the call, in order.

2. If the execution of any actual parameter leaves a routine
value on the stack, the program is incorrect.

3. Execute the function of the call. The value now on top of
the stack must be a routine value; otherwise, there is

4 program error. .

We now begin the construction of a new level for the level
stack. |
b. The environment in the routine value is considered. To
construct the new environment, we add £0‘a copy of the
considered énvironment new pairs identifying the formal
parameters with the values of the actual parameters;
5. A new level is placed on the level stack, containing an

empty value stack, and the new environment.

We have now constructed the new level. Next, the body of the
routine denotation is executed.
€. Execute the body of the routine dénotation.
7. Pop the value on the stack.
8. Pop the top level from the level stack.
9. Pop the value produced‘by execution of thé'function from
the stack.

10. Pop the values produced by execution of the actual

124

parameters'from the stack.
11. Place a void value onto the stack.

| 12. Execution of the call will now be completé.‘

-

125

If there are actual parameters,
the prefixed mstate set of the first actual parameter is the
prefixed mstate set of the call,
the prefixed mstate set of each actual parameter (other than
the first) is the postfixed mstate set of the previous
actual parameter;‘and
the prefixed mstate set of the function is the postfixed

nstate set of the last actual parameter.

"If there are no actual parameters,

the prefixed mstate set of the function is the prefix mstate

set of the call.

Analysing these actual parameters and the
function, one after the other, simply leaves mvalues
representing the values of the parameters and of the

function on the mstack.

The postfixed mstate set of the call is the postfixed mstate
set of the function after the following modifications have been

made to each nmstate:

Let F be the function part’of the call. Let E be the effects
directory of the mvalue left by F. Let P be the smallest routine

denotation containing the call.

126

A new environment is constructed, and used temporarily. It
consists of the current environment, with extra pairs associating
new identifiers which do not occur elsevhere in the program with
the mvalues placed on the mstack by the execution of the actual
parameters. A new effects directory E' is constructed from the
old effects directory E by replacing the formal parametérs by
these new identifiers. Thus the effects directory is translated
into the notation of the new environment. The change of names is
to prevent trouble with recursion, and is similar to the change
of names used in the ALGOL 60 Report for defining procedure

calling by the copy rule.

If a track of an effect in E' with action ¢ (either 'set' or
'‘escape') passes through an mvalue A with S left over (see

section 2.8), then:

1. For eack track K in the history of A a new effect Q

S R is placed in the effects directory of P.

2. If Q is 'set' and S is empty, then A is marked with

a 'set mark?®.

3. If Q is 'escape!' and S is empty, then A is marked

with an 'escape mark!'.
Fach mvalue with an escape mark escapes. ‘ '

Each mvalue mreferred to by an mvalue with a set mark

127

escapes.

Each mvalue with a set mark is made to mrefer to the

undefined mvalue.

128

2.9.8.3 Correlation.

When we correlate execution and analeis of procedure calls,
ﬁe imagine that this postfixed mstate set becomes the current
nstate set (see section 3.5.1) at the time that the new stéck
level is constructed. Having thrown away information acéording to
the effects at this time, we are sure that we need not do it
while the body of the routine denotation is being executed.
Several theorems are necessary to prove that the effects
directory provides correct information about the effects of
assignments. These theorems are stated and proved later, and aré
used in the proof of correctness .of the handling of assignments.
Thus, all we need be concerned with here is that the
representation of setting up the call, i.e., executing
parameters, etc., is correct. That our representative continues
to be correct during execution of the procedure body follows fron

the correct handling of each piece of code within the procedure

body.

S,
‘s

129

———— ot St b s e

-

Note that our procedures do not return function values. This
is to avoid the complexity of having yet another way for
procedures to affect their calling environment. Values can be

returned by éssignment to nonlocal variables.

et &%Mm

130

2.9.9 Assignment and link setting.

-

Only assignment will be spelled out here. Link setting is

entirely analogous.

2.9.9.1 Execution.

1. Execute the source of the assignment.

2. If the value on the stack is a routine value, the program
is incorrect.

3. Execute the destination of the assignment.

4. The value on the stack must be a nonnull reference value;
otherwise, the program is incorrect.

5. The value on the top of the stack is made to refer the
value second from the top of the stack.

6. The value on the top of the stack is considered.

7. The top two values are éopped from the stack.

8. The considered value is placed on the stack.

2.9.9.2 Analysis.
prefixed mstate set (destination) = prefixed mstate set (
assignment) ;
prefixed mstate set (source) = postfixed mstate set (
destination);
postfixed mstate set (assignment) = postfixed mstate set {
destination) with the following modifications:

Call the top and next to top mvalues on the mstack the

o7 “’”M

131

*mdestination' and *msource'.
if thé~mdestiﬂation is individual, make it mrefer to
the msource.
if thé msource is individual, but the mdestination is
not, the msource becomes nonindividudl, and an
effect 'escape' for every history of the msource
~must exist in the effects directory of the |
smallest routine denotation containing the
assignment.
£f the mdestination is not individual, there must be an
effect indicating it has been an assignment

target.

2.9.9.3 Conmentary.

The hard part of proving that the analysis of assignment is
correct is the proof that effects of the assignment on levels
other than the top level are properly handled. The proof appears

in section 2.12.

o

132

2.9.10 Dereferencing.

1. Execute the argument of the dereferencing.

2. If the value on top of the stack is not a reference
value, the program is incorrect.

3. If the value on top of the stack is the null reference,'
the program is incorrect.

L, 1f the value on top of the stack is thé undefined value,
the program is incorrect.

5. Otherﬁise, replace the value on top of ihe stack by the

value it refers to.

2.9.10.2 Analysis.

o o s e o e S

The prefixed mstate set of the argument of the dereferencing

is the prefixed mstate set of the dereferencing.

To construc£ the postfixed mstate set of the dereferencing
from the postfixed mstate set of the argument, replace the mvalue
on top of the mstack of each mstate in the following manner:

If it is individual, replace it by the mvalue it refers to. .

If it is nonindividual, replace it by a newly constructed

nonindividual mvalue, whose history is the history of

the original mvalue with the operation 'val' added.

g

133

2.9.10.3 Correlation.

-

The new (replacing) 'mvalue represents the new value which

replaces the previous value on the stack.

history (new value) = union (
old history (new value on stack) ,

'val' history (old value on stack)) .

If the mvalue was individual, the mvalue newly on the stack

represents the value newly on the stack just as it did before

they were placed on the stack.

"

2.9.11 Boolean denotation.

2.9.11.1 Execution.

If it is 'true' ('false'), place the value ftrue' ('false')
on the stack.
2.9.11.2 Rnalysis.

To construct the postfixed mstate set, place the boolean

mvalue 'true' ('false') on the mstack.

135

2.9.12 Declarations.

2.9.12.1 Execution.

To execute a declaration, perform the following steps:
1. EXeéute‘its actual parameter.
2. Add a new pair to the environment,lﬁairing the formal
~ parameter of the declaration (an identifier) with the
value on top of the stack.
3. Pop the top value from the value stack.

2.9.12.2 Analysis.

The prefixed mstate set of the actual parameter is the

prefixed mstate set of the declaration.

To obtain the postfixed mstate set of the declaration from
the postfixed mstate set of the actual pdrameter, perform the
following steps on each mstate:

1. 3dd a new pair to the environment, pairing the formal

parameter of the declaration (an identifier) with the
mvalue on top of the stack.

2. Pop the top value from the mvalue stack.

3
C T

o

o
T

Titrsom,

T e

136

2.10 Merging.

-

Let M1 arnd M2 be two mstates. We write the conditions for M3

to be a possibie result of merging M1 and M2:

There must exist surjective {(onto) mappings F1: S1->M3 and
F2: S2->M3 from subsets S1 and S2 of the sets of mvalues of N1

and M2.

(These mappihgs can be considered as identifying which new
mvalues in M3 are the *same!' as the old mvalues in M1 and M2. It

will be claimed in section 2.11.1 and proved in section 2.12.1

that if an mvalue V in S$1 represents some value V', then F1(V) in

M3 represents the same value V!'.)
These mappings must satisfy:

1) S1 and S2 include the mvalues on the environment and the

stack.

2) If Fi(vi) is individuwal, then Fi—1 (Fi(Vi)) has only one

element, Vi, and it is individual (i=1,2).
3) The history of Vi is a subset of the history of Fi(Vi).
4) If Fi(V) mrefers to Fi(W), then V mrefers to W.

5) If V is j-th from the top of the mstack, then Fi(V) is

j~th from the top of the mstack.

i

' 6) If V is npossessed by an identifier, then Fi (V) is

mpossessed by the same identifier.

7) If Fi(V) is boolean (true, false), then so is V.

8) If Fi(V) is of type ‘routine', then so is Vv, and its

effects directory includes that of V.
9) If Fi(V) is of type 'reference', then so is V.

10) If Fi(V) is not individual, but V is, then V has

escaped.

11) If V in Mi is not in the domain of Fi, then V has

escaped.

137

138

2.11 Theoren.

i it i e

This section contains the statement of the main theorem of
‘the thesis, that the consistency conditions ensure correctness of

analysis.

2.11.1 Part 1.

If the specifications of section 2.10 are met, and either H1

or M2 represents the state at the top level, then so does M3.

2.11.2 ‘p_-ég-.‘t“ 2.

If a variable V represented by an individual mvalue M at
level L is referred to by a variable W, then W is represented by
an individual mvalue N at level L or higher, and ¥ mrefers to

some mvalue M!' representing V.

state of abstract machine: W ==--> ¥V
representative at higher level: N =-~-> N?

representative at level L: M

139

2.11.3 Part 3.

A variable represented by an individual mvalue at some level

(1) not represented at any lower level,

(2) not represented by any other mvalue N at the‘same level,

-and

‘(3) not re?resented by an ipdividual mvalue at any higher

level.

2.11.4 Part &.

A variable V represented by an individual mvalue N is not

referred to by a variable W

(1) represented by a nonindividual mvalue at the same level,

or

(2) represented by any mvalue at any lower level, orC

(3) unrepresented by any mvalue.

140
2.11.5 Part 5.

A variable V represented by an mvariable with aihiétory
honlocal to some level L (i.e., one of the tracks of the history
starts with an identifier that is not locél to L) is not
represented by an individual mvalue at that level (nor, of
course, at any higher level).

2.11.6 Part 6.

If a variable V is represented by an individual nmvalue I,
but also by a nonindividual mvalue D (at a higher level L), then
a nonlocal track in the history of D ultimately reaches I. Here
nonlocal! meané 'not local to Lt; i.e. the track starts with an
identifier which is global to the body of the pfocedure of level

L.

Note: This proposition is the very heart of the correctness of
the analysis algorithm. It says, in effect, that histories
- are adequate for exposing side effects on individual

variables.

141

2.11.7 part 7.

At each instant at run-time, we are nested in one or more
levels. All but one of these levels will be executing a procedure
call. Each of these levelé-will have an mstate set associated
vith its present point of program execution. The mstate sets
correspond to the state of the abstract machine in the following

sense:
1) Each mvalue represents at least one value.

2) No individual mvalue represents the same value as any

other mvalue at the same level nor at any lower level.

3) No two distinct individual mvalues, at the same or

different procedure call level, represent the same value.

4) 1f one mvalue mrefers to another mvalue, then the value
represented by the first mvalue refers to the value represented

by the other mvalue.

5) The value represented by any boolean (jump, routine,

reference) mvalue is boolean (jump, routine, reference).

6) The value represented by any boolean true mvalue is the

value true.

7) The value represented by any .boolean false mvalue is the

value false.

8) The mvalues on the mstack represent the values at the

same position on the portion of the stack belonging to that

level.

9) An individual mvalue represents only one value.

Note that these‘conditions include the requirements of

2'6.1.

143

2.12 Proof.

‘This section contains the proof of the results stated in
section 2.11. The proof is by induction on the number of steps of
execution executed so far. At the start of execution, the theoren
is trivially true, since the mstates attached at the start of the

program are enpty.

For convenience, the various parts of the theorem are

restated near their proofs.

144

— v o

If the specifications of section 2.10 are met, and either M1
or M2 represents the state at the top level, then so does HM3.

Proof:
Without loss of generality, suppose M1 represents the state.

The only nontrivial part of the proof is to show that
individuality is properly treated. Let M be an individual mvalue
in M3, and let M represent V and W. F1-1 (M) has only one element.
Call it H'. M' is individual. Since M represents V and W,

F-1 (M)=M'" represents V and W. Therefore V = H.
Let P represent P', and let Q represent Q' in N3.

If P#Q0 and P is individual, consider F1-1(P) and F1-1(Q).
Since F1 is a function, F1-1 (P) and F1-1(Q) are disjoint.
F1—1 (P)=P' in M1 is individual. Thus, since P' is represented by

P1 and Q' is represented by an element of Fi-l(Q) in M1, P'#Q?.

145

2.12.2 part 2.

If a variable V represented by an individual nvalue M at
jevel L is referred to by a variable W, then W is represented by
‘an individual mvalue N at level L or higher, and N mrefers to

some mvalue M' representing V.

state of abstract machine: W =--=-> 7V
representative at higher level: N =---> HNf

representative at level L: M

——— e e e

Consider the time, if any, at which this is first violated.
Either (1,2) the condition has become true, or (3,4) the

conclusion has become false.
Either:

(1) an assignment (or link setting) was executed
causing V to be referred to by W, and W is individual at no

level, or at a level lower than L, or

(2) an assignment is executed causing V to be referred

to by W, and ¥ is represented by an individual mvalue N, or

(3) W, which refers to V, ceases to be represented by

any individual mvalue N, or

146

(4) the individual mvalue N, although W still refefs to

V, ceases to mrefer to any mvalue M' representing V.

In case 1, the destination of the assignment (W) is
represented at the top level by a nonindividual mvalue. Thus the
top-level mvalue representing N, the source, will escape. Since M
wvas individual, this escapes will reach M by part 6, and so M

cannot be individual.

In case 2, N will be made to mrefer to the mvalue XM!

representing the source.
In case 3, %' will escape.

In case 4, because mvalues are lost only by merging, a

nerger has taken place, and so V escapes(section 2.10(11)).

2.12.3 Part 3.

-

A variable represented by an individual mvalue at some level

1 is
(1) not represented at any lower level,
(2) not represented by any other mvalué N at éhe same level,
and
(3) not tepresénted by an‘individual mvalue at any higher
level. L
Proof:

For the variable V to be represented by an individual mvalue
N at level L, it has to have been created by a generator executed

at level L.

(1) Since the mstate set at a lower level does not change
during execution of the higherllevel L, V cannot be represented
by any mvalue at this lower'level: Vv did not exist when execution

at the intermediate level started.

(2) V was not represented by another mvalue at the level L
when the generator was executed, since the value of the generator
was a new value. Therefore, for another mvalue M at level 1 to
start representing Vv, a new mvalue for V must be constructed.
This can happen only by dereferencing (or delinking) a value ¥
which referred to V, when L is the top level. By part 2, N,

representing V, is then mreferred to by some individual mvalue HM

148

representng ¥ at the top level. By part 3, no other mvalue
represents W at the top level, so W is the mvalue placed on the
stack by executing the argument of the dereferencing. ¥ mrefers

to V, so no new mvalue is created.

(3) This is direct. Variables represented by individual
nvariables at different levels arise from execution of generators

at different times. Therefore they are distinct variables.

149

2.12.4 Part 4.

A variable V represented by an individual mvalue N is not

referred to by a variable W

(1) represented by a nonindividual mvalue at the same level,

or
(2) represented by any mvalue at any lower level, or
(3) unrepresented by any mvalue.

Proof:

Suppose V is represented by a variable W. Let N represent V
at level L. By part 2, W is represented by an individual mvalue
at level L or higher. If at level L, then by part 3, W is not
represerted by any nonindividuai mvalue at level L. If higher,
then by part 3(1), ¥ is not represented at level L. In either

case, by part 3, W is not represented at any lower level.

150

A variable V represented by an mvariable with a histoty
nonlocal to some level L (i.e., one of the tracks of the history
starts with an identifier that is not'local to L) is not
represented by an individual mvalue at that level (nor, of
course, at any higher level).

Proof:

For an mvariable representing V to acquire a history
nonlocal to L, it must have been obtained either (1) by analysing
a nonlocal identifier, or (2) by dereferencing (or delinking) a

variable W represented by an mvariable with a history nonlocal to

L.

In case (1), a new mvariable as created to represent V. This
mvariable is nonindividual because the identifier is not in the
menvironment. By part 3, no mvariable representing V can be

individual.

In case (2), W was made nonindividual by part 5, and so V is

nonindividual by part 4.

151

2.12.6 Part 6.

e

-

If a variable V is represented by an individuallmvalue I,
put also by a nonindividual mvalue D (at a higher level L), then
a nonlocal track in the history of D ultimately reaches I. Here
tnonlocal! means 'not local to L'; i.e. the track starts with an
jdentifier which is global to the body of the procedure of level

L.

the analysis algorithm. It says, in effect, that histories
are adequate for exposing side effects on individual
variables.

Proof

Consider the earliest timelthat the conditions are satisfied
but the conclusion is not. Then (1) the conclusion becones false

or (2,3) the condition becomes true. Either

1) the nonlocal track in D's history just stopped reaching

I, or
2) V just became represented by an individual mvalue I.

3) V just became represented by .a nonindividual mvalue D,

whose history has no track that reaches I.

1) in this case, only the mstate on the top level has

152

changed. This cannot affect the reach of nonlocal tracks.

Therefore, this case is impossible.

2) In this case, the generator that generated V was just
executed. V is represented by just one mvalue, so D did not

exist.

3) D must have been just created by dereferencing {or, of
course, delinking) some value W which refers to V. By 2.9.1, W is
represented at some level by an individual mvalue J. Let J mrefer
to C. Let K be the mvalue representing W at the top level. K
nrefers to D.

W is represented by Jd
| |
v v
V is represented by I C

O <~ X

Since a nonlocal track in the history of K reaches J (2.10), a
nonlocal track in the history of D reaches C. Since no nonlocal
track in the history of D reaches I, no nonlocal track in the
history of C reaches I (corollary 2.8.4). But C existed before
the dereferencing (it was guaranteed to exist by part 2) and so

we have an earlier counterexample.

153

At each instant at ruh—time, We are hested in one or more
levels. All but one of these levels will be executing a procedure
call. Each omne of these levels will have an nstate set associated
with its bresent point of program execution. The m§tate‘sets'
correspond to the state of the abstract machine in the following

sense:
1) Each mvalue represents at least one value.

2) No individual mvalue represents the same value as any

other mvalue at the sane level nor at any lower level.

3) No two distinct individual mvalues, at the same or

different procsdure call level, represent the same value.

4) If one mvalue wrefers to another mvalue, then the value
represented by the first mvalue refers to the value represented

by the other nmvalue.

5) The value represented by any boolean (jump, routine,

reference) mvalue is boolean (jump, routine, reference).

6) The value represented by any boolean true mvalue is the

value true.

7) The value represented by any boolean false mvalue is the

value false.

154

8) The mvalues on the mstack represent the values at the

same position on the pottion of the stack belonging to that

level.

9) An individual mvalue represents only one value.

Note that these

2.6.1.

conditions include the requirements of

The proof is divided into cases, one for each syntactic

type.
1) Assignment.

Here we concern

assignment after the

1a) If the
the destination

Therefore, only

ourselves with actually performing the

source and destination have been executed.

destination is an individual mvalue, then
is not represented by any other mvalue

the mvalue referred to by the destination

need be adjusted. Since the destination is represented at

the top level by an individual mvalue, it is not represented

at any lower level. Therefore, no change is required on any

lower level.

1b) If the

destination D is represented by an

individual mvalue I at a level other than the top level, we

155

must consider the effects directory. By part 6, the history

of the mvalue representing

refer to any mvalue.

D must reach I, and so I will not

1c) If the destination D is not represented by an

individual mvalue at any level, the mstate set makes no

claims about the value it refers to, so no change is

necessary.

That the mstack is correctly adjusted is clear.

2) Dereferencing.
Trivial.

3) Conditional

This follows directly fromn

4) ¥While loop.

——lim el A

This follows directly from

5) Jump

The effect of a jump is to
jumping state. The modification

this.

the properties of merging.

the properties of merging.

convert a normal state into a

of the mstate clearly reflects

156

as unstacking values and terminating blocks, are here
distributed throughout the definition of the language.
Therefore, the analyser performs them elsewhere, and they

need not be accounted for here.

6) Serial.

We must check that the theorem continues to hold

(1) between initiating the serial and entering the first
unit or declération, aﬁd

(2) betwvween terminating one unit or declaration and
commencing another (possibly via a jump),

{(3) between terminating the last unit or declaration and

terminating the serial.

(1) clearly holds. It is fhe transition from the prefixed
mstate set to the modified prefixed nmstate set.
(2) is less trivial. When we terminate one unit or
declaration, the state, either_a normal state or a
jump, is represented by some particular mstate, either
a normal mstate or a jump. If the mstate is not a jump,
execution of the next unit is initiated. If it is a
jump, execution of the unit after the jump target is
initiated. if the next unit is not labelled, the
prefixed mstate set is thé postfixed mstate set of the

previous unit, except that the top value on each mstack

157

is deleted (just like the stack). If the next unit is
labelled, we delete the top value from the mstack and
stack. The prefixed mstate set for the new unit is the

result of merging several mstates, one of which is the

current one, g.e.d.

(3) The operations on the mstate set clearly arevprecisely

the images of those on the stack.

7) Identifier.

Trivial.

8) Genesrator.

Trivial.
9) Denotation.

Trivial.

10) Procedure call.

After execution of the function and parameters, we have an
mstate set. The pre-call processing involves only deletion of
information from the mstate set, and therefore cannot affect
correctness. Once the éall is being performed, it is up to the
other conditions in this thedrem to ensure that this mstate set
(vhich is unchanged) remains valid (see the lengthy discussion of

assignment, for example). The post-call stack trimming is

e,

straightforward.

159

9]
=
o3}

o
+
®

i

]98]

outline of analysis algorithnm.

- —

3.1 Introduction.

Chapter 2 presented mstate sets, which can be gttached to a
program, and can be used to state certain facts about the
program. It also presented the consistency conditions, which are
sufficient conditions for those mstate sets to correctly
represent the states of thé abstract machine. It is the aim of
this chapter to outline techniques that can be used to represent
mstate sets on real machines, and to compute, in a reasonable
amount of time, mstate sets that satisfy the consistency -

conditions presented in Chapter 2.

The basic computational technique used is iteration. Initial
estimates are chosen for the mstate sets and effects directories
attached to the program, and are checked against the consistency
conditions. For each mismatch between the estimate and the
consistency conditions, the 'postfixed' mstate set is changed so
that it will méet the consistency conditions it failed to meet}
These changes are continued until all consistency conditions are

satisfied.

Let us look at this process informally. First comnsider the

initial estimates.

The mstate sets we attach at all points, except the

i

160

beginnings of procedure bodies and at the beginning of the entire
program, are empty -~ théy contain no mstates. The mstate set at
the start of the program has a single mstate,‘with an emnpty
mstack, an empty menvironment, and no mvalues. The nstate set
attached at the beginning of a procedure body is just like the
one at the start of the program, except that it has an
menvironment identifying the formal parameter identifiers with
unknown mvalues. Each of these unknown mvalues has a history

consisting of its formal parameter identifier.

The effects directory of every procedure is initialized to

empty.

If M1 and M2 are mstate sets attached to the same‘point in
the program at earlier and later times during the analysis, then
M1 logically implies M2 (Remember from 2.6.1 that an nstate set
could be considered a statement about the state). To force
termination, then, it will be sufficient to prevent an infinite
chain

M1 implies M2 implies M3 implies ...

of distinct mstate sets.

The analysis algorithm outlined here.is divided into two
parts. The first is an algorithm to perform the analysis of an
individual routine denotation (or of the main program, which will
be treated as the body of a parameterless routine), omitting any

other routine denotations contained therein. The second is an

algorithm to bring these diverse analyses together. The second

algorithm uses the first as a subroutine.

3.2 Conditions that force converdgence.

Fach mstate set is a finite collection of mstates, which we
imagine connected with the logical connective 'ort. An infinite
ascending chain of mstate sets is possible, each oné of which has
just one more mstate than its predecessor. This might arise, for
example, when analysing a loop for which the analysér cannot
detect termination. To prevent this, an arbitrary limit is
imposed‘on the number of mstates in a mstate set:

(1) No more than one nonjumping mstate, and

(2) No more than one mstate for each jump target.

This particular restriction was chosen because it was easy
to implement. Furthermore, it permlts lemma 3.2.1 to be proved.
However, permitting only one mstate of each type effectively
eliminates knowledge of correlafions between values, such as

wphis pointer is nonnull iff this other value is true."

If this restriction on the number of mstates is enforced,
then an infinite sequence of mstate sets can arise only from an
infinite sequence of mstates (this is proved in lerma 3.2.2). HWe
could then obtain from this infinite sequence of mstates an
~infinite sequence of histories (this is proved in lemma 3.2.3).
Therefore, if we prevent an infinite ascending sequence of
histories by an additional restriction, we will have achieved our
goal. Infinite sequences of histories also might result from

program loops. Since histories may be infinite sets, we need to

163

find some finite representation for them anyway. We shall use our
freedom to add extra tracks, and choose finite representations so
that infinite ascending chains cannot exist. Not all histories »
will be accurately representable, but any history will be
contained in some representable history. The process of finitely
representing histories will discard information by enlarging
theﬁ. whis is unfortunate, but may be unavoidable. Some hope is

offered in section 5.3.2.

164

3.2.1 Representation of histories.

e . e e i e s i e v

A track in a history may be considered as a charactér string
-- one character for the start of tﬁe track, and one character
for each operator. A history is thus a set of strihgs, and can be
represented by any of the common notations for languages, such as
grammars or regular expressions. The representation chosen here
is to represent a history by a regular expression of the form

01 S1 + 02 S2 + ... +0n Sn

where each Si is a start, and each 0i is a regular expression
describing the possible operators applied to 5i. Each 0i is of
the form

(R1‘+ R2 + ... + Rk)* P1 P2 P3 ... Pm

or

P1 P2 P3 . e 9 Pm.

where eack Pj and Rj is an operator. Furthermore, an arbitrary
bound is placed on the number of Pj's alloved. No two 0i are

allowed to have the same sequence of Pj's as well as the same Si.

If only one operator were possible, the expressions would
reduce to triviality -- we could use an integer expressing the
minimum number of operators to be applied, together with a bit

indicating whether more operators can be added.

165

It is quite easy to construct algoritﬁms to perform the
necessary operations on histories represented in this ﬁanner.
Bear in mind that we can always place an operator in the iterated
part (inside the parentheses before the nxv) if the number of

Pj's becomes too large.

166

3.2.2 lennma.

 (This lemma is used in section 3.2.) 1If M[i],‘MtZ], eee is
an infinite sequence of distinct mstate sets satisfying
restrictions (1) and (2) of section 3.2 and if each M[i] implies
M{i+1], then there is an infinite sequence of distinct mstates
mfa], m{a+1], ... among these mstate sets such that each n{i]

implies m{i+1].

e et i e s

If M(i].contains an mstate with a particular Jjump target,
then so must M[i+1].‘0therwise, M[{i+1] could not represent some
machine state that M[i] can. Similarly, if M[i] contaimns an
mnstate with a nonjumping mstate, then so must M[{i+1]}. Thus we
have a finite (bounded by one plus the number of labels in the
program) number of sequences

n0[ao], mC[al0+1], mO[al+2], ...

mi{at)], mifal+1], n2{al+2], ...

-e

mn{an], mn[an+1], mn[an+t2},

such that:

(1) the entries in one of these sequences are either all

jumps to the same jump target, or all nonjumping mstates.

(2) mj[i] is in the mstate set H[i].

(3) Every mstate in M[i] is among {(m0[i], mI[1]s «v-r

mnfi]}-

We further note that, since there is only one nstate in each
mstate set with a particular (or no) jump target, and M[1i]

implies M{i+1], nj{i] nmust imply mj[i+1] whenever i>aj.

If there were ﬁo infinite ascending chain of mstates, then
each of these sequences wouid terminate, i.e., there must exist
T0, T1, ..., Tn such that mj[i] = nj{i+1] for i>Tj. Let T be the
largest of the T3j and aj. Then for i>T, M[i]=ﬂ[i+1]. |
Note: If we had had more than one mstate of each type in a mstate

set, we could not have said that mj{i]vimplies mj[i+1].
Whether this result can still be forced under a less

restrictive constraint on the number of mstates in a

nstate set I do not know.

168

3.2.3 Llemma.

(This lemma is used in section 3.2.)

If thére ijs an infinite sequence of distinct mstates
m{1] implies m[2] implies m{3) <.,
then there is an infinite sequence of distinct histories
h[1], h[2], h[3], ---

such that h{i] is a subset of h{i+1].

e e i s e

The prbof of this lemma is similar to that of 3.2.1. The
main difference is that we cannot use jump targets to correlate
an mvalue in one mstate with an mvalue in another mstaté.
However, if one mstate implies a second mstate, the second is the
_same as the first except that some mvalues, some mreferring and
mlinking information, and some other information may be missing.
since mstates are finite, at some point in the sequence no more
nstates are dropped, and from this point on, segquences of mvalues
analogous to the segquences of mstates in 3.2.1 can be

constructed.

169

3.3'Agalx§1§ f an individual routine denotation.

e e

The analysis of a procedure denotation involves the
domputation of an effects directory and the attachheﬁt of mstate
sets to each expression within the procedure desnotation, except
for procedure denotations contained properly within it. This
section will assume that approximations (possibly empty) are
available for the effects directories of all procedure
denotations in the program. These effects directories will be
uéed to compute a new effects directéry for the procedure

denotation.

First, initial approximate mstate sets are attached to each
expression in the procedure body. The métate sets conputed on a
previous analysis of the procedure denotation can be used. Enpty
mnstate sets can also be used, except that the mstate set attached
to the beginning of the procedure body must have one mstate. This
one mstate must have an empty stack, an menvironment identifying
the formal parameters with the unknown mvalue, and no other

mvalues.

Then an iteration is performed, using fhe consistency
conditions in the previous chapter as iteration steps. For each
point whers an mstate set might be attached, except'the start of
the procedure body, the attached mstate set is re-computed using
the consistency conditions, the existing approximate effects

directories, and the existing approximate mstate sets attached at

170

other points in the program. If the consistency conditionms
require new effects in the effects directory of the procedure
being analysed, then these effects are insertéd. This process is
repeated until no change in any approximate mstate set occurs

under recomputation anywhere in the procedure.

The process described above is adequate, since under the
restrictions of section 3.2 it is forced to terminate. Howevér,
it is not yet completely deécribed. The previous chapter
described merging by a set of axioms (2.m), not by an algorithm,

An algorithm for‘merging is described in the next section.

3.3.1 Merging.

3.3.1.1 Merqing mstate sets.

7o merge two mstate sets, first construct their
set-theoretic union. Then merge any mstates that violate the
restrictions in section 3.2 on the number of mstates. The next

section describes merging of mstates.

172

o o b . it

Let M1 and M2 be the mstates to be merged. Let M be the
disjoint union of the sets of mvalues of M1 and M2. Define the

following equivalence relation R on H:

For mvalues V in M1 and W in M2, V R W iff either
1) V and W are mpossessed by the same identifier, or
2) V and W are both i-th from the top of the mstack,

for some integer i.

Extend R to the smallest équivélence relatioﬁ S on M that
satisfies
1) VR WU imﬁlies VS H.
2) If V nrefers (mlinks) to W, and V' mrefers (mlinks)

to W', and V S V¥, then W S W'.

The mvalues for a new mstate M' are the equivalence classes
of M under the relation S. The mappings Fi of 2.10 are the
mappings induced by the equivalence relation. A new nvalue
nrefers to another iff each of its eiements nrefers to an element
of the other. A new mvalue is in a position on the mstack iff one
of its members was in that position on an old mstack. An
identifier mpossesses a.new mvalue iff it (in the old mstates)

mpossesses at least one of its elements.

A new mvalue is individual iff it has just one member from

each 0ld mstate, and each of its members is individual.

173

Effects with the action 'escape' are placed in the effects
directory of the routine denotation being analysed as necessary

to éatisfy conditions 10 and 11 in Section 2.10 (on herging).

The history of each new mvalue is obtained by merging the

0ld histories of the elements of M.

174

3.3.1.3 Example.

-

Suppose vwe must merge the mstate

I 1 | T
L \ ,
mstack; T i
! o = 2 ..
A > |
i bottom o _ , — |
. 5 . q .
. . 3,.,
memnvironment ~
e '/,LG
. : !
]
with the mstate
i 8 .
mstack 0 ¢ ,__._,7 ~ N :
foP ! o—"] | o8 }
9 to -
bottom :
V} L o > |
12]
" menvironment Padll BN u
13 i
QU - - --] . : !

The equivalence relation R has equivalence classes
(1'7)' (3’9) ra (5'12), (6'13)' 2' u’ 8’.1‘0' 11
S has equivalence classes

1,7y, 3.9, (5,12), (6,13), (2,8,10), (4,11)

4 e T 808 T R

175

Thus the new mstate is

mstack &) ~ , .
e — | (2,9, -
top ' —" 2 >r-1'“'—°}" o
bottom - M\COI‘” R R
. /‘ o . :
(s,42) (1, ut) :
menvironment | L 17
«, 13 .
* el o

Escapes will be logged for the histories of nvalues

| 2, 6, 8, 10.
Note that if the second mstate was an accurate representation of
the state of thevabstract machine, mvalues 8 and 10 must have
represented different mvalues.. Therefore, the new mvalue (2,8,10)

represents two values, not just one.

176

3.4 Analysis of the entire program.

Here is a method of integrating the analyses of the various

procedure denotations in the progran.

Initialize the effects directory of each procédure
denotation to the empty set. Then énalyse procedute denotations
until further analysis_of procedure denotations has no further
effect on any effects directory. Finally, analyse the main

program as if it were the body of a parameterless procedure.

The above algorithm is guaranteed to terminate because of
the techniques of section 3.2. It remains, though, to organize
the choice of the next procedure to be analysed in an efficient

way.

The effects directory of a procedure depends on the effects
directories of the other procedures it calls. If there were no
recursion, we could simply start with the procedures that call no
other procedures, and thereafter analyse a procedure only when
all the other procedures it qalls have been analysed. Then each
procedure need be analysed only once, and accurate information is

still obtained.

In the presence of recursion things are more complicated. A
heuristic is wanted. Instead of choosing the procedure that calls
no unanalysed procedures {since there may not exist omne), it

makes sense to analyse the one that calls (directly or

177

indirectly) the fewest unanalysed procedures. Then we iterate to
find tﬂe complete effects diréctories of this prbcedure and the
ones it calls, directly or indirectly. After the iteration
terminates, we have the complete analysis of several moré
procedures, and can go back to choose another one, if any remain,

using the heuristic.

178

This chapter oqtlines an algorithm which computes‘mstate
sets that satisfy the consistency conditions. The results of the
previous chapter then guarantee that the mstate séts are correct
representatives of the run-tinme machine state at each instant
during program execution. The next chapter will describe a
program that implements the algorithm. This will provide some
insight into the programming effort and computer time necessary

to implement and use this analysis technique.

179

Chapter 4.

Implementation.

This chapter contains a description of a program that
implements a variant of the analysis algorithm. Most of the
chapter is highly technical, but sections 4.1, 4.5, and 4.6

contain information that may be of more general interest.

4.1 purpose and limitations of the program.

The algorithm outlined in chapters.2 and 3 was implemented
while it was being developed, in order to fix the ideas and thus
aid development by focusing attention on important details. In
order to complete the job of programming an algorifhm that, at
the time, was itself under development, it was decided to reduce

the goals. A number of restrictions were adopted.

Structures were not provided. As a result, since there are
no field-selectors, the only operator in histories becomes yal,
thé dereferencing operator. There is no ‘delink' operator. The
processing of histories becomes very simple. However, it was
originally planned to provide structures. The routines that
handle histories form a separate module, so that it can be
replaced independently of the rest of the program. The progran
will handle procedure-valued expressions, but not variables

referring to procedures, nor procedures as parameters to other

procedures.

180

The program text appears as an appendlx. It is hoped that
the redundancy it prov1des may be of some help to those who find
some of the text of this thesis obscure. It may also be of sone
help to future implementors of optimizing analysers to see the

blunders and successes in this one.

The program was written in ALGOL W, with a few language

extensions defined in ML/1 { Brown 17.

181

4.2 External data representation.

The ALGCL W program described in this chapter proceSsés
pfograms written in the simple language. It parses.tﬁem and
puilds an internal parse tree. It prints input verbatim while it
is parsing. It analyses each program, computing state models and
attaching them to points in the parse tree. Finally, it prints
the program (possibly with redundant parentheses inserted or

renoved), together with selected state models.

4.2.1 Program representation.

ProgramS’writtep according to the grammar in 2.2.2 and
punched in‘the first 72 character positions of each line are
accepted. Identifiers, reserved words, and other symbols must be
separated from each other by blanks or end-of-line. Programs are

separated from each other by lines which start with two periods.

Three extra kinds of <primary>‘are provided to enable
selective display of sfate models and other information. These
primaries are executed by placing the void value on the stack.
tdisplay' causes its initial state model to be printed with the
results of the analysis. 'trace' and 'notrace' were used to debug

the anralyser and turn analysis-time tracing on and off.

T e

182

4.2.2 Rebresentation of state models.

-

State models are displayed in an indented manner (see
Appendix B for examples). The state models are printed as a

sequence of mstates.

Each mstate is printed with the title ‘mstate', followed by

its menvironment and mstack.

An menvironment is printed as a sequence of pairs

<identifier> = <mvalue>.
The mstack is printed as a sequence of mvalues.

Mvalues are printed in such a way as to indicate their types
and sometimes other information. Each reference mvalue is
equipped with an arbitrary code (e.g. "RCCL08.292") that uniquely
identifies it. Reference mvalués are described as individual or
nonindividual. If an individual mvalue mrefers to another mvalue,
this is stated. Routine mvalues are printed with their effects

directories.

A history is printed by specifying the possible number (s) of
dereferencing from each relevant identifier. As mentioned
elsewhere, '10' means '10 or more'. Other integers stand for

themselves.

Following the analysed program, each routine is printed

together with its effects directory.

184

4.3 Internal data representation.

-

4.3.1 Program representation.

Both the program and the state models are represented using
ALGOL W list-processing-facilities. Oone of the serious
restrictions in ALGOL W is the limit of 14 programmer-defined
record classes. ThiS'réquires careful conservation of record
classes, leading to an inelegant multiple use of some record
classes. sometimes this has led to fields that are of no use in

one interpretation of the record, but which are used in another.

The records used for representing programs are TRIO, DECL,

IDENTIFIER, and CONSTANT.

CONSTANT records are used to represent constants. TY?E is a
code representing the type of the constant. TYPE may be "“BOOL"Y,
ihdicating boolean, or "NULL", indicating that the constant is
the null reference. If TYPE is "“BOOL", then the value, true or
false, is in VALUEB, and VALUEKNOWN is true. All other fields are

irrelevant for constants.

DECL records are used to represent declarations. FORMAL is a
reference to the formal parameter, which is an identifier. ACTUAL
‘refers to the actual parameter. DECLLINK is used by the program

input routine to chain all declarationms together into a symbol

table.

185

IDENTIFIER reccoris 2re used for identifiers. IDNAME is the
pame of the identifisz. IThere are no other fields. Identifiers
are represented k¥ ISCCIiS, instead of by strings, so that all

expressions can be tzrélad in a uniform way as values of type
REFERENCE (TRIO, IDENSTIFIZR, CONSTANT, DECL). ALGOL W does not
permit a reference ~c & string, only a reference to a record

containing a string.

TRIO is the most important record for programs. It can be
considered as representing an‘operator with operands. It has
fields for a single operator and up to three operands. The
following are the perzissible operators:
niladic WGE" a generator

wWPR® trace
"NT" pnotrace
monadic n w3 one-element list

wyLn val first

ngo" go first

dyadic w,n 3 parameter list
w. 5 jist of statements in a serial
w. v 5 label in a serial. MATTACH is used to attach a

state model.
w.=m first := second
npR" a procedure denotation. FIRST is the list of

formal parameters, represented by declarations.

 jpm—
‘ 186
SECOND is the procedure body.
"CA" a call. first(secoﬁd)
wyp" while first do second gg.-MATTACH is used to
attach the initial state model of the con&ition;
triadic wiFr if first then second else third fi

———— e . e

187

4.3.2 Representation of state models.

4.3.2.1 State models.

A state model, which is a set of mstates, is representéd by
a doubly linked list of MSTATES records. Each MSTATES record
refers to aﬁ NSTATE record and to its successor and predecessor
on thellist. It was necessary to have a separate level of records
for the linked 1ist,}and not merely place the links in tﬁe MSTATE
records themselves, so that one MSTATE could be on several

independent linked lists.

4.3.2.2 Mstates.

An mstate is represented by an MSTATE record. If the mstate
is a jumping mstate, then the field LABEL is not blank, and
contains the jump target. Otherwise, LABEL is blank. SYMBOLTABLE
points to a linked list of SYMBOL records which represents the
environment. MSTACK is a linked list of TRIOs representing the
mstack. The first TRIO is at the top of tﬁe mstack. The operator
of each TRIO is " "'. FIRST of each TRIO points to a CONSTANT,
which represents an mvalue. SECOND points to the next TRIO on the

mstack.

4.3.2.3 Mvalues.

188

Mvalues are represented by CONSTANTs. Somewhat more types

are available than for CONSTANTS in program text.

HISTORY points to the history of the nvalue.

The TYPE of a CONSTANT can be "BOOL", meaning boolean,

“REF%, pmeaning reference, "PROCY", meaning procedure, "NULL",

meaning the null reference,

unknown.

If the type is "BCOL",
VALUEKNOWN = VALUEB = true,

VALUEB = false, or unknown,

If the type is "REF ",

or " %, peaning that the type is

then the mvalue may be true, with
or false, with VALUEKNOWN = true and

with VALUEKNOWN = false.

then the mvalue is a nonnull

reference mvalue. VALUEKNOWN=true iff this mvalue mrefers to some

other mvalue. VALUER points to this other mvalue.

ISINDIVIDUAL=true iff the mvalue is individuwal. If

ISINDIVIDUAL=false, then VALUEKNOWN = false.

If the type is "PROC",

then the mvalue is a procedure

nvalue. Tts effects directory is referred to by CEFFECTS.

If the type is "NULLY,

reference.

If the type is " n,

then the mvalue represents the null

then the mvalue is the unknown

189

nvalue.

4.3.2.4 Effects directories.

An effects directory is represented by an EFFECTS record.
Its fields SET and ESCAPE point to histories which specify which

tracks are set and which escape. .

4.3.2.5 Histories.

Histories are represented as a linked list of HYSTORY [sic]
records, linked by the NEXTHYS field. The start of the history is
pointed to by the STARTH field. Since only one operator, val, can
appear, only the possible numbers of operators need be kept for
each start. A particular HYSTORY record specifies at least LOWH
and at most HIGHH operators. 10 is used as a special code - it

means 10 or more. We count 0,1,2,3,4,5,6,7,8,9,nany.

190

4.4 The program.

4.4.1 Map.

The following page contains a map of all procédﬁres in the
program. Tﬁe original attempt was to construct a chart indicating
precisely which procedures called which other.procedures, but the
large number of procedures made this unwieldy. It was necessary
to group the procedures into groups, and to indicate which groups
called which other groups. Each group is indicated by a box in
the diagram. Each box contains prodedures wvhich it defines for
use elsewhere, and perhaps also some local procedufes which are
used only inside the box. Such local procedures are either
parenthesized or enclosed in a smaller box with curved sides. An
arrow from one box to another indicates that the procedures in
the first box may call procedures defined by the second box.
Within some of the smaller boxes, all arrows are omitted, since
they are not very interesting, and would confuse the diagram by
enlarging it. For example, MANALYSE may call JUMPS or NEWLINE,

but not ISJUUP or PRINTSYMBOL.

191

(LN)

A pzmaz,ﬁw
(AL330v4

(NTWASLININY)
AVdsta
Iniya
INITMIN

Ldxyy3zo

SILYLSW
—DLYN3LHONDO

Sldx
AT

(SiNWISNOD2DY3 W)
(s8vrInawAs 353 ZV
SAINLISWISY3W

Aﬁzﬁm:v |

ISINYDIY

MOVLSINISG
MWOMLSIY 3D
NOIIF

o1 d4ay
orydn
Moyls
Wolyaydy

d XA AU

TGWAS 40N gy
TREWAS3INIZES G
40d

MoV iIsN3

(LNIBa3y3)

lynay
yD¥Y3

(s1¥>07a¥Y2S1a)

SAH4q
SAHL1YYLS
SAHIYW
- SAHRILINN
(LYo LSAH X400 rv 1 .
3 = mmwu;«mmv
TRv1SNGoFaas o3443 50N
MOVISWADAS i)
DIAYVLIDGWAS AJoD mbwuuwfaoumm&v
LV IswWAIaD
T
S 2LVISWAS an S1>344 wuuyﬁv
: y
(TIISATYN VW) S 9575/ ISIWAIBLHOI W)
LN3WNY sy ; |
A ~3SKIYNY W SAMIL— (2n¥Lzesnomw)
35 KIVRYW SANOLNN

sdwns==(mfﬁhmu.v

4

3

SNAILYION3AdRYY
-ISKIYN YW

A

h

N

NIWILlidYl s
IWILNGD

(3w

NIYWN

SWYNWYS VA v

T

192

4.4.2 Macro extensions to ALGOL ¥.

The program was written in an extended ALGOL W. The
extensions were implemented using P. J. Brown's maéré—processor
ML/1[Brown 1]. Some of the extensions are new lénguage
constructions to facilitate list processing; others are merely

abbreviations to make coding less tedious.

4.4.2.1 Comment macro.

v —— o — i i . S s

Comments may be inserted anywhere, enclosed by cent signs
("¢"). A comment begun with a cent sign is terminated by the next
cent sign or end-of-line, whichever occurs sooner. The
macroprocessor deletes these conmments, and does not forward then
to ALGOL W. This type of comment can be used almost anywhere in

the program without disrupting the physical layout of the text.

O e RS S S U s R R S o

193

4.4.2.2 Abbreviating macros.

"EXPY is short for "REFERENCE (TRIO, IDENTIFIER, CONSTANT,
DECL) ".
"REF" is short for "REFERENCE",

"PROC" is short for "PEOCEDURE".

4.4.2.3 ABORT and ERROR macros.
A ABORT "message"

ERROR "message"
The message may not contain any quotation marks ('%').

These macros generate calls to the procedure ERRPRINTI. ABORT
prints the message and goes to the label EXIT. ERROR just prints
the message. The messages themselves are saved up and inserted
into the expansion of the macro MESSAGES in the procédure
ERRPRINT near the end of the program. ERROR and ABORT cannot be

used textually after the procedure declaration for ERRPRINT.

e

194

4.4.2.4 Linked list looping maéro.
<simple statement> ::= for <declarér'option> <identifief>A;g list
7<expression>';;g§ <field selectér) <while-op£ion> do
<body>
<declarer option> ::= <empty>
| <type>

<while option> ::= <empty>

——

=T e e

Aexpands to

begin t i;
i = 1;
LOOPSTARTc: if i=pull then go to LOOPEXITc;
if -(v) then go to LOOPEXITc;
d;
i:=s(i);
go to LOOPSTARTc;

LOOPEXITc: end

If "t :" is omitted, then the declaration "™ t i ; " is

LOOPEXITc; is omitted. "open" and *close" are used only for

groupirg and are not copied to output text. "c" is some integer,

195

used to ensure unique labels.

Stupid géstriction: The <simple statement> may not properly

contain any begin-end statements. If the <simple statement> is a

block, then the first begin must be on the same line as the do.

4.4.2.5 Macro for deletion from a list.

<simple statement> ::= delete <expression> from list <identifier>

e -

11 <selector 1> rl <selector 2>

<expression>, an element of a doubly linked list with left
link <selector 1> and right link <selector 2> starting with

<identifier>, is deleted from the list. The macro expansion for

delete e from list 1 11 left rl right
is |
begin if e=1 then l:=right(1);
if left(e) =null then right(left (e)):=right (e);

if right(e) =null then left(right(e)) :=left(e)

o
2

196

4.4.2.6 Concatenation macro.

<primary> ::=

concatenate mstates (<expression listd>)

| concatenate hystories (<expression list>)

These macros produced a nested set of calls to the
procedures CONCATENATEMSTATES and CONCATENATEHISTORIES
respectively, to concatenate the values of the expressions, which

are lists, in the order in which they are coded.

4.4.2.7 Macro for creation of CONSTANT records.

CGNSTANT (TYPE {expression>,

VALUEKNOWN <expression>,

Any of the parameters may be omitted, provided that at least

one is specified.

This macro expands to a record class designator to create a
CONSTANT record, each of whose fields is initialized, if
specified, to the specified value, and otherwise, to a neutral

default value.

197

4.4.3 oOutput routines.

The routines used for output are NEHLINE, PRINT,
PRINTSYMBOL, and DISPLAY. They use a global variable INDENTATION,
which is initialized to zero in the global initialization code.
INDENTATION specifies how much the current line is to be

indented.

NEWLINE causes a new line to be started, and then writes

three spaces for each column of indentation.

PRINT accepts a pointer to any of the record classes used in
the program, and prints the tree starting at that record in a
“sensible forrmat. If it receives a SYMBOL record, it prints the

entire symbol table from that record on.

PRINTSY!NBOL accepts a pointer to a SYWMBOL record and prints

just that record, not the entire symbol table.

DISPLAY is used to print programs in a readable, indented
format. It will cause the state modelé attached to the statement
'"DISPLAY' to be printed as well. DISPLAY uses PACRETY, which
decides whether to parenthesize a phrase, and INDENT, which
causes a phrase to be indented. PRINT should really use INDENT
too, but it was written before INDENT, and was not subsequently

changed.

PRINTS8 prints an identifier with some trailing blanks

198

suppressed.

199

4.4.4 Input.

The input routiﬁe is READEXP, which contains a number of
internal procedures, READATOM, RECOGNISE, CLEARSTACK, PRINTSTACK,
STACK, LPRIO, RPRIO, and ERROR (another one, not the macro). It
uses double operator priority techniques to parse a brogram, and

stores it in list structure form.

It does very little error checking, and does not produce
clear error messages. It accepts programs written according to
the grammar in 2.2.2, with an extension. It has alvery cheap
lexical scanner. Identifiers, reserved words, and other symbols
must be separated from each other by blanks or end-of-line. The

parser is not of great interest.

The extension is:

<primary> ::= display | trace | notrace .

'display' indicates to MANALYSE and DISPLAY that its initial
state model is to be saved and printed. 'Trace® and 'notrace'

turn tracing of the analyser on and off.

ERROR is called to handle some errors. It prints "ERROR"
followed by an error number, and then terminates analysis of the

current program by GOing TO EXIT.

200

4.4.5 Merging.

Merging is coded as several procedures. The main one,
MERGEMSTATES, will merge two state models. It calls
CONCATENATEMSTATES, MERGESYMBOLTABLES, MERGECONSTANTS, XPTS, and

SETFREE.

The basic technigue is thatAof the growing equivalence
relation described in Chapter.3. The equivalencé relation is
represented in the way invenfed by M. J. Fischer and B. A. Galler
[Knuth 1, volﬁme 1, 2.3.3, pp 353-355]. The XPT field of CONSTANT
records is used td link together equivalent mvalues in an inverse

tree that leads to a representative of the equivalence class.
This last mvalue, the representative, is the merge‘of all the
nvalues in its class, and bears, in the field XCT, the number of
nvalues it represents (including itself). A merged mvalue can be
individual only if the origihal mvalues were individual and XCT

is 2.

XPTS simply chains down a list of mvalues using the XPT link
to find the 1as£ one. It is used to find the canonical

representative of an equivalence class.

SETFREE records that its argument, C, has escaped. If C
mrefers to another mvalue, then, recursively, this other mvalue

is also set free.

s 8

wo® “’m

201

s i B s e e

Given a reference to an MSTATES list, representing a state

~model, COPYMSTATES will construct an entirely new copy of that

state model, which shares no storage with the original one,
except for identifiers and generators which are thelétarts of
histories. COPYMSTATES uses the XPT fields to point from the old
mvalues to the new, in order to éopy circular lists. The XPT
fields are subsequently cleafed. The XPT and XCT fields are not

copied. They are set to the neutral values pull and 1 instead.

COPYMSTATES calls COPYSYMBOLTABLE, COPYCONSTANT,

COPYHYSTORY, COPYMSTACK, and CLEARXPT to do its job.

4.4,7 Mstate selectors.

JUMPS, UNJUMPS, TRUES, and FALSES select from a state model
the set of its mstates that satisfy certain conditions. These

mstates are then linked in a new chain of new MSTATES records.
JUMPS selects the jumping mstates
UNJUMPS selécts the nonjumping mstates.

TRUES selects those mstates which have a top element on
their mstacks which might represent true; i. e., it is of unknown

type, or is boolean with unknown value, or it is boolean and

FALSES selects those mstates which have a top element on

their mstacks which might represent false.

TRUES and FALSES call MIGHTBETRUE and MIGHTBEFALSE. JUMPS

calls ISJUNP.

203

This was meant to be a single procedure, MANALYSE,-bﬁt the
ALGCL W restriction on the size of procedures forced it to be
broken into several fragmentsf MANALYSE is a straightforward
coding of Chapter 2. Its fragments are MANALYSE,
MANALYSEPROCDENOTATIONS, MANALYSEASSIGNMENT, and MANALYSECALL.

MANALYSECALL calls PERFORMEFFECTS.

- BEach of these takes an ekpression to be analysed and an
initial state model as parameters. Each returns a final state

model as value.

4.4.8.1 PARAMNAME.

According to 2.9.8.2, a new environment is constructed which
contains new identifiers. PARAMNAME constructs these new
identifiers. The new identifiers are used everywhere in histories

and effects directories for formal parameters.

4.4.9 Effects handling procedures.

B e

PROCEFFECTS looks in the arrays PROCTABLE and EFFECTSTABRLE
for the effects directory of the procedure denotation passed to

it as parameter.

LOGEFFECT adds an effect to the effects directory of the
procedure denotation now being analysed. This effects directory

is identified by the variable CURRENTEFFECTS.

4.4.10 History handling procedures.

The procedures (except for copying and‘printing) that handle
histories have been collected together in one place to make it
easy to modify them, for example, to add operators other than

val).
OPHYS tacks an extra operator onto each track of a history.

CONCHYS has two arguments, both histories. CONCHYS tacks the
operators of the first history onto the second history. This is
to implement the concatenation of tracks in step 1 of the

analysis of procedure calls (2.8.8.2).

STARTHYS converts an identifier or generator into a
one-track history that starts with that identifier or generator

and has no operators.

UNITEHYS constructs a new history which is a (possibly

205

improper) superset of the union of its arguments, which are both
histories. CHANGE is set to true if the new history is different

from the first parameter.

MAPHYS is a functional. It has three arguments, a procedure

FN, a HYSTORY record HYS, and an mvalue START. MAPHYS‘implements
passing through. For each track T in the part of the history ’ 3
described by HYS, for each mvalﬁe V that the operators of T pass
through starting from START, the procedure F¥N is called with V as

parameter.

206 .

4.4.11 Miscellaneous procedures and variables.

ENSTACK places a CONSTANT on top of the mstack of an MSTATE.

POP removes the top I elements from the stack of an MSTATE,

or from the stack of each MSTATE in an MSTATES list.

COPYBASE copies an identifier, generator, or CONSTANT.
COPYBASE is used by the history handling procedures. The double
angle brackets around the wvord <<CONSTANT>> on the tenth line
serve to.prevent it from being recognized as a call to the

CONSTANT macro.

DEFINESYMBOL inserts a new identifier-mvalue pair into an

environment.

LOOKUPSYMBOL finds the mvalue mpossessed by an identifier,

given the identifier and the environment.

ERRPRINT is called from the ABORT and ERROR macro
expansions. Its constituent macro MESSAGES expands to all the

messages used as parameters to ABORT and ERROR before this point

in the program.

SUPERINIT is the initial state model used at the beginning
of each procedure body (except that it has no dummy formal
parameters) and at the beginning of the entire anaiysed progranm.

SUPERINIT is always copied, and never used directly.

207

CHANGEEFFECTS records whether any effects directory has been

true by UNITEHYS, when called with CHANGEEFFECTS as parameter.

208

4.5 gmpirical'results.

The analyser was used to analjse.a humber of small programs.
The output from the analyser can be seen in Appendi# ﬁ. The
programs analysed were small because‘it is diffiéult to write
convincing large programs in the simple programming language.
Further, a somewhat illegitimate_trick was used. The analyser
does not distinguish between an undefined value and an unknown
value. An undefined value is one which the program fails to
prdvide during execution, e.g., the value referred to by a
variable for which no assignments have yet been'exeéuted. An
unknown value is one which the analyser does not know. In the
g test cases, to obtain ekpressions that were too complex for the

analyser to evaluate, uninitialized variables were dereferenced.

209

4.5.1 Discussion of examples.

Example .1.

This is a variation on the first example in Chapter 1. A
note abdut the output format is in order. An‘mstate is printed
with an menvironment aﬁd an mstack. The environment contains two
identifiers, XX and YY. These identifiers mpossess the individual
mvariables which are identified by arbitrary codes. They, in
, tufn, both mrefer to the same individual reference, which nrefers
to true.

Example 2.

This example illustrates a simple loop that scans a linked

This example contains a simple loop in which an nvalue is
pdssed from one variable to another (from val B to val A).
Although the variable referred to by the variable possessed by B
is no£ the same after one cycle through the loop, it is still

represented by the same mvalue, because it has the same

properties.

o o

210

Loops can also be built from go to statements.

A procedure with side effects. The effects directory of the

procedure is printed at the end, divided into two parts, 'set!

‘and 'escape'. In each part we find the tracks that are set or set

free. Note that '10' means '10 or more' if it occurs in this
context.

Example 6.

Another procedure. This one, however, does not make B
escape. The assignment to A merely provides a local'handle
whereby P can manipulate B if it should so choose.

Example 7

The local handle B is not so local. It is assigned to C,
which is outside the block. Therefore, B and A escape.

Example 8.

A recursive procedure which passes its arguments like a
shift register shifting left. Note that B and C both escape,
although the analyser mdst sift through several layers of
recursion to discover this.

Example 9.

This loop has ten variables, which it forms into a shift

211

register. One might expect that this type of program would make
the analyser take longest, especially with complex mvalues. The
single false from A propagates down the sequence, rendering one

more variable unknown each time the analyser processes the loop.

212

4.5.2 Execution time and storage space.

The analyser was made to display the CPU time used for
reading and parsing submitted progranms, for performing the
analysis, and for printing the results. In most cases the

analysis time was of the same order of magnitude as the reading

‘and printing time. This seems guite encouraging. The longest

program tested (example 9) took significantly more analysis time
than reéd time, but it was deéigned specifically to do so. It is
unlikely that such programs will be common in real life. It would
have been nice to concoct a convincingly realistic large program,
but the limitations of the simple programming language make it
difficult for a large program to appear realistic. No time or
space bounds have been derived theoretically for the analyser.
Because of the sémi-interpretive nature of the analyser, it is
likely to be nearly as difficult to derive realistic time ahd
space bounds for this analyser as to derive them for execution of

arbitrary progranms.

The program is 1950 lines long, including macro definitions.

This produces 1960 lines of ALGOL W code, and 62308 bytes of

IBN/360 object code (including run-time checking). Program runs

happily in the 160K bytes of data storage space.

g

4.6 Improvements and comments.

4.6.1 Data representation.

At many times during the writing of the program it was

necessary, or would have been convenient, to use a loop that

mvalues of a single mstate had been represented as an array, this

‘iterated through all mvalues of a given mstate. If all the

would have been very simple. With the list sttuctures used, a

garbage-collector-like scan was needed
mvalues already processed. Thié led to
function of the loop was to modify the
often reluctant to use such a loop and

possible. The routines for merging angd

for this, marking those
complications when the
list structure. I was

found another algorithm

copying, in particular,

would have been simpler, more comprehensible, and perhaps more

213

efficient, if arrays had been used. An array should also‘be used

for the environment, and perhaps also the stack. Subscripts

within the arrays should be used as pointers.

214

4.6.2 Program representation.

In this version of the analyser, programs were represented

as tree structures rather like their parse trees. This was to

preserve the nesting structure of loops, if - ghén - else - fi
statements, and so forth. It is reasonable to suppose that
knowledge of nested control structure can improve efficiency of.
the analysis. (Indeed, serious work has been done [Allen 2] on
discovering the nested control structure of programs writter in
languages which do not indicate it syntactically.) However,
assignments, generators, calls, dereferencing, and the like have
very little important nesting structure. It might be easier to
work with postfix code for such parts of a program. A program
could then be compactly stored as an array of instructions, with
a few special tricks for remembering nested control structure.
Whether such a representation would truly be an improvement is

hard to say.

215

4.6.3 Programming language in which the analyser is wrifteg.

ALGOL ¥ was chosen for implementing.the'analyser.fot a
nunber of reasons. It was available in an efficient, reliable

implementation. It provides if ~ then - else conditiohals and

———

list-processing facilities with garbage collection. This permiis
one to ignore the spectre of storage misallocation, thereby
making debugging simpler. Most important for debugging, it
prdvides‘pointer security -- it is impossible to use a pointer
pointing to a record of one class as if it pointedlfo another.
This greatly reduces the chances of obtaining an incomprehensibly

. scrambled data structure.

The major drawback with ALGOL W was one that could not be
patched by a macro extension. It was impossible to have poin{ers
pointing to arrays or to have arrays in garbage-collacted
storage. It was this that prevented using the data

representations of the previous sections.

It is interesting to note that ALGOL 68 possesses the above
advantages, but none of the drawbacks, except for the overriding
(and I hope temporary) one of the nonavailability of an

implementation.

216

This thesis has presented a technique for analysing the
source text of a program to determine infotmation about the data
structures it creates and maintains at run time. The algorithnm
identifies a special class of variables, the individual
variables, which can be treated by conventional optimizing
techniques, despite the presence of poinﬁer variables in the
program being analysed. Variations on the algorithm presented
he:e might be useful for detecting some errors in programs thatr
might otherwise be left to be detected at run time. The algorithm
maintains the theoretical distinction between values,
representatives of values, and the names used for values in the

source progran.

This chapter suggests some lines for further development of

these techniques.

217

5.2 Handling further lanquage features.

ALGOL 68 permits a variable to refer to a routine, and also
permits an actual parameter in a procedure call to be a routine.
The simple language used in this thesis does not. The difficulty
lies in finding and applying the effects of the routine when it

is subsequently called.

At first sight, it seems that we need only find all the
procedures that might be involved, and take the union of their

effects. If the identifier V in the call V(...) mpossesses an

individual mvariable, this may be easy: its value may be known.

If its value is not known, it is more difficult.

One might try to classify routines as individual and
nonindividual, depending on whether it is known which variables
refer to them. Then, when an unknown routine is called, one can
be sure it is one of the nonindividual routines, and use the
union of all the effects directories of 511 the nonindividual
routines. Routines will be individual and nonindividual in much

the same way as variables.

Next, once one has an effects directory created from this
union, one must apply it. In the cases discussed in Chapters 2
and 3, the global identifiers of a procedure being called were

always known at the point of call. Further, the environmeant of

218

the routine was a subset of the environment at the point of call
-- the identifiers they had in common possessed the very sanme
objects. Once procedures can be passed around as parameters, this

ceases to work. Consider the following example:

int ii, 33;

proc p = (prog¢ void q, ref int j) ¥eid: (--3 45 --);
begin int j3j, k;
proc ggq = void: (--; Jj:=0; k:=0; --);
p(aqa,33)
end
When q (i. e. gq) is called from p, the identifieré»affected by g

are not known at the point where p is declared. It is therefore

not possible to properly describe the effects of calling q, or §.

It might be possible to define 'scopeless' effects, which
are not deleted when their apparent range expires (2.9.6.3), but
stick around to affect all identifiers of the same name, no
matter how many layers of recursion or parameterisation ha ppen.

This solution is crude, but it may be effective.

219

5.2.2 Label variables and labels as parameters.

Label variables can be treated using the mechanism for
procedure variables. Indeed, ALGOL 68 forces the programmer to

use procedure variables instead of label variables.

But they do not need all of this mechanism, since they are
simpler entities. A jump to a label cannot have the side effects‘
on the state that a procedure call can. It does not change the
values of any variables. The poSsible targets of a gqo to can be
found in much the same way as the procedures that might be called

by a call.

For each local target, the mechanisms already explained
suffice, and for each nonlocal target, an effect can be logged.
Tt still requires further thought tc determine that this

technique does indeed work.

220

5.3 Qgg techgigues.

5.3.1 Merging and universal algebra{

Here some insight can come from universal algebra. [Gratzer
1]). (This model was, in fact, used in developing the merging
algorithm). An mstate can be considered as a'partial algebra. The

identifiers in the environment are nullary operators delivering

‘values as function values. The positions in the stack (top,

second, third, etc.) are also nullary operators. The mappings
‘nrefer' and *mlink' become a unary partial operators. The
problem is simply to construct another,algebra, of the same type

as the original two, that is a homomorphic image>of a subalgebra

- of each original mstate.

The new algebra can berobtained by the following steps:
1. Consider the disjoint union of the original mstate sets.
2. Construct an equivalence relation on this union.

3. Extend this equivalence relation to a congruence

relation, deleting occasional mvalues, and logging effects.

4. Take the modified union modulo the congruence relation as

the new mstate.

5. Decide which of the new mvalues are to be individual.

e

221

5.3.2 Optimup representation of histories?

If there is no recursion in a program, it is possible to
find an optimum representation for histories. These histories are
optimum in the sense that they are the smallest histories
permitted by the consistency conditions. The historiés‘will, in

fact,-be_regular sets.

Suppose we have completed the analysis of all procedures
called by the particular procedure which we are now going to
analyse. First, we perform the analysis of our procedure as
usual, except that we do not bother to construct any histories.
This is possible because histories are needed only to construct
the effects directory of the procedure. Since the procedure is

not recursive, the effects directory is not yet needed.

The histories, which will be regqular sets, will next be
determined. We construct a grammar for these reqular sets:

Consider each mvalue in each mstate in each mstate set to be a

‘nonterminal. If the hiStory of mvalue A is required, by the

consistency conditions, to contain that of B with an operator O
added, place a production

| A -> 08B

in the grammar. If ar mvalue A is mpossessed by the identifier I
insert the production

A -> Iu

222

The language generated by these productions using an mvalue
as start symbol will be the history of that mvalue. There are
well-known methods for handling regular languages: they will not

be discussed here.

This technique looks attractive. However, it has several
drawvbacks. First, the computations required to produce an effects
directory in sone convenient‘form may well be complex. Second,
the technique does not vwork correctly in the presence of
recursion. It might be suspecfed that we simply have to
generalize to context-free grammars. The complex manner in which
the effects directory of a procedure being called causes mvalues

(i.e. nonterminals) to be deleted makes this hope seem forlorn.

(g '~:g:‘r'7<‘§7‘.7_"

223

5.3.3 Bit matrix techniques.

Mstates can be partially represented by bit matrices.
Colunns correspond to mvalues, and rows to mvalues, identifiers,
and stack positions. The matrix then represents the relation
'npossesses'. This seems inefficient, however, since fhere will
be at most one bit in each row. However, if we always provide the
"unknown? mvalué as‘both a row and a column, we might be able to
handle the division of the data structure into parts as suggested
in section 5.2.2. First, we treat mpossession in a nonstandard
way. Instead of placing a bit in the matrix if one
to/possess/contain the other, we place a bit if it might. Merging
mstates becomes taking the inclusive or of two bit matrices. An
identifier mpossesses an mvalue other than 'unknown' only if it
has onlj one one bit in its row. An mvalue is individual only if
there is only ohe bit in its column, with that bit not in the

'unknown' row.
Histories still have to be handled separately.

An analyser using this representation will not have as many
individual variables as the analyser of Chapter 4, since only one
nvalue is permitted to refer to each individual nmvalue. However,
it has avaiiable gquite a lot of information not available at all
to the analyser of this thesis. Proof is still required that this

added information can be maintained correctly.

Frances Allen [Allen 1] describes a technique similar to

this, except that she uses only a single bit matrix. This is as
if a single mstate were used to describe all run time states
instead of just those associated with a single point in the
program. Eaéh row or column of the rather iarge matrix
corresponds to a variable, expressiom, procedure, on-condition,
or other language construction appearing in the program. A bit in
the matrix indicates whether an action on the construction -
associated with its row can affect the cbnstruction associated
with its column. The transitive closure of this matrix is used in
performing optimizations. This technique is clear and simple, buti
lacks sharpness of discrimination concerning temporéry

associations between program constructions.

225

5.4 Applications.

5.4.1 List structures and capability.

Data structures that programs maintain at run time may vell
be divided into independent disjoint parts. Alteration of one
such part should not affect other parts. For example, if one tree
in the data structure is altered, pther disjoint trees are not‘
affected. It might be possible to localize aﬁ effect on a
nonindividual variable to one_Variable or group of variables, and
know that others cannot be affected. This kind of classificationr
nmight be used fo permit common subexpréssion elimination even for
nonindividual variables -- unaffected variables have constant

values.

Such divisions into parts might be feasible using the idea
of 'capability'. An identifier or value is a capability that
permits access to another value if there is a path through the
list structuie from that identifier or value that can be followed
by standard program operations (e.g. dereferencing, subscripting,
field-selection) . The sets of values that can be accessed from
identifiers may be the above-mentioned parts of the program data
structure. It remains to identify disjointness. This can be done
by finding éssignments frdm one part to another. If there are any
such assignments, then the parté are not disjoint.
Nondisjointness is then extended to an equivalence relation.

Effects directories will then have to record which parts

L IR NPy e

P ——, 4

226

procedures render nondisjoint.

IS

These ideas of 'capability' are reminiscent of the

protection schemes proposed by Lampson[lampson 1, Spooner 1];

227

5.4.2 Scopes.

ALGOL 68 has a rigorous scheme of scope checking, which has
not yet been discussed in this thesis. If scope infofma£ion is
attached to mvalues, it may become possible to do much of the
run~-time scope checking at compile time, thereby saving much
execution time at no cost to security. It may also be possible to
use scopes in the anaiysis itself, since they provide a simple
and far-reaching restriction. If V permits access to W, then the

scope of V is no larger than the scope of W.

228

5.4.3 Storaqe allocation optimization.

The additional structure provided by scopes in ALGOL 68 can
also be a nuisance. If a programmer wishes to use complex data
structures, such as data structures that contain procedures, then
he must fight thé scope restrictions every Step of the way.
Still, it seemed impossible to remove the scope restrictions
without abandoning either security or the efficient stack method
of storage allocation. Oregano [Berry 1], an ALGOL 68 variant,
has indeed abandoned the stack, and uses garbage éollected

storage for everything.

some of this waste in Oregano is unnecesSary; Each variable
that never becomes nonindividual can be allocated on the stack.
Any assignment of the variable it represents to a global variable

would cause it to become nonindividual.

..

229

References.

(Allen 1] Frances E. Allen, A basis for program optimization, IBM
Thomas J. Watson Research Center technical report RC3138.

(Allen 2] Prances E. Allen; Control flow analysis, Proceedings of
a symposium on compiler optimization, Sigplan notices, 1970
July, pp 1-169.

[Berry 1] Daniel Berry, Introduction to oregano, in Proceedins of
a symposium on data structures in programming 1anguages,
Sigplan notices, 1971 v 6 n 2 February, pp 171-190.

[Brown 1] P. J. Brown, The ﬁL/1 macro processor, CACM 1967 v 10 n.
10 pp 618-623. |

[Cocke 1] John Cocke and J. T. Schwartz, Programming languages
and their compilers, Courant Institute of Mathematical
Sciences, April 1970.

[Dijkstra 1] E. W. Dijkstra, Go to considered harmful (letter)
CACH 1968 v11 n3 Harch pp 147-148. |

[Dijkstra 2] E. W. Dijkstra, Cooperating sequential processes, in
Programming languages, Genuys (editor), NATO Advanced Study
Institute, Academic press 1968.

[Gratzér 1] George Gratzer, Universal algebra.

{Knuth 1] D. E. Knuth, The art of computer programming.

[Lampson 1] Butler W. Lampson, Protection, in Proceedings of the
fifth Princeton conference on information sSciences and

systems, pp 437-443,

230

{Landin 1] The next 700 programming languages, CACHM i966 v9 n3
¥arch pp157-166. o

{Lucas 1] P. Lucas, P. Lauer, H. Stigleitnér, Method'and notation
for the formal definition of programming languages, IBMd
laboratory vienna technical report TR 25.087, 28 June 1968.

[Sites 1] Richard L. Sites, ALGOL W reference manual, Sténford
University computer science départment.

(Spooner 1] C. R. Spoomner, A software architecture for the
-seventies part I - the géneral approach, Software practice
and experience, v1 n1; pp 5-38.

[Van Wijngaarden 1] Van ¥ijngaarden, Mailloux, Peck, and Koster,
.Béport on the algorithmic language‘ALGOL 68.

tWirth 1]‘Niklaus Wirth and C. A. R, Hoare, A contribution to the

development of Algol, CACM 1966 v 9 n 6 June pp #13-431.

231

7. Appendix A. Program listing.

MCSKIP MT,< WITH < > WITH >
MCINS << & . >>
" MCSKIP = WITH = NL
MCSKIP ¢ OPT # OR NL ALL
MCSKIP T, < WITH ' ' WITH >
MCDEF<< () D> ASKLLL (D> B1.KL) >>>>
MCDEF<<EXP>> AS<<REFERENCE (TRIO,IDENTIFIER,CONSTANT DECL)>>
MCDEF<<REF>>AS<<REFERENCE>>
MCDEF <<PROC>> AS <<PROCEDURE>>
MCSKIP DT,<<">> . _
MCDEF 5 VARS <<FOR OPT : N1 OR N1 IN WITHS LIST LINK
OPT WHILE N2 OR N2 DO
OPT END NO
OR ; NO
OR ELSE NO
OR CLOSE NO
ALL
OR DO WITHS CPEN CLOSE
OR DO WITHS BEGIN END
ALL
OR : WITH = ALL>>
AS<<MCGO L5 IF &WD1.=<<:=>
MCSLT Tu4=2
MCGO L1 IF &WD1.=<<K:1>>
MCSET Tu4=1
§L1.MCSET T5 = &&§TU.+4.
MCGO L2 IF &WD&TH.+2.=<<WHILE>>
MCSET T5=&&TU.+3. ‘
§L2.BEGIN MCGO L3 IF &T4.=1
&A1, &A2.;8L3.
SAETU,.:=GAETU+ .., .
LOOPSTARTET2.:IF §A&TH..=NULL THEN GO TO LOOPEXIT&T2.;
MCGO L4 UNLESS GWD&TH .+2.=<<WHILE>>
IF - (6AS8T4.+3.) THEN GO TO LOOPEXIT&T2.;
SLU.MCGO L6 IF &WDTS5.=<<END>>
&BT5.MCGO L7
§L6.BEGINEBT5.ENDELT. 3
EAETH ., :=G6AETU.+2. (EAETU..);
GO TO LOOPSTARTE&ET2.;
LOOPEXITET2.:
END MCGO LO
§L5.<<FOR>>EB1.<K:=>>>> ’ . . _
MCDEF((IF THEN OPT ELSE N1 OR N1 ; NO OR END NO OR) NO
OR CLOSE NO ALL))
AS<KLLLKIF>>6B1.<<KTHEN>>EB2.=
MCGO L0 UNLESS 8WD2.—<<ELSE>>
<<ELSE>>&B3.>> .
MCDEF <<WHILE DO OPT ELSE NO OR ; NO OR END NO OR CLOSE NO ALL>>
AS<LLKKHHILE>>EB1.<<DO>>§B2.== :
>>
MCDEF<<DELETE FROM WITHS LIST LL RL
OPT ; NO OR END NO OR OD NO OR ELSE NO ALL >> AS ==

7. Appendix A. Program listing.

<<BEGIN IF &A1.=EA2. THEN &A2.:=5A3. (6A1.);
IF &A3.(6A1.)-~=NULL THEN &A4. (EA3. (EA1.)):
IF &A4.(6A1.)~=NULL THEN &A3. (EAL. (6A1.)):
END>>
MCDEF <<MESSAGE>> NL
AS<<MCSET P2 = 6P2.+1

AL, (6A1.);
A3. (541.)

(]

MCDEFG ERMESSEP2. AS <'<KLK'DEB1.<K'>>1>

§P2.>>

MCDEF<<ERROR WITHS " ">>
SSAS<<ERRPRINT (FALSE, MESSAGESWB1.
) >>

MCDEF<<ABORT WITHS " " >>

SSAS <<ERRPRINT (TRUE, NESSAGEEWB1.

) >>

MCDEF 4 VARS <<MESSAGES>>

AS<<MCSET Tu=1 .

MCGO 12

&EL1.;

MCSET T4 = &T4.+1

§L2.MCGO LO IF &TU4.GREP2.

MCDEF <<XXX>> AS <<ERMESS>>&TL.

NRITE (K'"M"¥>XXX<'">) NCGO L1

>> ‘ '

MCDEF<KSTATDELS>> AS <<<<OPT ELSE NO OR ; NC OR END NC OR) NO
OK CLOSE N0 ALL>>>> ,

MCDEF << DEFCONC NL >> AS <<==DE

MCDEFG 4 VARS<KCONCATENATE WITHS >>&A1.<< WITHS (N2 OPT,N2 OR)

ALL>>

AS<<MCSET T4=1

&EL1.CONCATENATEDDEAT.KLLL (ODDEATL. ,MCSET TUH=ETH .+ 1

MCGO L1 IF SWDTU.=<<K,>>

EATY . MCSET Tu=1

E1.2.<<) >>NCSET T4=6TH.+1

MCGO L2 IF &WDTH4.=<<K,>>

>>

>> '

DEFCONC <<MSTATES>>

DEFCONC <<HYSTORIES>>

MCSKIPLK (WITHS DUMMYFIELDS WITHS) >>

MCSKIP <<SKIP>>

MCSET P1=0

MCSET P2=0

MCDEF 4 VARS <<CONSTANT WITH (N1 OPT = N2 OR N2 , N1 OR) ALL >>

AS<<KMCSET Tu4=0
MCSKIP NL WITH SPACES

MCDEF F WITH ! WITH TYPE AS << n>>
MCDEF F WITH ! WITH VALUEKNOWN AS FALSE
MCDEF F WITH ! WITH VALUEB AS FALSE

MCDEF F WITH ! WITH VALUER AS NULL

MCDEF ¥ WITH ! WITH CEFFECTIS AS NULL
MCDEF F WITH ! WITH ISINDYIVIDUAL AS FALSE
MCDEF F WITH !

WITH IDENTITY AS O

i

7. Appendix A. Progranm listing.

MCDEF F WITH ! WITH HISTORY AS NULL
MCDEF F WITH ! WITH SETMARK AS FALSE
MCDEF F WITH ! WITH USEMARK AS FALSE
MCDEF F WITH ! WITH ESCHMARK AS FALSE
MCDEF F WITH ! WITH XHARK AS " n
MCDEF F RITH ! WITH XPT AS NULL

MCDEF ¥ WITH ! WITH XCT AS 0

MCDEF F WITH ! WITH SCANMARK AS FALSE

EL1.MCGO L4 IF &WDTH.=<<)>>

MCSET TU=&T4.+1

MCGO L2 IF SHUDTL,=<<=>>

MCGO L1 IF &ATL .=<<NONINDIV>>

MCGO L3 UNLESS &AT4.=<<INDIV>>

MCDEF << F WITH ! WITH ISINDIVIDUALD>> AS TRUE

¥CGO L1

EL2.MCDEF F WITH ! WITH &ATH. AS <V'<<KYDEHAETH.+1.<1>>0>

MCSET T4 = T4 + 1

MCGO L1

&L3.MCNOTE<X<INVALID FIELD>>

NCGO L1

&Lt , <<CONSTANT>> (FITYPE, F! VALUEKNOWN,F! VALUEB, F! VALUER,
FICEFFECTS,FIISINDIVIDUAL,
FIIDENTITY, '
FIHISTOKY,
FISETNARK,F! USEMARK,F! ESCMAKK,
FUXMARK,F!XCT,FiXPT,FISCANMARK) >>

W e
i ahie

234

DATA STRUCTURES

BEGIN
- RECORD TRIO (STRING (2) OP;
EXP FIRST, SECOND, THIRD;
RnF(MS“ALES) MATTACH) ;
¢ TRIO is used for operators wlth zero to three

arguments,

¢ which are EXPressions.

¢ .

¢ NULLARY "GEY generator

¢ UNARY: * " a list of one element.

4 S WYLY yval

z "GOY" A JUMP. FIRST IS THE JUMP TARGET .

¢BINARY: ", " parameter list, formal or actual.

4 . " statements in a serial.

4 *: " place a label.

e Ho.=W assignment .

¢ "PR" procedure denotation. FIRST is the list

z of formal parameters, represented as a

Z W u or , W.jist of DEClarations.

z - SECOND is the body of the procedure.

4 WCAY" a call. FIRST is the function;

¢ ‘ SECOND is the actual parameter
list.

¢ "YD" while first do second od

¢ TERNARY "IF" if FIRST then SECOND else THIRD fi

RECORD IDENTIFIEP(
STRING (8) IDNANE ¢ the strlng which represents the
identifier
¢ in the source text. ¢);
RECORD DECL (REFERENCE (IDENTIFIER) FORMAL;
EXP ACTUAL;
REFERENCE (DECL) DECLLINK ¢ the link used by
¢ FIXIDENTIFIERS to link together its symbol
tableg) ;
RECORD MSTATE(STRING(8) LABEL; ¢ the jump target ¢
REF (SYMBOL) SYMBOLTABLE; # the current environment ¢
EXP MSTACK ¢ The model of the run-time stack,
represented
¢ as a " W-linked list of CONSTANTs ¢);

¢ An mstate is represented by a linked list of MSTATE
¢ records. Each one represents the state of the run-time
¢ machine, usually upon completion of elaboration of
, some
¢ expression. ¢

RECORD MSTATES(REF (MSTATE) THISMSTATE;
REF(NISTATES) NEXITNSTATE,LASTUSTATE) ;

RECORD SYMBOL{STRING (8) SNAME;
REF (CONSTANT, TRIO) POSSESSION;

DATA STRUCTURES

REF (SYMBOL) NEXTSYMBOL) ;

RECORD <<CONSTANT>>(STRING(4) TYPE; £ "BOOL" or "REF" or
. “proc"
g or " " (unknown) or "“NULL
ll¢
¢ Next,the value of the constant, in one of two fields,
- ¢ depending om the type. ¢
LOGICAL VALUEKNOWN; . .
LOGICAL VALUEB; ¢ if bool,true or false ¢
REF(CONSTANT) VALUER; ¢ if ref, value referred to ¢
REF(EFFECTS) CEFFECTS ¢ if a procedure ¢ ;

LOGICAL ISINDIVIDURL;

INTEGER IDENTITY; ¢ This field is not used

REF (HYSTORY) HISTOKY ¢ how we got this value ¢ ;
LOGICAL SETMARK,USEMARK,ESCMARK;

STRING (8) XMARK;

INTEGER XCT;

REF (CONSTANT) XPT;

LOGICAL SCANNMARK ¢ normally FALSE ¢ };

RECORD HYSTORY (INTEGER LOWH,HIGHH;
REF (TRIO,IDENTIFIER) STARTH;
REF (HYSTORY) NEXTHYS) ;

RECORD EFFECTS (REF (HYSTORY) ESET,EUSE,ESCAPE);

REF (TRIO ¢ proc denotation ¢) ARRAY PROCTABLE (1::100) ;
REF (EFFECTS) ARRAY EFFECTSTABLE(1::100);

REF(SYMBOL) PROCSYMBOLTARBLE;

REF(EFFECTS) CURRENTEFFECTS;

INTEGER LARGESTIDENTIFIERCODE, NIDENTS32, NPROCS, NSTK;
EXP T,F; o '

" LOGICAL BG; ¢ boolean garbage pail ¢
REF (MSTATE,MSTATES) NG; ¢ mstate garbage pail ¢
INTEGER INDENTATION; ¢ for the print file ¢

TINING

PROCEDURE TIME(INTEGER KEY, PR; ,
"~ INTEGER ARRAY RES (*));
FORTRAN "TIME"; ‘

INTEGER ARRAY TIMEARRAY (1::5);
PROCEDURE STARTTINER; TINE(O,0,TIHEARRAY);

REAL PROCEDURE CPUTIME;
COMMENT TIME IN SECONDS;
BEGIN
TIKE (9,0, TIMEARRAY) ;
(TIMEARRAY (1) + TINEARRAY(2)) / (256%300)
END; -

236

PROC NEWLINE; ¢ begin a new line with the proper indentation ¢
BEGIN
TOCONTROL (2) ;
WRITEON(INDENTATION);
FOR J:=1 UNTIL INDENTATION DO WRITEON (M)
END;

PROC PRINT(REF(TRIO,IDENTIFIER,CONSTANT,DECL,

MSTATE,MSTATES,SYHBOL,HYSTORY,EFFECTS) VALUE X);

¢ Print X. For EXPressiomns, use DISPLAY instead ¢
IF X = NULL THEN SKIP
ELSE IF X IS TRIO THEN BEGIN

HRITEON("TRIO(",OP(X),",");

PRINT (FIRST (X)) ; WRITEON(",");

PRINT (SECOND (X)) s WRITEON (", ™) ;

PRINT (THIRD (X)) s WRITEON(")") END S
ELSE IF X IS IDENTIFIER THEN‘WRITEON(IDNAME(X))
ELSE IF X IS DECL THEN BEGIN ' :

WRITEON ("LET ", IDNAME (FORMAL (X)) ,"=")3

PRINT (ACTUAL (X)) END
ELSE IF X IS CONSTANT THEN BEGIN

IF TYPE(X)="BOOL" THEN BEGIN

IF VALUEKNOWN (X) THEN BEGIN
IF VALUEB (X) THEN WRITEON ("TRUE ")
ELSE WRITEON ("FALSE ")
END
ELSE WRITEON (YUNKNOWN BOOLEAN MY
END

ELSE IF TYPE (X)="REF " THEN BEGIN
IF ISINDIVIDUAL (X)
THEN WRITEON ("INDIVIDUAL ")
ELSE WRITEON ("NONINDIVIDUAL ");
WRITEON (" REFERENCE ") ;
WRITEON (X) ; A
IF SCANMARK (X) =TRUE THEN WRITEON ("ALREADY HENTIONED
l‘) .
ELSE BEGIN
 PRINT (HISTORY (X)) ; , :
{F ISTNDIVIDUAL(X) AND VALUEKNOWN(X) THEN BEGIN
NEWLINE; :
SCANMARK (X) :=TRUE;
WRITEON ("THIS REFERENCE REFERS TO ")j
PRINT (VALUER (X)) ;
SCANMARK (X) :=FALSE;
END '
END
END

ELSE IF TYPE (X) ="NULL" THEN WRITE(“NULL")

ELSE IF TYPE (X)="PROC" THEN BEGIN
WRITEON {"PROC ") ; :
PRINT (CEFFECTS (X))
END
ELSE IF TYPE (X)=" " THEN BEGIN
WRITEON ("UNKNOWN ") ; : ,
PRINT (HISTORY (X)) ‘ ‘]
END |
ELSE WRITEON (" INVALID TYPE == "“u# _TYPE(X),"un #) 5
END ’

ELSE IF X IS MSTATE THEW g
BEGIN NEWLINE; . i
WRITEON ("MSTATE ™) ; !
INDENTATION :=INDENTATION+1;

IF LABEL(X) -~= " " THEN BEGIN
WRITEON ("JUMPING TO *, LABEL (X))
END;

NEWLINE;

PRINT (SYMBOLTABLE (X)) ;

NEWLINE; :

WRITEON("STACK : "),

INDENTATION:=INDENTATION+1;

FOR REF(TRIO):I IN LIST MSTACK(X) LINK SECOND DO OPEN
NEWLINE;
PRINT (FIRST(I))
CLOSE;

INDENTATION:=INDENTATION-2 END

ELSE IF X IS MSTATES THEN BEGIN
NEWLINE;

WRITEON ("STATE MODEL "); INDENTATION:=INDENTATION+1;
FOR REF(MSTATES): I IN LIST X LINK NEXTMSTATE DO
PRINT (THISMSTATE (I)); .
INDENTATION:=INDENTATION-1;

END ‘

ELSE IF X IS SYMBOL THEN ¢ whole symbol table ¢ BEGIN

NEWLINE;

WRITEQN("ENVIRONMENT ")

INDENT (

FOR REF(SYMBOL): T IN LIST X LINK NEXTSYMBOL DO OPEN
NEWLINE; '
PRINTSYMBOL(T)
CLOSE)

END

ELSE IF X IS HYSTORY THEN
BEGIN NEWLINE; WRITEON ("HISTORY "“);
INDENTATION:=INDENTATION+1;
INTFIELDSIZE := 3;
FOR REF(HYSTORY): I IN LIST X LINK NEXTHYS DO BEGIN

et o e s i At

NEWLINE; ,
WRITEON ("FRON w, LOWH(I) ,"TO",HIGHH (1) ,
" yALS, STARTING AT L I
PRINT(STARTH(I)); :
. END;
INTFIELDSIZE := 145
INDENTATION:=INDENTATION-1
END .

ELSE IF X IS EFFECTS THEN BEGIN
NEWLINE;
WRITEON ("EFFECIS -- ")
INDENTATION:=INDENTATION+1;
NEWLINE;
WRITEON ("SET -- ")3
PRINT (ESET (X)) s
NEWLINE;
YRITEON ("ESCAPE -- ")
PRINT (ESCAPE (X)) .
INDENTATION:=INDENTATION-1
END; :

PROC - PRINTSYMBOL (REF (SYMBOL) VALUE S) ;
BEGIN PRINTS (SNAME(S)): »

HRITEON ("= ");
INDENT{PRINT(POSSESSION(S)))
END;

PROC PACKETY (INTEGER VALUE OUTPRIO, INPRIO;
INTEGER RESULT NEWPRIO;
PROC X) 3
¢ Enclose X in parentheses, if necessary ¢
IF OUTPRIO > INPRIO THEN BEGIN
WRITEON (" (")
NEWPRIO:=0C;
INDENT (X) 3
WRITEON (") ").
END
ELSE BEGIN
NEWPRIO := INPRIO;
X .
END;

PROC INDENT (PROC X);
¢ indent X ¢ '

BEGIN
INDENTATION := INDENTATION + 1;
X3 .
, INDENTATION = INDENTATION = 1
END; .

PROC DISPLAY (INTEGER VAIUE PRIO;

239

240

EXP VALUE X);
¢ print X in readable form, as a priority
¢ PRIO expression ¢
BEGIN INTEGER NEWP;
REFERENCE (TRIO) I;
IF X IS TRIO THEN BEGIN

IF OP(X) = “GE" THEN WRITEON(“GEN ")
ELSE IF (OP(X) = "VL") OR (OP(X) = "GO") THEN
PACKETY (PRIO, 40, NEWP, BEGIN '
IF OP(X) = “VLY "HEN WRITEON ("VAL ")

ELSE WRITEON ("GO ") ;
INDENT (DISPLAY (NEWP, FIRST (X)))
END)
ELSE IF OP(X) = "," THEN PACKETY (PRIO, 25, KNEWP,
. BEGIN
FOR I IN LIST X LINK SECOND DO OPEN
DISPLAY (25,FIRST (I)) ;
IF SECOND (I) -~= NULL THEN WRITEON(", ")
CLOSE
END) . _
ELSE IF (OP(X) = "; ") OR (OP(X) = ": ") THEN
PACKETY (PRIO, 20, NEWP, BEGIN
FOR I IN LIST X LINK SECOND DO OPEN
DISPLAY (20, FIRST (I));
IF (SECOND(I) -~= NULL) OR (OP(I) = ": ™)
< THEN BEGIN
WRITEON (0P (I)) ;

IF OP(I) == ": ™ THEN NEWLINE
" END
CLOSE
END)
ELSE IF (OP(X) = ":=") THEN PACKETY(PRIO, 30, NEWP,
BEGIN

DISPLAY (NEWP+1, FIRST(X));:

WRITEON (":= ") ;

DISPLAY (NEWP, SECOND (X))

END) '
ELSE IF OP(X) = "PR" THEN PACKETY (PRIO,20,NEWP, BEGIN

WRITEON (" (PROC (")
FOR I IN LIST FIRST(X) LINK SECOND DO OPEN
DISPLAY (25,FORMAL (FIRST (I))) ;
IF SECOND(I) -= NULL THEN WRITEON (", ")
CLOSE;
WRITEON (") : ");
INDENT (DISPLAY (20, SECOND(X}));
WRITEON (") ")
~ END)
ELSE IF OP(X) = "CA" THEN PACKETY(PRIO, 100, NEWP,
, ' BEGIN '
DISPLAY(NEWP + 1, FIRST (X))
WRITEON(" ("); :
FOR I IN LIST SECOND(X) LINK SECOND DO OPEN

QUTRUT
DISPLAY (25, FIRST(I));
IF SECOND(I) -= NULL THEN WRITEON(", ")
CLOSE;
WRITEON (M) ")
END)
ELSE IF OP(X) = "WwD" THEN BEGIN
WRITEON (YWHILE ") ;
INDENT (DISPLAY (O, FIRST(X))),
NEWLINE;
HRITEON("DO ") ;
INDENT (DISPLAY (0, SECOND(X)));
NEWLINE; ,
WRITEON("OD ")
END
ELSE IF OP(X) = "IF" THEN BEGIN
WRITEON("IF ") ; '
INDENT (DISPLAY (O,FIRST(X)));
NEWLINE; '
WRITEON("THEN ")
INDENT (DISPLAY (0, SECOND(X))),
NEWLINE; .
WRITEON("ELSE ") ;
INDENT (DISPLAY (O, THIRD(X))):;
NEWLINE;
WRITEON ("FI)
END . :
ELSE IF OP(X) = "“DS" THEN BEGIN
WRITEON ("DISPLAY ™)
NEWLINE;
PRINT (MATTACH (X)) ;
NEWLINE
END
ELSE IF OP(X) = "TR" THEN WRITEON (YTRACE W)
ELSE IF OP(X) = "NTI" THEN WRITEON("NOTRACE ")
ELSE PRINT(X)
END
ELSE IF X IS IDENTIFIER THEN PRIVTB(IDNAME(X))
ELSE IF X IS CONSTANT THEN PRINT (X)
ELSE ¢ X IS DECL ¢ PACKETY (PRIO, 20, NEWP, BEGIN
WRITEON ("LET ") ;
DISPLAY (NEWP, FORMAL (X))
WRITEON ("= ") ;
DISPLAY (NEWP, ACTUAL (X))
END)
END;

PROC PRINTS8 {(STRING (8) VALUE S);
gprint identifiers with few trailing blanks ¢
IF S(216) = " " THEN WRITEON(S5(0{3))
ELSE IF S(4j4)=" ® THEN WRITEON (S(01(5))
ELSE IF S(612)=" " THEN WRITEGN(S(0|7))
ELSE WRITEON (S,' "), :

241

e s e s e

EXP
PRO

242

CEDURE READEXP;
COMMENT Read an expression ;

BEGIN
COMMENT The parsing stack ;

INTEGER ARRAY SRPRIO, SLPRIO(0::NSTK);
EXP AKRAY SEXP (0::NSTK);
STRING (8) ARRAY SSTR(0::NSTK) ;

INTEGER TOP;

COMMENT miscellaneous variables;

STRING (8) NEWSTRING;

INTEGER NEWLPRIO, NEWRPRIO;
STRING(80) INPUT; INTEGER INPUTP;
LOGICAL ERROROCCURRED;

PROCEDURE READATON;

COMMENT READATOM reads the next atom from the input
file.
Atoms are delimited by blanks and newlines.
internal global variables:
INPUT is a one card buffer.
INPUTP points to the point in INPUT next
to be processed.
external variables:
NEWSTRING - the atom read, an 8-character
string,
padded with blanks on the Tight.
NEWLPRIO,NEWRPRIO -~ th left and right
priorities
of the atom read;

BEGIN INTEGER I,J; STRING(16) STUFF; I:=INPUTP;
IF I>71 THEN BEGIN READCARD(INPUT); I:=0; WRITE
(INPUT) END ;
WHILE INPUT(I{1)=" " DO BEGIN ‘
IF I>=71 THEN BEGIN READCARD (INPUT); T:=~1;
"WRITE (INPUT) END;
T:=1I+1
END;
J:=1;
WHILE(INPUT(J]1)«*“ ") AND (J<= 71)D0 J:=J+1;
INPUTP:=Jd; :
IF J-I>8 THEN BEGIN WRITE (" TOO LONG"); J:=1+8 END;
STUFF (018) :=INPUT (I]8); :

243

STUFF (J-I(8) :=" ",

NEWSTRING:=STUFF (0(8);

NEWLPRIO:=LPRIO (NEWSTRING) ;

NEWRPRIO:=RPRIO (NEWSTRING)
END;

PROCEDURE RECOGNISE(INTEGER VALUE I);

COMMENT RECOGNISE does the semantic processing when a
significant expression has been placed on the
‘stack. It also expells the entries for the

' parts .
of the expression from the stack, replacing
them by a single entry fornthe entire
expression.

Input - } :
SLPRIO,SRPRIO,SEXP,SSTR ~ the stack.
I,TOP - The expression is found in entries

- I through TOP on the stack.

Cutput - .

SLPRIO,SRPRIO,SEXP,SSTHE,TOP;

BEGIN

EXP PROCEDURE LISTEN(EXP VALUE EXPR); '
IF - (EXPR IS TRIO) THEN TRIO(" “,EXPR,NULL,NULL ;
,NULL) 1

ELSE IF(OP(EXPR)=", ") OR (OP (EXPR)="; ") OR (OP
- (EXPR)=": M) ;
"OR (OP(EXPR)=" ") THEN EXPR :
ELSE TRIO(" ",EXPR,NULL,NULL,NULL); .
1

EXP EXPR; , : o
EXPR:=NULL; %
IF (IF TOP-I+1<3 THEN FALSE

ELSE (SSTR(I+1)=", "y
OR (SSTR (I+1) =". ")
OR(SSTR (I+1)=": ")
OR (SSTR (I+1)="; "))
THEN BEGIN EXP PEXP;
PEXP:=TRIO(" ",SEXP(TOP),NULL,NULL,NULL);

FOR J:=TOP-2 STEP -2 UNTIL I DO
PEXP:=TRIO({SSTR(J+1) (C|2),SEXP(J) ,PEXP,NULL

+ NULL) ;
EXPR:=PEXP
END
ELSE
CASE TOP-I+1 OF BEGIN
IF SSTR(I)="TRUE " THEN EXPR:=CONSTANT (TYPE="BOOL"

(VALUEKNOKN=TRUE,VALUEB=TRUE)
ELSE IF SSTR(I)="FALSE " ‘

THEN EXPR:=CONSTANT (TYPE="BOOL", VALUEKNOWN=TRUE

244

,VALUEB=FALSE)

SSTR (I) ="GEN "
EXPR:=TRIO("GE",NULL, NULL,NULL,NULL)
SSTR (I) = "TRACE " THEN
:= TRIO("TR", NULL, NULL,
SSTR(I) = "NOTRACE " THEN
:= TRIO("NT", NULL, NULL,
ELSE IF SSTR(I) = “DISPLAY " THEN

EXPR := TRIO("DS", KULL, NULL,
ELSE EXPR:=IDENTIFIER(SSTR(I)) ;

ELSE IF
THEN
ELSE IF
EXPR
ELSE IF
EXPR

NULL, NULL)

NULL, NULL)

NULL, NULL)

COMMENT two symbols ;

IF SSTR(I)="VaL "
THEN EXPR:=TRIO("VL", S?XP(TOP),NULL NULL,NULL)

ELSE IF (SSTR(I)="GO ") THEN
EXPR:=TRIO("GO",SEXP (T0OP),NULL,NULL, NULL)

ELSE IF (SSTR(I)="..e.ss..'") AND (SSTR(TOP)-"‘......

II) .
THEN EXPR'=TRIO("CA" SEXP(I) LISTEN (SEXP (T+1))
¢ NULL, NULL)
ELSE ERROR(Z){

COMMENT 3 symbols ;

IF (SSTR (I)="(

") AND (SSTR(I+2) = ")
"

)

") OR (SSTR (I+1)=":
") OR (SSTR (I+1)=",
ll)
EXPR:=TRIO(SSTR(I+1) (0{2),SEXP (I)
NULL, NULL)
(SSTR (I) ="GO ") AND (SSTR(I+1)="TO
")

THEN EXPR:=SEXP (I+1)
ELSE IF (SSTR(I+1)=":=
OR (SSTR(I+1)=";

")

THEN ,SEXP (TOP) ,

ELSE IF

THEN
ELSE IF
AND
THEN

ELSE ERROR(3);

EXPE:=TRIO ("GO",SEXP (TOP) ,NULL, NULL,NULL)
(SSTR (I+1)="(")

(SSTR (I+2) =") ")
EXPR:=TRIO("CA",SEXP{I),NULL, NULL, NULL)

COMMENT 4 symbols ;

IF (SSTR(I)="PROC

THEN

") AND (SSTR(I+2)=n; ")

BEGIN

EXP IN,OUT;

IN:
oUT:

=LISTEN (SEXP (I+1));
=IN;

WHILE IN-=NULL DO BEGIN

FIRST (IN) :=DECL (FIRST (IN) ,NULL,NULL) ;
IN:=SECOND (IN)
END;

EXPR:=TRIO (“PR",0UT, SEXP(I+3) NULL, NULL) ;

NPROCS:=

NPROCS+1;

2 tersiire,

245

=
=
!

PROCTABLE (NPROCS) :=EXPR;
EFFFCTSTABLE (NPROCS) :=EFFECTS (NULL, NULL,NULL)
"END ‘
ELSE IF (SSTR(I)="LET ") AND (SSTR(I+2)="=
"
THEN BEGIN EXPR:=DECL (SEXP (I+1) ,SEXP (I+3),NULL);
IF SEXP (I+3) IS TRIO THEN
IF OP (SEXP (I+3))="PE" THEN
PROCSYMBOLTABLE:=SYMBOL (IDNAME (SEXP (I+1)

|
SEXP (I+3) ,PROCSYMBOLTABLE)

END ,
ELSE IF (SSTR(I+1)="(")
AND (SSTR(I+3)=") ")

THEN EXPR:=TRIO ("CA",SEXP(I),LISTEN(SEXP(I+2))
, NULL, NULL)
ELSE ERROR(Y4); '

COMMENT 5 symbols ;

IF (SSTR(I)="WHILE ") AND (SSTR(I+2)="DO ")
AND (SSTR (I+4)="0D "
THEN EXPR:=TRIO ("WD",SEXP (I+1),SEXP (I+3),NULL
,NULL) ; o
COMMENT 6 SYMBOLS ;
ERROR (6) ;
CONMENT 7 SYMBOLS ; |
IF (SSTR (I)="IF W) AND (SSTR (I+2)="THEN ")
AND
(SSTR (I+4)="ELSE ") AND (SSTR(I+6)="TI)
THEN EXPR:=TRIO ("IF",SEXP(I+1),SEXP(I+3),SEXP(I+5
) ¢ NULL)
END;

IF EXPR = NULL THEN ERROR(8);
CLEARSTACK (I+1,TOP) ;
SLPRIO (I) :=SRPRIO(I) :=
(IF SRPRIO (I-1) >NEWLPRIO THEN SRPRIO (I-1) ELSE
NEWLPRIO) ;
SEXP(I) :=EXPR;
SSTR(I):="....,...";
TOP:=1;
END;

PROCEDURE CLEARSTACK (INTEGER VALUE I, J);
CONMENT clear all stack entries from I to J inclusive j
FOR K:=I UNTIL J DO
BEGIN
SLPRIO (K) :=-99; SRPRIO (K) :=-99;
SEXP (K) :=NULL; S

SSTR(K);="~~----;-u
END;

PROCEDURE PRINTSTACK (INTEGER VALUE I,J),
COMMENT print part of the stack omn a single ‘line.
only SSTR(I through J) will be printed;
BEGIN WRITE ("STACK",I);
FOR K:=I UNTIL J DO HWRITEON(" ",SSTR(K));
END;

PROCEDURE STACK;
COMMENT place the new atom on the stack
BEGIN :

TOP:=TOP+1;

“IF TOP>NSTK THEN ERROR(10);
SRPRIO (TOP) :=NEWRPRIO;
SLPRIO (TOP) :=NEWLPRIO;

SSTR (TOP) :=NEWSTRING;
SEXP(TOP) :=NULL;
END; »

INTEGER PROCEDURE LPRIO(STKING (8) VALUE S);
COMMENT The left priority of the atom S ;

IF S=WHHILE " THEN 100 ELSE
IF S="DO " THEN 0 ELSE
IF S="0D " THEN 0 ELSE
IF S="IF " THEN 100 ELSE
I¥ S="THEN * THEN O ELSE
IF S=M"ELSE * THEN 0 ELSE
IF S="FI " PHEN 0 ELSE
IF s="(" PHEN 100 ELSE
IF sS=4) " THEN O ELSE
IF 5=":= t* THEN 31 ELSE
IF S=n; * THEN 20 ELSE
IF S=h: " THEN 20 ELSE
IF S=, " THEN 20 ELSE
IF sS=1"GO " THEN 41 ELSE
IF S="VAL . " THEN 41 ELSE
IF s=uw._, ® THEN -100 ELSE
IF S=%"PROC " THEN 22 ELSE
IF s=", W THEN 25 ELSE
IF S="LET tt THEN 22 ELSE
IF S=t= "t THEN 22 ELSE
110,

INTEGER PROCEDURE RPRIO(STRING (8) VALUE §),;
COMMENT The right priority of the atom S ;

IF S="HHILE ¥ THEN 0 ELSE
IF S="DO " THEN O ELSE
IF S="0D " THEN 100 ELSE

IF S="IF " THEN O ELSE

246

J—

S="THEN - " THEN O ELSE

IF

IF S=“ELSE " THEN 0 ELSE
IF S="FI " THEN 101 ELSE
IF S="(® THEN 0 ELSE
IFP S=1) ® THEN 101 ELSE
IF S=h:= t THEN 30 ELSE
IFr s=4; # THEN 20 ELSE
IF S=w: . " THEN 20 ELSE
IF s=", " THEN 20 ELSE
IF S="GO . THEN 40 ELSE
IF S="VAL " THEN 40 ELSE
IF s=t.. it THEN -100 ELSE-
IF S="*pPROC " THEN 20 ELSE
IF s=n, " THEN 25 ELSE
IF S="LET " THEN 22 ELSE
IF S=u= " THEN 22 ELSE
110; ’

PROCEDURE ERKOR (INTEGER VALUE 1) ;
BEGIN STRING (80) MARK;
WRITE (" SYNTAX ERROR "y ;

WRITE (" NEW ATONM: ",NEWSTRING, NEWLPRIO,NEWRPRIO) ;
WRITE (" STACK ") ;
FOR I := TOP STEP -1 UNTIL 0 DO

WRITE(I, SSTR(I),SLPRIO(I),SRPRIO(I) SEXP(I)) ;
WRITE (INPUT) ;
MARK:="
II;
IF (INPUTP<80) AND (INPUTP >= 0)
THEN MARK (INPUTP{1) s="kn;
WRITE (MARK,INPUTP) ;
WRITE(" FLUSH INPUT");
WHILE INPUT(0]j2)-=".." DO BEGIN
READCARD (INPUT) ; WRITE (INPUT) END;
ERROROCCURRED:=TRUE;
GO TO EXIT

END;

COMMENT stack and variable initialisatiosn.

-99

is the undefined value for integers,

lewwemwe=tt g5 the undefined string;

TOP:=0;
SLPRIO (0) :=-100;
SRPRIO (0) :=-100;

SEXP (0) :=NULL;

SSTR(0) :=".. ",
CLEARSTACK (1,NSTK) ;
NEWSTRING :=Wmmm==mmm ",
NEWLPRIO~-NEWRPRIO.~—99;

247

INPUT
INPUTP:=80;
ERROROCCURRED:=FALSE;

WHILE SSTR(2)-=".. " DO BEGIN
READATOM;
IF SRPRIO (0) >=SLPRIO (1) THEN ERROR (9) ;
WHILE SRPRIO (TOP) > NEWLPRIO DO BEGIN INTEGER I;
I:=TOP;
WHILE SRPRIO(I-1)=SLPRIO(I) DO I:=I-1;
IF SRPRIO (I-1) >SLPRIO (I)
THEN ERROR (1) ;
RECOGNISE (I) ;
END;
STACK
END;
IF ERROROCCURRED THEN GO TO EXIT;
SEXP (1)

END;

248

DRSTRR

249

REF(HSTALES) PROCEDURE CONCATENATEMSTATES (REF (MSTATES) VALUE P
Q)3
BEGIN REF (MSTATES)T,V;

IF P=NULL THEN V:=Q

ELSE IF Q=NULL THEN V:=P

ELSE BEGIN T:=P;
WHILE NEXLMSiATE(T) -= NULL DO T:=NEXTMSTATE(T);
NEXTMSTATE (T) :=Q; ’ '
LASLMS¢ATE(Q):=T;

v-_
END;
v
END;

REF (MSTATES) PROCEDURE MERGEMSTATES (REF (MSTATES) VALUE M1, M2;

LOGICAL VALUE RESULT

CHANGE) ;

¢ This procedure produces an mstate which is true iff

, either
¢ argument mstate is true. It pairs off the two MS“ATE

lists,

¢ jump by jump, and merges the ones that palr off. The
¢ unpaired MSTATES are simply chained on. M1 and M2 are
4 destroyed in the process. ¢
¢

CHANGE is set to TRUE if M1 is different from the
: returned
¢ value ¢ '

BEGIN REF {MSTATE)I,J; I:=J:=NULL;
M1:=COPYMSTATES(M1);
M2:=COPYHMSTATES (M2) ; .
FOR REF (USTATES): K IN LIST M1 LINK NEXTMSTATE DO OPEN
I:=THISMSTATE (K) ;
~ FOR REF (MSTATES): L IN LIST M2 LINK NEXTMSTATE DO
‘ OPEN
J:=THISMNSTATE (L) ;
IF (LABEL(I) = LABEL(J))
THEN BEGIN
EXP P,Q,S;
DELETE 1 FROM LIST N2 1L LASTMSTATE RL
NEXTMSTATE;
¢ Merge I and J. This requires recursively
¢ scanning their data structure ¢
¢ Merge the stacks ¢
=MSTACK (I);Q:=MSTACK(J) 3
WHILE(P%“NULL) AND (Q-=NULL) DO BEGIN
MERGECONSTANTS (FIRST (P) ,FIRST (Q) , CHANGE) ;
P:=SECOND (P) ;
" Q:=SECOND (Q) ;
END;
IF (P~=NULL) OR (Q-=NULL)

i

250

MERGING -

THEN ERROR "NON-MATCHING STACK LENGTHSY;
¢ stack is now merged ¢ '
MERGESYHBOLTABLES(SYMBOLLABLE(I),

SYMBOLTABLE (J) ,CHANGE) ;
END
CLOSE CLOSE;
IF (M2-=NULL) THEN CHANGE:=TRUE;
M1:=CONCATENATE NMSTATES(HM1,M2);
¢ Edit M1 to remove duplicate mvalues ¢
FOR REF (MSTATES): K IN LIST M1 LINK NEXTMSTATE DO OPEN
FOR REF(SYMEOL) :S IN LIST SYMBOLTABLE (THISMSTATE (K))
LINK NEXTSYMBOL DO .
FOR REF (CONSTANT) :C I¥ LIST POSSESSION(S) LINK
. VALUGER DO
VALUER (C) :=XPTS (VALUER(C)) ;
FOR REF(TRIO) : S IN LIST MSTACK (THYISMSTATE (K)) LINK

SECOND DO
FOR REF(CONSTANT) C IN LIST FIRST(S) LINK VALUER
DO
VALUER (C) : =XPTS(VALUER{C))
CLOSE; '
M1
END;

REF (CONSTANT) PROC XPTS(RLF(CONSTANT) VALUE C) ;
BEGIN REF (CONSTANT) I;
FOR I IN LIST C LINK XPT WHILE XPT(I)-~=NULL DO SKIP;
I .
END;

PROCEDURE MERGESYMBOLTABLES (REF (SYMBOL) VALUE A,B;
LOGICAL VALUE RESULT
CHANGE) ;
¢ Merge two symbol tables ¢
BEGIN
FOR REF(SYMBOL): I IN LIST A LINK NEXTSYMBOL DO
FOR REF(SYMBOL): J IN LIST B LINK NEXTSYMBOL DO OPEN
IF SNAME(I)=SNAME(J) THEN
MERGECONSTANTS (POSSESSION(I) ,
POSSESSION (J) ,CHANGE)
CLOSE; :
END;

PROC MERGECONSTANTS (REF (CONSTANT) VALUE C,D;
: LOGICAL VALUE RESULT CHANGE) ;
BEGIN . ‘ .
C:=XPTS5(C);
IF (C=NULL) OR (D=NULL) THEN ERROR " NULL CONSTANT "
ELSE IF XPTS (D)=C THEN SKIP
ELSE IF XPT(D)-=NULL # D has’ prev1ously been matched to
¢ something other than C ¢ THEN BEGIN
CHANGE:=TRUE;

RN

251

MERGECONSTANTS (C, XPTS (D) ,CHANGE)
END
ELSE BEGIN HISTORY (C) :=UNITEHYS(HISTORY(C),
HISTORY (D), CHANGE) ;
XCT (C) :=XCT (C) +XCT (D)
IF TYPE(C)-=TYPE(D) THEN BEGIN
CHANGE :=TRUE;
IF TYPE(C)="REF " THEN SETFREE (C);
IF TYPE(D)="REF " THEN SETFREE(D);

TYPE (C) :=" -
VALUER (C) :=NULL ¢ TO PERMIT STORAGE TO BE FREED ¢
END ‘

ELSE IF TYPE (C)=" " THEN SKIP

ELSE IF TYPE(C)="NULL" THEN SKIP

ELSE IF TYPE (C)="BOOL" THEN BEGIN
IF (VALUEKNOWN(C) = VALUEKNOWN (D))

AND (VALUEB(C)=VALUEB(D)) THEN SKIP
ELSE IF ~VALUEKNOWN (C) THEN SKIP
ELSE IF VALUEKNOWN(D) AND (VALUEB(C)=VALUES (D))
THEN SKIP

ELSE BFGIN CHANGE:=TRUE;
VALUEB (C) : =FALSE;
VALUEKNOWN (C) :=FALSE

END

END ,

ELSE IF TYPE(C)="PROC" THEN BEGIN REF (EFFECTS) CE,DE;
CE:=CEFFECTS (C) ; DE:=CEFFECTS (D) ; :
ESET (CE) :=UNITEHYS (ESET (CE) ,ESET (DE) ,CHANGE) ;
EUSE(CE) :=UNITEHYS (EUSE (CE) ,EUSE (DE) ,CHANGE) ;
ESCAPE (CE) :=UNITEHYS (ESCAPE {CE) ,ESCAPE (DE) , CHANGE)
END

ELSE IF TYPE(C)="REF " THEN BEGIN
IF ISINDIVIDUAL (C) THEN BEGIN

IF ISINDIVIDUAL (D) THEN BEGIN

IF XCT(C) > 2 THEN BEGIN
SETFREE (C) ;

CHANGE := TRUE
END

ELSE IF VALUEKNOWN(C) AND VALUEKNOWN (D)
THEN MERGECONSTANTS (VALUER(C) , VALUER (D)

,CHANGE)

ELSE IF VALUEKNOWN(C) THEN BEGIN
LOGEFFECT (3, HISTORY (VALUER(C))) ;
CHANGE:=TRUE; .
VALUEKNOWN (C) : =FALSE;

VALUER (C) :=NULL
END

ELSE IF VALUEKNOWN (D)

THEN LOGEFFECT (3,HISTORY (VALUER (D)))

ELSE SKIP

END ,

ELSE BEGIN

252

HERGING

LOGEFFECT (3, HISTORY (C)) ;
ISINDIVIDUAL (C) : =FALSE;
VALUEKNOWN (C) : =FALSE;
VALUER (C) :=NULL
END

END
ELSE ¢ - ISINDIVIDUAL(C) ¢ BEGIN
IF ISINDIVIDUAL (D) THEN LOGEFFECT (3,HISTORY
(D))
~ ELSE SKIP END
END
ELSE ERROR "INVALID TYPEY
END
END;

PROC SETFREE (REF (CONSTANT) VALUE C);
¢ RECORD THAT C HAS ESCAPED. THIS HAS CONSEQUENCES FOR
¢ VALUER(C) IF C IS A REFERENCE ¢
IF C-~=NULL
THEN BEGIN LOGEFFECT (3,HISTORY (C)) ;
IF TYPE(C)="REF "
THEN IF ISINDIVIDUAL (C)
THEN BEGIN
REF (CONSTAXT) CR;
CR:=VALUER (C) ;
ISINDIVIDUAL(C) s =FALSE;
VALUER (C) :=NULL;
VALUEKNOWN (C) : =FALSE;
SETFREE (CR)
END;
END;

COPY MSTATES

REF (MSTATES) PROC COPYMSTATES (REF (MSTATES) VALUE M1)3
BEGIN REF (MSTATES) VV,0VV,V;

REF (MSTATES) 1I; ,

OVV:=VV:=NULL; I:=NULL;

FOR I IN LIST M1 LINK NEXTMSTATE DO OPEN
V.-MSTALEC(COPYMSTATE(;HISMSTATE(I)),NULL ovvV) ;
IF OVV-=NULL THEN NEXTHUSTATE (OVV):
IF VV = NULL THEN VV:i=V;
oVV:=V;
CLOSE;

vV

END;

REF (MSTATE) PROC COPYNSTATE (REF (MSTATE), VALUE SN);
BEGIN ’
REF (MSTATE)M; REF(SYMBOL) SYHM; REF(TRIO) MST;
M:=MSTATE (LABEL (SM),
COPYSYABOLTABLE(SYMBOLTABLE(SM)),
COPYMSTACK (ISTRCK(SM)))
FOR SYM IN LIST SYMBOLTABLE(SH) LINK NEXTSYMBOL DO
CLEARXPT {POSSESSION (SYN)) ;
FOR MST IN LIST MSTACK{(SM) LINK SLCOND DO
CLEARXPT (FIRST (MST)) ;
M
END;

REF (SYMBOL) PROC COPYSYMBOLTABLE(REF (SYMBOL) VALUE S);
IF S = NULL THEN NULL ELSE
SYMBOL (SNANE (S) ,COPYCONSTANT (POSSESSION(S)) ,
COPYSYMBOLTABLE (NEXTSYHBOL(S))) ;

REF (CONSTANT) PROC COPYCONSTANT (REF (CONSTANT) VALUE C);
BEGIN REF (CONSTANT) V3
IF C = NULL THEN V:=NULL ELSE
IF XPT (C)-~=NULL THEN V:=XPT(C)
ELSE BEGIN V'=XP¢(C). =<<CONSTANT>> (
TYPE(C) ,
VALUEKNOWYXN (C) ,
VALUEB (C) ,
NU1LL ¢ valuer ¢ ,
CEFFECTS (C) ,
ISINDIVIDUAL (C),
IDENTITY (C) ,
NULL ¢ history ¢#,
SETMARK (C) ,
USEMARK (C) ,
ESCHMARK (C),
XMARK (C),
1 ¢ XCT ¢,
NULL, R
SCANMARK(C)) ;

COPY MSTATES

VALUER (V) :=COPYCONSTANT (VALUER(C)) 5
HISTORY (V) :=COPYHYSTORY (HISTORY (C))
END;

v

END;

REF (HYSTORY) PROC COPYHYSTORY (REF (HYSTORY) VALUE H);
IF H = NULL THEN NULL ELSE
HYSTORY (LOWH (H) ,HIGHH (H) , STARTH (H) ,COPYHYSTORY (NEXTHYS (H))

)

REF (TRIO) PROC COPYMSTACK (REF(TRIO) VALUE S);
IF S = NULL THEN NULL ELSE -
TRIO (OP (S) ,COPYCONSTANT (FIRST (S)) ,COPYHSTACK (SECOND (S)),
NULL,NULL) ;

PROC CLEARXPT (REF (CONSTANT) VALUE C);
IF C=WULL THEN SKIP ELSE
IF XPT(C)=NULL THEN SKIP
ELSE BEGIN XPT({C) :=NULL;
CLEARXPT (VALUER (C))
END;

P

;
i
!
i
i
i

At SRS S otk s bt s 05

MSTATE SELECTORS

REF (STATES) PROC JUMPS (REF (MSTATES) VALUE P);
BEGIN REF (MSTATES) V,T; V:=NULL; ‘
FOR T IN LIST P LINK NEXTMSTATE DO OPEN
IF ISJUMP (THISHMSTATE(T))
THEN BEGIN REF (NSTATES) Q3
' Q:=KSTATES (THISMSTATE(T) ,NULL,V) ;
IF V ~= NULL THEN LASTMSTATE (V) :=
Vi=Q
END
CLOSE;

Q3

v
END;

LOGICAL PROC ISJUMP (REF (MSTATE) VALUE P);
LABEL (P) =-= " A '

REF (MSTATES) PROC UNJUMPS (REF (MSTATES) VALUE P);
BEGIN REF (MSTATES) V,T; V:=NULL; :
FOR T IN LIST P LINK NEXTMSTATE DC OPEN
JF -ISJUMP (THISHMSTATE(T))
THEN BEGIN REF (MSTATES) Q;
Q:=MSTATES (THISMSTATE(T) ,NULL,V);

-

IF V -«= NULL THEN LASTMSTATE(V) :=Q;
V:=0Q
END
CLOSE;
v
END;

REF (NSTATES) PROC TRUES (REF (MSTATES) VALUE P);
BEGIN REF (MSTATES) V,T; V:=NULL;
FOR T IN LIST P LINK NEXTHSTATE DO OPEN
IF MIGHTBETRUE (THISMSTATE (T))
THEN BEGIN REF (MSTATES) Q3
Q:=MSTATES (THISMSTATE(T) ,NULL,V);
IF V -~= NULL THEN LASTMSTATE (V) :=0;
V=0
END
CLOSE;
v
END;

REF (MSTATES) PROC FALSES (REF (MSTATES) VALUE P);
BEGIN REF (MSTATES) V,T; V:=NULL;
FOR T IN LIST P LINK NEXTMSTATE DO OPEN
IF MIGHTBEFALSE (THISMSTATE (T))
THEN BEGIN REF (MSTATES) Q;
. Q:=MSTATES (THISMSTATE (T),NULL,V);
IF V -~= NULL THEN LASTMSTATE (V) :=0Q;
V:=0
END

255

MSTATE SELECTORS

CLOSE;

v
END;

LOGICAL PROC MIGHTEEFALSE (REF (MSTATE) VALUE S);
IF ISJUMP(S) THEN FALSE

ELSE
ELSE
ELSE
ELSE
ELSE

IF MSTACK(S)=NULL THEN FALSE

IF - (FIRST(MSTACK(S)) IS CONSTANT) THEN FALSE
IF TYPE (FIRST (MSTACK(S)))=" " THEN TRUE

IF TYPE (FIRST (MSTACK(S)))~="BOOL" THEN FALSE
(-VALUEKNOWN (FIRST (MSTACK (S))))

OR ~VALUEB(FIRST(MSTACK {S))) 3

LOGICAL PROC MIGHTBETRUE (REF (MSTATE) VALUE 5);
IF ISJUMP(S) THEN FALSE

ELSE
ELSE
ELSE
ELSE
ELSE

IF MSTACK(S)=NULL THEN FALSE
IF -~ (FIRST (MSTACK(S)) IS CONSTANT) THEN FALSE
IF TYPE (FIRST (MSTACK(S)))=" % THEN TRUE
IF TYPE (FIRST (MSTACK (S)))-="BOOL" THEN FALSE
(~VALUEKNOWN (FIRST (MSTACK (S)}))

OR VALUEB (FIRST (MSTACK (S))) ;

RO

257

PROCEDURE MANALYSEPROCDENOTATIONS;
'~ BEGIN '
CHANGEEFFECT S:=TRUE;
HHILE CHANGEEFFECTS DO BEGIN
CHANGEEFFECTS:=FALSE;
FOR I := 1 UNTIL NPEOCS DO BEGIN
- REF (MSTATES) INIT;
EXP P;
REF (TRIO) J;
REF (SYMBOL) ARGS;
INTEGER K;
ARGS:=NULL;
P:=PROCTABLE (I);
CURRENTEFFECTS:=EFFECTSTABLE (I);
INIT:=COPYNSTATES (SUPERINIT) ;
:=1; ‘
FOR J IN LIST FIRST(P) ¢ formal parameters ¢ LINK
SECOND
DO OPEN
DEPINESYMBOL (FORMAL (FIRST(J)) ,
CONSTANT (TYPE=¥ ", HISTOEY=STARTHYS {(
IDENTIFIER (PARANMNAME (K)))) ,ARGS);
K 1= K+1
CLOSE;
SYMBOLTABLE (THISMSTATE (INIT)) :=ARGS;
~ MG:=MANALYSE (INIT,SECOND{P))
END;
CURRENTEFFECTS:=EFFECTS (NULL, NULL, NULL)
END
END;

STRING (8) PROCEDURE PARAMNAME (INTEGER VALUE I);
BEGIN STRING(8) N; STRING(12) S;
N:="p ",
S:=INTBASE10 (I) ;
N(216):=5S(616) ;
N

END;

REF (MSTATES) PROC MANALYSE (REF (MSTATES) VALUE INIT; EXP VALUE
EXPR) ;
BEGIN REF (MSTATES) EXITMSTATE; EXITMSTATE:=NULL;
"IF TRACING THEN BEGIN
WRITE ("MANALYSE -~ %);
DISPLAY (100, EXPR) ;
PRINT (INIT)
END;
IF EXPR = NULL THEN ERROR "MANALYSE NULL EXPR."
ELSE IF EXPR IS TRIO THEN BEGIN
IF OP (EXPR) = "GE" THEN BEGIN
FOR REF(MSTATES):I IN LIST INIT LINK NEXTMSTATE DO

258

ENSTACK (THISMSTATE (I) ,CONSTANT (TYPE="REF ",INDIV)

CEXTITMSTATE:=INIT

END
ELSE IF (OP(EXPR) = "“DS") OR (OP(EXPR) = “TR"W)
OR (OP (EXPR) = "“NT") THEN BEGIN
IF OP(EXPR) = "pgsn :
THEN MATTACH (EXPR) := COPYMSTATES (INIT)
ELSE IF OP(EXPR) = “TR" THEN TRACING := TRUE
ELSE IF OP(EXPR) = "NT" THEN TRACING := FALSE;
FOR REF (USTATES): I IN LIS? INXIT LINK NEXTMSTATE DO
OPEN
ENSTACK(THISMSTATE (I), VOIDVALUE)
CLOSE; :
EXITHSTATE := INIT
END
ELSE IF (OP (EXPR) = W ") OR (OP(EXPR) = ", ") THEN

BEGIN
¢ actual parameter list ¢ :
REFERENCE (MSTATES) M;
INTEGER I; I:=0; EXITMSTATE:=NULL;
FOR REF(TRIO): T IN LIST EXPR LINK SECOND DO OPEN
I:=I+1; .
INIT := MANALYSE (INIT, FIRST(T)):
M := JUMPS({INIT) ;
POP (I-1,H4); | ,
EXITHSTATE:=MERGEMSTATES (EXITMSTATE, M, BG) ;
INIT:=UNJUNPS (INIT)

CLOSE;
EXITMSTATE := MERGEMSTATES (EXITMSTATE,INIT, BG)
END
ELSE IF OP(EXPR) = "VL" THEN BEGIN

INIT:=MANALYSE (INIT,FIRST (EXPR)) ;
FOR REF (MSTATES):I IN LIST INIT LINK NEXTHSTATE DO
BEGIN
REF (MSTATE) STATE:
REF (CONSTANT) REFER,RVALUE;:
EXP STACK;
STATE:=THISMSTATE (I) ;
STACK:=NSTACK (STATE) ; :
IF STACK = NULL THEN ERROR "VAL WITH NULL STACK";
REFER:=FIRST (STACK) ;
IF REFER = NULL THEN ERROR"DEREFERENCE NULL":
IF (TYPE(REFER)~="REF ")AND (TYPE(REFER)-=" ")
THEN
ABORT "INVALID ARGUMENT FOR VAL";
IF ISINDIVIDUAL (REFER) AND VALUEKNOWN (REFER)
THEN RVALUE:=VALUER (REFER)
ELSE RVALUE:=CONSTANT (TYPE=" ", NONINDIV,
HISTORY=0PHYS ("VL",HISTORY (REFER))) ;
POP (1, STATE) ;
ENSTACK (STATE, RVALUE) ;

~ANALYSIS -

s e . e i S ot s

259

END;
EXITMSTATE:=INIT
END

ELSE IF OP(EXPR)="WD" THEN BEGIN

REF(MSTATES) CONDINIT
LOOPJUMPS
CONDJUMPS,‘
BODYJUMPS,
BODYINIT,
CONDEXIT,
BODYUNJUMES,
BODYEXIT;
LOGICAL CHANGE,GARBAGE;
CONDINIT:=MERGEMSTATES (INIT,MATTACH (EXPR), CHANGE) ;
LOOPJUMPS :=BODYINIT :=CONDEXIT :=BODYEXIT:=NULL;
CHANGE:=TRUE;
WHILE CHANGE DO BEGIN
CHANGE :=FALSE;
CONDEXIT:= MANALYSE(COPYMSTATLS(CONDINIT),FIRST
(EXPR)) ;
CONDJUMPS:=JUMPS (CONDEXIT) ;
LOOPJUMPS :=MERGEMSTATES (LOOPJUNPS, CONDJUNPS
+ GARBAGE) ;
BODYINIT:=UNJUMPS (CONDEXIT) ;
CONDEXIT:=COPYMSTATES (FALSES (BODYINIT)) ;
BODYINIT:=COPYNSTATES (TRUES (BODYINIT)) ;
POP (1, BODYINIT) ; '
BODYEX IT:=MANALYSE (BODYINIT,SECOND (EXPR)) ;
BODYJUNPS:=COPYMSTATES (JUMPS (BODYEXIT)) ;
LOOPJUMPS:=NERGEMSTATES (LOOPJUMPS, BODYJUHPS
+GARBAGE) ;
BODYUNJUMPS:=UNJUMPS {(BODYEXIT) ;
POP (1, BODYUNJUHMPES) ;
CONDINIT:=HERGEMNSTATES (CONDINIT,BODYUNJUMNPS
. CHANGE)
END;
MATTACH (EXPR) :=CONDINIT; :
EXITMSTATE:=MERGENSTATES (LOCPJUMPS,CONDEXIT,GARBAGE)
END

ELSE IF OP(EXPR)="IF" THEN BEGIN

REF (iSTATES) IFINIT, IFEXIT,THENINIT,THENEXIT,
ELSEINIT,ELSEEXIT,IFJUMPS;

LOGICAL GARBAGE;

REF (HYSTORY) HYS;

REF (SYMBOL) CALLSYM;

IFINIT:=INIT; :

IFEXIT:=THENEXIT:=THENINIT:=THENEXIT:=ELSEINIT:
" =ELSEEXIT:=
IFJUMPS:=NULL;

IFEXIT:=MANALYSE (IFINIT,FIRST (EXPR));

IFJUMPS:=JUUPS (IFEXIT) ;

THENINIT:=COPYNSTATES (TRUES (IFEXIT));

260

POP (1, THENINIT) ; '
ELSEINIT:=COPYMSTATES(FALSES(IFEXIT));
POP (1, ELSEINIT) ;
THENEXI :=MANALYSE(THENINIT,SECOND(EXPR));
ELSEEXIT:=MANALYSE(ELSEINIT,THIRD(EXPR));
EXITHMSTATE:=
MERGEMSTATES (IFJUNMPS,
MERGEMSTATES(THENEXIT,ELSEEXIT,GARBAGE)
,GARBAGE) ;
END .
ELSE IF OP(EXPR)="PR" ¢ procedure denotation ¢ THEN
BEGIN _ :
FOR REF (MSTATES) : M IN LIST INIT LINK NEXTMSTATE DO
QPEN
ENSTACK(THISMSTATE(M),CONSTANT(TYPE="PROC"
,CEFFECTS=PROCEFFECTS(EXPR)))
CLOSE;
EXITMSTATE:=INIT
END
FLSE IF OP(EXPR) = "CA" ¢ a call ¢ THEN
MANALYSECALL(INIT,EXPR,EXITMSTATE)
ELSE IF OP(EXPR) = "GO" THEN BEGIN
FOR REF(MSTATES): I IN LIST INIT LINK NEXTMSTATE DO
BEGIN
LABEL(THISMSTATE(I)):=IDNAME(FIRST(EXPR));
ENSTACK(THISHMSTATE (L), VOIDVALUE)
END;
EXITMSTATE:=INIT
END
ELSE IF OP(EXPR)=":=" . ‘
THEN MANALYSEASSIGNMENT(INIT,EXPR,EXITMSTATE)

ELSE IF (OP(EXPR) = ¥; ")
OR (OP (EXPR) = ": ")
THEN BEGIN

REF (MSTATES) M;
REF (TRIO) P, R;
REF (MSTATES) Q. THNSTATE;
LOGICAL CHANGE;
REF (MSTATE) JUHP;
REF (SYMBOL) SYNM;
REF (TRIO) SAVELOCALS;.
SAVELOCALS:=LOCALS;
FOR M IN LIST INIT LINK NEXTMSTATE DO OPEN
SYM:=SYHBOLTAELE(THISMSTATE(N));
FOR P IN LIST EXPR LINK SECOKD DO OPEN
IF FIRST (P) IS DECL THEN BIGIN ,
SYM:=SYMBOL (IDNAME (FORMAL (FIRST (P))) ,NULL
_ ¢, SYN) 5
LOCALS:=TRIO(" ",FORNMAL(FIRST(P}),
LOCALS, NULL, NULL)
END; »
CLOSE;

261

SYMBOLTABLE (THISMSTATE (M)) :=5SYHM
CLOSE; '
CHANGE:=TRUE; ‘
EXITMSTATE := NULL;
WHILE CHANGE DO BEGIN
TMSTATE:=INIT;
CHANGE :=FALSE;
FOR P IN LIST EXPR LINK SECOND DO OPEN
IF OP(P)=": " THEN BEGIN
MATTACH(P)'“MERGEMS”ATES(MAimACH(P),
TMSTATE CHANGE) ;
TMSTATE:=COPYMSTATES {MATTACH(P)) END
. ELSE BEGIN
TMSTATE:=NANALYSE (TMSTATE, FIRST (P)) ;
FOR Q@ IN LIST JUMPS (TMSTATE) LINK NEXTMSTALE
, DO OPEN
FOR R IN LIST EXPR LINK SECOND DO OPEN
IF OP(R)=": " THEN
IF LABEL(THISMSTATE(Q)) IDNANE (FIRST
(R))
THEN BEGIN
JMP:=COPYMSTATE (THISMSTATE (Q)) ;
POP (1,JUP) ;
LABEL (JMP) :=" ",
MATTACEK (R) :=
MERGEMSTATES (MATTACH (R) .,
MSTATES (J¥P,NULL,
NULL) ,CHANGE) ;
GO TO FOUND
END
CLOSE;
EXITMSTATE:=MERGEMSTATES (EXITMSTATE,
MSTATES(“HIDMSTATE(Q),NULL NULL) ,BG) ;
FOUND: CLOSE;
THSTATE:=UNJUMPS (TMSTATE) ;
IF SECOND (P)~=NULL THEN POP(1,TMSTATE)
"END '
CLOSE
END;
¢ restore LOCALS ¢
EXITMSTATE:=MERGEMSTATES(EXITNSTATE,TMSTATE,BG);
LOCALS:=SAVELQCALS '
¢ finished ! ¢
END
ELSE ERROR " INVALID OP IN TRIO -- MANALYSE "
END
ELSE IF EXPR IS CONSTANT ¢ boolean ~-- true or false ¢
THEN BEGIN FOR REF (MSTATES): I IN LIST INIT LINK
NEXTMSTATE DO
ENSTACK (THISMSTATE (I) ,COPYBASE (EXPR)) ;
EXITMSTATE:=INIT
END

262

ANALYSIS

ELSE IF EXPR IS IDENTIFIER
THEN BEGIN
REF (CONSTANT, TRIO) C;
REF (HYSTORY) H;
REF (TRIO) LOC;
FOR REF(MSTATES) :I IN LIST INIT LINK NEXTMSTATE
DO OPEN ‘
C:=LOOKUPSYMBOL (EXPR,SYMBOLTABLE (THISMSTATE(I))) ;
IF C=NULL THEN BEGIN
C:=LOOKUPSYMBOL {(EXPR,PROCSYMBOLTABLE) ;
IF C~=NULL THEN C:=CONSTANT (TYPE="PROCHY
,CEFFECTS=PROCEFFECTS (C))
END; .
:=STARTHYS (EXPR) ;
¢check if no history is to be recorded ¢
LOC:=10CALS; '
WHILE LOC-=NULL DO BEGIN
IF IDNAHE(FIRST (LOC)) = IDNAME (EXPR)
THEN H:=NULL; .
LOC:=SECOND (LOC)
END; ' :
IF C=NULL THEN C:=CONSTANT (TYPE=" - ",
HISTORY=H) ; A
ENSTACK (THISMSTATE (I) ,C)
CLOSE;
EXITMSTATE:=INIT
END i
ELSE IF EXPR IS DECL THEN BEGIN
REF (MSTATES) AACTUAL;
AACTUAL:=MANALYSE (INIT,ACTUAL (EXPE)) ;
FOR REF(MSTATES) :I IN LIST AACTUAL LINK NEXTMSTATE DO
DEFINESYMBOL (FORMAL {(EXPR) ,FIRST (MSTACK(THISMSTATE (I)
)) .
SYMBOLTABLE (THISMSTATE (I))) ;
EXITMSTATE:=AACTUAL .

END
ELSE ERROR "INVALID EXP -- HMANALYSE";
JF TRACING THEN BEGIN ’
WRITE ("EXIT MANALYSE -- %) ;

DISPLAY (100, EXPR) ;
PRINT (EXITMSTIATE)
END;

EXITMSTATE

END;

PROC MANALYSEASSIGNMENT (

REF(MSTATES) VALUE INIT;

EXP VALUE EXPR;

REF (MSTATES) RESULT EXITMSTATE);

‘ BEGIN
! REF (MSTATES) SOURCEINIT,
SOURCEEXIT,

A T "‘

o e i s e v

DESTINIT,

DESTEXIT,

ASSJUMPS,

EXIT;
LOGICAL GARBAGE;
REF(MSTATES) I;
SOURCEINIT:= INIT;
SOURCEEXIT:=NANALYSE (SOURCEINIT, SECOND(EXPR)).
ASSJUMPS :=JUMPS (SOURCEEXIT) ;
DESTINIT:=UNJUMPS (SOURCEEXIT) ;
DESTEXIT:=HANALYSE (DESTINIT,FIRST (EXPR)) ;

263

ASSJUMPS: MERGE%STATES(ASSJUMPS,uUMPS(DESTEXIT),GARBAGE

)
DESTEXIT:=UNJUMPS(DESTEXIT);

FOR I IN LIST DESTEXIT LINK NEXTMSTATE DO OPEN BEGIN

REF (MSTATE) ST;
EXP SO,DE;

T:=THISHMSTATE (1) ;
DE‘—FIRST(MSTACK(ST));
LOGEFFECT (1, HISTORY (DE)) ;
SO:=FIRST (SECOND (MSTACK (5T))) ;

IF ~ISINDIVIDUAL (DE) THEN SETFREE (SO)
ELSE BEGIN VALUER(DE) :=SO0;
VALUEKNOWN (DE) :=TRUE '
END ; '
POP (2,ST) ;
ENSTACK(STI,DE) ;
END CLOSE;
EXITHSTATE:=DESTINIT ¢ as modified above ¢
END; :

PROCEDURE MANALYSECALL (
REF (MSTATES) VALUE INIT;
REF(TRIO) VALUE EXPR;
REF(MSTATES) RESULT EXITHSTATE);
BEGIN

PROCEDURE EFFCHOOSE (REF (CONSTANT) VALUE V;
REF (HYSTORY) VALUE H);
¢ global integer effsel ¢
IF H -»= NULL THEN LOGEFFECT (EFFSEL,
CONCHYS (H,HISTORY (V)))
ELSE BEGIN CASE EFFSEL OF BEGIN
SETMARK (V) :=TRUE;
USEMARK (V) : =TRUE;
ESCMARK{V) :=TRUE END;
LOGEFFECT (EFFSEL, HISTORY(V))
, END;
¢ end effchoose ¢

REF (MSTATES) EXITPARAMNS,
EXITJUMPS,

264

EXITPRGC;
EXP I;
REF (EFFECTS) EFF,;
INTEGER NPARANS;
REF (TRIO) STACKINDEX;
REF(SYMBOL) CALLSYHMBOL,CS,FPARMS;
REF (HYSTORY) HY;
INTEGER EFFSEL;
¢ count the parameters ¢
NPARAMS:=0;
FOR I IN LIST SECOND(EXPR) LINK SECOND
DO NPARAMS:=NPARAMS+1;
EXITPARAMS:=MANALYSE (INIT,SECOND (EXPR)) ;
EXITMSTATE := JUNPS (EXITPARANS);
EXITPARANS := UNJUMPS(EXITPARANS) ;
EXITPROC:=MANALYSE (EXITPARANS,FIRST (EXPR));
EXITJUMPS := JUMPS {(EXITPROC) ;
POP(1,EXITJUMNPS) ;
EXITMSTATE := HERGEMS”ATES(EXILMSTATL, EXITJUMPS, BG) ;
EXITPROC := UNJUMPS(EXITPROC) ;
FOR REF(MSTATES):I IN LIST EXITPROC LINK NEXTMSTATE DO
OPEN
EFF'—CEFFECTS(FIRS”(MSTACK(iHISMSIATE(I)))),
I¥ EFF = NULL THEN BEGIN
¢ Attach entries to SYMBOLTABLE 1dent1fy1ng actual
¢ parameters with formal parameters. The resuting
¢ table will be called CALLSYMBOL. SYMBOLTABLE is
¢ not changed. ¢
CALLSYMNBOL:=SYNBOLTABLE (THISHNSTATE(I)) ;
STACKINDEX :=SECOND (MSTACK (THISHSTATE (I))) ;
FOR I:=NPARAMS STEP -1 UNTIL 1 DO BEGIN
CALLSYMBOL:=SYMBOL (PARAMNAME (I) ,
FIRST (STACKINDEX), CALLSYMBOL) ;
STACKINDEX:=SECOND {STACKINDEX) ;
END;
¢ callsymboltable has now been created ¢
¢ apply effects ¢
FOR EFFSEL2:=1,2,3 ¢ CHOOSES SET,USE,ESCAPE ¢ DO
BEGIN
EFFSEL:=EFFSEL2;
FOR HY IN LIST CASE EFFSEL OF
(ESET (EFF) ,EUSE (EFF) ,ESCAPE (EFF))
LINK NEXTHYS DO
MAPHYS(EFFCHOOSa,HY LOOKUPSYMBOL(STARTH(HY),
CALLSYHMBOL))

: END;
’ FOR REF(TRIO):J IN LIST MSTACK(THISMSTATE(I))
LINK SECOND DO
PERFORMEFFECTS (FIRST (J))
FOR REF(SYMEOL):J IN LIST CALLSYMBOL
LINK NEXTSYMBOL DO
PERFORMEFFECTS (POSSESSION (J))

265

ANALYSIS
END;
CLOSE;
POP (NPARAMS, EXITPROC) ;
EXITMSTATE:=HERGEUMSTATES (EXITPROC, EXITMSTATE, BG)
END;

266

EFFECTS HANDLING PROCEDURES

PROC PERFORMEFFECTS (REF (CONSTANT) VALUE Q)
¢ Recursively scan through the constants to perform the
actions
¢ indicated by the ESCMARKs and the SETMARKs. PERFORMEFFECTS
¢ uses SCANMARK to trap cycles ¢ .
IF C = NULL THEN SKIP
ELSE IF SCANMARK(C) THEN SKIP
ELSE IF ESCMARK (C) THEN SETFREE (C)
ELSE IF SETMARK{C) THEN BEGIN
SETFREE(VALUER{C)) ;
VALUER (C) :=NULL; ,
VALUEKNOWN (C) :=FALSE END
ELSE BEGIN
SCANMARK (C) : =TRUE;
PERFORMEFFECIS {(VALUER(C)) ;
SCANMARK (C) : =FALSE
END;

REF (EFFECTS) PROC PROCEFFECTS (REF(TRIO ¢ PROCDENOTATION ¢
A) VALUE P) ; .
BEGIN INTEGER J;
FOR I:=1 UNTIL NPROCS DO BEGIN J:=I;
IF PROCTABLE (I)=P THEN GO TO FOUND END;
ABORT “MISSING PROCEDURE";
FOUND: EFFECTSTABLE (J)
END;

PROC LOGEFFECT (INTEGER VALUE EFFSEL;
REF (HYSTORY) VALUE H);
CASE EFFSEL OF BEGIN

ESET (CURRENTEFFECTS) :=UNITEHYS (

ESET (CURRENTEFFECTS) ,DISCARDLOCALS (H) ,CHANGEEFFECTS) ;
EUSE (CURRENTEFFECTS) :=UNITEHYS (

EUSE (CURRENTEFFECTS) ,DISCAKDLOCALS (H) ,CHANGEEFFECTS) ;
ESCAPE (CURRENTEFFECTS) : =UNITEHYS (

ESCAPE (CURRENTEFFECTS) , DISCARDLOCALS (H)

,CHANGEEFFECTS)

END; '

HISTORY HANDLING PROCEDURES

REF ({YSTORY) PROC DISCARDLOCALS (REF (HYSTORY) VALUE H);
BEGIN REF (HYSTORY)I,J; REF(TRIO) L;
TI:=NULL; ‘
FOR J IN LIST H LINK NEXTHYS DO OPEN
IF STARTH (J) IS IDENTIFIER THEN BEGIN
FOR L IN LIST LOCALS LINK SECOND DO OPEN
IF IDNAME (STARTH(J)) = IDNAME(FIRST (L))

THEN GO TO EX

CLOSE; , A
T := HYSTORY (LOWH (J), HIGHH(J), STARTH(J), I);
EX: END :
CLOSE;
I
END;

STRING (2) VALUE OPH;
REF (HYSTORY) VALUE HYS) ;
¢ tack the extra operation on to the hystory HYS

BEGIN REF (HYSTORY)I,V; V:i=NULL; < .
IF OPH-="VL" THEN ABORT “INVALID OPHERATOR FOR OPHHYS";

FOR I IN LIST HYS LINK NEXTHYS DO

V:=HYSTORY (
(IF LOWH(I)>=10 THEN 10 ELSE LOWH(I)+1),

(IF HIGHH (I)>=10 THEN 10 ELSE HIGHE(I)+1),
STARTH (I) , _
V);

REF (HYSTORY) PROC OPHYS (

v
END;

REF (HYSTORY) PKOC CONCHYS (REF (HYSTORY) VALUE HYS1,HYS2) ;
¢ apply the operations of HYS1, in order, to HYS2 ¢
BEGIN REF (HYSTORY) I,Jd,V; INTEGER MIN,MAX; V:=NULL;

MIN:=100;
MAX:=-100;
V:=NULL;
IF HYS1-~=NULL THEN BEGIN
FOR I IN LIST HYS1 LINK NEXTHYS DO BEGIN

IF MIN>LOWH (I) THEN MNIN:=LOWH(I);
TF MAX<HIGHH(I) THEN MAX:=HIGHH(I) END;
FOR J IN LIST HYS2 LINK NEXTHYS DO
V:=HYSTORY (,
0 ELSE LOWH(J) +MIN),

(IF LOWH (J) +MIN>=10 THEN 1 ‘
(IF HIGHH (J)+MAX>=10 THEN 10 ELSE HIGHH (J)+MAX

_), . .
STARTH {(J) ,
).
END;
v
END;

REF (HYSTORY) PROC STARTHYS (EXP VALUE EXPR);

268

HISTORY HANDLING PROCEDURES

¢ construct a HYSTORY for EXPR. EXPR must be an
¢ IDENTIFIER or GENERATOR ¢
BEGIN '
IF -~(IF EXPR IS TRIO THEN OP (EXPR)="GE"
ELSE EXPR IS IDENTIFIEK)

;HEN ERROR “INVALID EXPR FOR STARIHYS"'
HYSTORY (0,0, EXPR,NULL)
END;

REF (HYSTORY) PROC UNITEHYS (KEF (HYSTORY) VALUE HYS1,HYS2;

LOGICAL VALUE RESULT CHANGE) ;

¢ construct an upper bound for the union of HYS1 and HYS2 ¢
BEGIN

REF (HYSTORY) I,J,IO0ONLY,IJ;
IONLY : =NULL;
IJ:=NULL; ‘
FOR I IN LIST HYS1 LINK NEXTHYS DO OPEN
FOR J IN LIST HYS2 LINK NEXTHYS DO OPEN
IF (STARTH(I)=STARTH(J))
OR ((STARTH(I) IS IDENTIFIER)
AND (STARTH(J) IS IDENTIFIEKL)
AND (IDNAME(STARTH(I))=IDNANE(STARTH(J))))
THEN BEGIN IJ:=HYSTORY (:
(IF LOWH (I) <LOWH(J) THEN LOWH(I) ELSE LOWH
(J)) «
(IF HIGHH (I)>HIGHH(J) THEN HIGHH(I) wLSE
, HIGHH (J)),
STARTH (I),
1J) 3
IF (LOWH(I) -~= LOWH(IJ)) OR (HIGHH(I)=
=HIGHH (IJ))
THEN CHANGE:=TRUE;
GO TO IEQJ
END
CLOSE;
£ I -= any J ¢
IONLY:=HYSTORY (LOWH (%) ,HIGHH (I),STARTH(I) ,IONLY) ;
IEQJ: ‘
CLOSE;
FOR J IN LIST HYS2 LINK NEXTHYS DO BEGIN
FOR I IN LIST IJ LINK NEXTHYS DO
IF (STARTH(I)=STARTH (J})
OR ((STARTH(I) IS IDENTIFIER)
AND (STARTH(J) IS IDENRTIFIER)

AND (IDNAME(STARTH (I))=IDNAME (STARTH (J})))
THEN GO TO IEQJ;

. CHANGE:=TRUE;
IONLY := HYSTORY (LOWH(J) , HIGHH (J) , STARTH (J) , IONLY) ;

IEQJ: END; ,
FOR I IN LIST IONLY LINK NEXTHYS WHILE NEXTHYS (I)-=NULL
DO SKIP;

IF IONLY~=NULL THEN NEXTHYS(I):=

R e

269

7 T NN N

HISTORY HANDLING PROCEDURES

. ELSE IONLY:=I1IJ;
IONLY '
END;

PROC MAPHYS (PROC FN; PEF(HYSTORY) VALUE HYS;
REF (CONSTANT) VALUE START);

¢ apply the procedure FN at every mvalue that might lie
on

¢ a terminus of some path indicated by the operators in
HYS

¢ starting from START.

¢ if we come to some mvalue to which we cannot applt the

¢ next operator from the history then we glve FN a non

-null
¢ second argument -- the rest of the operations in the
history.
¢ HYS is only a 51ngle history record, not a list of
them.' ' '

BEGIN INTEGER I; REF(CONSTANT) VAL, SCANMARKED
¢ remember that 10 means 10 or more
+=0; VAL:=START; SCANMARKED:=NULL;
FOR VAL IN LIST START LINK VALUER
WHILE (I<=HIGHH(HYS)) AND (~SCANMARK(VAL)) DO OPEN
IF I >= LOWH(HYS) THEN FN(VAL,NULL);
IF -ISINDIVIDUAL (VAL) THEN BEGIN
IF (I>=LOWH (HYS)) AND (I<=HIGHH (HYS))
THEN FN(VAL,HYSTORY (

LOWH (HYS) -
"(IF HIGHH (HYS) <10 THEN HIGHH (HYS)-1 ELSE
10),
NULL,NULL)) ;
GO TO OUT
END;

IF I>=10 THEN BEGIN SCANMARK(VAL) :=TRUE;
IF SCANMARKED=NULL THEN SCANMARKED:=VAL
END;
IF I>=10 THEN I:=10 ELSE I:=I+1;
CLOSE;
OUT:
FOR VAL IN LIST SCANMARKED LINK VALUER WHILE SCANMARK
(VAL)
DO SCANMARK(VAL) :=FALSE
END;

270

MISCELLANEOUS

PROC ENSTACK (REF (MSTATE) VALUE M; REF (CONSTANT) VALUE VAL);
MSTACK (M) :=TRIO(" ",VAL,MSTACK(M),NULL,NULL);

PROC POP (INTEGER VALUE I; REF(MSTATE,HMSTATES) VALUE M) ;
IF M = NULL THEN SKIP ‘
ELSE IF M IS MSTATES THEN
FOR REF (USTATES): J IN LIST M LINK NEXTMSTATE DO
POP (I, THISHSTATE (J))
ELSE IF M IS MSTATE THEN BEGIN
FOR J:=1 UNTIL I DO
IF MSTACK (M) =NULL THEN ERROR"NULL MSTACK -- POP"
ELSE MSTACK (#) :=SECOND (MSTACK (M))
END;

REF (IDENTIFIER, TRIO, CONSTANT) PROC COPYBASE (
REF (IDENTIFIER,TRIO,CONSTANT) VALUE B);
IF B = NULL THEN NULL
ELSE IF B IS IDENTIFIER THEN IDENTIFIER(
IDNAME (B))
ELSE IF B IS TRIO THEN
(IF OP(B) = “GE"
THEN TRIO ("GE",NULL,NULL,NULL,NULL)
ELSE NULL)
ELSE IF B IS CONSTANT THEN <<CONSTANT>> (TYPE(B) ,VALUEKNOWN
(B) » '
VALUEB (B) , VALUER (B) ,CEFFECTS (B) , ISINDIVIDUAL
(B) .
IDENTITY (B) ,HISTORY (B) ,SETMARK (B) , USEMARK (B),

ESCMARK (B) ,XMARK (B) , 1, XPT (B) , SCANMARK (B))
ELSE NULL;

PROC DEFINESYMBOL(REF(IDENTIFIER} VALUE TI;
REF (CONSTANT) VALUE V;
REF (SYMBOL) VALUE RESULT E);
BEGIN REF (SYNMBOIL) S;
FOR S IN LIST E LINK NEXTSYHUBOL DO
IF SNAME {S)=IDNAME(I) THEN GO TC FOUND;
¢ not found ¢ E:=S:=SYMBOL(IDNAME(I),V,E);
FOUND: POSSESSION (S} :=V
END;

REF (CONSTANT,TRIO) PROC LOOKUPSYNBOL (REF (IDENTIFIER) VALUE I;

REF (SYMBOL) VALUE E);
BEGIN REF (SYMBOL) S;
. FOR S IN LIST E LINK NEXTSYMBOL DO
IF SNAME (S)=IDNAME(I) THEN GO TO FOUND;
¢ not found ¢
:=SYMBOL (IDNAME (I),NULL,E);
FOUND: POSSESSION(S)
END; :

e

271

MISCELLANEOUS

PROCEDURE ERRPRINT (LOGICAL VALUE ABORT; INTEGER VALUE
MESSAGECODE) ;
BEGIN ,
CASE MESSAGECODE OF BEGIN MESSAGES END;
- IF ABORT THEN GO TO EXIT
END; '

REF (MSTATES) SUPERINIT;
LOGICAL CHANGEEFFECTS;
REF (CONSTANT) VOIDVALUE;
REF (TRIO) LOCALS;
LOGICAL TRACING;

272

MAIN DRIVING ROUTINE

TRACING := FALSE;
EXIT:

WHILE TRUE DO BEGIN
EXP X; '
I0CONTROL (3) ;
WRITE (M<><OKO<OM) ;
HRITE ("<> <K< 1) ;
WRITE (#<><><><> 1) ;

¢ initialisation that should have been with the
declarations

¢ but couldn't be ¢ '

NPROCS:=0;

PROCSYMBOLTABLE:=NULL;

CURRENTEFFECTS:=EFFECIS(NULL,NULL,NULL) ;

NSTK:=100;

BG:=FALSE; ¢ boolean garbage pail ¢

MG := NULL; ¢ mstate garbage pail ¢

INDENTATION:=0; S

SUPERINIT:=MSTATES (MSTATE (" ",NULL,NULL) ,NULL,NULL) ;
VOIDVALUE :=CONSTANT (TYPE=Y ") , :
LOCALS:=NULL; '

STARTTIMER;

:=READEXP; .
WRITE (CPUTIME, "™ SECONDS TO READ INPUTH");
STARTTIMER; :
MANALYSEPROCDENOTATIONS;

MG:=MANALYSE (COPYMSTATES (SUPERINIT), X);
WRITE (CPUTIME, ' SECONDS FOR ANALYSIS %) ;
STARTTIMER; '
NEWLINE;
DISPLAY (100,X) ;
FOR I := 1 UNTIL NPROCS DO BEGIN
WRITE ("PROCEDURE ");
INDENT (BEGIN NEWLINE; DISPLAY(100,PROCTABLE(I)) END);
WRITE ("HAS EFFECTS) ; .
INDENT (BEGIN NEWLINE; PRINT(EFFECTSTABLE(I)) END)
END;
WRITE (CPUTIME," SECONDS TO PRINT RESULTS")
END

END.

i

7. Appendix B. Sample output.

Exanmple 1.
(LET XX = GEN ; LET YY = GEN ;
XX := GEN ; YY := GEN ;
VAL XX := TRUE ; VAL YY := FALSE ;

YY := VAL XX ; VAL VAL YY ; DISPLAY)

0.2251953 SECONDS TO READ INPUT
- 0.1289843 SECONDS FOR ANALYSIS
(LET XX = GEN ;
LET YY = GEN ;
XX := GEN ;
YY := GEN ;
VAL XX := TRUE ;
VAL YY := FALSE ;
YY := VAL XX ;
VAL VAL YY ;
DISPLAY

STATE MODEL
MSTATE

ENVIRONMENT
YY = INDIVIDUAL REFERENCE RCCL08.10
THIS REFERENCE REFERS TO INDIVIDUAL REFERENCE
‘ RCCLO08. 11
THIS REFERENCE REFERS TO TRUE
XX = INDIVIDUAL REFERENCE RCCLO08.13
THIS REFERENCE REFERS TO INDIVIDUAL REFERENCE
RCCLO8. 11
THIS REFERENCE REFERS TO TRUE '
STACK :

0.07510412 SECONDS TO PRINT RESULTS

273

) .
=

=t

ws we

A := VAL VAL A

oD ;
DISPLAY
0.08574218 SECONDS TO READ INPUT
0.05733073 SECONDS FOR ANALYSIS
(LET A = GEN ;
LET C = GEN ;
DISPLAY
STATE MODEL -
MSTATE
ENVIRONNENT
C = INDIVIDUAL REFERENCE
A = INDIVIDUAL REFERENCE
STACK : |

L]
WHILE VAL C
DG A := VAL VAL A

0D ;
DISPLAY
STATE MODEL
MSTATE -
ENVIRONMENT
C = INDIVIDUAL REFERENCE
A = INDIVIDUAL REFERENCE
STACK :

0.08035153 SECONDS TO PRINT RESULTS

RCCL(8.22
RCCL(08.23

RCCLO8.45
RCCLO8.46

274

0.1755338 SECONDS TO READ INPUT
0.2884114 SECONDS FOR ANALYSIS

(LET A = GEN ;
LET B = GEN ;
LET C = GEN ;
A = GEN ;
B := GEN ;
VAL B := TRUE ;
DISPLAY
STATE MODEL
- MSTATE
ENVIRORMENT
C = INDIVIDUAL REFERENCE RCCL08.59
B = INDIVIDUAL REFERENCE RCCL08.60 ,
THIS REFERENCE REFERS TO INDIVIDUAL REFERENCE
RCCL08. 61
THIS REFERENCE REFERS TO TRUE
A = INDIVIDUAL REFERENCE RCCL08.63
THIS REFERENCE REFERS TO INDIVIDUAL REFERENCE
RCCLOS8. 6L
STACK :

H
WHILE DISPLAY

STATE MODEL

MSTATE
ENVIRONMENT
C = INDIVIDUAL REFERENCE RCCL08.77
B = INDIVIDUAL REFERENCE RCCL08.78

THIS REFERENCE REFERS TO INDIVIDUAL REFERENCE

RCCLO08.79
THIS REFERENCE REFERS TO TRUE

276

Example 3.
A = INDIVIDUAL REFERENCE RCCL08. 81
THIS REFERENCE REFERS TO INDIVIDUAL REFERENCE
RCCL(8.82
STACK :
H
VAL C
DO A := VAL B ;
B := GEN := TRUE ;
DISPLAY
STATE MODEL
MSTATE
ENVIRONMENT
C = INDIVIDUAL REFERENCE . ‘RCCL08.107
B = INDIVIDUAL REFEKENCE RCCL(C8.108

THIS REFERENCE REFERS TO INDIVIDUAL REFERENCE

. RCCLO08.109
THIS REFEKRENCE REFERS TO TRUE

A = INDIVIDUAL REFERENCE RCCLO8. 111
THIS REFERENCE REFERS TO INDIVIDUAL REFERENCE

RCCL08.112
THIS REFERENCE REFERS TO TRUE

STACK :

oD ;

DISPLAY

STATE MODEL

MSTATE
ENVIRONMENT

C = INDIVIDGAL REFERENCE RCCLOB. 142
B = INDIVIDUAL REFERENCE RCCLO8. 143

THIS REFERENCE REFERS TO INDIVIDUAL REFERENCE

RCCLO8. 144
THIS REFERENCE REFERS TO TRUE

A = INDIVIDUAL REFERENCE RCCLO8. 146
- THIS REFERENCE REFERS TO INDIVIDUAL REFERENCE

RCCLO8. 147
STACK :

0.2216015 SECONDS TO PRINT RESULTS

e u.

GEN
GEN

LET XX
LET YY

I H

A : (IF VAL YY THEN GO B ELSE XX FI ; DISPLAY)
X := (GEN := VAL XX)

GO A ;
B : DISPLAY
0.1025260
0.3019010
(LET XX = GEN

LET YY = GEN

SECONDS TO READ INPUT
SECONDS FOR ANALYSIS

]

A : IF VAL YY

THEN GO B
ELSE XX
FI ;
DISPLAY
STATE MODEL
MSTATE
ENVIRONMENT
YY = INDIVIDUAL REFERENCE
XX = INDIVIDUAL REFERENCE
STACK :
;
X := GEN := VAL XX ;
GO A
B : DISPLAY
STATE MODEL
MSTATE
ENVIRONMENT A
YY = INDIVIDUAL REFERENCE
XX = INDIVIDUAL REFERENCE
STACK :

)
0.09334630

SECONDS TO PRINT RESULTS

RCCLO8.23¢
RCCLO8. 240

"RCCL08.268
RCCL08.269

277

278

Example 5.
(LET P= (PROC (X) = (A :=B)) ;
LET A = GEN ;
LET B = GEN ;
B := TRUE ;
A := B ;
P (A) 3
DISPLAY ;
VAL VAL B)

0.1210417 SECONDS TO READ INPUT
0.07639319 SECONDS FOR ANALYSIS

(LET P = (PROC (X) : A :=B) ;
LET A = GEN ;
LET B = GEN ;
B- := TRUE ;
A ::=B
P (A) ;
DISPLAY
STATE MODEL
MSTATE
ENVIRONMENT
B = NONINDIVIDUAL REFERENCE RCCL08.292
A = INDIVIDUAL REFERENCE RCCLOS. 293
P = PROC
EFFECTS —--
SET --
HISTORY
FROM 0 T0 © VALS, STARTING AT A
ESCAPE --
HISTORY
FROM O T0 0 VALS, STARTING AT B
STACK :
L
VAL VAL B)
PROCEDURE
i {((PROC (X) : A =B))
; HAS EFFECTS
! EFFECTS --
SET -~
HISTORY
FROM O T0 0 VALS, STARTING AT A
ESCAPE --
HISTORY

FRON 0 TO O VALS, STARTING AT B
0.1221094 SECONDS TO PRINT RESULTS

Example 6.
(LET P = (PROC (X) : (LET A = GEN 5 A := B))
LET B = GEN ;
LET C = GEN ;
P (D) ;
DISPLAY
B) '

0.1033984 SECONDS TO READ INPUT
0.1005599 SECONDS FOR ANALYSIS

(LET P = (PROC {(X) : LET A = GEN ;
A :=B) ;
LET B = GEN ;
LET C = GEN ;
P (D)
DISPLAY
STATE MODEL
MSTATE
ENVIRONMENT
C = INDIVIDUAL REFERENCE RCCL08.320
B = INDIVIDUAL REFERENCE RCCL08.321
P = PROC
EFFECTS -~
SET =--
ESCAPE -~
STACK :
’
PROCEDURE
((PROC (X) : LET A = GEN ;
A =B)})

HAS EFFECTS

EFFECTS --
SET =--
ESCAPE -~
0.09570313 SECONDS TO PREINT RESULTS

279

Exanple 7.

(PROC (X) : (LET &

(LET P =
LET B = GEN ;
LET C = GEN ;
P (D) 3
DISPLAY ;
B)

-

B
A) 3
GEN ;

. GEN

P (D)

DISPLAY

A

=

t=

3

w
oo

STATE MODEL

0.1346354 SECONDS TO READ INPUT
0.09166664 SECONDS FOR ANALYSIS
(LET P = (PROC (X) : LET A = GEN

"MSTATE
! ENVIRONMENT ,
% ¢ = INDIVIDUAL REFERENCE RCCL08.353
% B = NONINDIVIDUAL REFERENCE RCCL08.354
‘ P = PROC :
EFFECTS --
SET --
HISTORY S
FROM 0 T0 0 VALS, STARTING AT C
ESCAPE ~--
HISTORY
FROM 0 TO O VALS, STARTING AT B
STACK :
:
B)
PROCEDURE
((PROC (X) ¢ LET A = GEN
A = B
cC := A))
HAS EFFECTS
EFFECTS --
SET =--
HISTORY
FROM 0 T0 O VALS, STARTING AT C
ESCAPE --
HISTORY

FROM 0 TO O VALS, STARTING AT B
0.1327344 SECONDS TO PRINT RESULTS

281

Example 8.
LET P = (PROC (A, B) : (A :=B ;P (B,C)))
LET C = GEN ; '
LET X = GEN ; LET Y = GEN ; P (X , Y)
0.09654945 SECONDS TO READ INPUT
0.2541U06 SECONDS FOR ANALYSIS
(LET P = (PROC (A , B) : A :=B ;
P (B ,C)) s :
LET C = GEN ;
LET X = GEN j
LET Y = GEN ;
P (X ,Y))
PROCEDURE
((PROC (A , B) = & =B 3
P (B ,C) 1))
HAS EFFECTS
EFFECTS --
SET ==~
HISTORY , '
FROM 0 TO O . VALS, STARTING AT P 000001
FROM 0 TO O VALS, STARTING AT C
FROM 0 To O VALS, STARTING AT P C00002
ESCAPE -~
HISTORY :
FROM 0 TO O VALS, STARTING AT P (00002
FROM 0 T0 O VALS, STARTING AT C
0.07938796 SECONDS TO PRINT RESULTS

-s

Example 3.
LET A = GEN ;
LET B = GEN ;
LET C = GEN ;
LET D = GEN
LET E = GEN ;
LET F = GEN 3
LET G = GEN ;
LET H = GEN ;
LET I = GEN ;
LET d = GEN ;
A := FALSE ;
B := TRUE ;
C := TRUE ;
D := TRUE ;
E := TRUE ;
F := TRUE ;
G := TRUE ;
B := TRUE ;
I := TRUE ;
J := TRUE ;
DISPLAY ;
HHILE
DISPLAY
VAL J
DO DISPLAY ;
J := VAL I ;
I := VAL H ;
H := VAL G ;
G := VAL F ;
F := VAL E ;
E := VAL D ;
D := VAL C ;
C := VAL B ;
B := VAL A ;
DISPLAY :
0D ;
DISPLAY
C.4299349
4,562864
(LET A = GEN
LET B = GEN.
LET C = GEN
LET D = GEN
LET E = GEN
LET F = GEN
LET 6 = GEN
LET H = GEN
LET I = GEN
LET J = GEN
A = FALSE
B := TRUE ;

ws Wi ws Wwa we WS wa

SECONDS TO READ INPUT
SECONDS FOR ANALYSIS

283

Exampple 3.
C := TRUE ;
D := TRUE ;
E := TRUE ;
'F := TRUE ;
¢ := TRUE ;
H := TRUE ;
I := TRUE ;
J := TRUE ;
, DISPLAY
STATE MODEL
MSTATE
ENVIRONMENT , .
J = INDIVIDUAL REFERENCE RCCLOS8. 446
THIS KEFERENCE REFERS TO TRUE .
I = INDIVIDUAL REFERENCE RCCLOS. 448
- THIS REFERENCE REFERS TO TRUE ‘
H = INDIVIDUAL REFERENCE RCCLOS. 450
THIS REFERENCE REFERS TO TRUE '
G = INDIVIDUAL REFERENCE - RCCLO8.452
, _ THIS REFERENCE REFERS TO TRUE ,
i F = INDIVIDUAL REFERENCE RCCLOS. 454
i ‘ THIS REFERENCE REFERS TO TRUE
§ E = INDIVIDUAL REFERENCE RCCL08. 456
' THIS REFERENCE KEFERS TO TRUE
; D = INDIVIDUAL REFERENCE RCCLO8. 458
g THIS REFERENCE REFERS TO TRUE :
| C = INDIVIDUAL REFERENCE RCCLO0B. 460
i THIS REFERENCE REFERS TO TRUE a
¢ "B = INDIVIDUAL REFERENCE RCCLO8. 462
i THIS REFERENCE REFERS TO TRUE
i A = INDIVIDUAL REFERENCE RCCLO8. U464
THIS REFERENCE REFERS TO FALSE
STACK : :

v
WHILE DISPLAY

STATE MODEL

MSTATE
ENVIRONMENT . :

J = INDIVIDUAL REFERENCE RCCL(C8.2108
‘ THIS REFERENCE REFERS TO UNKNOWN BOOLEAN

I = INDIVIDUAL REFERENCE RCCLC8.2110
THIS REFERENCE REFERS TO UNKNOWN BOOLEAN

H = INDIVIDUAL REFERENCE RCCLC8.2112
THIS REFERENCE REFERS TO UNKNOWN BOOLEAN

G = INDIVIDUAL REFERENCE RCCLC8.2114
THIS REFERENCE REFERS TO UNKNOWN BOOLEAN

F = INDIVIDUAL REFERENCE RCCLC8.2116

THIS REFERENCE REFERS TO UNKNOWN BOOLEAN

E
D
C
B
A
STACK
’
VAL J

DO DISPLAY

STATE MODEL

= INDIVIDUAL REFERENCE
THIS REFERENCE REFERS TO
= INDIVIDUAL REFERENCE
THIS REFERENCE REFERS 70
= INDIVIDUAL REFERENCE
THIS REFERENCE REFERS TO
= INDIVIDUAL REFERENCE
THIS REFERENCE REFERS TO
= INDIVIDUAL REFERENCE
THIS REFERENCE REFERS TO

MSTATE
ENVIRONMENT ‘ :
J = INDIVIDUAL REFERENCE
THIS REFERENCE REFERS TO
I = INDIVIDUAL REFERENCE
THIS REFERENCE REFERS TO
H = INDIVIDUAL REFERENCE
THIS REFERENCE REFERS TO
G = INDIVIDUAL REFERENCE
'THIS REFERENCE REFERS TO
F = INDIVIDUAL REFEERENCE
THIS REFERENCE REFERS TO
E = INDIVIDUAL REFEKENCE
"THIS REFERENCE REFERS TO
D = INDIVIDUAL REFERENCE
THIS REFERENCE REFERS TO
C = INDIVIDUAL REFERENCE
THIS REFERENCE REFERS TO
B = INDIVIDUAL REFERENCE
THIS REFERENCE REFERS TO
A = INDIVIDUAL REFERENCE
. THIS REFERENCE REFERS TO
STACK : C
k] .
J = VAL I
I := VAL H
H := VAL G
G := VAL F 3
'F := VAL E
E := VAL D
D ::= VAL C ;
C := VAL B
B := VAL A
DISPLAY

RCCL0B.2118
UNKNGCEN BOOLEAN
RCCLO8.2120
UNKNOWN BOOLEAN
RCCLC8.2122
UNKNOWN BOOLEAN
RCCLG8.2124
UNKNOWN BOOLEAN
RCCLO8.2126
FALSE

RCCLC8.2188
UNKNCWN BOOLEAN
RCCL08.2190
UNKNOWN BOOLEAN
RCCL(C8.2192
UNKNOWN BOOLEAN
RCCLC8.2194

UNKNOWN BOOLEAN

RCCL(G8.2196
UNKNOWN BOOLEAN
RCCL08.2198"
UNKNOWN BOOLEAN

- RCCL08.2200

UNKNOWN BOOLEAN
RCCL(C8.2202
UNKNOWN BOOLEAN
RCCL(C8.2204
UNKNOWN BOOLEAN
RCCL(C8.2206
FALSE

284

ENVIRONMENT

J = INDIVIDUAL REFERENCE RCCL08.2208
THIS REFERENCE REFERS TO UNKNOWN BOOLEAN
"I = INDIVIDUAL RETERENCE RCCLC8.2210
THIS REFERENCE REFERS TO UNKNOWN BOOLEAN
"H =‘INDIVIDUAL REFERENCE RCCLC8.2212
THTIS REFERENCE REFERS 70 UNKNOWN BOOLEAN
¢ = INDIVIDUAL REFERENCE RCCLO8.2214
THIS REFERENCE REFERS TQO UNKNOWN BOOLEAN
F = INDIVIDUAL REFERENCE RCCL(C8.2216
THIS REFERENCE REFERS TO UNKNOWN BOOLEAN
E = INDIVIDUAL REFERENCE RCCLO8.2218
THIS REFERENCE REFERS TO UNKNOWN BOOLEAN
D = INDIVIDUAL REFERENCE RCCL(C8.2220
THIS REFERENCE REFERS TO UNKNOWN BOOLEAN
¢ = INDIVIDUAL REFERENCE RCCL(8.2222
THIS REFERENCE REFERS (0 UNKNOWN BOOLEAN
B = INDIVIDUAL REFERENCE RCCLC8.2224
THIS REFERENCE REFERS TO FALSE
A = INDIVIDUAL REFERENCE . RCCLG8.2226
THIS REFERENCE REFERS TO FALSE.
STACK = '
oD 3
DISPLAY
STATE MODEL
MSTATE
ENVIRONMENT : 7
J = INDIVIDUAL REFERENCE RCCL08.2306
THIS REFERENCE REFERS 70 UNKNOWN BOOLEAN
I = INDIVIDUAL REFERENCE RCCL08.2308
THIS REFERENCE RETFERDS TO UNKNOWN BOOLEAN
H = INDIVIDUAL REFERENCE RCCL08.2310
THIS REFERENCE REFERS 7O UNKNOWN BOOLEAN
G = INDIVIDUAL REFERENCE RCCL08.2312
THIS REFERENCE REFERS TO UNKNOWN EOOLEAN
F = INDIVIDUAL REFERENCE - 'RCCL08.2314
THIS REFERENCE REFERS TO UNKNOWN BOOLEAN
E = INDIVIDUAL REFERENCE RCCL08.2316
THIS REFERENCE RETFERS TO UNKNOWN BOOLEAN
D = INDIVIDUAL REFERENCE RCCL08.2318
THIS REFERENCE REFERS TO UNKNOWN EOOLEAN
¢ = INDIVIDUAL REFERENCE RCCL(8.2320C
THIS REFERENCE REFERS TO UNKNOWN BOOLEAN
B = INDIVIDUAL REFERENCE RCCL08.2322
THIS REFERENCE REFERS TO UNKNOWN BOOLEAN
A = INDIVIDUAL REFERENCE

RCCLO8.2324

286

Example 9.

~ THIS REFERENCE REFERS TO FALSE
STACK : -

0.6673828 SECONDS TO PKINT RESULYS

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

