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ABSTRACT

Let Ax = b be a sparse positive definite system of
equations arising from the use of the finite element method to solve
a two dimensional boundéf& Qa]ue problem. A common method of solving
these matrix problems is to use Cholesky's method together with an
ordering which yields a small bandwidth or perTJe. This approach
is reasonably efficient provided that the aésociated finite element
mesh does not have appendages and/or holes. In this paper algorithms
are'described for finding orderings and partitionings of sparse
finite element matrix prob]ems. These allow the use of computational
and storage techniques which lead to substantial improvements over |
sfandard solution methods when the associated mesh has appendages and/or
holes. The issue of storage and execution time trade-offs naturally |

arises and is discussed.



§1 Introduction

In this paper we consider the problem of solving the N by N
sparse symmetric systems of linear cquations Ax = b that arise in connection
with the use of the finite e]emeﬁt method. The method of solution is the
standard Cholesky algorithm, where A is factored into LLT, where L is
lower triangular, followéd by the solution of the triangular systems |
Ly = b and;LTx = y. For positive definite A, no interchanges are required
to maintain numerical stability [18]. Thus, we may instead solve the

equivalent system

(1.1) (PAPT)(Px) = Pb,

where P is any N by N permutation matrix.
When Cholesky's method is applied to A, the matrix usually
suffers fill; that is, the triangular factor L wii] usually have nonzeros
in some positions which are zero in A. For P # I, PAP" will in general
fill in differently, and it is well known that a judicious choice of P
can sometimes lead to dramatic reduction in fill and/or the amount of
arithmetic required to solve (1.1).
A common choice for P is one for which PAPT has a small bandwidth
or profile. For a given symmetric matrix M with nonzero diagonal components,

its bandwidth 8(M) and envelope Env(M) are defined as follows.

(1.2) B(M) = max |i-j].

(1.3) Env(M) = {(i,j)]i2Jand j = fil,

where f, = min{jIMij 0}, 1<1i<N,
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We define the profile of M as |Env(M)|, where |S| denotes the cardinality
of the finite set S. It iS easy to establish that when no row and column
interchanges are performed during the Cholesky factorization, all f511 is
confined to the envelope, and theréfore also within the band, since

(i,3) « Env(M) = [1-j] = B(M). Implicit in the use of small band or
profile orderings is the assumption that zeros outside the band or envelope
are to bé exploited, but zeros within the band or envelope are normally

not ekp]oited. An efficient storage scheme by Jennings for utilizing

such orderings has been described in [13].

If we are prepared to exploit all zeros, orderings which yield a
small band B(A) or |Env(A)] may be far from optimal in the least-fill or
1east-arithmet1c sense [ 4 ,15]. However, the use of such schemes is
6ften a reasonable compromise between low arithmetic requirements and/or
fill on one hand, and simple data structures and programming on the other.
Optimal or near-optimal orderings (in the least-arithmetic or fill senses)
characteristically lead to triangular factors which have their nonzero
components scattered throughout the matrix, and relatively sophisticated
data structures and programs are required tbleffectively exploit such
spérsity [12]. Robust algorithms for generating obtima] or near-optimal
orderings for sparse matrix‘problems are not yet well developed, but there
are several band and/or envelope reduction algorithms which experience
has shown to be quite effective for a large class of.prob]ems, including

the problems we consider in this paper and which we now characterize.




Let M be a planar mesh consisting of the union of triangles
and/or quadrilaterals called elements, with adjacent e]emenfs'sharing a
common side or a common vertex.. There is a node at each vertex of M,
and there may also be nodes lying on element sides, an& perhaps in the

.interior of each element. An example of such a mesh appears in Figure 1.1,

Figure 1.1 A 28 node finite element mesh having 8 elements.

For purposes of this paper, we associate one variable X; with each of the
N nodes of M. For some labelling of these‘nodes of M from 1 to N,‘we‘
define a finite element system Ax = b associated with M as one where.A is
symmetric and positive definite and for which_Aij # 0 = variables X; and
xj are associated‘with nodes of the same element. Thus, relabellings of M
correspond to symmetric permutations of the system, as implied by (1.1).
This definition is not quite general enough to cover many matrix problems
which arise in finite element applications because more than one variable

is often associated with each node. However, the extension of our ideas
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to this‘situation is immediate, so to avoid need]esé complication we
assume only one variable is associated with each node. Jur test problems
are ¢f this type, but our algorithms and codes make no use whatsoevér of
the assumption.

The band and profile reduction algorithms commonly used on
such finite element matrix problems work quite well when the assbciated
finite element meshes are "featureless"; i.e., When they do not have
"appendages" and/or "ho]es“} However, when the meshes do have these
features, it 1is poséib]e to find orderings and solution methods which are
considerably more efficient than standard band or profile methods, but
which still retain the advantages of fairly simple data structures when
compared to those needed for least-fill or least-arithmetic orderings. Our
objective in this paper is to explore this "middle ground" between the
standard,band/pfofi]e orderings and the near optimal schemes.

We now outline our paper. In section 2 we review some basic
sparse matrix techniques involving matrix partitioning [ 5], and then show
how they can be recursively applied in a natural way. We also include
some implementation details. Section 3 contains two eXamp]es which motivate
our implementation scheme of section 2 and the ordering algorithms we
describe in sections 5 and 6. Section 4 contains some basic graph
theoretic notions as they relate to Cholesky's method. We also make the

connection between a level structure in a graph, which is a central

cthtruct in many ordering algorithms (including the ones we propose in this
paper), and the partitioning it induces in the matrix problem associated

with the graph. We also review the significance of the class of graphs



called trees in connection with matrix orderings, and extend some of the
impoi-tant ideas to partitioned‘matrices. Section 4 also contains a brief
review of two existing.ordering algorithms, parts of which are used in a
modified form in our refined quotient tree algorithm (RQT),which is
described in section 5. Section 6 contains a description of our hole
removal a]gdrithm (RH), and section 7 describes how these two algorithms
are combined with the computafiona] scheme of section 2 to form a complete
so]ution package called RH-RQT-BLKSLV‘. Section 7 also contains numerous
numerical experiments comparing the performance of our solution schemes .
to some standard band/profile methods. Section 8 contains our cbnciuding

remarks.




§2 Sparse Matrix Techniques Associated w1th Partitionirg, and their
Recursive Application

§2.1 Review of Block Factorization Techniques

Suppose the problem Ax = b is partitiohed as shown in (2.1)

()

below.
(2.1) (A” A]Z“) (X])
T
Mo A/ \%
The Cholesky factor L of A, correspondingly partitioned, is

L 0
(2.2) 1 ,
W' L

2

2

T =1
whereL]1L]]— AH’ W= L]1A12’ and

T _ % -1
Looloo™ Agp = Ayp - A12A11A12

(2.3)

Here and elsewhere in this paper it is understood that inverses are not

computed explicitly; instead, the appropriate triangular systems are solved.
Now there are two important ideas which can be exploited in the

above computations when A is sparse, and the value of these ideas hinges

on the observation that A;, is frequently much sparser than W .

When this is true, it may require fewer aritﬁmetic operations to compute

Rpp as A{Z(L{](L{%Alz)) rather than as (A{ZL;Q)(L;}A]Z) = W'W, which is

the way the computation is effectively done using any of the standard

Cholesky factorization algorithms. The second important idea is that

we do not need to retain W in order to carry out the solution of the

triangular systems Ly = b and LTx = = y. During these computations we



need to compute wTy] and sz (where x and y are partitioned corkesponding
to A), but these can be computed as A?Z(L{:y])and L;%(Alzxz) if Ay, is
available. If Ai2 is much sparser than W, we can save storage and perhaps
arithmetic as well by'usipg‘w in this 1mp11cit'manner. An important
point to note is that if we plan to discard W anyway, computing ﬁzz in

the "asymmetric" way implied by A;Z(L{S(L;gA]Z)) requires very little

temporary storage because ﬁzz can be computed one column at a time.

On the other hand, if the product is calculated as WW, there seems to be

no way to avoid storing all of W, even if we do not intend to retain it.

The reader is referred to [5 ] for a complete analysis of the points we

have just discussed. We will distinguish between the symmetric and asymmetric

versions of the computation by F1 and F2 respectively.

§2.2 Recursive Application of Partitioning

We now generalize these techniques, as suggested by George [5,
page 586]. Let A be symmetrically partitionéd into p2 submatrices A .o

1<r,s <p, and let L. be the corresponding submatrices of L, where

A= LL"., Define the following matrices for 2 s k < p.
Ay Ly
T
(2.0) B, - ’fzk - L.kz
_Ak-l K *LE k-1)

For any N-vector v = (v],vz,...,vp)T, partitioned corresponding to A,
let Vik) = (v],vz,...gvk)T, 1 <k <p. Similarly, for any N by N matrix M

partitioned as A, let A(k) be the leading principal submatrix of A



obtained by deleting all blocks Af ¢ for which r > k and/or s > k.
It is easyAto‘verify that wk = LEl_])ka These definitions are *1lustrated
for p = 5 in (2.5) below.

e
A Bl b L
A Ar 3, WL (::)
12 Rz Ty My (Lo
_ T T T, 4 . I L .
(2.5) A=| Mg Agg Agy . L L .
AT, A, A, A S T Ta T
14 Raa Raa Pgq | Y B Y
T T T T T |
M5 A5 Ags Ags Ass) _ W5 Lss ]

Now as before, our intention is to retain only the ka, 1<k=<p,
and the Bk’ 2 <k <p. The algorithms for solving Ly = b and LTx = y
are given before the factorization algorithm because the latter one uses
the triangular solvers.

Solution of Ly = b ("lowersolve (L,y,b,p)")

1) Solve L b

(RSN
2) . If p > 1 then for k=2,3,...,p do the following:
(2.1) So]ve L{k;]jy(k_]) = Y(k-1) (using "uppersolve" below
with the appropriate arguments).
(2.2) Compute Ek = BkT y(k_])

(2.3) Solve Lyyy = by.

Solution of L'x = y ("uppersolve(L,y,x,p)")

1 Tx =
) Solve Lppxp yp | |
2) If p > 1 then for k= p-1,p-2,...,1 do the following:

(2.]) Compute Z( k) = Bk+-lxk+]



(2.2) Solve L(k)i( =70 (using "lowersolve" above with the

k)
appropriate arguments)

~

(2.3) Set vy = Y0~ %w)
(2.4) Solve lkaxk= Y e

Note that the algorithms lowersolve and uppersolve are mutually
recursive;-i.e., in general, lowersolve invokes uppersolve, which in turn
invokes lowersolve.... . We return to the implications of this after

describing the factorization algorithm.

Factorization algorithms (“factorF (A,p)" and “factorF (A,p)™)
1 2

(M Factor Agy.
(2) If p> 1 then for k = 2,3,...,p do the'fol1owing:
(2.1) Fy version: solve L(k;l)wk = By, (using "lowersolve")
~ = -T
and compute Akk_ Akk wkwk.
OR
-{2.1) f2 version: for each column u of Bk,.so]ve A(k_])v = U

(using "Towersolve" and "uppersolve), compute
v = E;v, and subtract v from the appropriate column of
Akk’ yielding that column of Akk‘

(2.2) Factor A

Note that in the F] version, temporary storage for the largest wk must be
available, while for the FZ version the single vectors u and v (of length
less than N) are the only temporary arrays needed. Of course, in both

versions the symmetry of A,, and KZZ is exploited.
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6.3 The Implicit Storage Scheme -

We now make some remarks about the implicit storage scheme we

use for L. MWe store the diagonal blocks of L row by row, beginning with
the first nonzero component in each row, in a single one dimensional array
ENV.An additional vector XENV of ]engtﬁ'm‘iS'used to recora tne positions
of the diagonal components of L in ENV.This scheme is due to Jennings [12].
In our épp]ication we require an addition vecior'XBLK of length p to record
the row number of L corresponding to the first row of each block.

The nonzero components of Bk, 1 < k< pare all stored 1n a
single one dimensipna] array NONZ,column by column, beginning with those of
By. A parallel integer array SUBS is used to store the row subscripts of
the numbers in NONZ, and a vector XNONZ of length N contains the positions in NONZ
~where each column resides. Figure 2.1 is an example of a matrix stored

using .this storage scheme. The arrayENVcontains the components of the Arie

which are overwritten by those of ka during the factorization. For convenience,

we set XNONZ(N+1) = |NONZ|+1, where |NONZ| denotes the number of components in
NONZ. Similarly, we set XBLK(p+1) = H+1 and XENV(N+1) = |ENV|+1. Note that
XNONZ(i+1) = XNONZ(i) implies that the corresponding column of B, is null.

The storage required for the vectors XENV,XBLK,XNONZ, and SUBS must be
regarded as overhead storage, since it is not used to store actual data.

In addition, in our implementation of the F, version of the factorization
we‘found it convenient to have an extra temporary vector of length N, In

the‘F] version, we need temporary storage for the largest Wy which occurs,
along with an integer vector equal to the maximum number of’cb]umns in any

- of the wkf This temporary storége, as well as overhead storage, is sometimes -

reported separately in our numerical experiments



ENV
XENV

XBLK

SUBS
NONZ

XNONZ

- ! I |
11 6 l : |
11 718 10 |
2 2 9 . '
| .
2 2 | | 14
2 ' : 15
{3 33 11: 18
3 121
A = : 3 3 13; 16
symmetric 3 3 ' 17
4
4
o 5 5
5 5

~

112 2 2 2 3 330330034 4 £ 5

////////////

6 7 8 91216 17 1819 21

_//k/////

3 6101214

._a.._.....p_l._.-—p__n

1 2 2 3 2 6 7 8 4 5 8 9 6
8 , 17 18
2 3 4 4 5 5 6 9 13 14

Figure 2.1 Example showing the arrays used in

our storage scheme
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in section 8, along with the primary storage used, which is that used

for the actual matrix components. In section 8, total storage refers
tb the sum of these thfeé componenté, 510ng with storage for the
right hand side and the solution.

Now it should be clear that our storage scheme will be most
effitient if the partitioning is “fine"; obviously the 1imiting case 1is
when p = N, and then we have a direct method for solving #x = b which
(on the surface) appears to require storage proportional only to the
number of nonzeros in A. However, the temporary storage needed to support
the recﬁréion (specifically, the vector z in "uppersolve") }ises with the
recursion depth, so there is in general a point where a finer partition no
longer reduces total storage requirements. In addition, our experience with
some promising partitioning strategies suggests that the computational cost
- rises sharply with the depth of recursion that is required by the partition-
ing. For example, it is not difficult to show that under several reasonable
hypotheses on A, the cost of executing the algorithms we have just described
is O(ZN). The implications of using various partitionings on matrices of
various classes, along with storage and time trade-off considerations, is
explored in detail elsewhere. In this paper our concern is to find partition-
ings and orderings of bur finite element problems for which our storage scheme

is appropriate, and for which the recursive nature of the lowersolve and upper-

solve algorithms is to a large extent unnecessary. These remarks will become

clear after the discussion of the two examples in section 3.
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§3 Two Motivating Examples

Suppose'we have a.finite element mesh consisting of (n—])2 square
elements, and we numbér the nodes row by row from one to N = n2. The matrix
A will have the familiar block tri-diagonal form shown below, where each
~ block corresponds to a grid line and is n by n, and n is assumed to be 5

for demonstration purposes.

[ A Ay ]
Ars A, A O
12 722 23
: _ T
(3.1) A= C Ayy Ay Ay
<::> A34 A44 A45
T
5 Ags Ags |
Here the matrices Bk and Hk have the form
— 0 —_ — 0 ey
0 ' 0
(3.2) Bk = : ’ wk = . ' ’
A - T .
| "k-1,k _ T k-1,k-1"k-1,kJ

and the important point to note is that Wy depends explicitly only on
Lk-],k-l’ and no Hj, J <‘k. Thus, the procedures lowersolve and uppersoive
need not recursively call each other for this problem. It is easy to verify
that for large n, our storage requirement will be about one half of that
needed for the standard band or profiTe storage scheme. Moreover, the |

computation requirements are essentially the same.
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Now consider the "annulus" mesh shown below.

Figure 3.1 An annulus with thickness r=3 and
circumference q= 6, yielding N=qr.

Suppose we number the "rays" of the mesh consecutively, proceeding clock-
wise (or counter-clockwise) around the annulus until we reach the ray at
which we started. The resulting matrix structure will be as sho&n in
(3.3) below.

A A —

1 M Arg
AL A A
12 P2 Ay
T
Ras A3z Ay
- T
(3.3) A Ayp Pgg Mgs
-
Mg Ass Asg
T . .
AT Asg Pes |
L : _
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In this case we have

"0 ) -0 e

0 | 0 "
B, =| : and W, = : L, 1< k»s 5,
A, o ~ Ll A
L1,k Lk-1,k-1"k-1 k.
-1

as in the previous example. However, w6 = L(5) BG’- so inh order to

execute the algorithms lowersolve and uppersolve of section 2, one level of

recursion must be admitted.

Why choose this ordering? The main objective is to achieve a
reduction in storage requirements, If we were to number the mesh to achieve
a small bandwidth B, and then partition the problem into blocks of size
about B+1 by B+1, the amount of storage required usiﬁg our imp1icit storage
scheme would be qr2+0(qr) for large q and r, since B turns out te be about
2r. On the other hand, using the ordering (3.3), our implicit storage
scheme requires about %—qr2+0(qr). The arithmetic operatidn cdunt
(multiplications and divisions) is increases slightly, however, from
x 2r3q to = %—qu. Thus, for this problem, we have exchanged an ihcrease
of about 25 percent in arithmetic for a decrease of about 50 percent in
storage. In typical computing environments, this exchange would result in a
substantial reduction in dollar cost.

Thése examples é]ong with section 2 provide the motivation for
our overall ordering algorithm and solution scheme. Roughly speaking, we

first find a “tearing set" of nodes which, when removed from the mesh along

with their incident edges, yields a mesh which has no holes. This *©
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“remove holes" (RH) algorithm is described in section 6, and the tearing
set cdrresponds to the lg§§;pdrtition member of the matrix A, say App.
In general, wp is a function of L(p_]). An ordering and partitioning
of the remaining mesh is then found, using the RQT algorithm described in
section 5, such that all the W, in L(p_]) depend only on one or more of
the'ij, j < k. Thus, no recursion in the procedures lowersolve and upper-
solve is necessary in solving problems of the form L(p_])x =y or
sz_i)x = y; In other words, our algorithms produce an ordering and par;f-
tioning so that the algorithms uppersolve and Towersolve of section 2 can
be executed with the occurrence of only one level of recursion.

ke want to keep the level of recursion Tow for two reasons.
First, orderings and partitionings which require a lot of recursion appear
to have such high operation counts that the savings in storage are not
compehsatéry. Second, our imp1ement§tions are in Fortran, which does not
support recursive procedure calls, so we want to bound the level of recursion

and thus avoid simulating more than one level of recursion.
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§4 Preliminaries

In this section we review some basic graph theoretic notions
and introduce a few definitions that are related to our implementation:
of Cholesky's method. We also establish some preliminary results needed

in subsequent sections.

4.1 Some basic graph-theoretic definitions

A graph G = (X,E) consists of a finite nonempty set X of nodes
together with a prescribed edge set E of unordered pairs of distinct
nodes. A graph G' = (X',E') is a subgraph of G = (X,E) if X' < X and
E' < E. For Y < X, G(Y) refers to the subgraph (Y,E(Y)) of G, where
E(Y) = {{u,v} € E]u,v ¢ Y}.

Nodes x and y are said to be adjaceht if {x,y} is an edge in E.

For a subset Y of nqdes, the adjacent set of Y is defined as
Adj(Y) = {x € X\Y[{x,y} € E for some y e Y}

If Y = {y}, we shall write Adj(y) instead of the formally corréct Adj({y}).
The degree of a node x is the number of nodes adjacent to x, denoted by
[Adj(x)|. Sometimes, we shall refer to y e Adj(x) as'a neighbor of the
node x,

A path of Jength & is a sequence of & edges

{xo,x]},{x],xz},...,{xz_],xz} where all the nodes XgsXys«e.aX, are
distinct except possibly Xq andxxg. If Xg = Xgs it is called a cycle.
A graph G is connected if there is a path connecting each pair of distinct

nodes. If G is disconnected, it consists of two or more maximal connected

subgraphs called components.
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For a subset Y of nodes, the span of Y is detined as
Span(Y) = {x € X|3 a path from y to x, for some y ¢ Y}.

If Y = {y}, Span(Y) is simply the connected component that contains the
node y. When the graph is connected, the span of any nonempty subset is
the node set X itself.

| Unless otherwise speéified, graphs in this paper are assumed to
be connected. The distance d(x,y) between two distinct nodes x and y
is the length of a shortest path joining them. Following Berge [ 2],

we define the eccentricity £(x) of a node x to be

2(x) = max{d(x,y)]y e X3.
The diameter 6(G) of a graph is then

8(6) = max(2(x)[x ¢ X}.

I

diameter of the graph.

A tree 1s a connected graph with no cycles, or equivalently,
it 1s a graph where every pair of distinct‘nodes is joined by a unique
path. For a tree T = (X,E), [X| = [E[+1.

A rooted tree is a tree T = (X,E) with a distinguished node
r, called the root of T. If {r,s},...,{x,y} is the (unique) path from the
root r to the node y, x is said to be the father of y. It is well-known
that this father relationship completely characterizes the rooted tree.
Thus, a rooted tree with N nodes can be represented cdnvénient]y using N

storage locations.
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For a graph G = (X,E) with |X| = N, an ordering or numbering of

G is a bijective mapping a:{1,2,...,N} » X. We use Ga and Xa to denote
the ordered graph and ordered node set reSpecfive]y.

It is often convenient to view permutations on a sparse symmetric
matrix as orderings on a corresponding graph structure. Let M be a symmetric
matrix. We associate an undirected graph GM = (XM,EM) with M, such that K
is the set of nodes corresponding to and labelled as the rows of M, and
xgexgd e if and only if Mi; # 0and i 7 j. Note that the graph G" has
an implicit ordering defined by the matrix M. Indeed, each ordering o on

GM identifies a permutation matrix Pa on the matrix M.

4.2 Quotient graphs and level structures

Motivated by the partitioning of a matrix into block submatrices,
we introduce the concept of‘quotient graphs. Given a graph G = (X,E}, let P

be a partition on the node set X:

That is, U Yi = X and Yi n Yj = ¢ for i # j. We define the quotient graph
i=1 .
of G with respect to the partition P to be the graph

G/P = (P,€)
where {Yi’Yj} e £ 1f and only if Adj(Yi) n Yj 7 ¢.

When G/P s itself a tree, we call P a tree partitioning and G/P

a quotient tree. A tree partitioning P = {Y],Yz,...,Yp} is said to be |
maximal if there does not exist a tree partitioning Q = {21’22""’Zt} such that
p.< t and for each i, Zi S Yk for some 1 < k < p. In othef words, it is
maximal if any finer partitioning @ of P does not yield a quotient tree,

In that case, we call G/P a maximal quotient tree.
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Consider the tree partitioning P = {Y]’YZ} in Figure 4.1,

where Yy = {1,2}, and Y, = {3,4}. It does not have a finer tree partitioning

so that it is maximal. However, note that the graph admits a tree partition-

ing with 3 members: {{2},{?,3},{4}}f
Ow ol Ok
G "

Figure 4.1 A maximal tree partitioning

We now establish a simple sufficient condition for a tree partition-

ing to be maximal.
Lemma 4.1 Let P be a tree partitioning. If for any Y € P and any distinct
X,y € Y, there exist two paths between x and y

X,X-I,‘..,XS a.y

XsYqaeee Yy sy

such that

R
and S

u {Z € Plxi e Z, 1

IA
—
A

s}
t}

V{Z ePly; 2,11

IA

are disjoint, then P is maximal.

Proof Assume for contradiction that P is not maximal. Then there exists
a member Y € P such that.Y can be decomposed into two disjoint nonempty sets
Uand V and yet 9 = P v {U,V} \{Y}femains a tree partitioning. Pick u e U
and v € V. From the hypothesis in the lemma, we can find two paths from

u to v:
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u,x],...,xs ’v

u,y],...,yt;v
where {Xi} and {yj} do not belong to common partition members. Therefore

in G/2 , a circuit exists connecting U and V, so that P must be maximal. 0

A simple class of quotient trees can be derived using the notion of

level structures [ 1]. Formally, a level structure of a connected graph G=(X,E)

is a partition
L= {LysLyseenslyl
of the node set X such that

Adj(Li)Ac Li-1 U Li+]’ T=1,...,8-1,
Adj(LO) c L1 and Adj(Lg) c L£_1.7 - o The number % is the
length of the level structure. The quantity max{jL;||i = 0,1,...,8} is
called the width of . It should be clear that the corresponding quotient
tree G/L is a simple "chain".

In practice, it‘is common to produce and work on rooted level

structures. For a node x € X, the rooted level structure at x is defined

as the level structure:

°C(X) = {LO(X) sl-'i(x) s ’LQ(X)(X)},

where LO(X)
Li(x)

{x}
=1

1=
Adj( U
J=0

L), 1= 1,,00)

and 2(x) is the eccentricity of x.

It is an important construct in the algorithm developed in section 5.
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We now make the connection between a level structure of a graph
and the partitioning it induces on a matrix associated with the graph.
Let GA be the graph associated with a symmetric matrix A and let &f

be a level structure in GA

. The quotient graph 6"/, is a chain, S0
if we number the nodes in each level Li consecutively from L0 tol,, the
levels inoZ induce a block tridiagonal partitioning on the permuted

matrix. Figure 4.2 contains an example.

X X[
X X%
X X|x XX
E—3) @ " %
X X X
(D—6) X X X XX X
| \ X X X
X | X
® © X |7 x

-Figure 4.2 Block tridiagonal partitioning induced
by a level structure

4.3 Elimination on tree structures

In [14], Parter studied the effect of Gaussian elimination on
matrices associated with tree structures. In this context, he introduced
the class of monotone orderings for rooted trees. In our notation, a

monotone ordering a for a rooted tree is one that always numbers a node

before its father. Clearly, the root is always numbered last by a monotone

ordering.
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We can extend this definition to general trees. Let o be an
ordering on a tree T = (X,E), where [X] = N. We call o a monotone ordering
for T if it is one for the tree rooted at the node a(N). The following
temma is due to Parter [14].

Lemma 4.2 Llet A be_an N by N symmetric matrix associated with a mono-
tonely-ordered tree. If A = LL' where L is the triangular factor of A,

thenA_ij=0=>Lij=0,f0r"l7‘J. ]

In other words, matrices associated with monotonely-ordered
trees do not have any fill in Gaussian elimination. We now extend this
lemma in the following form.

-1

Al for 1 # J.

Lemma 4.3 Let A and L be as in Lemma 4.2. Then Lij = LjJ i

Proof In Gaussian elimination, the components of L are given by:
-1 I e

j-1 .
It is sufficient to show that Z L, k ik is zero. Assume for contradiction

that LikL k # 0 for some k = 1, ..,3—1. By Lemma. 4.2, we have AikAjk # 0,
so that the node Xy is connected to both X; and xj. This contradicts

the assumption that the associated tree is monotonely-ordered. 0

Lemma 4.3 extends immediately to block matrices. Specifically,
if each A ., 1 # J represents a sparse submatrix rather than a nonzero

component of A, the corresponding block Lij in the tfiangu1ar factor is

given by L:J = L;}Ajl Thus, if the quotient graph of the partitioned matrix

A is a monotonely ordered tree, all the wk defined in section 2 have the

simple definition
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where of course some or all of the Ajk may be zero. The algorithms
"lowersolve" and "upperéo]ve“ need not involve any recursion for quotient

tree orderings, because W, does not explicitly depend on any W., j < k.
g k i
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8§56 The Refined Quotient Tree Ordering Algorithm [ 8]

5.1 A maximal tree partitioning

To use the implicit storage scheme effectivé]y, it is apparent
that‘we want to find a partition P ='{Y],Y2,...,Yp} with as many members
as possible and consistent with the property that G/P remains a quotient
tree. This motivates the study in this section. We shall give a maximal
tree partitioning, based on a rooted level structure.

Let G = (X,E) be a connected grapk and r be a node in X. As
pointed out in section 4, the rooted level-structure
L) ='{Lo(r),L](r),.;.,Lz(r)(r)} forms a tree partitioning. In general,
it may not be maximal. In what follows, we refine the structure oZ{(r) to
yield a maximal tree partitioning.

(r
For each j = 0,1,...,%(r), let Xj = U Li(r) and denote
i=j
G(Xj) = (Xj,E(Xj)). In other words, G(Xj) is the graph G without the

first j levels and their incident edges. Then, each level Lj(r) is refined

into:
(5.1) {Y[Y = Lj(r) n C, for some component C in subgraph G(Xj)}.

For example, in Figure 5.2, L4 = {5,9,11,14,17} is refined as
I_4 = {5,11} v {9,14,17}.

Let P ='{Y],Y2,...,Yp} be the refined partitioning obtained by
(6.1). We now establish the maximality of this new partitioning.

Lemma 5.1 G/P is a quotient tree.
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Proof: Note that 6/P is a connected graph with P nodes and p-1
edges. g

Lemma 5.2 Let Y ¢ P, and Y < Lj(r). For any two nodes x and y in Y, there

§-1
exists a path between them in the subgraph G( U L:(r)) and one in
R«(Y‘) i=0
G( U Li(r)).
i=j

Proof Since y,z ¢ Lj(r), there must be a path through them. in the first
J levels. On the other hand, by the definition of Y in (5.1), x and y

. ir
belong to the same connected component in G(Xj) =6 U Li(r)). So, a

1=
path exists in G(Xj) joining x to y. 0
Theorem 5.1  G/P is a maximal quotient tree.
Proof That G/P 1s maximal follows from lemma 5.2 and Temma 4.1, 0

For a given node r, to find this refined partitioning of . (r),
it is not necessary to determine the connected components of the subgraphs
G(Xj) explicitly. An algorithm is described below, and it uses a stack
- to store partially formed partition members.

Step 0 (Initialization): Empty the stack. Generate the rooted level structure
at r:oZi(r) ='{L0,L],...,L£(r)}. Pick a node y in the Tast Jevel Lz(r)’

Tet k< &(r) and S « {y}.

Step 1 (Pop étack): If the node set é on the top of the stack belongs to

Lo pop S from the stack and Tet S« Sy § | ‘

Step 2 (Form possible partition member): Determine the set Y « Span(S) in

the subgraph G(L.Q. If some node in Adj(Y) o Lisq has not been selected in

any partition member yet, go to step 5.
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Step 3 (New partition member): Put Y into P. .
Step 4 (Next Tevel): Determine the set S « Adj(Y) n Lyp- Set k < k-1.
If k 20, go to step 1, otherwise stop. .
Step 5 (Partially formed partition member): Push the set S onto the stack.
Pick a node Y1 € Adji(Y) n Lk+]' Trace a path_yk+],yk+2,...,yk+t where
Yiei € Lyeq and Adj(yk+t) N Lipiey = ¢ Let S« {yk+t} and k « k+t;
go to step 2.

The example in Figure 5.1 illustrates how the algorithm operates.
The rooted level structure at node 1 is shown in Figure 5.2. On applying
ihe a]gorithm'tani(l), we obtain a maximal quotient'tree with ten nodes.
In this example, Y, = {203}, Y, = {18,191}, Yq = {16}, Ya = {10,15},
Yy = {9,14,17} and Yg = {5,11}. So, we have L =Yg u Yg, Lg =Y, u ¥,

and L. =Y, u Y

6 1 3°

N—-02)
>—()

Figure 5.1 A '+' shaped graph
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Figure 5.2 Rooted level structure (1) and
its refinement

5.2 Description of the ordering algorithm

The algorithm in section 5.1 gives a maximal tree partitioning
on a connected graph. It is interestihg to note that the order in which
the partition members Y are formed defines a monotone ordering (see section
4.3) on the resulting quotient tree. A node ordering can then be obtained
by numbering the nodes in each partitibn member consecutively, where the
members are arranged in the same order as they are formed. The ordering
algorithm will be complete if we specify how to choose the root r for the
]evel.structure<xi(r) and how the nodes within each partition member are to
be numbered. In this section, we complete these specifications and the

overall ordering algorithm will be hereafter referred to as the refined

quotient tree (RQT) algorithm.
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The comment at the beginning of section 5.1 suggests that the
rooted level structure<£f(r) to be refined should have as many levels as
possible. In this case, r is a peripheral node (see section 4.1) with the
length of its rooted structure the same as the diameter of the graph.

But in general, it is time consuming to find peripheral nodes.
In [11], Gibbs, Poole and Stockmeyer introduce the notion of

pseudo-peripheral nodes. A node x is pseudo-peripheral if its eccentricity

2(x) is close to the diameter of the graph. They have also provided an
efficient way of finding such nodes. Their approach is based on the
, fO]]OW]Hg observation.

Let dfjx) (%), Ly(x) 5. LQ(X)(X)} be the rooted level
structure at x., Then for any y « Lg(x)(x), 2(x) = 2(y).

In view of the efficiency of their aigorithm, it becomes appropriate
for our purposes to consider level structures footed at pseudo-peripheral
"0395-_ A modified version of their algorithm is used and it is described below.
For discussion on merits of the modification, refer to [9].
§EEE41F Choose an arbitrary node r.

Step 2: Generate the rooted level structure at r:
ZAr) = glr) Ly (r) sy (g (1)1
Step 3:  Find all the connected components in Loy (M)
Step 4:  For each component C in thrj(r),f{nd a node x of minimum degree
and generate its rooted level structure f(x). If 2(x) > 2(r),
put r < x and go to step 3'.

Step 5: r 1s a pseudo-peripheral node.
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Finally, we address the problem of numbering nndes within each
partition member. In order to find an appropriate numbering scheme, we
consider the implicit storage scheme in section 2. In the storage scheme,
the diagonal blocks afe stored in the profile (envelope) form. Since
each diagonal block corresponds to a partition member, it becomes clear
that the nodes in each member should be ordered by some profile reduction
scheme. |

| The reverse Cuthill-McKee (RCM) algorithm [ 3] is known to be a
simple and yet effective ordering scheme for profile reduction. It is
" most suitable for our purpose. For completeness, we include a description
of this scheme for a connected graph G.
Step 1: Determine a pseudo-peripheral node r'and assign it to x,.
| §§gg_g;' For 1 = ],2,..},N, find all the unnumbered neighbors of the node
| X; and number them in increasingvorder of degree,

Step 3: The RCM ordering is given by: L TR ERRRTT O
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Extension of the algorithm for disconnected graphs is straight-
forward. However, we do not simply apply the RCM algorithm on each parti-
tion member; some extra care is taken. Consider a partition member Y € P,
where Y < L, and P is the refined pdrtitioning of L (r) =‘{L0,L],...,L2(r)}.
Let S be the set {y e Y|Adj(y) n Los1 7 ®}. Note that this is the same
set S at the execution of step 2 in the algorithm of section 5.1.

Qur internal numbering strategy follows. MNodes in the subgraph
G(Y\S) are first numbered using the RCM ordering scheme. Hote that the
subgraph G(Y\S) may be disconnected. The nodes in S are then numbered
arbitrarily. This part can be incorborated into the algorithm of section
5.1 simply by replacing step 3:

Step 3':(Internal numbering of partition member): Number G(Y\S) by the

RCM scheme and then number nodes in S in an arbitrary order.

To illustrate the effect of this internal ordering, we consider
the finite element mesh M in Figure 5.3, Here, nodes in each triangle are
assumed to be pairwise adjacent in the corresponding graph. The rooted

level structure at the node 1,

oL (1) = {LgsLyslyslasly?
has 5‘1eve]s. No refinement can be done on the levels so that
P = {Y],YZ,YB,Y4,Y5}, where Yi = L5-i' The new ordering in Figure 5.4
is obtained using the internal numbering strategy on the Y'!s; the

correspondingly permuted matrix is also given.
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symmetric

X Xxx ¥

esponding

Figure 5.3 A finite element mesh M

Figure 5.4 Reordered mesh and its corr

matrix structure
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§6 A Hole Removal Algorithm

The refined quotient tree algorithm in section 5 produces an
ordering which is highly appropriate for our implicit storage scheme.
In addition, we shall see later that the amount of computation required
using this ordering solution scheme is fully competitive with standard
band or envelope methods. As we mentioned, no recursion is needed in the
execution of "lTowersolve" and "uppersolve".

| However, if we are prepared to accept one level of recursion

in the executicn of our algorithms, it is often possible to obtain a
substantial reduction in storage requirements for our implicit storage
scheme when the mesh has one or more holes. The second example in section 3
was an illustration of this, and we now consider a similar example in graph
theoretic terms. Suppose the quotient tree G/P in Figure 6.1 was produced
by our RQT algorithm, where P = {{1},{2,3},..., {22,23},{24}} = {Y,Y,,...,%y}.
Now because M has a hole, some of the subgraphs G(Yi) are disconnected.
Partitioning these Yi corresponding to the connected components of G(Yi)
yields a partitioning P' and a new quotient graph G/P', which is no longer
a tree because it has a cycle, Thus, we have achieved a finer partitioning,
which is what we want because it tends to reduce storage requirements, but
we no longer have a tree,which means we must admit some recursion in our
solution scheme,

Let G = (X,E) be a given connected graph. Our purpose is to
détermine a partition'{Yl,Yz,...,Yp,T} where the quotient graph without T
and its incident edges forms a tree. The set T is sometimes termed the

tearing set. Obviously, we want to get a partition with as many members as
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: of a quotient tree
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possible and at the same time has a small tearing set. In terms of a
finite element mesh, this corresponds to finding a set of nodes whose
removal removes all the holes in the mesh. In this section, we give an
a]gofithm for this purpose.

The algorithm builds up a certain quotient graph and in the
process it also searches for cycles in this qubtient graph. In this way,
a subset T of nodes can be determined to break up all the cycles. Care is
taken in the scheme to find a small subset T. The algorithm may be regarded
as a depth first search on the resulting quotient graph, and it is
similar to the cycle determination algorithm by Weinblatt [17].

We now give a formal description of the scheme. It maintains two
stacks of node subsets B and K. The stack B is used to store the currently
formed quotient members, while the contents of K help to detect cycies.

For convenience, we define the stack subsets

B

{Y < X|Y ¢ B}
S < X|S € K},

K

and we let T be the set of tearing nodes generated by fhe algorithm.

Step 0 (Initialization): B <« ¢, K< ¢ and T « ¢. Find a pseudo-peripheral
node r and put S <« {r}.

Step 1 (Next block): Find a connected component Y in the subgraph S. If
Y # S, push S\Y into the stack K.

Step 2 (Advance block): Push Y into the stack B and determine

S = AdJ(Y)\(BuT). IfS = ¢, go to step 4.
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Step 3 (Cycle detection): If S n K= ¢, go to step 1. Otherwise a
cycle is found.
In this cycle, find the smallest and most recently formed
subset Y* from the stack'B. Put T« T u Y* and pop all the subsets formed
after Y* from B and K. |
Step 4 (Pop stack K): If K is empty, stop. Otherwise, pop the top

subset from K as the new S, and branch back to step 1.

39 40

31 32 33 34 35 36 37| 38

2728 29\\\\\\\ 30
20 21 22

23

\24 25\26
17 18 19

Ve

9 10 1 12 13 14 15 16
1 2 3 4 5 6 7 8

Figure 6.2 A 40-node graph with two holes
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Consider the graph in Figure 6.2. Suppose node 1 is the start-
ing node. Figures 6.3 and 6.4 show some important steps in the algorithm. Subsets
within solid and dotted Tines are the current blocks in the stack B and K
respectively, while nodes in double Tines belong to the set T.

In Figure 6.3(1), Y = {40} and S = ¢ so that step 4 is executed
and‘{15,]6}_is popped from the stack K as the new S. In Figure 6.3(ii),
S = {6,13} has a non-empty ‘ntersection with the set of nodes in K.
As a result, Y* = {36} is included into T. Again, another cycle is detected
in Figure 6.4(1) so that {12,13} is removed. Figure 6.4(ii) shows the
structure of the final quotient graph, with T = {12,13,36}.
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Figure 6.3 Stages in the RH algorithm
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Figure 6.4 Stages in the RH algorithm
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§7 Summary of the Algorithm and Some Experiments

Sections 5 and 6 contain descriptions of two algorithms which

we combine to generate an ordering and partitioning as follows, where G = (X,E)
is the graph of our given finite element matrix.
1. Using the hole removal algorithm described in section 6, find a

subset T < X such that the section graph G(X\T) = G(XT)'= (XT,E(XT))has no holes.
2. Apply the RQT algorithm to G(XT), yielding a partitioning

24,25, ... L} of X7, and an ordering of X;. This provides a labelling of

the first IXTI nodes of X; now label the nodes of T from [X;[+1 to N in

' any:order; completing the labelling of X.

We use our implicit storage scheme to store L, using the parti-

~ tioning {21’22""’23’T}‘ In what follows, ENVSLV refers to-a collection

of factorization and triangular solution subroutines which implement

Cholesky's method for solving a positive definite system, using Jenning's

storage scheme. This package is én integral part of our code TRESLV,

which implements the algorithms of section 2 assuming that the underlying

quotient graph is a tree, such as provided by the algorithm RQT. Finally,

BLKSLY imp1ements the algorithms of section 2 assuming that the matrix with
the last block-row and block-column deleted corresponds to a quotient tree;
thus, BLKSLV is appropriate for fhe partitioning/ordering provided by the
RH-RQT combination of algorithms. For obvious reasons, a major part of
BLKSLV consists of the code TRESLV.

We now turn to our numerical experiments. Our test problems
consist of 9 two-parameter mesh problems typical of those arising in

structural analyses. The basic meshes, shown in Figure 7.1, are subdivided
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7.2 The six-hole problem with o=3

Figure



-\{m_

Test o No. of No. of
Example ~ Domain o Divisions o Equations N
a Square A32 1089
b - Graded L 8 1009
c -+ shaped 9 1180
d H shaped 8 1377
e : Square‘(sm§11~ho]e) 12 936
f Square (large hole) 9 1440
g 3 hole probliem 6 1138
h 6 hole problem 6 114
i : Pinched hole 19 1349

Table 7.1 Test Examples with degree ﬁ = 1.
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by a factor a in the obvious way, yielding a mesh having a2 times as

many triangles as‘the original mesh, as shown in Figure 7.2 for the
six-hole mesh with o = 3. The second parameter u governs the distribution
of nodes on the mesh, and corresponds essentially to the degree of certain
piecewise polynomials used in finite element applications [6 ]. For

u = 1, there is 1 node at each triangle vertex, p-1 nodes along each

edge, and (u-1)(u-2)/2 nodes in the interior of each triangle.

The reverse Cuthill-McKee algorithm (RCM) [6 ] is designed to
produce an ordering yie]dihg a small profile., This algorithm has been
found to be very effective for finite element problems [6 ,111; and is
widely used, in combination with Jenning's storage scheme, in many
industrial abplications. Considerable additional testing on our test
Aprob]ems and others by the author's led us to choose the RCM-ENVSLY
combination as a benchmark for our experiments [ 8].

We are interested in answers to, or evidence bearing on, the
following issues, | |

1) Which of the two ways of performing the factorization (F] or Fz)
appears to be more efficient for our set of problems?

2) How effective is the RQT-TRESLV combination compared to the
henchmark RCM-ENVSLY pair? | |

3) How does RH-RQT-BLKSLV compare to RQT-TRESLV? (That is, is the
removal of holes worthwhile?) Obviously, this question only
makes sense for problems with holes,

4) | How does RQT-TRESLV compare to more sophisticated optimal or

near-optimal schemes which attempt to minimize fi11?
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In the tables that follow operations mean multiplications and
divisions. Primary storage refers the actual number of matrix
components of L (or A) stored, while‘overhead refers to the associated
pointers etc. required to.store those components. In all our codes, the
same number of bits are used to store data as pointers; on machines with a
large word size it would make sense to pack two or more pointers per word,
and this would make the methods hévingllérge overhéad}reiative]y more attrac-
tive. Temporary storage refers to storage needed in the course of the com- -
putation, but not involved in the actual data structures for L. (See section
2.3) The times keported are in seconds on an IBM 360/75. The progfamming
language used was H-level Fortran with the optimizer turned on.

We begin by investigating tﬁe relative merit of the F1 and Fz
versions of TRESLV. We solved the p]éin square for 1 < p < 3 and values of
o adjusted so that in all cases the number of equations was equal to 961.
Recall from section 2.3 that primary and overhead storage will be the same
whether we.use the F] or F2 versions {as will the ordering and solution
times), but temporary storage and factorization times in general will be
different. The F2 version requires a vector of length about N, while the F
version requires temporary space for the largest off-diagonal block wk.

Since the sizes of these blocks increase with increasing pu we expect the F
version to require more temporary storage than the F2 version. However, as

u increases for these problems, a fraction (equal to about (ﬁ-i/ﬁ) of the
columns of each W, are null, as shown in the example in Figure 5.4 where

p = 2. Since the ordering algorithm automatically numbers the nodes so that
the null columns of each Wk appear first, they are easy to exploit and our 1

version does so. Table 7.2 summarizes the relevant information on these ex-

periments.
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[ FACTORIZATION STORAGE
1t [OPERATIONS TINE TOTAL TEMPORARY
F S

VR R PR | ] P T

1 1

2 2

11 2.717 2.916[3.57|4.711 18106 18106 |181061 611 961} 960
2 § 4.948 15.72615.05 6.7J 21225123025 12302511860 3660 960
3| 5.516 6.258(4.95 6.30!24798 29994 {230302728(7920 | 960
x(10%)] (x10°)

+  null columns of W, not stored
*  null columns of W, stored

Table 7.2 Factorization and storage statistics for the F] and
F2 versions of TRESLV for the plain square problem

with increasing u,and o adjusted so that N = 961 for

all problems.
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nggrallaspects of Table 7.2 are noteworthy. First, the exploita-
tion of the null co]ans of:the off-diagonal blocks yields a substantial
reduction in temporary storage requirements. However, this null column
phenomenon is entirely due to the existence of edge and interior nodes in
our finite element meshes. In other finite element problems where higher |
degree bases are used, all variables may be associated with vertex nodes,
with several variables per node. In such cases, the off-diagonal blocks
| will be relatively large but there will usually be no null columns; then a
comparison 6f the FT column with the F2 columi in Table 7.2 is more indica-
tive of the relative storage requirements of the two versions of TRESLV as
the degree of the uhder]ying‘basis increases. Note also that we appedr to
pay a slight cost in execution time by using the F2 version.

The execution times for u = 3 are actually less than the corres-
ponding execution times for u = 2, even though the operation counts are
higher. This appears to be due to the fact that the partition is coarser
for u = 3, and substantially fewer subroutine calls and other execution
overhead is incurred because the blocks are larger.

Our next set of experiments were designed to investigate the
re1atiye effectiveness of the RQT-TRESLV combination compared to the
benchmark RCM-ENVSLV pair. We ran both codes on the nine test problems
a) through i) described in Figure 7.1 and Table 7.1. Since the problems
were constructéd with p = 1, in view of the results in Table 7.2, we used
the F, version of TRESLV. The results are summarized in Tables 7.3 and

7.4.
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TEST QRDER TIME ‘ STORAGE
EXAMPLE - RCM | RQT _ENVSLV TRESLY
' ' ‘ ‘ TOTAL __ jOVERHEAD| _ TOTAL QVERHEAD

a .31 .28 27744 1092 21243 4358
b .38 .34 | 28285 1012 | . 20895 4030
c .39 .51 28276 1183 | 16737 4740
d .41 .37 24449 1380 18389 | 5494
e .26 .24 24638 939 18612 3724
f .37 .38 39061 1443 30142 5674
g 77 .39 26908 1141 20701 ; 4464
h 71 .32 36038 1144 26005 1 4452
i .35

.45 42475 1352 30387 | 5362

Table 7.3 Ordering times and storage requirements for RCM-ENVSLV
‘ and RQT-TRESLVY (F]) for the nine test problems of Table 7.1.
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FACTORIZATION

TEST | I SOLUTION
PROBLEM OPERATIONS TIVE OPERATIONS |~ TIWE
ENVSLY [ TRESLY | ERVSLV | TRESLV ||ENVSLV | TRESLV EVSLV [TRESTU|
a 3.446 3.461 3.17 4.5 [15.111 |5.430 |41 | .62
b 3.749 | 3.810 3.39 4.25 |[5.251 |5.905 | .41 | .60
c 3.190 1.160 2.83 2.01 |l5.181 [3.377 | .42 | .55
d 1.890 1.001 2.00 2.02° |4a.336 |[3.478 | .37 | .62
e 3.018 3.052 2.80 | 3.52 |la.s51 4.827 | .37 | .57
ot 5.377 5.342 4.83 6.04 |I7.23¢ |7.451 | .60 | .87
g 2.888 | 2.925 2.81 .3.55  |l14.924 15.135 .41 | .63
h 5.623 5.938 5.10 6.16 6.749 |6.929 | .57 |.77
i 6.495 6.393 6.20 6.80 ||7.953 |[s8.307 | .67 | .87
(x10%) | (x10%) (x10Y) | (x10%

TaB]e 7.4 Execution times and operation counts for ENVSLV and TRESLY

for the nine test problems of Table 7.1.
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The r§5u1ts of Table 7.3 {1lustrate the savings in storage
achieved by thé RQT-TRESLV combination compared to the standard scheme.

As expected, the new scheme is most effective on problem ¢ and d, which
have appendages. We included the overhead component in the total storage
requirements for the solvers for the following reason. On machines with

a large word size it is sensible and often convenient to pack two or three
pointers to a word. Since a substantially larger fraction of the storage
is overhead in |RESLV packing of pointers would increase the storage
advantage of our quotient tree approach even more, compared to the standard
scheme.

The resu]ts of Table 7.4 indicate that one pays a modest penalty
in execution time by using RQT-TRESLY rather than RCM-ENVSLV, unless the
problem has many appendages, such as problems c) and d). It is interesting‘
to note that the increased execution time is due‘to data structure com-
p]ekity rather than increased operation counts. (As is often the case in
sparse matrix computations, access to the data plays a crucial role in the
effectiveness of an aigorithm; Operation counts alone, without careful
implementation and exper1mentat1on can be h1gh1y misleading and should be
viewed with skepticism.) This phenomenon is also illustrated in Tables 7.6- 7 8.

Our next set of experiments was designed to investigate the effec~
tiveness of our hole removal strategy and the associated BLKSLV code which
imp1ements a one level version of the recursive solution scheme described
in section 2. The RH~RQTuBLKSLV code was run on problems e through i, and
the relevant results are compiled in Table 7.5 and 7.6. Generally speaking,
" they indicate that the hole removal can reduce storage requirements, but at
substantially increased execution cost. Whether such an exchange pays depends

on various circumstances which we discuss in section 8.
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TEST ; Nodes | STORAGE |
EXAMPLE]  ORDER TIME Removed b FRESLV T BLKSLY
ROT___ | RA-RQT RH “TOTAL _jDVERHEAD| _TOTAL __| OVERHEAD

e 26 | 0 13§ ee12 | 3724 | e0s7 | 3727
f 38 | .04 10 30142 | 5674 | 22362 | 5745
g .39 1.17 21 20701 | 4464 16424 | 4549
h .32 1.26 44 26005 | 4452 | 16750 | 4570
i 45 | 1.4 20 30387 | 5362 | 29977 | 5346

- Table 7.5 Ordering and storage results for RQT-TRESLV and RH-RQT-BLKSLV,

for the problems with holes.

TEST FACTORIZATION - SOLUTION
PROBLEM OPERATIONS TITE OPERATIONS TIVE
| TRESLY | BLKSLV | TRESLV | BLKSLV | TRESLV | BLKSLV | TRESLV |BLKSLV
e | 3.082| s5726| 3.52| 8.33 | 4827 | 6823 | .57 | 100
£ 5.342 | 5.710| 6.04| 9.24 || 7.451 | 8.537 .87 | 1.40
g 2.925 | 5.490 | 3.55| 10.04 || 5.135 | 5.683 63 | 1.01
h 5.938 | 9.775 | 6.16| 17.95 || 6.920 | 5.472 | .77 | 1.00
i 6.393 | 7.309 | 6.80| 8.50 || 8.307 [15.375 87 | 1.78
(x10%) | (x10%) | (x10h) a0t

Table 7.6 Execution times and operation counts for RQT-TRESLV and
RH-RQT-BLKSLV, for the problems with holes.
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Finally, we wish to show that these schemes do indeed occupy a
"middle gr‘ouhd'.l between the standard band oriented schemes, as exemplified
by our RUM-ENVSLY package, and the more sophisticated optimal or near-
optimal ordering strategies. As a representative of this latter approach we
include a few results obtained by using a slightly revised version of our
automatic nested dissection ordering algorithm and solver (ND-NDSLV), des-
cribed in [10]. Test example b, the graded-L, was used with u = 1 and sub-
division factors a = 4,5,...,12, thus providing a range of similar problems
of increasing size. We feel this choice of problem provides a fair compari-
son, since it has no appendages which would aid the RQT-TRESLV scheme. The

results are summarized. in Tables 7.7 and 7.8.

STORAGE
ORDER TIME TOTAL OVERHEAD
N_|lRc | RQT | ND | ENVSLV | TRESLY | NDSLV | ENVSLY | TRESLV | NDSLV
265 120 10| .36f 4279 3925 5433 | 269 | 1083 | 1210
a06l 19| .151 .61 7764 6611 9135 410 1652 1881
5770 27| .22l .00l 12748 | 10246 | 13845 581 | 2341 2720
778 || .36 | .29 |1.27l 19497 | 14963 | 19683 782 3150 3511

1009 §f .49 y .41 (1.72 4 28277 20895 26691 1013 4079 4572
1270 | .60 | .50

~N

.25 1 39354 28175 35252 1274 5128 5913

~n

1561 § .73 | .58 [2.89 || 52994 | 36936 44957 1565 | 6297 | 7366

1882 || .88 | .68 |3.54 | 69463 47311 55924 1886 7586 | 8861
2233 §1.04 ' .81 '4.35 K 89027 59433 68244 2237 8995 10622

Table 7.7 Comparison of RCM, RQT, and ND ordering times and the

storage requirements of the corresponding solvers.
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§8 Concluding Remarks

We now provide some observations which we feel shed some 1light
on the questions posed fn section 7. There are several important issues
which make definite answers to any of these questions virtually impossible.
These are as follows.

a) Is the given-matrix problem to be solved only once? If so, a
comparison between two orderinQ/sb]ution packages should include the cost
of producing the ordering and initializing the data structures. On the
other hand, if many problems having the same zero-nonzero structure must

‘be solved, it may be reasonable to ignore the ordering and initialization
cost in the comparison.

b) Is there more than one right hand side involved in the matrix
problem? In the solution of some mildly nonlinear and time dependent
problems, many systems having the same coefficient matrix must be solved.

In these situations, the cost of solving the problem, given the factorization,

may be the primary factor determining the merit of the method.

c) How does one measure cost? Obviously the real cost C is some
function of execution time T and storage used S. Since the use of
RQT-TRESLY rather than RCM-ENVSLV may simply increase T and decrease S,
the function C(S,T) will be fundamental in determining which method of
solving the problem results in the least cost. In this connection, we
contend that storage reduction should often be regarded as at least as
important as the reduction of execution time. - Since computer
memory continues to be a relatively expensjve hardware component, computing

center charging algorithms are usually designed to discourage large main
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storage demands. A typical charging function C(S,T)is of the form Txp(S), where
p is a polynomial in S whose degree d is sometimes greater than 1.In this case,for
large S, if method 1 uses T] seconds and S]’storage, while method 2 uses
Tz’seconds and 52 storage, as a rough comparison of the methods we could
use the ratio S]T$/52Tg. Anoﬁher important point is that a reduced storage
requirement may allow one to solve a problem in main storage rather than
using auxiliary Storage. The value of this is hard to assess, but can be
very substantial if the use of auxiliary storage is not carefu]ly implemented.
With these issues in mind, we now make some observations which |

are suggested by Tables 7.2-7.7.

1) With regard to the variations Fy and F, of BLKSLY (see section 2),
for our examples, the F version was significantly more efficient in terms
of execution time, and for the Tow order elements (u = 1), required about ~
the same storage. However, for u > 1, t'he’F2 version in some cases may require

substantially less storage.

2) The use of RH-RQT-BLKSLV rather than RQT-TRESLV typically
increases computation substantially and decreases storage. Whether this
amounts to a net improvement depends on the issues raised above.
3) The same remarks as 2) apply when we compare RCM-ENVSLV with
either RQT-TRESLYV or RH-RQT-BLKSLV. In addition, as we pointed out in section

‘2, on machines with a large word size where it would make sense to pack
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pointers two or three to a word, the toﬁa] storége requirements for RQT-
TRESLY and RH-RQT-BLKSLV would drop substantially, while that for RCM-
ENVSLV would remain about the same.

4) Finally, the results of Table 7.7 and 7.8 show that there are
probTem sizes and circumstances where the RQT-BLKSLV combination could be
an attractive alternative to either the standard band-oriented schemes or
the much more sophisticated near-optimal ordering schemeé. When storage
is Timited, and/or when auxiliary storage is difficult to use or not
available, the RQT-TRESLV and RH-RQT-BLKSLV combinations hay be qﬁite
attractive, even though their execution times may be larger than their

competitors.
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