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Abstract

This program-verification method provides a mathematical
framework for proving input-output properties (such as partial and
total correctness) of iterative programs. Technically it uses a
calculus of binary relations extended with fixed-point equations.
The method has been tested on several microprograms of a computer's
arithmetical unit. One example of such a microprogram and its

correctness proof is discussed in the paper.



1. Introduction

In the current literature of the subject one can distinguish
two different trends of attacking the problem of the mathematical
verification of microprograms. In one approach (A. Birman, B. Leeman
and W. Carter [2],[8],[10],[11]) the analyzed microprogram and its
expected meaning are described by two abstract machines one of which
is defined on the hardware level and the other on the level of architecture.
The correctness proofs consist of showing that one of these machines
simulates the other in the sense defined by R. Milner [14]. In the other
approach the expected meaning of a microprogram is described by more
mathematical (or less operational) terms either by verification conditions
(D.A. Patterson [15]), which involves Floyd's method, or by regular
expressions (T. Ito [9]) which involves the algebra of events together
with the related fixed-point equations. In the latter two cases one
refers to some standard mathematical methods of software-program
verification.

This paper presents another software-program verification method
(A. Blikle and A. Mazurkiewicz [3],[4],[8],[71,[13]) applied to micro-
programs [6]. The general idea of this method is the following: Given
a program II its meaning is assumed to be a binary input-output relation R
(I-0 relation) which describes the mapping of the initial values of the
vector of variables into the terminal values of this vector. To establish

R explicitly we split the program II into a finite number of modules

I;,...,0 (e.g. assignment statements and tests) which must be simple

enough for their I-0 relations R1""’Rn to be obvious. Since the program



T is a combination of H],...,Hn the relation R must be a combination of

R'l’n-.,Rn:

R = ¥(Rys.enoR)) (1.1)

The function ¥ 1s defined in the algebra of relations (Sec.2) and
describes the control structure of II. To find the function ¥ we use an
algebraic method which consists of writing and solving a set of fixed-
point equations in our algebra. Once ¥ has been found, we use (1.1) in
the further analysis of II. This analysis is carried out in the algebra
of relations and permits proofs of partial as well as total correctness
of programs.

The general method above was applied by the authors to several
arithmetical microprograms of a floating-point arithmetical unit designed
at the Warsaw Technical University. This application has raised a problem
which usually is neglected in the consideration of software programs.
Namely, the arithmetical microprograms involve computer arithmetics which
is fairly different from the usual (Peano's) arithmetics. E.g. in the
computer arithmetics the law of the distributivity of multiplication
does not hold. The Tack of this property makes the calculations which
appear in the verification of the program practically impossible. To solve
this problem we consider two programs I, and T, , where 1, is the "real"
microprogram and I, is an abstract program resulting from I by the
replacement of the machine operations by the corresponding arithmetical
ones. We verify the program I, and then we show that I, simulates H] in

the following sense: Let F]'and F2 denote the I-0 functions of I, and IL,



respectively, let D, and D, denote the input domains of l; and T, (i.e.

the domains of F1 and F2) and let D1 c DZ‘ There exists a function

T:D, + Dy such that T(d) = d for all d ¢ D and F](T(d)) T(F2(d)) for

1
all d ¢ D2. Now all the I-0 properties of I, can easily be "translated"
into the I-0 properties of I,. This concept of simulation coincides,
of course, with the algebraic simulation of R. Milner [14] which apparently
makes our approach similar to that of A. Birman, B. Leeman and W. Carter.
As a matter of fact, however, our program verification is not restricted
to the proof of simulation but also provides the proof of the total correct-
ness of I,. The latter is carried out in the algebra of binary relations
extended with fixed-point methods.

Regarding the general phidosophy of the approach our attempt
was to make this approach as close as possible to the style of calculations
performed by engineers. For instances, designing electrical circuits
one also "proves" - in a sense - their properties, but the "proofs" consist
of solving Kirhoff's - or others - equations and in analysing the solutions
obtained. In our approach we deal with programs but we proceed in a very
similar way.

The organization of the paper is the following: First we
describe the general Blikle-Mazurkiewicz method which is slightly modified
here in regard to the form of fixed-point equations. This frees the
reader of looking with the references which are not readily available.
Next we show a detailed example of the verification of a software
program H3. This program performs the Booth fixed-point multiplication

algorithm and is a simplified version of an abstract program H2 which in



turn simulates the real microprogram H1. We describe the modifications
required in I, to get I, from it and the modifications of I, which result H].

Referring to the analysis of H3 we describe briefly the analysis of I, and

2
show the function of simulation T between H] and Hz.

2. The algebra of binary relations

The algebra of binary relations is a common mathematical tool used
in the mathematical theory of programs. Below we describe some principles

of this algebra together with the notation used in the sequel.

Let D be an arbitrary nonempty set called the domain and inter-
preted as the set of all possible states of the vector of variables in a

program. By Rel(D) we denote the set of all binary relations in D, i.e.

Re1(D) = {R|R = D x D}

For any a,b in D and R in Rel(D) we shall write 4Rb for (a,b) ¢ R. By ¢
we shall denote the empty relation, and by I the identity relation, i.e.

I = {(a,a)|a e D}.

Basic operations in the set Re1(D), which we shall use in the

sequel, are defined below. Let Ry,Ry ¢ Rel1(D).

Ry u Ry = {(a,b)laR]b v aR,b} - union

R1°R, ='{(a,b)|(3c)aR]c & CR,b} - composition
R? =1 - 0-th power
Rq = Rq_]oRl - n-th power
R? =1 v é] u R]°R] u R]°R]°R] Ueww = U R? - *-iteration

=
1

= R] u R]°R] v R-|°R-l°R1 U ves

il
n
X

i

1 +-iteration



Interpretation. The operations u, °, * are used in the

descriptions of the I-0 relations of programs; precisely speaking they
are used to describe explicitly the function ¥ in (1.1). Fig.1

| shows the interpretation of the operations defined in this section.

Below we 1ist the most important properties of these operations.
Here and in the sequel we shall omit the symbol "°" of composition and

write RiRj instead of R1°Rj.

1) R1(R2R3) = (R]RZ)R3 associativity

2) R](R2 u R3) = RyRy U RyR finite distributivity

13 -

(R2 u R3)R] =°°R2R] U RRy

3) RO( UR,) = U RoR; - infinite distributivity
i=1 1 =1 7!

( UR)R, = URR

=1 0 4 10
4) RI = IR =R - the unit property of I
5) Rp = ¢R = ¢ - the zero property of ¢
6) R* =1 uR

R" = RR* = R*R

To deal with concrete programs (and microprograms) and to carry
out their analysis we shall need an explicit notation to specify the I-0
relations. Since we are going to deal only with deterministic programs,
we can restrict ourselves to the case of partial functions and use the
notation introduced by A. Mazurkiewicz [7]. A relation Rc< D x D is a

partial function if for any d] e D there is at most one d, < D such




Let f:D -~ D be an arbitrary partial function and let
p:D »~ {true,false} be an arbitrary predicate such that if p(d) = true then
f(d) is defined. We denote by

[P0 x = £(x)] = {(dy,d,) [p(dy) = true & d, = f(d;)} (2.1)

0f course, [p(x)|x := f(x)] is a partial function whose domain is

{d|d € D & p(d) = true}. For the sake of simplicity we shall also write

"

[x := f(x)] for [true x|:= f(x)]

and

n

[p(x)] for [p(x)|x := x]i

0f course [p(x)1[x := f(x)})] = [p(x)|[x := f(x)]. In the sequel we shall use

the following equivalences which can be proved easily from (2.1):

1) [p(x) [ x := f(x)I[a(x)|x := g(x)] =

[p(x) & q(f(x))[x := g(f(x))]

f(x)1 v [q(x)[x = f(x)] =

[p(x) v q(x)]x := f(x)] (2.2)
3) [p(x)1La(x)] = [q(x) I[p(x}] = [p(x) & q(x)]

4) If p(x) = q(f(x)) then [p(x)|x := f{x)1[q(x)] =

= [p(x)|x := f(x)1 .

H

2) [p(x)]x :

3. The mathematical models of programs

In order to define in a rigorous way the concept of the I-0
relation, we need here a rigorous concept of a program. To this effect,

we shall use the notion of an algorithm introduced by A. Mazurkiewicz [7].



By an algorithm we shall mean any system A = (D,V,a],ZD) where

D is an arbitrary nonempty set called the domain of the
algorithm and is interpreted as in Sec.2,

V = {a],...,un} is a finite nonempty set of elements called
labels of the algorithm,

Gy {s a distinguished element of V called the initial label of

the algorithm,

= {(a, ,RiJ J)IR . ¢ Rel(D); i,j < n} is a set of p = n® triples

called instructions. It is implicit in the notation above that for any

a; and o there is exactly one Ri' such that (a R]J J) e J. Usually
many of the Rij relations will be empty. An instruction with Rij = ¢

describes the fact that there is no direct trespassing between ¥ and oy
in the program. Given an instruction, the corresponding Qs Rij and Oy

are called the entrance label, the action and the exit label.

Interpretation. The algorithms of Mazurkiewicz are used to

describe (formalize) flowchart programs. The “i's are the control states
and the R ‘s define the meaning of "boxes". E.g. the flowchart of Fig.2

corresponds to the set of two instructions:

T = {agulp(x)[x = F(x)Tsan) s(aq,[~p(x){x = 9(x)15a4)3 0

As mentioned in Sec.2 we are going to apply our theory to deter-
ministic programs only. Nevertheless, the theory itself will be developed
in the general nondeterministic case which makes its presentation much

simpler.



Consider an arbitrary algorithm A = (D,V,u],CD) where

V = {a],...,a

n J

any sequence of instructions of T:

}. For any aj,0s ¢ V, by an (ui,uj)-rgg_we shall mean

(0: sRys0s )3 wew 3 (0 R S0 ) (3.1)
177170, TR

such that I T and o, = 0 for p < k-1. Of course,
1 S P ptl
an (ai,uj)-run is simply a path in the graph of A. The corresponding

sequence of actions (R1,...,Rk) will be called an (ai,uj)-symbo1ic execution

(abbr. s. execution). Let Exec(ai,aj) denote the set of all the (a.,u.)-

LN
s. executions in A. The (ai,aj)-resu]tiqg relation 1is defined as follows:

Res(ai,aj) = U{R]o...°Rki(R],...,Rk) € Exec(ai,uj)} (3.2)

This is of course the I-0 relation of A under the assumption that o is
the input label and o5 is the output label. Indeed, d1Res(oc1.,ocj)d2 iff
there exists an (ai,aj)-s. execution (R],...,Rk) such that dqRy°...°R.d,.
Observe that in any (ui,aj)-run the control of the algorithm may pass
through o and uj many times.

By the definition of A the Tabel Oq is assumed to be initial and
therefore we shall be interested mostly in the rleations R(a],aj) for j = 1,...
Moreover, among these n relations we shall select usually some number of
k < n relation that correspond to the actual outputs of the program. The
particular one-output case corresponds to k = 1, but in some applications

we may want to consider programs with more than one output (e.g. the success-

ful termination, the overflow and the underflow).



Now suppose we are considering an algorithm A where o has been

chosen to be the terminal label and suppose that we have proved
Res(q],un) = [p(x)|x := f(x)]. (3.3)

By the definition of Res(ai,aj) this implies the following about A:

1) for every initial d « D the algorithm terminates (stops)
if and only if p(d) is satisfied,

2) for every initial d ¢ D if the algorithm terminates, then the
terminal value is f(d).

Of course 2) is a partial-correctness property of A and 1)
defines exactly the domain of termination. Consequently, (3.3) is the
strongest total-correctness property of A, since p(x) is not only
sufficient but is also a necessary condition of termination (for the

concepts of partial and total correctness see [12]).

4., Fixed-point equations and programs

Dealing with concrete programs we shall attempt to express their
resulting relations Res(u],aj) in terms of the actions of instructions

Rij and the operations defined in Sec.2. The definition (3.2) does not

indicate, however, how to do it. Below we present a method of fixed-point

equations which permits to achieve this goal.

Let A = (D,V,ay,0)) be an arbitrary algorithm with V = (a1,...,a ).

n
By the canonical set of equation (CSE) of A we mean the set:

Xy = XRyq v U XRp U Ry,

{4.1)

Xn = X1Rn U s+ U Xann U R&n
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where every R.. . < o0
Ve Ry i5°%5)

in J. The unknowns X; of (4.1) range, of course, over the set Rel(D)

is, of course, the action of the instruction (ai,R

of relations.
Any vector (P1,...,Pn) of relations which satisfies (4.1) is
called a solution of this set. In the general case (4.1) has more than one

solution., The solution (P1,...,Pn) is said to be the least solution if

for any other solution (Q],...,Qn) we have

P. ¢ Qi for i = 1,...,n.

It is a well-known fact that the least solution, if any, is unique. In our

case we can prove the following:

Theorem 1. For any algorithm A the vector of relations
(Res(u],u1),...,Res(u],an)) is the least solution of the corresponding

CSE. 0

The proof is in Sec.8. Here we shall show an effective method of
solving (4.1) in such a way that we get the least solution whose components
are expressed by Rij's and the operations of union, composition and
iteration. The method consists in the application of two variable-elimination
transformations:

1) Substitution: the substitution of X]R]i Uoeeeu XRq U Ry for

an arbitrary occurrence of X; on the right side of (4.1).

2) Iteration: the replacement of the equation

X. = . Res .
§ 7 KRy U eee U KRy U e U KR U Ry
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by the equation

Xi = (X1R]i U voa U X u X U ... u XR . uR:)R:..

1—1R1-1i i+]Ri+1i T nni 19771

Each of these transformations is applicable to any set of equations
like (4.1) and yields another set of equations of the same form. As can
be proved (see [5] for the references) the new set of equations has exactly
the same least solution as the former. To solve a given CSE we keep apply-
ing our transformations as long as there are some unknowns (variables) on
the right side. This method of solving equations is very similar to the
analogous method in the algebra of regular expressions. It must be
emphasised, however, (see also Sec.7) that the algebra of relations is
different from the algebra of regular expressions. Consequently, the
equation-solving methods in one of them are not straightforward consequences
of the analogous methods in the other.

The set of equations (4.1) can be written in a concise form as
X = ®(X), where X ranges over the n-dimensional vectors of relation. Since
solutions of such an equation are called in mathematics fixed points of @,
the set (4.1) can be referred to as a fixed-point set of equations. It
should be pointed out here that the fixed-point equations as used every-
where except this paper (see [1],[3-734L91,[12] and also the references

given there) are of a form symmetrical to (4.1), namely

X-l U ... U Rin-lxn-1 U Rin for i=1,...,n-1.

The least solution is in such a case the vector (Res(u1,un),...,Res(un_1,an))

which contains all the I-0 relations corresponding to the output label o
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with the input label varying from 0y to G In our case the situation
is converse. A1l the I-0 relation appearing in the least solution of
(4.1) correspond to the same input 0y with output varying from 0y to a,.
This approach permits one to simplify calculations in dealing with programs
which have more than one output. It also gives some advantages in

proving lecal properties of programs, e.g. such that at a given label o¥

a given Floyd's assertion is satisfied.

5. An example of a software-program verification

As mentioned in Sec.1l the method described in this paper has been
tested on several arithmetical microprograms of a floating-point arithmetical
unit designed at the Warsaw Technical University. One of these programs,
call it s performed Booth's algorithm of the fixed-point multiplication
of mantissas. We analysed H] by introducing and verifying an abstract
program II, and by proving that Hz simulates H] (see Sec.1). Here we
shall investigate a simplified version of I, which differs from it in
nggtecting overflows. In spite of this simplification the example still
provides an adequate flavour of the method. In Sec.6 we show how to extend

these calculations to deal with the real cases of HZ and H]'

In our program we shall deal with numbers from the interval <-1,1)
represented in the 2's complement code:
n

o= ol0]+ ) a[i]s2”] (5.1)
-l=



- 13 -
where af[{] ¢ {0,1} for 1 = 0,...,n and n = 1 is fixed. MWe shall also use the
equation

0(&[1+]]—&[i])*2'i (5.2)

Q
3
Il 1S

i
which follows from (5.1) under the condition that a[n+1] = 0. The flowchart

of our program is given in Fig.3. This program operates on the following

variables:
1) the real variable a which ranges over arbitrary real numbers
(this is actually the assumption which neglects the overflow),
2) the real variable d which ranges over <-1,1),
3) the integer variable i which ranges over {0,...,n+1},
4) the 0's and 1's array q[0:n+1].

We shall prove that the program performs the multiplication
n .
(-q[0]+ } ql31#279)*d and stores the result in a. In the calculations we
J=1
shall use an extension of the notation introduced in Sec.2. Namely,

for any vector of variables (x],...,xn), the function

[(X'l’"b’xn) := (f](x-lg...,xn) 30 .,fn(x-l,...,xn))]
will be written as
Xy = f](x1,...,xn)
(5.3)

1]

Xn.

fn(x1,...,xn)
0f course all the assignment statements in (5.3) are understood to be per-
formed simultaneously. We assume also to omit in (5.3) all the assignment

statements of the form Xi = xi.
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We shall prove the following about our program:

n .
(-q[01+ } q[i]%27)xd

a :=
=1
Res(u],ae) = | 1:=0 (5.4)
q[n+1] := 0

According to the definition of Res(ui,uj) (see also the remarks by the
end of Sec.2) this impldes that our program terminates everywhere in its
domain and that it performs the multiplication of the number whose repre-
sentation is stored in q[0:n] by the number which is stored in d.

To simplify the calculations observe first that the program of *
Fig.3 can be reduced to the program of Fig.4 which has exactly the same

Res(u],u6) as the former one. Now compute (using (2.2)):

Res(ay,05) = [q[i#1] = q[11] u

[q[i+1] # q[i1)([q[i+1] = Ola := a-d] v [q[i+1] = 1]a := atd]) =
[qLi+1] = q[i] la = at(q[i+1]-q[i])*d] u

[q[i+1] = 0 & q[1] = 1}a := a+(q[i+1]-q[i1)*d] u

[q[i+1]1 = 1 & q[1] = 0]a := a+(q[i+1]-q[i])*d] =

[a := a+(q[i+1]-q[i])*d] .

[

c

lan

In the next step we establish the CSE of the program of Fig.4:
Xy =9
Xy = XgRgp v Ryp

3= X2Res(a2,a3)

X5 = X3R3s

X = X3R36
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where
-1 a =0
a = ax2 ] (1]
Resp = [ 3 Ryp = | qlntl] :=0
52 i iz i-l 12
i:=n
Ry = [1#0]1 5 Rgg= [i=0]

Solving this set with respect to X6 we get by a few substitutions (we omit

the equations which we do not need any more to compute the solution for X6):
X3 = X3R35R52Res(u2,a3) u R]ZRes(uz,us)
Xe = X3R3g

Therefore (by the iteration):

><
1

3 = R]2Res(u2,a3)(R35R52Res(a2,a3))* =

R]Z(Res(uz,uB)R35R52)*Res(a2,a3)

Xg = X3R3g

and finally
Xg = R]Z(Res(uz,aB)R35R52)*Res(a2,u3)R%G. (5.5)
By Theorem 1 we have, of course, X = Res(u1,u6). For 1 < k < n denote

k -
Y (Gn+1-k+i]-qLn-k+1])%2™ 'xd
i=1

a =
'l:
Sk= i = n-k
qln+1] := 0

and for all k = 1 denote

- k
Py = R]Z(Res(uz,uS)R35R52)
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We shall prove by induction that for all 1 < k < n we have P = Sk

For k = 1 we have immediately

Py = RygRes(oy,03)RapRs, =

a ~q[n]*a*2"]

= i = n-1 = §

qlnt1] =0

Let Pk = Sk for some k < n. Then

.

1

il
w
~
—
fe7]
1]
I 1}
—ls foY]
| *
— N
| B
11

a
a+(q[i+11-q[i1)*d][{ # 0] [

= s,[a := a+(qln-k+11-q[n-k]*d] [a = ?*i' ] -
i-

i

I

k .
_a := (.Z](q[n+1-k+i]—q[n-k+i])*2'1*d+(q[n-k+1]-q[n-k])*d)*Z"] 7
1=

=] i k= n-k-1 ,

Lqfnt1] := 0

ket 1 :
(.gz(q[n+1—(k+1)+i]-q[n-(k+1)+i])*2"*d+(q[n+1-(k+1)+1]-
1=

-ad

_q[n=(k+1)+1]) %2 1%d

i = n=(k+1)
L q[nt1] := 0

k+1 ;
_Z](QE"+1—(k+1)+i]-q{n-(k+1)+i])*2 *d
i=

-a

n-(k+1)

i}
w

ol R k+1

L g[n+1] := 0
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This terminates the proof of the equality Pk = Sk for 1

IN
=~
IA
=

As 1s easy to see Pn = Pn[i = 0], hence
Pn+1 = Pn[i=0]Res:_(:,oc2,oz3)[i'#0]R52 = ¢. Therefore,

Pm = ¢ for all m = n+l.

By a similar argument we can prove that for 0 < k < n

A

PkRes(az,a3)[i=O] = ¢

Both propositions prove that the Toop in our program must be performed

exactly n times, which formally means (c.f.(5.5)) that
Res(a1,a6) = SnRes(az,aB)[1=0]
By straightforward calculations we get now

n .
1 (q[i+1]-q[i])*2" '*d
i=0

a =
Res(oc] ,0L6) =11i:=0
qn+1] := 0

which by (5.2) gives us the required equation (5.4). This equation
provides the complete description of the I-0 relation of our program and
therefore terminates the proof of the total correctness of the program.

It is worth observing that using our method one can also prove some
local properties of the program. For instance, by similar calculations

as above, one can easily show
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n
Res(Ciq50,) = US

and
n
Res(a],u3) = kBOSkReS(aZ,QS)

where we let SO = R]Z' Using these equations we can prove the equations .

IA

Res(u],az) = Res(a],az)[—l a < 1]

and

IA

Res(a1,a3) = Res(a],az)[-Z a < 2]

This gives us the estimation of the current value of a at the label 0y Or
g respectively. This estimation shows that the overload problem, which
appears in the real program, is not too cumbersome and can be solved

easily by well-known tricks.

6. An example of a microprogram verification

The program investigated in Sec.b - call it H3 - was a simplifica-
tion of the abstract program I, which simulated the real microprogram H].

The program IL, differs from II, in the following:

1) n = 23 and d ranges over numbers representable by (5.1)
2) the assignments a := axd are replaced respectively by:

a := axd - 2*Ovf(azd);

z := |Ovf(axd)|;
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where
-1 5 x < -1
Ovf(x) = 0; -1<x<1
151 <x
3) the assignment a := ax2™! is replaced by:
if z = 0 then a := a2 else a := ax2™! + sgn(a);
z := 03
where
1;a<0
sgn{a) = §
Ct0;az=0

Following the same way as in Sec.5 - just with more calculations - we can prove

the following:

a := gq&d - 2+0vf(qg*d)
ix=0

Resz(a],u6) = a[24] i= 0 (6.1)
z := Ovf(g*d)

where Resz(u],aG) is the appropriate I-0 relation in I, and

n
q = ) (qLi*1l-q[iD)*27",

i=0

To get the original microprogram H] every occurrence of the

expression a*2'] in IL, must be replaced by a ® 2'], which denotes the
machine multiplication of a by‘Z’]. This machine multiplication is effectuated
by the arithmetical shift right of the register storing the representation
of a. Since the length of this register is restricted to 24 bits the

"arithmetical effect" of this shift can be described by the following

equation:
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a®2 ! = axl . a[23]*2-24.

Of course, we could use this equation to replace every occurrence of

1

a®2  in I, by its right side and to get an equivalent program T

1

with only arithmetical operations. The analysis of such a program, however,
would be very cumbersome. It is much easier to observe that I, simulates I,
and to verify I,. Let us describe briefly what the simulation of I by I,

Tooks Tike.

In the original case of our analysis we proceed, of course from
I, to I,. First we establish the algorithm A, =-(D],V,u1,ZB]) which
corresponds to H]. The domain D] is the set of all the vectors of the form
(a,d,q[0],...,9[24],1,2z) where a and d range over these numbers in <-1,1)
which can be represented by (5.1) with n = 23, and the other variables
have the ranges as described earlier. MNext we establish the algorithm
A, = (DZ,V,a],:Dz) which corresponds to I, and which differs from A1 only
in D, and :Dz. The set D, results from D] by letting a to range over all
numbers in <-1,1). The set iﬂz_results from TD] by replacing every instruction

(“i’R

~

ij,uj) by the instruction (ui,Rij,aj), where Rij results from Rij -

informally speaking - by replacing all a ® 2'] by a*2'1. Now, for any

number o ¢ <-1,1) whose standard 2's complement representation is

o= o[0] T alils2”]
i=1
let
24 .
t(a) = -a[0]+ .21 alil«2™",
'|=
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a := t(q*d)-2*%0vf(q*d)
=0

Res](a],aﬁ) = (6.3)
q[24] := 0

z := Ovf(qxd)

This equation says that the original microprogram e always terminates
(€633) implies that Res](u],us) is a total function) and that it produces
the 24-bit representation of the required product. This representation
can happen to be modified by an overflow in which case the value of z will

become 1.

7. Final remarks

The program-verification method presented in this paper is
frequently confused with the approach by regular expressions (or regular
events). The confusion is due to the fact that the notation of the algebra
of relations (the symbols "u", "°" and "*") is very similar to that of the
regular expressions. Also the héuristic methods of solving equations in both
algebras are the same. It is to be emphasized,~however, that the two approaches
are essentially different. Using the algebra of relations one can investigate
the 1-0 properties of programs such as partial or total correctness. Using
the algebra of regular expressions one can only deal with the language-
thedretic properties of sets Exec(ai,uj) rather than with the properties

).

of relations Res(ai,uJ
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As mentioned in Sec.l our method was applied to several "practical"
microprograms. It proved to be feasible in spite of the fact that all the
calculations were handled manually. The calculations also showed that a
considerable part of them (e.g. solving equations and simplifying formulas)

could be performed by simple symbol-manipulation programs.

Another feature of the method is that it permits the structuring
of analyzed programs. In such a case the modules of the program are analyzed as
independent algorithms whose resulting relations became the actions of the
algorithm of the next level (cf. programs of Fig.3 and Fig.4). The number of
these Tevels can be, of course, arbitrary and the method can be reapplied

at each level in the same way. It is worth mentioning that we admit one-
input many-outputs modules which makes our stracturing much easier than in
the one-input one-output case.

The program analyzed in Sec.5 had the property that its loop was
iterated always the same number of times. We should stress that our method
applies in exactly the same way to programs where the number of iterations
depends on the input data.

The size of the present paper did not permit, of course, to show a
“"practical" case of a microprogram verification. We wish to inform the reader

that a full example of such a verification will appear as a technical report.



- 24 -

8. Appendix: the Erpof of Theorem 1

Let us start this proof by introducing a few auxiliary mathematical
concepts. Consider an abbitrary nonempty set D and the set Rel(D) of binary
relations in i{t. We shall deal with finite sequences of relations (R],...,Rn)
and the set of all these sequences will be denoted by seq(Rel(D)). Note that
this set contains also the empty sequence € = ( ). We introduce the

operation C : seq(Rel(D)) - Rel1(D) defined as follows:

Cle] = I, C[(R)]T =R

C[(R1,...,Rn)] = Ry°...°R. for any nonempty sequence (R],...,Rn).

We shall also deal with sets of sequences of relations which are
subsets of the set seq(Rel(D)) and which can be considered as languages over the
"alphabet" Re1(D). The family of all these Tanguages will be denoted by
Lan(Re1(D)). We shall introduce the operation € : Lan{Rel{D)) - Rel

defined as follows:
€(L) = U{C[t]|t ¢ L} for any L c seq(Rel(D)).

The following properties of this operation will be used in our proof:

1) c(p) = ¢

2) (v Li) = U C(Li) (8.1)
i=1 i=1

3) C(L] L,) = C(L1)ﬁC(L2)

where ¢ denotes the empty language and the empty relation at the same time,
L, and L, are arbitrary subsets of seq(Rel(D)) and "° " denotes the usual

concatenation of languages.
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Now we are ready to proceed to the proof. Let A = (D,V,u1,EB)
be an arbitrary algorithm. It is an obvious task to see that the sets
Exec(&],ai) sat{sfy the following equations:
n
Exec(a],ai) = jg]Exec(a1,aj)“{(Rji)} u {(Ry4)3 5 1 =1,...,n (8.2)

It is also obvious that for all i < n
Res(a],ai) = C(Exec(a],ui))

Applying the operation € to both 'sides of the equations (8.2) we get
n
U

Res(oc] ,ai) = Res(&],ocj)RJ.]. U R]i; i=1,...,n

J=1
which proves that the vector of Res(a],ai) satisfies the CSE of A. MNow
we shall prove that this Vector is the least solution of CSE. Let
(Q],...,Qn) be an arbitrary solution of CSE. We shall show that Res(a],ui) < Q
for i =1,...,n., Forany i <nand anym = 1, let Execm(a],ai) denote
the set of all (a],ai)—s. executions of Tength not greater than m. Clearly,
for any i < n

Exec(u],ai)r= ? Execm(a],ui).

m=1

Let Resm(u],ai) = C(Execm(a],ai)). By (811)

Res(oc] ,oci) = mEJ:Resm(oc],oci)
for i < n. VWe shall show that Resm(a],ai) c Q; for i<nandm= 1. The

proof is by induction on m.

Initial step: for all i <n

1 _ f _
Res (ap,04) = Ryy < A L T Q;
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Induction step: Let Resm(&],ai) € Q; for i <n.

0f course

mt1 _ n m ~
Exec (a],af) = jli]Exec (a],aj) {(Rji)} u {(Rli)}'

for all 1 < n. Therefore, by applying €,

Res™! (oq5) = U Res™(ay ,00)R

§/R3q v R

1i =

j=1

|
S N aCs

c J-=]QJ'RJ'1' U Rﬁ = Q..
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Figures
Ry
- = ™ Ry v R, -
Ry
T R2 - == ———i R]ORZ I
frm— o o *o °
R3
Fig. 1
R F
p(x) >————
Y !
x = f(x)

x := g(x)

Fig. 2
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a*x2

i-1

Fig. 3

STOP

F
--———<é[i+1] = q[1]
T F
qli+1] = 0
a := a-d a atd
A
il
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a =90
qln+1] := 0
1 :=n

I

ax?2

i-1

- Fig. 4

STOP



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

