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ABSTIRACT

The research reported in this thesis deals with the
problem of circuit layoute Rather than partitioning the
problem into placement and routing phases,
graph-theoretical methods will be studieds The wmathods are
based mainly on the concepts of planarity and of embedding

graphs in the planes

The first part of this dissertation deals with
mathematical models for the clircuit layout problem. As a
resulty, new and greatly improved graph-theoretic models for

the circuit layocut problem are developed.

In the second part, a number of algorithms will be
presenied, dealing with testing the planarity of nriented
graphs, the embedding of a maximal planar subgreph of a
circuit laycut graph and with wusing the technolegical
properties of the proeblem for completing the layouts. These
algorithms are applicable especially for the layout ot

integrated circuits.
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Introductione

The circuit layout problem is an important facet of
design avtomation of digital systens. The problem is
encountered in laying cut printed circult boards,
integrated circuit masks, logic diagrams, flowcharts,

electronic circuit diagrams, etcs

The research reported in this thesis was motivated by
two major factsi first of ally, 8 satisfactory mathematical
formulation of the problem seems to be lacking) second,
certain types of layout problems, especially the layout of
large scale integrated circuits, have proven te  be
difficult to solve optimally by wusing the conventional

approachy used mainly for printed circuit layoute.

Consequently, the thesis can be divided into two ma jor
parts: in the first three chapters, mathematical models for
the problem will be describedy while the remaining chapters
are devoted to algzorithms and procedures that can be
applied to solve a particular problems. The emphasis in this
thesis is specifically towards the mathematical models for

the solution of the circuit layout problem.

"{}01"'



In chapter 1, the circuit layout problem is describeds.
and the main properties of the classical and of the
topological layout methods are highlighted. A critical
digscussion of mathematical models, used for the layout

problemy as found in the current litterature, is given.

In the second chapter, an improved graph-theoretic
model fer the problem is presented. Besides correcting some
ctf the problems, associated with the models described in
chapter 14y it allows one to perform pin and gate assignment
as a function of the layoute In chapter 3, the mathematical
properties of physical circults are carefully scrutinizeds.
Based on these properties, a mathematical model is derived
for components, nets and outside connectionss This model is

a generalization of the one presented in chapter 2.

After a graph model is bduilt for the circuit, it is
neceséary t0 embed this circuit graph or a maximal subgraph
thereof in one or more layers (planes)s Chapter 4 first
describes some existing algorithms and their problems with
respect to embedding circuit graphs of the kind derived in
chapter 3. In particular, an efficient algorithm is

presented for solving the probleme

“'{}02“"
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Layouat

Problem — a Survey.
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1+l The Circuit Layout Problem,.

D T . o <o . o . W i A s i o ——

The problem of layving out a circuit can be iformulated

in the folleoewing way: given o number ot

(components) and a 1List of connections

these elements, pusition the elenen

to e mad

ts on a i3]

generate the physical connections on one or moe

taking inte account a namber of

constraint

constralnts depend aon the specific circuit layou

being cousidered.

A well known circuit layout prob?t
cf electronic circuit drawvingse. Here
placed ir a plarne and the connections
same plane. Connections are allowed t
The paramneters to be aeptimized are

perception and are rather difficult to

e is the g
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The layout of

logic diagrams is a =mimilar probleme.
However, here the componpents have the property that that
some o f their pins are equivalent (i.0. mutually
interchangeable) « This property allows the eliwmination of

cressings between connections

without changing

the logical

where two

structurae. As an exampley consider Fige. 1s1e1
A B C
1 \
> (a)
3
A C

——— ) . .}

N-ﬂ

w

(k)

Fiuse 1lalal Influence of pin assignment on the number of
crossings in a logic diagrams
possible layouts invelving a J-ipput AND gsate are showne
It is cbvious that the layout of Fige 1.1.1(h) is much
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better than the one in Vige lelsl{a)y while logically there
is no differencee A good  layeout algorithm will have to

detect such properties and use them accordingly. This

[
i

problem sometimes referred to as the pin assignment

]

probhlem and is even more important for the layout of
printed g¢ircuitse.e Connections are altleowed to cross each
other as long as these crossings do not influaence the
clarity (readability) of the logic diagram. As mentioned

betore, clarity is a very subjective measure of gquality.

Printed circuit laycut has received a lot of attention
from the industiry because algorithms and we thods have been
developed that allow autemated printed circuit layount, that
is usually more ecenomical  than manual layouts. Most of
these algorithims are particularly suited for the layout nif
multi-layer beards with resularly shaped components (i.e.
integrated circuit modules)s Much less work has been done
on the lTLaycut proeblem of one-sided beoards with a large
variety of components {(mainly discrete components)e. One
commpil  cheracteristic that differentiates the printed
circuit layout proeblem from the logic schematic layout
problem is that two distinct connections are noft allowed to

Crosss In the case of one-sided boards, components are
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normally placed on one side, while the coanections are
realized on the other side of the boards On two=sided
boards connections can be made on beoth sidess Depending on
the technology used, a connection must lie <completely on
cne side of the Licard or can consist of sepgments on both
sildes, connecterd by plated-throuzh heles or viase Vias can
be fixed or floatings Fixed vias can cnly be nlaced in
predefined loucationsy while floating wvias can be located
where they are nceceded. In most casesy the aim of the design
is to minimive the total wirelength and/or the namber of
vias. Other parameters include the length of +the longest
wire, the size of the board, etcs It iz obvicus that any
connection problem can be solved using a two-sided board
with vertical segments on one side end horizontal sSegments
on the other side, provided the beard is large encughe This
may result in an  excessive number of viase qultilayer
boards (4,8, »eslH layers of interconnections) allow a much
smaller buard areay result in much shorter

interconnections, but are MOPEe expensive to manufactures

The circuit layout problem here i to assign

i

i

interconnections to the apnpropriate layer and . to place the
modules in such a way that all interconnections cuan  be

realizad.
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The layeut of inteprated circuits is  related to
printed civeuit layouty, with some important differences. A
number of components of different shapes and silzes are to
be connected using one or two layers of interconnectionse.
In addition te these luyversy, one can use "eross-overs" that
allow o copnector on these layers to  CrosEs oue  orf more
connections  on the same layer. A cross-over however
consumes some physgical area of the integrated circuit chip
and should be aveided when posgsibles The paramoter to be

optimized here is the total area of the chipe

1.2 Methods for Automwated Circuit Layouts

Mest procedures for scolving the circuit lavout problem
first place the components on the board, thereby wminimizing
ar objective functions This function should be a measure of
the quality o¢i the final layouts. Usually the total
wirelength is the parameter one tries to minimizece This

tends to cluster heavily connec ted components topether and
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to  shorten the longest wires, which are twe desirable
side-effectse Once the placement is obhtained, 1t is Trowven
and the routing of connections has to e performed within
this fixed-component topologye. Pin and gate assignment are

often done in a post-processing phases

Tepological lTayeut wethods, on the other handy first
construct a  graph model for the circuite. This graph
represents the topological  aspeects of the circuit a5
faithfully as poessibie, while peglectineg all geometrical
informatione. The graph  ftThen is  embedded in  one or more
planes with the restriction that no two edg

B

il

must
intersect except at the verticese. i Home o f the
connections vemain uvnembedded, one attempis to route thnem
by making use ol techuolegical properties. The final step
consists in transforming the topological layocut into a
physical layouty that takes intc account the geometrical

properties.

Many existing systems for fepclogical IC  layout ©ege
Engl (EM73), Rlamet (K173), Sugiyama (Su74) are Llimited to
small-scale circuitse Because of +the inadeguacy of the
models and algorithas employed, they often rely neavily on

interactior for obtaining a final layoute
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12226 Geometrical versus Jopoleogical Informations

The tepolegical aspect of the circuit layout problem
relates primarily teo the manner in which components are
interconnectads Further teopoleogical infermation includes
the corder in whichh the terminals of a component appear on
its outer boundaory as well as the possibility of routing
connectiocons under o over the area used by the components
The reguirement that the external connections have to
appear on thie cutside boundary of the circuit in a
prespeciiied order is alse a topuelozical characteristic of
the circuit layvout problene Sometimes, the order of
terminals is net completely imposed upon the designeri: e.ge
the inputs of a three~input AND gpate are interchangeable

and a good layout procedure should take this into accountes

The geometrical aspect of the circuit layout problem
is primarily related to paramaeters that can be measureds.
For layout problems one does not use the ordinary Cuclidian
metric, but rather the so-called Manhattan zgeometry, in
whiich only vertical and horizental line wsegments are
alloweds The sive of individual compcocnents, the thickness

o1 conductor lines and the size of a printed circuait board
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or an integrated circuit chip are examples of geometrical

parameters,

The classical approach, where placement and routing
are performed independentily, takes into account the
geovmetrical information at all stages, as loung as there is
a predefined regular structures The topological parameters,

however, ars not fully taken inte accounte.

In the topological approach, the topological
parameters are considered at all stage Sy while the
geonetrical intormation is used only in the last phase of

the layout.

The classicael approach has proven succesful in the
tayout of multilayer printed circuit boards with a regular
structurey, where the number of crossings is not important.
This method has also been applied 1o the design of large
scale integrated circuits using the bBlock—and—track method
(Koz72)s This method for L3T layout is usesd extensively
todayy but it results in a rather inefficient use of the
silicon area availables Hasicallyy, one has a library of
predesigned components (esg.s NAND, ROR gates, tlip flops

etts )y where each basic cell has the same height and a



different widihe. The cel

connections can e routed

imposing thesse restrictions

technigues for placement and

-1 8=

lg are placed in  rows and
in predefined channelsa. By
y OUE can apply the classical
routings Although this method

altlows rapid layvout of LST circuitsy it does not make gzood
use of the silicon QY eas Currently, sios t circuits for
high-volume production are desligned manuvally in order to
ebhtain an optimal packing densitys This manual process can
take a few monthse
1+2¢3 The Classical Approachs
HAoest methods for solving the circult layout problem

first place the elements

is optimized (in most cases

interconnections are routed

The placement nroblem

formalated in the following

The board is diwvided i
cegual size, called slotse.e Gi
slots S5(J)y J=1,m where m

such

that some objective function

the total wirelength)e Then thse

in a separate steps

for printed circuits can be
ways:
it & number of rectancgles of
ven n modules M(i)y i=1l,n and m
2 ny assign toe every module a
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distinct slet such that & specified function is wminimized.
Every module has a number of pins tnat are 1o be connected
to other pins in order to implement a designe On the set of
all pins one can define a relation "is connected tofs This
is arp eguivalence relation that partiticns the set of all
pins into a coliection of disjoint subsetss These subsets
are usually referred to as the netse The ohjective function
that one wusually attempts to winimize 1is the ftotal
wirelengths Minimum total wirelength is only one of many
real-life parameters one might .try to wmwinimize. Heat
dissipation, signal cross—talk, routeability of the
connections, sive of the board, 21tcs ars to be taken into
accounte. Tt has been determined empirically that, by
minimizing the total wirelensth, one asually satisfies most

of the other regunirements reasonably welle

Assuming all nets te be of cardinality 2, the total

wirelength can be written as:

BUM clie gy % dlplidyplj)]

iyl
where clis,j) is the number of wires between modules i and j
and d(ky,1) is 1he distance between slots X and 13
dl p( i),y §)] is the distance between the slots 1o which

modules 1 and j bave been assigneds The Ffunction has 1o be

minimized cver all possible permutations.
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This problem is Known 85 the guadratic assignment
rrobhlam, which is in itsel?y a spacial case of the mors
general wmoeodule placement problem, where nets  can be of
cardinality > 2. 1t hus been shown by Garey et al. (Gad74)
that the guadratic assignment profiesn is  NP-complete.
Therefore, it ig very unitikely that it can be solved in
polynomial time. Hence, approximaticns are freguently useds
Steinberg (St61) proposed an iterative method where in each
step a linear assignment problem on a set of mutually
unconnected <components is solved. Hanan and Kuarteberg
(EK72a~b) uss an 'initial nlacement?! technigue to find a
first placement ol the componeniss This initial placement
is then improved by means of 8. 'placement improvement?
method such as Steinberyg?s. Another placement aethod not
reguiring slots, is  the 'force-vector! method originally
developed by FiskyCaskey ana West (FCHTa-b) and further
described by Hanarn and Kurteberg (HK70ad)e Module placement
algorithms for preblems with modules of widely ditterent
smizes (intesrated circuits, printed circuit boards with

discrete componenis) have received much Yless attentions

Solutions to the routing proeblem can be classified in

twe ma,jor categories?
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maze—runuing alserithms, that reguire the board to be
divided by a grid such as Lee~type algorithms that
are described further in (Lebl), Mabg), (LM64) and
{AX67)s These ailzgorithms route one connection at a
time and reguire time proportional to N¥EX2  perp
connection, where N is the length of the paths an
advantage is that this type of algorithm always figds
Y path when one existss Furthermore it is very
tlexitle in the parameters to  be minimized (eeze
wirelengzth, unumber of wvias, e@tce)s A geoth—-fTirst
approach, as proposed hy FKubin (Bu72), vields more

cflicient algorithms.

Another class consists of the channel routing
algoritbmns, where the available space is divided into
channels (esge Stevens (5t72), S3tevens and Hashimoto
(HE71))e These algorithas reguire much less storage
apace and are considerably fasters Some moute Lne
wire at a time, while others (Stevens) route all
wires in parallel., A disadvantage of channel reoeuting
is that it reguires a regular board structure such as
slots and channels,; while maze—-running alaoelthems do

noet have such reguirementse.
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Anocther routing algorithm, gquite diilferent from the
previcus unes is Hightower?s line-search algoritnm (Hicd),
In this algerithm, connections are routed one at a times
Since no grid is stered (as in Lee—type algoerithms), its
storage reguirements and run tine are much less while
siving results comparable to Lee=-tyoe atporithus.
Highteower!'s algorithm does not reguire a regular  board

structure, which wmakes it more generally applicable than

channel routing algorithms,

A more detailed survey of intercoanection routing is

contained in (AKT2) and (Na72).

Although many good algorithms have been developed for
solving both 1ihe placement and the routing problem,; very
tew attempts were made t o solve both problems

sinmultarecusly.



1e244 The Topological Approach.

Topological methods use a very different ap

they are based on graph theory concepis, mainly plan

The main concern in solving the circuit layout
is to embed the c¢onnections in one or more plane
that no two connections intersects This criterion
striking similarity with the planarity concept in
theory: a graph is plansar if it van be embedded

plane such that no itwo edges intersecte.

Although several attempts were made to  sO0b
circuit layout problem using plararity related m

working systems have appeared only recently.

Topological methods for laying out one-sided
circuits were proposed by Kodres (RKo6b?2) and W
{Weh2)se ¥Methads fTer the layeut of +thin tilwm RC ¢
were mentioned by Sinden (S85i66abk) and Bedrosian
This problem however is very restrictives there is o
layer of conducteoers while crosmsings can opccur only
capacitors. Veinberg( Web) discusses graph= theo
concepts such as planarity and iscmorphism, that are

for solving layout problemse. Akers and  Hadlock

—1014"

proachs?

aritys.

problem
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shows a
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describe a layout method for ICYs based on a
graph~theoretical methode. Akers, Geyer and Roberts (AG70)
continue this apprcach and also describe a wmethoed to
transform the planarized graph into a physical layout,
which takes inte account the actual dimensions ot the

Components.

A gocd survey of the topological approach to the
circuit layout problem is given by XKodres (Kob63)s Working
systems for the ifayout of integrated circuits, bhased on a
graph—-theoretical approach, are described by ¥oshida and
Nakagawa (YN&S ), Engl and Mlynski (EM6Ta~hyEMT23)  and
Fletcher (F172)e An effiort to justifty theoretically the

models used is given by Ingl and Mlynski (FMT72abeyEBEMTE).

Clrich (U168, V163, UL70) describes a model to take
inte account conrector orientation, but no information is

available on a practical implementations.

One serious cbjection to ftopological layout methods is
that they usnally do not take into account any whysical
parametenrs, such as the number of wires one can route
between two pins  or the capacity oif a routing channels As

will be indicated in a later chapter, it is nossible te



take finite capaclties into account Iin a graph theoretical

model.

One should ask the guestion  whether it makes sense to
nave channels arnd slots? PFouting chantiels were introduced
partly to simplify the problem algorithmicallye. The same is
true for glots? they simplify the placement problem. One
disadvantage of slots and channels is that this restriction
can ltead to bad utilization o0f the avaiilable spacee On the
other hand, it easier to manufacture printed circuit beoards
with a reular structures Integrated circuits noweveyr do
not have thess manufacturing characteristics; they are
frequently compeosed of cowmponents of very different size
and shape. Furtheraore, it is important tgo minimize the

total 1C chip area {(at least for large scale fabrication)e



1.3 Some Existing Graph Models for the Circuit Layout Problem
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In this sectiony a nunber of existing

graph~thecretical mudels for the circuit layout problem

will be discussed. In each case, the advantages (if any)

and the disadvantiazes of these models will be explored.

A proper amodel for the circuit fayout layout problem

should take into account the following properties

physical circuits:

1) The model should be planar if and only if
physical circuit is nlanare.

2) The order of the tevrminals ol a coapnnent can
completely specified nr it can  be partly

completely unsveciftiad. For example, the

connected to the inputs of a Jd=input AND zate can

ol

the

or

nets

be

interchanged without chanszing the lozic functicn of

5

the circuite.

&3
~—

in ictegrated circuit lavout).

Sometimes a mirror-image component is available (ea.g.



~1s18~

4) In  socme cases, connections may be routed under or
over a component!s physical aren,y while in Gther

casesy this is not alloweds

41}
Nt

the model should avoid the decomposition a priocori of
a wmulti-terminal net into a aumber of simple
cennectionse Ef possibley this decomposition should

be done in function of the layoute.

1+3+41. Module=~to-vertex, Connection—to—edge Mappings.

It is not possible to represent a net by a single edge
since an edge expresses a binary relationship (adjacency)
between twoe vertices otf a zraph. A simple interconnection
on the other hantd represents the binary relationship of two
modules belng interconnecteds Therefore, when building the
graph medel ¥ a clercuit, ovne has teo decide a priosri how a
net will be decomposed into simple connections. This can be
formulated ag finding a spaunning tree in & complete graph
on N verticesy where N is the namber of points to be
connected by the nets For a nety conrecting N points, there
are NAEE(N-2) possible decompositions. This net

decomposition can introduce nen=-plansrities in the model as
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Eipe 143el1 Example circuit 1.

will e shown later. First consider the example siven in
Fige 143el : the circuit shown has 5 modules and 6 nets.

Assume the folloeoewing arbitrary decomposition of the nets:

(.\,B,g) into (Ayﬂ) and (A,E})

(ByCyE) inte (B34C) and (B,E)
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(CyDyk) into (CyD) and (C,y¥)s For this decomposition,
it is pessible +to censtruct a graph; this is done in Fig.
1¢342 o+ This planar grapb could have been obtained by using
an algorithm for embedding +the graph in the planes Note
that edges 1' and 1" are separated by edges 2 and 5. FEdges

1! and 1" are physically part of the same net and are

Fige 1+342 dodule-to-vertiex, connecticn—to—~edge

mapping for
example 1.

interconnected to the same pin of module A,

Although the graph used as a model is planar, the physical
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circuit iz note. The circuit could be wnade nlanar if
connections were allowed underneath the modules. This is
sometimes possible: es.z2e for certain types of modules on a
printed circuit boarde In general i1t is not possible for
discrete cumponents (such as transistors) or for the 'black

boxes! on a logic diagrame

Consider the second example of Fims 1.3.32 this is a
circuit with 6 modules and 6 nets.
As can e seen from this diagram, the circuiti is planare.

The nets may be decomposed as follows:
{(AyDyELZF) into (A3D)y (A,E) and (A,F)
(DyByC) into (DyH) and (0,C)

(E4B,CyF) into (E48B)y (EsC) and (B, ).

The result of this decompeosition is shown in Fige
123+4s This graph is non—planar since i1 contains E(3,3) as

a subaraph. ¥

+ The notation K{n) and XK{myn) will be used to indicate the
cemplete graph on n vertices and the complete bipartite
graph on n and m vertices respectively., Conseqguently, the
Kuratowski subgraphs will be referred to as K(5) and
K(393).
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Fize 14343 Fxample circuit 2.

We can conclude that wmepping modules into vertices and

connecticns inte Bpdges is not 63 proper model for the

circuit layout preblem sipce:

1. The wraph wodel can be planar while the circult is

not (first example .
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- 2
4 4 104
| 3
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3 4 1 4 | ZQ
1 2 1

e 1234 DNodule—-te-vertex, connection-~te—edpge wmapping for
example 2.

2 The groph model can he non—-planar when 1he circuit is

planar (second example ).

3 The mode 1 does not take into account whether

conunections can be loucated underneath modules or nots

4o Ore is required to guess a pricri how a net should be

decomposed into simple connections.

This model was used hy Yoshida and Nakagsawa

(YN6ES).
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14342+ Module—~to-cycle, Net-to~vertex Mappinges

Here the pins of a module are represented by vertiéeg
connected to each other by edges forming a cycle for
modules with 3 or more pinss Two-terminel modules are
represented by sinsle edges.s Representing a module with n
pirs by a cycle can be done in n! different waysy one of
which has to chosens: this probilem is somewhat similar to
chosing a spanning tree tn prepresent a net in the first
model. Fortunately, in many cases, the order of the
terminals of a module is important and specifieds. This
makes the choice obvious. Sometimes, the order of the
terminals is only partly specified; esge consider a J-input
AND gate with input pins 1, 2 and 3 and output on win 4. As
shewn in Fige 1.3+5, there are cnly 6 different possible
wmodels instead of 16 hecauﬁe.the three innuts always sheuld
appear in a 'cluster?,

Ve therefore have to evaluate this model for 2 distinct

casgs:

1. The order o¢of the 1terminals is partly or completely
upnspecifiecds Then we have to chooses one out of many

possible cycles to represent the modules Consider the



1.3s% Possible models for a
a module-to—-cycle, net-to-vertex mappinge.

3=-input AND gate, assuming

example given in Figs. 1436y where three modules A, I

and C are connected by & netse

Assume that for module C, the terminpals,

cormected to nets 3y, 4y, 5 and 6, are interchangeables.

Let module A be represented by cycle (1,6,5,4,1) and
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fa) (b)

Fige 1436 (a) a planar circuit. (b)) its

non—-planar modeal,
using a module-to~cycle

net—to-vertex mapping.

B by cycle (1,4:34241) If we select the

cycle
(1424344:534641) to represent module ¢y then the graph
model is pianar. However, if W select

(14254063344, 1) as the cycle to represent the module,
then the resulting graph model is non—-planar (Fige

1.3¢6 (D))



“"3 027"

2e The order of the ferminals of a5 acdule is specified,.
Here the use of a cycle to represent modules is an
improvement over the use of a single vertexse Several
papers have proposed this as a model for modules,
Beze Rose (Ro70), bBasden and Nichols (BN73), Ulirich
(U168,U0170). Bowever, representing the net by a
vertex that coincides with a vertex representing a
pin of a module ecreates problems? the circuit of Fige
1ed3s(a) is non—planar, while its model (Figs

1a3a7(B)) is planazrs.

A modified version of +this model was proposed by
Vanlier and Ctten (V0O73)s They represernt a module by a
wheel—-1ike subgraphi one special vertex for 1the mﬁdulé
itself and one vertex for each pine The vwvaertices
representing pins coincide with the nets. The special
vertex for the module is connected by eduges to all vertices
representing the pins of that modulees The pin vertices are
alego connected by edges forming a cycley, modelling the
circular relationship between the pins of the meodules A
result of 1this model is that ne connections are allowed

underneath the module. Ancther problem that can occcur when

using & cyvcle as a wmodel for a component is that an



(a)

Fig. 1::‘3‘7

(b)

(a) a non-planar circuite (byc) Planar models,
assuming A module-to-cycley net—to—-vertex
mappRinge.

embredding

might resualt in a plane graph in which the mirror

image of the cycle occurs. This iIs once again dependent on

the technology used: for printed circuits it means that the

component

which is

component

situaticn

has 1o Le placed on the other side of the board,
impracticale. in IC technolougy a symmetric
is wusually available. An example of such a

is glven in Fige 14348+ Van Lier and Otten (V073)
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consider this rroblem and propose a tnost-morten' method,
where the graph representing the circuit is first embedded
in the plane and then is checked for correct orientatiocn of
the multi-terminal components. In order to do this, the
Lraph is broken up intoe biconuected componentse 11 the
orientation of all critical cycles in one of the
biconnected compeonents is not +the same then the wethod
failss, Otherwisey, if the orientation of all critical cycles
in one component is different fyrom the corientaticen in
another componenty then one of these components is rotated
arcund its points of articulatione. This approach is clearly
unsatisfactery in cases such as the one illustrated by Fige
1.3e8s This planar biconnected graph cannoct be corrected by
this methods

A better method is to use & constructive planarity testing
and embedding alsorithm, that takes into account the
pre—-specified orientation of cert&iﬁ cycless. Such an

alporithm will be described in chapter 4.
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8 1 1 8
1 2 2 7
6 3 3 6
5 4 4 5
8 1 8 1
7 ) — 7 2
6 3 6 3
5 4 5 4
—

Fig; 1+3.8

Influence of the component
glararity of a circuit.

orientation on

the
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133, Module—-to-vertex, Net-to-star Mappinge.

L i [~ oy " . " " 2o — o . T > " "o — o —— " Vs o, o

This is 1he model proposed by Goldstein and Schweikert
{G573)s Each component is represented by a vertex while a
net connecting Kk components is represented by a vertex and
k edzges connecting this vertex to the vertices representing
these components: a net is niodelled by a fgtar!'~like

subzranh. The model for the circuits of Figs. 131 and

© COMPONENTS
B NETS

Fige 143,98 dodule-to~vertex, net-to-star mapping for
example 1.

1634 is shown in Fime 12320 and 1+43.10.

If the order of the terminals is irrelevant, then this
model is usually adequate for the purpose af testing the
circuit for planarity. The following disadvantagses should

be noted:
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® COMPONENTS
B NETS

Fige 143410 1Module—-to~vertex, net—-to=-star mapping for
example 2.

1. 1f the technnlegy restricts the cyclic order of the
terminals of a module, then the model will pot show
crossings that in reality are necessarye An example

of such a case iIs given In Pigs 1e3.11.

2 The model does net take into account the fact that it
is often peossible to route connections under modules

or hetween pins of a modules
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(a)

©® COMPONENTS
B NETS

ib)

at-to—st mapping for  a
Fige 13,11 Module-to~vertex, net-to-star mapp%n@ :
h circuit where the pins have a pre-assigned orders
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Jds The graph wmodel c¢an be non—-planar for a planar
circuit when a net can be connected to one of several
pessible terminals of a components An example of such
a component is an integrated circuit transistor as
shown on Figs 1+3+412.

It can be seen easily that this model is not capable
of correctly representing the situation shown in Fige
143128 and c, where three IC +transistors are
connec ted in parallel: the real circuit is planar

while the model is non-planare.

It should be mentioned here that the resulting graph
is bipartite with the vertices representing the components
being one partition and the center vertices of the stars

representing the nets being the other partitiones
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Fige 143412 (a) IC Transistor.
(b)) Thvee IC Transistoers in parallel.
{c¢) #odule—-t1o-vertex, net-to-stoar mapping for (b).
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163+4. Module—to-star, Net—-to-vertex Mapping.

Here a n—1terminal component is represented by a vertex
and n edges connecting this vertex to the vertices
representing the nets to which this component is connectads.
A model very similar to this was proposed by Enal and
Mlynski (EMGHab, EM72aboedy EMT73)s The difference is that
they represent a Z2=terminal component simply Ly an cdge
rather than by a vertex of valency 2 and 2 edgzess For the
purpose of testing ithe planarity, there is no difference,

since the two graphs are homeomorphices

The model for the circuits of TFige. 1ledsl and 1.3.3 is
shown i Figes 123613 and 143s14s This mapping results in a

bipartite graph while Eng)l and Mlynski's wmodel does note

It sheuld be nnted here that this model is identical
1o the previcus one proposed by Goldstein and Schweikart
(GS873) and as such it has the same disadvantuagzes. A common

formulation for both models is the fcllowing? Components

[

are represented by a set A of vaertices; nets by a set # of
vertices. Whenever a cousponent is connected to a net,; there

is  an edge conrecting the corresponding vartices. The
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Figes 143,13 Module—-to~star, net-to-vertex mapping for
example 1.

vertex set consists of two partitions A and B and the graph

is clearly bipartite.
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@® COMPONENTS
A NETS

Fige 1e3414 Module-to-star, net—-to-vertex mapping for
example 2.

1:3.5 Module—to~cycley, Net—to—-star Mapping.

In this modely, pins are mapped into verticese. In order
to represent the c¢cyclical oerder of the pins of a given
moduley, edges are used to model this relationships A net is
represented by a vertex that is connected by edges to all
pins that belong to that nets A model of this kind was

proposed by Rose (EoT706).
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12,15 #secdule-to-cycley net-to-star mapping for exawmple

1.

Figse 10315 and 143s16 show this model for the circuits of
Fige 1edsl and 1e3+3. This model combines the pgood features
of the nprevious models, such as correct representation of
the nets and of the cyclical order of the pinse Connections
are allewed underneath the modules. In order te prevent
this, one could add a vertex inside zach cvcle and connect
it to all pins of that medule as was mentioned by VanLier

and Gtten (VO0O73),.



Fige 143.16 DJodule~te-cycley, net-to-star mapping for example
)

— .
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1e4 Or the Representation of Houandary Conditionse

Printed <circuit beoards have one o©r more éxternal
connecteors that nermally lie on the periphery of the board.
In IC technology, & number of bending pads has to lie on
the chip's peripherys In many cases the order in which the
terminals cccur is partly or comwmpletely specified. In most
cases (2ege Fose (Ro70), $einberg (¥ebS ), lasden and
Nichols (BN73)) the terminals are represented by vertices
connected by edges in the prespecified order (cycle)s Fngl
and Mlynski (Edéa8ab) and VanLier and Otten (VC73) renpresent
the connector itself by a star~llke subgraph with the
center vertex for the connector itselt and a vertex for
every pin. in addition toe that fhey podel the seqguence of
the terminals by a cycles The purpose of any model is to
ohtain a graphy, that when embedded,y, has the terminals on
the periphery and in the correct ordere. The only feasible
way of doing this is to use an embadding alsorithm that

forces the peripberal cycie to be a Tace.

Nonre of these wmodels takes into sccount thati the order
ef the terminals might only be partially specifiede. ez

when designing an IC centaining a 4-input AND gate, these 4
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inputs are completely interchangeable as far as their

sequence on the periphery is concernede

15 Conclusionss

- —— o T —n i S

None of the models described takes into account the

following factors:

- some pins are interchangeable; 2as2e the inputs of an
AND gates normally pins are assigned to nets bhefore

the actual layout is done (pin assignment)e.

- scme parts of a module are interchangeable] csge &
identical gates in a dual=-in-line package; again

these gates are assigned before the layout is done

gate assigrment)e.

- scmetimes wires are allewed hetween two pins of a

module or underneath ity but the number of such wires

[
h

lTimiteds Cross—overs in IC technology have a
certain gsize, allowing oniy a Tew wires to use its In
shorty finite wiring capacities are not taken into

accounte
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the order in which outside connections have to cccur
is fregquently onty partially specified. Current
models reguire the seguence to be completfely
specified and as such force a decision to be made
that might adversely affect the layout of the

circuite.
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2¢1 Introductiones

s ——————— T —

From the previous chapter, it is clear that a model
for the circuit problem has to take inte account the

following

- whether or not the orsder of the terminals of a

component is prespecifiede.,

- it the order of the terminals is given, some of these
terminals can be interchanged without changing the
logic of 1the circuit {eegs the inputs of an AND
zate ). This property will be referred to as the
logical eguivalence of terminalse. The pin assignment
problem conslists of assigning nets to logically
eguivalent terminals as a Jfunction of an optimal

lTavoutl,.

- semnetimes a net can be connected to one of several
possible terminals of a component (eize anr IcC

{transister, as shown in Fige 163412 ). This property
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will be referred to as the phyvsical eguivalence of

terminals.

- some paris ( subcircuits) of @ compoenent can be
interchanged (2age. several identical AND uates in a
dual-in-line packapge); The gate assignment problem
consists of assigning groups of nets to logically

eguivalent subcircuits as a function of an optimal

layoute.

- some components allow wiring underneathy while others

do note

- in some <cases, it is possible te route one or more
connections between two adjacent terminals of a
component, while in other cases 11t is note Finite

wiring capacities of this kind should be represented

in the model,

In this chapter, we will derive an improved model,
that takes inte account most 0f these reguireasentse. The
theoretical basis for this model will be given in the next

chapters
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2:2 A Model Tor Nets.

o —————— — 4 2 o, A o i 21 2 bt

Tt will be assumed here that pins are represented by
vertices and further abstraction will be made of the model
used for the componentse Basically, a net connecting n pins
can be realized in many ways:? any connected spanning
subgraph of the complete graph oen n vertices will doe. Since
loops are redundant, we can resitrict ourselves here to all
spanning trees of the complete Zraph on n vertices, of
which there are n¥*(n-2). TFor all rets, every possible
combination has to be considered in order to find the
min i muam number of @ Crossinises This is a combinatorial
problem, for which the only solution method is to enumerate
all possible combinationss This is clearly impracticale.
When cousidering the wmodel proposed by Goldstein and
Schwelkert (GS73) ise« a star—like subgraph), one may ask
whether this is a good approximatione. It can be proven that
if a graph model with stars representing the nets is
planary then there exists a spanning tree for the nets such
that the graph is planars Cn the other hand, if there
exists a spanning treey, there might be a non-planarity when

representing the net hy a stars
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2¢3 A Model for Componentse.

s . — i -

T order to clarify some of the points to be made,
consider as an example a 16 pin duval=in-line package with J3

3-input gates as shown on Fige 2.3¢1

161541312 1109
I S

(&,
) s
o~
(=<}

y

— —
) s

Figs 23.1 Tripie J—input AND zate.

1) A medule-teo-cycle mapping is given in Figs 2.3.2.
This wmodel allows wires to be Located underneath the
mogdule only if they <connect 2 or more pins ot the
same module;] oeap:e 4-11 o It is not pessible to route

cennections between adjacent pins or lopgitudinally.



Fige

»3e2 HModule to cycle mapping.

I¥f no wires are to he allowed under the component,
the region bounded by the cycle has to be divided
such that ne 2 pins belong toe the same face, except
when they are adjacents An alegant way of duoing this
is to place a special vertex inside the region
bounded by the cycle and to connect this vertex to
all pin-vertices (this was proposed by Vanlier and

Otten (VOT73))s This model is shown in Fige 24343



Figo

12 13 14

22:3+3 Model to prevent wiring underneath a module.

3) In Fig. 24341y pins 1,2,3 are logically equivalent
and the same is true for 546,7 and 9,10,11. Instead

of insisting on an ordering 13233e2es24915,16 there is

a partial ordering on the pins:

(192y3)94,(5,6437)983(9,10,11),12,13,14,15,16.

Consider the moudel of Fige 2.3443 esach group ot

1 logically eguivalent pins is represented by

star~like subgraph with the center vertex
representing the group and the other wvertices
representing the pins. In the case n = 1

egquivalent pins), the group is represented by

single vertexe.

-2ab6=-
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23,4 Model that allows pins assignment.

The partial order relation is modelled by a
cycle connecting the gsroup in the order specifled as
is shown on Figs 2e3ede What are the advantages of
this model? Suppose vwe use on algortinm to embed the
wrapih in the plane; the result might be that the
vertices appear in another order, e.3s 3,1,2 instead
ot 1,243 This means that the original (and
arhitrary) choice of connecting net A to pin 1, net b
to pirn 2 and net £ to pin 3 was not optimal and that

we sheuald have connected net A to pin 3, B to 1 and C

—-227=
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to 2. In other weordsy, this model allows pin
assignment as a function of the embeddings. It should
be noted here that this model is valid only if
logically eguivalent pins are physicaltly adjacent

Fortunately, this is the case in wmany Iinstatices.

The 3 gzates in  the exawmple are logically equivalent.

Each of the set

h

ot f)iﬁi‘? (1,29394), (S)6j7y8)1
(9,10,11,12) is interchangable with anothers This can
again be formalated as as a partial ordering:

{{112,3"1)1( S,ﬁ,?,a),(gy 1’3911, 12)}1 13, 14,15, 16h

It we take inte account the esguivalence of pins
as inn  the previous model, this partial ordering
becomess

[C152,3)94]40(545637),8],[(9,106,11),127},13,14,15,16

The model for this 1s shown in Figes 223s5e The
basic idea is that ordering is modeled by a cycle and
equivalence by a star-like subgraphe.

A theoretical Justificaticon for this model will be
ziven in chtapter (2 The partial ordering relation
specitfies that the set vy itselt cowposed of the

subsets G(1), G(2) and G(3)y is to be followed by the

-2 e~
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G(1}

24365 Model that allows pin and gate assignment.

elements 13414y 15 and 16 in that order. This is
mnodeled by a cycle {ay, 13y, 14, 15, 16, a), where a is
the center wvertex of a star—-like subgrapbh with the
edaes (a, all), (a, a2) and (a, al) connecting this
center vertex to the subsets G(1), G(2) and G(3).
Each of these subsets represents o single J-iaput AND

zate and is modeled as described before.

“2¢9°



After wusing a graph embedding algorithm, the
subgraphs G(1)y, G(2) and G{3) may appear in anocther
order; esge G(3)y G(1)y, G(2); this order gives us an
optimal gate assignment as a function of the

embedding.

This model is only valid wher. the pins of a
subset {eespe wate) are physically adjacent and when
the eguivalent subsets are physically adjacent.
Physical adjacency mesans that there are no connected

pins between 2 groups.

To illustrate this restriction, consider a
triple 3-input AND gate with a pin configuration as
shown in Fige 243464 Because of pin 5, none o©of the
equivalent subsets are physically ad jacent and

therefore no gate assignment is possible.

In Tige 26347, an example is given of &
£
configuration that allows partial zate assigsnment

because the first tvo zates are physically adjacente.

An important remark to e mad e is that the
cycles shown in these models are in reality directed

cycles  that may enbadded with twn diffterent

~2+10-
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Fige 2.3.46 Triple 3-input AND sate and its model with a pin
configuration that does not allow mate
assisniments

orientationse. A cycle (1,2,3,4,1) could be embedded
as (443,2,1,4) without this restriction; for a
printed circuit board +this weuld mean that the
component would have 1o be placed on the other side
ol the boardy which is not allowed in most cases.
Therefore an embedding algorithm should take inte

account ithe prespecified orientation of the cycles.

5) Fer some cowmponents, the order in which the terminails

appear is flexible and not defined a prioris An
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Fige 243.7 Triple 3—input AND gate and its model with a pin
configuration that allows partial gate assignment
onlye
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appropriate model for such a device is a star-like

subgranhe

Sometimes one or wore terminals are physically

equivalente. This means that a given net canr be
connected to either of a set of physically eguivalent

terminalse.

As an example of physical eguivalence of
torminals, consider  an IC transisftor as in Fipe
l1s3slZaae Engl and Mlynskl (EM733) model this by a
star—-like suburaphoe Tt can be sesn easily that this
model is net capable ©f correctly representing the
situation shown inn Fige 1e3elZ2ebh and ¢y where three
IC transisters are connected in parallel: the preal

circult is planar while the model is non-planar.

A more correct model for an IC transistor can be
derived in the following way: topologically, an IC
transister is a H=terminal device (Fige 203e8.a) with
opposite terwminals (1 and 6, 2 and 3, 3 and 4) being
physlically eguivalente. The model is derived as

follows:

-2413-
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Fige 23,8 (a) IC Transistor. (b) Model for the Order of the

Teriminalse. {c-e) Derivation of the Model
Physical Eguivalence. {(f)

Circuit of Figo 143e12.ce

for
Improved Model for the
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1) draw a cycle, modeliing the physical order of the 6

terminals ( Fig» 243e8Bsb)e

2) Connect the physically equivalent terminals by a star
graph (Fige 2+43e8ec)e This is allowed only when none

of these stars intersect.

3) Contract each star subgraph into a single vertex

(Pigo 2.3080(1).

4) Delete loop-edges and replace multiple edzes by a

single edge (Fige 2+43a8se)s

This model yields a truly planar representation for

the circuit of Fige 103:1200’ as shown Iin Fige. 243:8ef

This property Carn be used for performing pin
assignment as a function of the layouts.
Figse 2034848 shows, as an example, a Y=termirnal component
with terminals 3, & and 9 being physically eguivalent. The
medel derived for this component Is shown in Figs 2e3.9ebe
Assume that one of these physically equivalent terminals
has to be conrected to net A. The embedding aluorithm can
produce three different placements for net A, These are

labeload Al, A2 and A3 on Fige 2¢322sbe The net would be

—2.15-
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(a)

Figs 24349 {a) component with terminals
physically eguivalents (b) model
equivalencee.

3y H
for the

and ¥

physical

assigned to

resualt of the embedding alagorithmse

pin 3y 6 or @ respectively, depending upon the
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224 A Model for Outside Connectionse

o s . A= —— -

well-

all

If the order of the external connections is
definedy, then a proper model is a - cycle,y, connecting

terminals in  the erder specified,. It should be

emphasized here that the graph embedding algorithm stould

position this cycle on the peripherys

Consider, as an example, a set of 20 external

cornections of which 1424394, 8,10, 18,19, 20 are

pre—assisznedy while the other terminals can be assigned as

a function of 1the embedding. For the 11 remaining signals,

we have the following groups of terminals available: 5-8

and 11-17. The model propesed here reguires us to partition

the signals into 2 sets of 4 and 7 signals respectivelye.

The

model will allow pin assignpment as a function of the

embedding within each groups. Once again we have a partial

ordering?

132339450 3,69798),9,10,(11,12,13,14,15,16,17),18,19,20}

As in the model for components, this ordering can be

modeled by a cycle, where simple elements are represented

by a

vertex and groups by a star—like subgraph with the
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Fige 2+.4.1 Model for an outside connectors

center vertex on the cycle. The model for the example is

shown in Figs 2.4a1.



It is appropriate here to

summarlize the main steps in

a topolegzical circuit layvut procedure?

1- Construct a graph model from the circuit description
2- Use a constructive algorithm 1o embsed the araph in
the plane subject to the following constraints?
) the coycle that models the cutside connesctions
should be on the peripherye
) certain cyecles that are representing component
orientation should be embedded with the
prespecified orientations
A= It a one=ltayer layout is desired, a nuambe of
coennectionsg has to be remeved inp vrder to leave the
graph planars Note that only edges representing nets
can bhe removed and not aedies that model the
componentse.
G- Haking use aT the technological properties such as

wires between 2 adjacen

try to route the

account finite wiring

remain

t pins or under the modules,

ing connections, taking inte

capacitiess.

‘2;19‘
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5~ Transform the topolesical  layout into a  physical
tayout by taking into account the real dimensicns of

the componentse.
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J Mathematical Models for the Circui®t Lavout Problems
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340 Introduction.

e T ———— . {— . . ——————

This chaptier deals with the topological aspects of the
circuit layout problem,. Geometrical propertiss (esie the
physical size and shape of the conmponents) will be

neslecteds

A survey of previous work on mathematical models for
the circuit layout preblem is  given in section 3.14 This
survey complesents the discussion of existing graph models,

presented in chapter 1.

The mathematical structure of physical circuits is
aralyzed in section 32 The new coucents of physical
equivalence of terminals and of legical egquivalence of

terminals and subcomponents are introcduced.

Starting with the simple hypergranph model, used by
Lawlenr (La73), these properties can be used - to

progressively refine this modele.



A new and improved Zraph mode 1 for components is
derived, in which the relationshing that exist between the
terminals ef @& coaponent are used Ffor a wmore optimal

layoute
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Scme CGraph Theoreiical Defipiticnsg.

The definitions given here follow (BCU71) and (Ha6B8),

unless otherwise indicated.

A simple graph or briefly a graph is a system
consisting of a finite non—-empty set V {the vertices) and a
family £ of subsets of V of cardinality 2 ( the edges)s The
vertex set of a graph G will be denoted by V(G) and the

edge set by F{(G).

Twe vertices u and Vv are ad.jacent in a zraph 6 if

there exists an sdge {u,v} in E(G),

A graph H is a subgraph of a graph ¢ if V(A)Y ¢ v(G)

and E(H) CE(G).

A graph G with p vertices and g edges 1s emheddable on
a8 5giiggg £ if it is possible to associate a collection of
p distinct points on 8 {(coerresponding to the vertices of G)
and a collection of g Jordan arcs (corresponding to the
edges of G)y such that if an arc "a® corresponds to an edge
e={uy,v},y, then only the endpoints of Ma" correspond to

vertices of G (isee 2 and v).
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A graph G is planagyr if it can be embedded in the

rlane.

Two graphs are homeomorphic if both can be obtained

trom the same graph by successive subdivisions of edoess

The planarity of a graph can be characterized by some

other property {Habt9) such as?

{Ruratowski) A graph is planar 1f and enly it it does
not centain a subgraph homeomorohic 1o  either X(5) or

K{3,3).

(Harary and Tutte) A zraph is planar if and only iFf it

does not have a subgraph contractible to K(5) or K(3,2).

(Maclane) A graph G is planar 1f and only if for evory

tleck of G with at least 3 vertices, there ex

[

sts a cycle
basis Z(1 )7 2(2), »e 09 Zim) and one additional cycle Z(ﬂ),
such that every edze belongs to exactly twao of these

cycles.

(%hitney) A graph is planar if and only if has a

cembinatorial duals



A n»lape zraph is a  graph that is embedded in the
planee.
A region or a face of a plane graph G is a maximal

portion of +the

by a Jeordan arc Wip¥, such that
corresponds tc a vertex of &

cerresponding to an edyge of G

The

bougdary of a region R of a
of all the points x corresponding

on a Jordan arc corresponding to

can be Jjoined tn a point of | by

points (except for x) belong to R

A G

graph

plane such that

plane for which any two points may be

ner

every vartex of G

Joeined

any point of Uy neither

lies won a Jordan arc

planpe graph consists

to vertices of G or lving

an edge of G such that x

a Jordan arc all of whose

it can be embedded in the

lies on the boundary of

some reglion (usually the exteriorde.

The following

are adapted from (UL70):

Let GIV,¥) he a graph with
set Es The peighboerhood N(v) of a

of all vertices of ¢ %that

deftinitions concerning

ocriented graphs

a vertex set V and an erdge

vertex v of G is the set

are adjacent to v
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An prientation o(v) of a vwvertex v of G is a cyelic

permuatation of the elements of the neizhborhood of v

An orientaticn 0(€) ©f a graph ¢ is a mapping of the
vertex set V into the set of orientations of all vertices

of Ge

The triple (V4,E,0) is an orjiented sraphe

A graph G(V,F,0) is partially oriented if the mapping

cof V inte the set of orientations is partially defined

(leese O(CG) is defined for a proper subset of V only)d.

An oriented vertex is a verfex for which an

orientation is defineds

An oriented graph G iz planar if it can be embedded in
the plane such that for the arcs a(i) with a commnon
endpoint Py, that correspond to the edyes Iincident to a
given vertex vy a clockwise sweep around P encounters these
arcs af{i) in the order prescribed by ths érlentatien. 1t
should be noted that with every plane graph, one can
peseciate an criented gZraphs However, not every oriented

graph has a ceorresponding plane graph (i.2. is plarvar)e.
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Let ayb and ¢ be three adjacent edges incident to a
vertex v; by b >< [asc], we will indicate that a clockwise
sweep around v encounters these three edges in the order a,

by € (is0. b lies bhetween a and ¢ ).

A planar oriented graph is puiernlanar if it can be

embedded such that every vertex of G lies on the boundary

of some region {(usually the exterior region)e.

¢ is an oriepted graph of type 1 if there exist in G
two distinct vertices m and n and three paths pys re and
P30 from n tTo my such that each edge of G balongs to
exactly one of these paths and it Ny, N, and N3 are edges
incident to n and belonging to piy v2 and pa respectively
and 1if Mq, ¥z and My are edgzes incident to m and beleonging
to pyy w2 and p3 respectively then Ny >< {No,N3] if and
only it M; >< [Ma,¥3]e An  example of such a graph is given

in Figs Re0slas

¢ is an grienied zravh of type 2 if there exists a
vertex n and two cycles €y and Cp such that each edgce of G
belongs to exaectly one of the cycles and if vertex n is

incident to edges M; and Ny of cycle C; and to edges M, and
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(a) ' (b)

Figse 3a0el (a) Oriented graph of +type 1. (L) Oriented graph

of type 2.

Nz of

cycle Cp then My >< [ My,N3] if and only 1f My ><

TMz9yN2]e Fige 3e04.1b shows an examole.

Iheorem:

(1)

if ¢ is a minimal npon~planar subgraph of an oriented
graph , then G is an oriented graph of tyvpe 1 or 4§ is

an oriented graph of type 2 (U170).

For two oriented graprhs G and G', a wmapping o

from VIG) onto V(G')Y) is callesd ar =2lenentary

contraction if there are two adjacent vertices v; and

ve in G such that

OV)] = AV
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(2) (wyewp) € BIG) iff (awyyaws) € E(GY) provided that w,

ard wp are distinct Trom vy and vas

(2) for w € V(G) and distinct from v; and vzy (vi,w) or

(Vg,"ﬁ") é E{G) iff (—fo‘l '{XW) € F(G’ )D

(4) let Xy4X29¥1+¥Y2 dencte (possibly empty) saguences of
vertices and let (x34,v3,vi) be +the seguence of
adjacent vertices of vy enceuntered in  a clockwise
sweep and let (X24Viy9¥y2) be the same segquence Tor V.
Then the seqguence for the new vertex vy = avy is

(@EX19@Y2s@XpeiE¥y1 )e An axample is given in VFige 3e00472.

I Figa 322 (A} and (c), two nriented graphs
are shown, while their contractions are depicted in
{b) and (d) respectively., For the first graph (Fig.
3+20e2en)y the seguences arel x3=ci; yi=hi1i X2=cs and
Ye=bppe The conitraction of edge (ajyasz) resyults in the
seguence (cieybpycpebry) of the adjacent veriices
around vertex as For 1he second graph {(Fig. 3.0.2ab),
the seguences arel Xp=hyi vi=Cqys Xxp=hs and V2ECpe
After contracting (ajsaz) the seguence arcund vertex

a is (byscoebzscy e
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(a)

- b)

@ oriented vertex

(c)

o~
202

Fige 3.042 Planar ovriented Zraphs {(ayc) and their
contractions {(Lyd)e.

Let G b2 an oriented graph, outerplanar with respect
to a vertex set Us Then an elementary contraction G!' = @(G)

is outerplanaer with respect to U? = ().
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3«1 A Survey of previcus Mathematical Formulations.
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In chapter 1, graph—-theoretical models for the circuit
layout problem were critically analyzed. In this section,

other existing abstract models ior t he problem are

discussede.

3e1el Multiplace Graphse

- T — T —— o . A 7 Sk oo o Yl iz e T O

The matheweatical model for the circuit laycut problem,
introduced by Engl and Mlynski (E¥75), is basaed on the

concept of multiplace sraphs.

Let 4 be a set of cardinality m; then o muliiola

i¢]
it

i‘

relation + ¥ on the set A ig defined as:

R S; U  Ai
i=1 M

wherae Al is the set of all multisets §f of cardinality i,
defined on the set A. Then ¥ is a family of multiscts of
cardirality less than or equal to my, defined on A

¥+ The use of the tern Yrelation? in the definition of
multiplace relation and n-~place relation (EMTS, Def.l) is
rather confusing, since the elements of a relation are
commonly defined as ordered pairs {or n-tuples) in the
mathematical literature (ec.ge Hadb0), whils in (EM75), +the
elements of a multiplace relation are unordered n-tuples
{in particular smltisets).

¥ A nultiset is alsoe known as a walghted set.
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A multiplace zZraph is a2 pair GLA,T), where A  is a
Tinite set of vertices and ¥ is a multiplace relation on A

Fach element of X is an edge of the smultinlace graph.

Fnzl and ¥lynski propnsed the following model for the

circuit layout nrohlem:

= Nets are represented hy  vertices of the multiplace

Eranhe

-~ A n=terminal componant is modelled by a n—ary

.

relationy, called grnider wit

=

y o less ¥

This maltiplace gravh is called the potential zravh of
the circuite One can define an incidence matvix M for a
multiplace graph with elements m{iyj),
where m{i,j) = 0 if afi)k. r{j)

=n if a{i) g »(j) and veccurs n times.

The ftranspose of the wultiplace graph O(A,R) is
another multiplace graph GVY(AT,271) which has as its
incidence matrix M' the transpose of the original incidence
matrix M. The transpose of the previcusly mentioned

potential garaph is called the compongnt sraphe Here the

* An n-legzed spider is a multiset of cardinality ne



components are represented

'apiders?.

In the
moedelled by a
legsY)e The reason

component is

once to the same nets TFor

needed 1o model nets in the
elemwents modelled by Engl

nets, it is neot possible

that exist bhetweesen the pins

Eng! and Mlvnskl

a mltiplace grash

potential granh,y
maltiset of cardinality =
why multisets

that a component

in (EN75)e They first
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by vertices and the nets by
a component with n nins is
{Ma spider with n

are needed to model a

can be connected more than

the same reason multisets are

component graphs Since the only

and HMlynski are components and

to represent the relationships

of a componantes

introduce the concept of planarity of

define a mapping

ef a multiplace graph MUA,R) into a simnle graph GIV,B8)2
every element of the set A is mapped into a diastinct vertex
v of the graph G Pvery n-wnlace relation of R is mappexi
into a K(1yn) (ieecse star—-) subgraphy with the center vertex
representing the r~place relation an«f the edges
representing the fact that the vertices of A belong to the

n—place relation.
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This wmappling can result in a gzraph with maultiple
edges. A multiplace graph ig planar if the corresponding
simple graph is planare. SFince multiple edges do not
influence planarity, they can be replaced bv a single edge.

This results in the model described in section 1434

Multiplace zravhs do not take into account many of the
properties of circuits, that are discussed in section 3.72.
Furthermore,y, it isg shown in section 3.3 that the existing
concept of hypergraph is appropriate for modelling those
properties of pbhysical clrecuits, that can he modelled by

maltiplace graphs.

3s1e2 Hvpe

i
s

F28 o

i
i

Consider the following definition from {Be72):

A hypersgraph H{(V,E) is an algebraic structure wherse V

‘is a set of elements, called veriices and £ is a family of
subsets H{i) of V. These sats E(1) are called hyvporedoess
Tach set F{i) is a noo—empty subset of Ve Furthermors

i (i) =¥

i=1,1E8|
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M.
i

Tn (LaT73), it i mentioned that for solvinz  the
partitioning proeblem, a circuit can be represented by a
hypergraph, with the vertices representing the components
and the Thyperedges representing the nets, The problewm can
then be formulated as the partiticoning of a hypergraph into
subgraphs with vertex sets of cardinality no¥t greater than
a given constant Ky such that the numher of hyrerodoes
connecting different subgraphs is minimizeds, Althouszh this
model is very similar to the component graph, mentioned by

Engl and Mlynski, it was nevesr used in conjunction with the

circult layout probleam.



3¢2 Mathematical Properties of Physical Circults,

In thig section, the mathematical structure of
rhysical circuits is studied,. New concepts of physical and
logical eguivalence of terminals  and components are

introduceds

de2¢1 A Simple Model for Components and Neisa

Every component has o number of termirals + to whiich
interceonnections are mades A net is a cellection ot
terminals (of the same or of different components ), that
are egquipotential at all times. The terminals of a net are
made eguipotential by connecting them by a continucus strip

of conducting material,.

¥hen one deoes not want to distinguish between the
different terminals of a component, the nets can be defined
as a family N of subsets N(i) of T
+ The terms 'terminal'® ard 'pin? will both be used for the

rhysical locations of a component to which
interconnections are made.
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A physical <circuit can then be modelled by a system
(C,N)y, where € is the set of components and N is a family

of subsets of E, ie2s the nets.

For solving the «circuit layout problem it is often
desirable to distinzuish between the different terminals of

a componpent since this can lead to a better layvoute.

A  component can be considered as a set (1) of
terminals p{iyjle Let P be the set of all terminalss Note
that C(i)r\ C(3d) = 9 fer 1 # 4§ and

U c(iy = p

i=1, 17

The set of components Is now a family T of subsets of
Ps We define o net as a set of terminals that are connected
to each other. Logically, there is ne seguence in which the
terminals otf a net should be connecteds Therefore a set is

an appropriate model for this relationship.

Consider the set P of all terminals: batween two
terminals that that belongz to the same net, there exists a
relation "are interconnected™. This relation is reflexive,
symmetric and transitive and therefore is an eguivalence

relation. This eguivalence relation partitions the set P
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into a rpumber of disjoint subsets (egquivalence classes),
called netse A net N(k) is a subset of Pe Agzaln N(i)(} N( i)

= $ for 1 # Jje

When a terminal p is not connected to any other
terminal, then it belongs to a net N of cardinality 1. Such
nets are degenerate. Proper nets are of cardinality 2 or
greaters The total wiring ¥ (set of all nets) is family of
subsets of Pa A physical circuit can then be modelled by a

triple (P,E,ﬁ)t

34242 Relations between the Terminals of a Components:

ITn many cases, the order in which the terminals of a
component appear on the periphery of this comoonent is
predefined. This can be represented by defining a functiion
S5(i)y called the guccesseyr funciiony for each element of
the set C(i); this function 8(i) maps an element of C{i)
into ancther element of C(i)s This mapping is one—to-one.

The Ilnverse function R(i), called the predecessor function,

also maps every elepent of C(i)}) into another element of

Clide



342.3 RBelations between the Terminals of a Comnonent?

~3e19~

It often occurs that & number of tevrminals of a
component have identical logzical fuanctions; this allows
terminals to he interchanged in order to obtain a bhetter
layoute An example of such a situvation is an AND mate with
3 inputs: suppose that evcoach of the terminals has to be
connected to a nety, cne should not a priori assign a net to

a physical terminal but rather

optimal laycute This problem is

pin assignment problaoam.

do this in function

Dften referred to

of an

as the

Let L = { p(j) } be a subset of C(i)y consisting of
terminals having identical logical functionse. Fach of the
terminals p(j) is incident with a net N{ide Since the
terminals in the set L all perform identical logical
Tfunctions, it is permissible to assign the nets N(i) 1o any

permutation of the terminels n( .
L are leogically eguivalent.
This situation can be modelled as follows?

{ p(iyy j) } Dbe the set of

iy as defined in sSectlon 3.2.1.

The terminals in the set

let C{i) =

terminals representing component

Eaech group of logically
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equivalent terminals can be represented by a set L(i,j) of

terminalss The cardinality of each such set is at least

¥e can represent component i by a set C(i) = { Lli,j) }.

3+2+4 Relations between the Terminals of a Component?

s e T T ————— i A" 23 o W T 2k 3 Mo o, D o S S Sk S Yy

By physical eguivalepnce of a set of terminals

component s meant that a1l terminals in this set

1.

a

are

equipotentials This means that a net can be connected to

any one of these terminals. +

As an example of thisy, consider an IC transistor?

topologically, one can conslider this as a A-terminal

component, with opposite terminals being physically

eguivalent, as shown in Figs J.2.1.

+ It is also possible 1o split the net into several
subnets,y, each of them connected to one of the physically
eqguivalent terminals. Being eguipotential assumes that
there is an interconnection between these terminals
within the component. By using the model proposad hara,
the net will ©be connected to only one of the physically

equivalent terminals in function of a planar lavoute

the net is not completely enbedded, then one can attempt
te split the net into subnets as indicated in section

Seda
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N

N NN

NS

Figs 3e2+1 Physical equivalence of the terminals of an IC
transistor.

Let F = { p(3) } be a subset of C(i}), consisting of
terminals p(j), at least one ot which has to be connected
to a net N(k)s The terminals in the set F  will be called

physically eguivalent.

This property can be modelled as fellows: Fach group
of physically eguivaelent terminals of component i can be
represented by a set Fli, i)y with |[¥F(i,.5)] at least egual
to 1. Component i can then represented by the set

Cli) = { Flieg) 1.

It is possible that within a component both physical
and logical eguivalence of terminals existse. In that case,
the following property holds: 1f p € F(i,y,j) and » & LUiyj)y

then for all elements g € Fliysj)y, a g Lliyj)e
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This property allows us to represent the component in
the following way: C(i} = { L{isj) ¥}y, where L(i,j) =

{f(i,j,k) }a

Je+2+.5 Relutions between the Terminals of a Component:

T —— - 2 YY" o I T— . Y Vo D T e

In some cases, a component can be made 1 of a number
of identical suhcomponents, that are logically
interchanpeables. An example of this is a guadruple 2—-input
NAND zate, which is @ commen IC modnle available
commercially. Ancther example ig a 3-3-3 AND-OR-INVERT gmate
(Fige 3a32e2)

In such casesy one should net randemly assizn & physical
subcomponent to a particular group of nets to be connected
to one such subcompeorent, but rather do this in function of

an optimal layout.

This cen be modelled by representing componant 1 by a

set of egquivalent subcomponents E(iyj): (i) = { "liyg) },
where Fliygj) = [ Llisjsr) }, ieee each subcomponent

consists of a set of losically squivalent terminal sets

L{isyjdy then LUi,Js%k) = { Fli,jgskel) } ls2e euch set of
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Figs 32242 A 3-3-3 AND-OR-INVERT gate as an example of
subcempenent equivalence.

logically equivalent terminals consists of a set of
physically eguivalent terminal sets, and Yinally,
Fligyjekysyl) = { pliydrkslym) } i.e each set of physically
equivalent +terminals consists of a number of simple

terminalse.

The relations between the terminals of a component, as
described in sections 3«23 to 35, form a hierarchy, as

shewn in Figs 312:3
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E SET OF ALL COMPONENTS

Ciy COMPONENTS

E(ij) EQUIVALENT
SUBCOMPONENTS

L{ijk) LOGICALLY EQUIV
TERMINALS

F 5
+F(i.i.kl)PHY§lCALLY EQUIV
*  TERMINALS
ﬁ

© Pikim) PHYSICAL
TERMINALS

where A->B means : A is a subset of B

Figs 322,3 iierarchy nf relations between the teprminals of a
comnponent.




343 Hypoergraphs.
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In section 3+3 we will study the use of hypergraphs as
a mathematical model f{or the circuit lavout pruoblems. First
a simple model will be discussed that is sufficient for
partiticoninz a physical cilrcuit.e This simple wmodel will
then be expanded progressively, thereby taking intoe account
more of the yproperties of w»hysical circuits in each
refinements Firnally, some consideration will be given +*o
defining the planarity of hypergraphs, as related to¢ the

circuit lTayout preblem.

e3¢l A Bimple Hyperzraph Model.

S ——— . . —. {7 WS 7 S . 2 N S S i ok

In section DJelely, the circuilt layont problem was

b s " -

modelled by & system (CyN), where O iz the set of
components and ¥ is a family of subsets of z, representing

the nets.
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From the definition of a hypergraphy 1t is ohvious
that a simple model for the circuit lavout oroblem is a
hypergraph, where the sSet of components maps into the set
of vaertices and the sets N(Kk)y ioes the nets, form the
hyperedezess In section 3.¢3.4, nappings of hypergraphs inte
simple graphs for the purpose of defining planarity will be

discussed.

As already mentioned in section 3.1.2, this simple
hypergraph model can be used for the circuit partitioning

problem.
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3432 A more Detailed Hypergraph Model,

T — ————— i o~
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Consider a hyperzgraphy where the set P of terminals is
represented by the set of vertices and the sets C(1) and
N(k)} are the hyperedgess Using Bergels wmethod ot
representing hyperzsraphs, Figae 3e3a1 shows a clircult and

its hypergraph model.

Since i+ is important %o distinguish between the
different terminals of a éamponent, this hypersgraph model
is more apgropriate Tor the eircuit lavout problem than
multiplace graphs. Since a terminal belonzs to exactly one
component and to at moest one net, there is no leoenger a need

for maltisets.

The use of sets to model components is not sufficient
hecaunse there exist a number of intferesting relationshiops
between the terwinals of a component that can he used in

solving the Llavout problems

it should be noted that the sets & and N boath are

partltions of the vertex set of the hypergravhe.
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Fige 2.3.1 A Clircuit and its Hypergraph Models
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It was menticoned in section 3:2,2 that there exists a
cyclical relationship between the terminals p(i,j) of a

component C{i)e This can be written as a relation P

Pliyl1) R pli2) B plis3) sssasavsn B nliyn) R plizl)

The intrcduction of this relation hetween the
terminals of a coemponent makes the previcus model no longer
a propeyr hypergraphs T1 igs wpossible however to redefine the
model here, such that the sraph representing the circuit
remains a hypergrapvph. Let the gset of terminals P be the set
of vertices of the hypergraphs Fach neti N{(k) is represented
by a hyperedze. Instead of representing the sets  C(1) by
hyperedpes, wa represent it bv a set K(i) of simple
directed edges, representing the cyclical nature of the

relationships The set of terminals co

]

responds to the set

of vertices of the hypergranhs

The set K{i) +hen consists of the directed edies
[pliry1dypCis2)] 5 [T00i92)p0i33)] 3 eees [plign)dyp(isl)]
The algebraic structure (V,N3K), where V is a set of
vertices representing the component terminals, ¥ is a set

of hyperedyges, representing the nets and K is a
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simple directed edoes, representing the component
boundaries, %*ill be called an oriented hyvnerpgranphe. Fige
343.2 shows the oriented hypergraph model for the circuit

of Fig. Je3sls

Fige Js342 Oriented Hypergraph Model representing the
Cyclical Ordering of Terminals.
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3+344d Other Felations between Component Terminals.

It isg possible to ceontinue expanding this hypergraph

model of the previous section, thereby taking care of the

0

properties mentioned in sections Je2.2 1o 3.2,

In section 3.4, simple + graph models are derived for
components., Netsy however, remeaein true sets and cannot

always be represented correctly by simple graphs.

3+3.8 Planarity of Hyperzgraphse

In (E¥MT75), it is stated that the representative graph
of a hypergraph, ag defined hy Uerze (Be72), is not an
adeguate wmodel for plaonar circuit layout because it
contains a Kg subzraph for every node of the hypergranh
with a degree 2 He This dees net inmply that a hypergraph is
not an appropriate model for the circuit layout problewm
since HPerge's representetive Fraph is only one of many

simple graphs inie which a hypergsraph can be mappeds

In particular, one could define the Ffollowing manping

ef a hyperzraph H{A,Y) inte a simple graph Gi{(V3i,E,;):

——— - . 4. T 7Nk {1l o i W A% ot

¥+ A gimple graph is defined in section 2.0,



a) every veritex a of I is mappad inte a vertex v' of G,

Tvi=f(a)]; let V! be the smet of all such vertices of

Gy

b)) Lfor every hyperedge x of H, there is a vertex v in
Gy TvP=2(x)]; let Vi" be the set of all such vertices

of Gl .

c) for every vertex a in a hyperedge xy there is an edge
(vigsvp) in Gy such that flal)=v, and g(x)=vos

Furthermore, V! ﬂ VM o= p’ and Vi1 U V¥ = Vi

This mapping is similar 1o the one for multinlace

graphs, given in (EMT75, def. 9).

We can then define a hypersraph te bHe planar
{first definition) if and only if its agssonciated simple

graph Gy1 is planars

This definition of hypergsraph planarity can lead to
difficulties with respect to the circuit layout problaem.
Assume that componsnts are modelled by simple subgraphs and
nets by proper hvpercdges (of whieh the cardinality can be

sreater than 2)e. Then the mapping detined here is not



"'3- 33—

adeguate since a net can be realirzed as any spanning tree

on its vertex sets

We can define a second mapplng of a hypergraph H{AsX )

into a simple graph G2(Va,E5) as follows?
a) Let V(G,) = A1)

L) Fvery hyperedse x of H is mapped into a spanning tree
on thea set of vertices

fvii) | v(i) = a(i) and a(i) ¢ x}.

We now defines a hyporzraph to be planar (second

definition) if and only if +there exists an associated

simple graph Gy {(ag defined above)}, that is planare

ITheorem If a hypergranhb is planar, accordinz to the first
definition, then 1t is planar according to the second

deliniticne.

Procis Let H be & hyoerzaraph, vlanar according to the first
definiton of »laparity and let Gy be its associated

simple granhe Then G, is planare

-

A hyperedze x is mapped into a K{1,n) subgraph

0f G Let v be the center vertex and v( i), i = 14n



where vi{i)

star—suburaprhe.

Gy 3

contract ite.

We can

The
mapping

definition

according to

The converse

FPor solving
is necessary to
rlanarity. This

trees over all

impractical, the
planarity will
Tayout problems

¥ A graph &
contractible

select an

repeat this procedure for a1l

resulting

used to

bhe

is planar
to K(E) or K(2,3).
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= flali)), the end vertices of this

Apply the fellowing transformation te

edpe (vyv(i)) of the star—-subgraph and

is s+ill planare ¥

The resulting graph

hvperedpgas of He

simple granph G, satisfies the

define the planarity according to

2e Since {5 is wplanar, H is wlanar

detinition 2.

of this theorem is not tracs

the circuit lTayout nroblem optimally, it

use the second definition of hynarzvaph

wionld reguire gnumerating all spanning
of the hyperedgese. Since this is
less desirable definition of nyvperszraph
used in conjunction with the c¢ircuit

iff iA does not have a

{ Ha 69 ).

subgravh



3+4 Graph Models for Components.

V. e o

1 In order te aveid introducing non-planarities

~3¢ 35

the

cempenent model should be ocuterplanar + with respect

to the vertices, that represent the componnent?s

terminalss.

2) Every possible embedding of the component together

with the nets connected 4o it should be compatible

with the cyclical ordering of the terminals

on the

component!s boundary, if such ordering is prescribeds.

In other words, every possible embedding must

physical meaninges

I+ will be agsumed here that an n=-terminal net

modelled by a K(1ly,n) subgraphs Furthermore, it will

have a

s

be

regquired that nets be embedded in the region exterior tn a

component?s boundary.

+ A graph is outerplanar if it is planar and i+f it can be
embedded in the plane, such that all its vertices lie on

the same face (usually the extericr face}l (Habtd).
G(VyE) be graph and let Vi be a subset of V, then G

onterplanar with respect to Vi if it can be embedded in
the plane such that all wvertices of V; 1lie on the same

faces.



3e44s2 Cyclic Ordering of +he Terminalse
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In section 3.2.2, it was mentioned +that the ordering

of termirals along a componentl!s boundary can be modelled

by a successor function. In section 3.3.3, this cyelic

relationship WA s represented by a directed cycle,

connecting the terminals.

When we assume nets tTo be embedded in the region

exterior to the component'!s boundary and if the nets are

represented by K(l,n) subgraphs, then we can model

a

component and its incident net-edges by a partially

oriented graph G, as shown in Fige 3+4s:31{a)s The vertex set

of G consists of oriented vertices, representing terminals

and of non-oriented vertices, representing the nets.

edge set of G consists of a cycley, modelling

The

the

component's boundary and of edges, connecting the terminals

to the net-vertices,.

In certain casesy a mirror-imazge component

is

available., Since the orientation of the componentis

boundary 1is not predefined in this case,y, two different

embeddings are possible and then oriented graphs cannot be

used,
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In this case, an undirected cycle is an appropriate
model. In order to avoid the embedding of connections
inside the cycley, a star—-subgraph should be placed inside

the cycle.

J+443 Physical Fguivalence nof Terminals.

Let € = fF(i)}, where F(i) is =a set of physically
equivalent terminalse {F{(i)] 2 1 and F(i)(\ FO3) = § if i #j

Let €' = {p(,j)} be the set of terminalsa. Then the family

¥ of sets F(i) forms a partition of C!,

It will be assumed here that no two elements of F(j)
are physically adjacents If two o©or more terwinals are
physically adjacent, there is no problem of pin assignment
between them and they can be represented by a single

terminal.

Assume that the cyclic ordering of the terminals is
given by a successon Functions. This can be written as a
relation P: p(1) R 0(2)y p(2) R p(3)yassssss pin) 2 n(l).
This surcessor function induces the following relation R?

on the elements of the family F: for all p(i), plj) such
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that p(i) 8 p(j) with pli) € T(k) and »lj) & Fl1) {where

F(x) # F(1L})): F{k) RY F(1)

Firgt assume that no mipror-image components are
avallables. Consider +the partially oriented xraph GY,
obtained from the original graph G by contracting the sets
cf physically eqguivalent terminals,. The vertex set of 61
consists ef vertices, representing the sets of physically
equivalent “terminals and of vertices, represanting the
netse. The edge set of G' consists of the adges, connecting
the terminals to the corresponding net-vertices and of
edues {a,sbl, Tor which the relation a RB' b holdse. An
example of this is given in Fige 3.441(h), where the sets X
and Y are contracted.

Note that the original cycle may be replaced by a number of

cycles and that the rvesulting graph may be l-connecteds

In order for the resulting model to be suitable, it
has te be outerplanar for every possible embedding that has
a6 physical meaning. Furthermore, a vertex corresponding to
a seat F(j), of cardinality greater than 1, muist  be
non-oriented, in order to allow the incident net-sdge to be
embedded properlys. The vertices, corresponding to sets F(,j)

of cardinality 1, remain oriented.
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(2)

Figs el {a) partially oriented graph,y modelling the
circular ordering of the terminalse. (h) partially
oriented gravh modelling physical egquivalence.

We can now «define the Tollowing condition for the
model to satisfy the conditions of section 3.4.1. For every

set F(J) = {b{i,x)} of cardinality zreater than 1, we add a

K{1yn) subzraph to the model, with a new vertex d(j) beiung



the center, connected to the vertices bl jyk) such that

~3 040~

d( j)

Pl el jekdgsal jek )]y where bl jyk) = 8(a( jsyk)) and cl jyk) =

S(bhljsk))e 1{ the oriented graph so  obtained
cuterplanar,; then the graph derived LY contracting all

K{lyn) subgraphs is also outernlanare

The above considerations are valid only when

is

the

the

eriginal graph is orienteds, %hen a mirror—-image component

is available, no proper wmodel for physical eguivalence was

Tounde This is illustrated in FPig 3.4+2, where

the

embeddings in {(a) and (b)) are correct, while the ones in

{ec) and {(d) are note. Figs Je4e?2 (o) shews the original

oriented graph, modelling the circular relationship between

the terminals.

Jeded4 Leogical Eqguivelence of Teruminalss

Let € = {L{i)}, where L(i) is a set of logically

eguivalent terminals. Ther [LIIY] > 1 and L{i) L( j)
—

8

it i # Jjs Let €' = {n(j)} be the set of 1terminalss Then the

family T of subsets L{(i) of C' forms a partition of C1'.
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a < d b
x
(@) b) y
d b a <
a b
x d x <

(c) (d)

Figs 24442 Modelling of physical egquivalence when a mirror
imege component is allowed.

Consider a set L(i) = {g(j)} of +terminals with
jdentical lowpical functionss. Fach of the terminals q(j) is
incident with &a net N{k)e The component model should bhe
outerplanar and for every permutation of the terminals, the

cyclic ordering should be respecteds

The cyclic ordering, specified by the SUCCessSsor
functiony, can be written as a relation R n{l1) ¥ n(2), n(2)})

F pl(3)y eessnuese p{n) ® 13(1)e This successeor function
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induces a relation B' on the elements of the family L: for

all p(i}y, p(j) such that pli) R pl(j) with p(i) € {x) and

p(j) € LO1): L(k) B' L(1).

Let ¢ be the wpartially oriented graph, representing

the component beundary and its incident net-edzes. ¥We can

then conslder the partially orierted graph ', obtained by

contracting the sets L{i)s The vertices of Gty

corresponding  to sets L(1i) of cardinality 1 remain

crienteds An example is shown in Fige 3e4s 3.

In order to perform pin assignment in function of the

layout, the orientation of the nets around a vertex

corresponding to a set L(i) of cardinality sgreater than 1

should

noet be snecified. This can be accomplished by

inserting an edge for every set IL{i) of cardinality greater

than

1, as shown In Figse 3:443c)e Let G[L(i)] be the

subgraphs of the directed cycle, gZenerated by the subsets

L{i),

1)

Then there exist two possibilities:

A1l of the subgraphs G[L(i)] are connectad. This
implies +that the vertices of L{i) are physically
adjacents Then the new graph G?!' remaing 2-connecteds

A wertex in G'y, corresponding to a set L(i) of
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(a)

e}

Fige 34443 (8) Circuit with logically equivalert sets A and

Be (b)) After contracting the sets A and Be ()
Correct oriented graph model.

cardinality n, will +then be connected +to n netsa.
Assuming that the total circuit layout graph is

planar, then every possible embedding will satisfy

the recgulrements of section B3.4.1.
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b
et

At least one of +the subgraphs GIL(i)Y] is
disconnecteds This implies that the vertices of L{i)
are not all adjacent. As a result the graph G' is
l-conrected and +the set L(i) is mapped iInto a
separating vertex. Tf L{i) gas cardinality n, then
the corresponding vertex will be connected to n nets.
Not every possibie embedding however satisfies the

reguirements of seaction TF.4.1.

Therefore, this model is appropriate for logical
egquivalence, it all lezically eguivalent terminals are
physically adjacents An interesting case, in which legical
equivalence coan be wmodelled even if the terminals are not

physically adiacent, is illustrated in Fige. Ded.4,.

The conditicon fer being able to model the logical
eguivalence of non-adjacent sets of cardinality 2 is
similar to the one for physical eguivalence, as aointed out
in section 3.4.3. The model derived, however, is differents,
This shows that 1t may be possible to model logical

eguivalence even if the tferminals are net physically

adjacent.
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i’ig- Daedad

Modelling of lozical equivalence for sets  of
cardinality 2 that are not physically adjacents.

¥hen

a mirrer-image component is available, a simple

non—~directed cycle models the order of the terminals non the

component!s Dboundarve Asmain, when the terminals in a

logically
model can
order to
cycle, a

resulting

egquivalent set are physically adjacent, a correct
e derived hy contracting the set of ediazess In
avoid the amhedding of connections inside the

star-subgraph should be placed inside the

cycle,



If i

o4

is necessary to represent every terminal

vy

a

distinct vertex, then a set L{i) of cardinality n can be

replaced Dby a k{(1,n) star. An example is shown in Fig.

3»'4'3( C).

J+4+.5 Unspecified Order of Terminals.

A T . T~ o, T 1} Do . W, 2 O o . o e e S o e T T T o7

In some cases, the components can be (re-Jdesipned if

this would result in a better layout. From the point of

view of clrcocuit layout,; this property is similar to logical

eguivalence of terminalse

In case the eorder of all terminals is unspecified,

the

component carn be represented by a single undirected vertex

(or by a K(1l,n) star—-subgraph if one desires a distinct

vertex to represent each ferminal)e. This results in

a

model, similar to the one proposed by Inzl and Mlynski

(EMTD ),
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Jedeb Logical Fguivalence eof Suhcomponentica

T s e . S . T T —n . i bt i i e s o e . e Sl . Mt . U MO e sl e A S o Nl M

Let ¢ e a component, censisting of n sets EB(i) of
legically egquivalent subcomponents. Let ¢ be the set of
all subcomponents S{.i)={n(jyk)}e Then the family F={3(1)}

rartitions the set C!' into disjoint subsetse.

In the following discussion, we will  iwmpose the

following restrictions:

1) a subcompenent is a collection of nhysically adijacent

terminels, performing a specified logical functions

o]

In order for 2 subcomponents to bhelong to the same
set F{i), they have +to perform identical logical
functions, have the same number of ferminals and the
arder in which the terminals appear  on the

component?'s boundary must be the samee

Consider the partially orientoed graph model G for the
order of the terminals on the component!s boundary, as
illustrated in Flgs 3+%+5a and Js:4.6ae Lot G/ 8(1)] denote
the subgraph of G, Zenerated by a subcomponent S(i). Since
we require the terminals of a subcomponent +o be phvsically

adjacent, all ¢[=8(1)] are connected pathse Let x(i) and



Fig,

Jeda

Derivaetion
eguivalence

of
when

a

model
eguivalent
physically adjacent.

-:31 48"

(b)

for subcompenent

subcomponents

areg
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Fige Jedefy MNerivatvion of a model for subocomponaent
egnuivelence when eguivalent subcomponents ars not
physically adjacente




¥(i) be the vertices of valency 1 of [ S01i)], such that
(i) = S+H(x{i))a ¥ Let xq1(1) he the vertex osreceding x(i)
iece x(1) = S(x43{i)) and let y10(i) be the vertex Tollowing
yv(i) on the original cycle iees yi{i) = S(ylil)e We now
derive a new granh model Gf for the compenent as followse

V(G vicy U {ati)}

E(G1)

1l

FG) = fUx30i)yxCi)dyly(i)yyqlidd}
U {{xq0i)yali)), (al1)eyyv1(1)Yy (ali)yx(3i)),
(a(iY,y(id)}
where a(l) is a new vertex, asscciated with

subcomponent 30i).

Py repeating this Ffor every subcoumponent S(i) with
more than 1 teruwminal, we obtaln a new oriented granh model
GY, For the purpese of embedding, GV ig eguivalent to the
origzinal model Ge An example is miven in Fige dedeSr: and

3edatboe

As a resuli of this transfermation, The uranh model
now congists of an oriz2nted cycle for the conmponent itselrf
and of oriented cycles for each of the subcomponentss The
cycle modelling the component itselfy contains vertices
that reprasent toerminals that it not belony to

YV

* By a = SH{(b) we will denote that a was obtained ¥rom L by
a multiple application of the successor function 9.
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subcoempenent as well as  vertices a( i) for each

subcomponents

Let E(i) = {s8(,j)} bhe a set of subcomponents with
identical logical functions. Let every subcompenent S{,j) be
connected to a collection N(Jj) of nets. The component model
to e derived should be outerplanar and for every
permutation of the logically eguivalent subcomponents, the

cyclic eordering should be respected.

Consider the cycle for +the component itself. This
cyclic ordering of the vertices can be written as a
relation a(1) R a{2), a(2) R al3)y esesssnsrs ey a(g) 2 all).
Every subcomponent has exactly one vertex on this cvecles
Hence, a set E(i) of logically eguivalent subcomponents
corresponds to a set F'{1) of vertices on the cycles Then
the relation R induces a relation B' on the subsets F1(i):
for all a(i)y, al(j) such that =a(i) 2 al(j), with ali) g E(k)

and al j) € E(1): E(k) B' E(1l),

We can now consider the oriented graph, obtained by
contracting the edges (a(id)ya(j)) of the cycle, such that
both a(i) € E(x) and a(j) & F(k) for some ke Then two

possibilities exist:
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1) All vertices of a set Fi(k) are physically adjacent
(Fige 34425)s When the total circuit layout graph is
planar, then every pessible embedding will satisty

the reguirementis of section Jedasle

2) The wvertices of +the set T1(k) are not physically
adjacent (Fige Fedat)a Then not every embhedding

satisfies the reguirementse.

Therefore, we are able to model logical eguivalence of
subcompeonents if the sets of terminals of all subcompuonents

that are eqguivalent are physically adjacent.

It should bhe pointed out here that physical and
logical eguivalence T +terminals can be combined with
subcomponent equivalence, a2z long as the model satisfies
the conditions of section J.4dal. Mirror—image components

can no longer be modelled, excepnt in simpls cases.
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In section

connections of a ci

these connectlions is predetermined,

directed cycle. ATL

interior regicon (as

components)s This

graphe

In SCMEe CASesS,

2 4,

Boundary of a Circuit.

the problem of modelling the outside

raouit was describeds When the order of

then we can azain use a

nets now have to e embedded in the
opposed to the exterior region for
can alse be wmodelled by an oriented

a certain degree of freedom existis,

allowing logical signals to be assigned +to physical
terminals in function of the lavoute. This property is
similar to the leogical eguivalence of the terminals of a

comnonant. As

to modal the

+that they are
model oroposed
oriented

graph model

one for componentis.

for compnnents,
leogical equivalence of a set
physically adjacent.

in section

the condition for being able
of terminals is

This then leads to the

Dede Again, one can derive an

for locical equivalence similar to the



3e6 Requirements for a Circenit Layout Graph Fwmbedding Alrorithms

Im wview of the wmodels, derived in the previcus
sections, the reguirements for embedding circuit Tlayout

graphs in the plane are summarized.

1) The external connections =hould be embedded on a

peripheral cyvcle.

2) Feor certain vertlces, the edsges incident 40 it should
be embeddsad such that a clockwise sweep around the
vertex encounters these edpes in a prescribed order.
The reason for thise reguirement is due to the models
for components derived before.

3) When the circuit layout graph is non-plapar (which is

usually the case), a number of edges should he
deleted from the graph such the that remaining graph
is plarnare Only edges representing  nets can  be
remnoveds The remaining edyges have 0 he embedded in a

second or consacutive layer.

4) Orly net-ecdues, connecting terminals on the same
component may be embedded on the inside region of a

comperent?s boundarys. This means that no connections
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are alleowed over or under the physical area of a
components This restriction is necessary if we want
to embed the clrcuit laveout graph or a maximally

planar subgraph thereof in a singzle plane.
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Let G be a circuit lTayout graphy where the components
and the exterior boundary are modelled by simple cyecles and
the nets by K(1,n) starse.e Then [V(G)] = |P| + IN|] and

is(g)] = 2 IPl, where P is the set of terminals {(pins) and

o

N is the set of natse. The number of vertices in is
obviously equal tc the number of terminals plus the number
of netss Therese are two types of edges: comnonent edoes and
net edies. Since components and outside connections are
modelled by cyvcles, there are exactly as many component
edges as there are terminalss Every terminal is conmnected

to at most one nets Therefore, there are at mest as many

net edges as there are terminalse.
¥e can consider the following extreme cases:

1) 1f [} = 1 then 1vig)H

]

ir] + 1 and

[E(G)Y] = 2 Pl = 2 |v(G)| - 2.

2) 1f |¥| is maximal, then every net is of cardinality 2

and Inf = IP|/2. Then IRAGeR Y

a72 el and

{e(e)] = 2 |P] = 473 |v(G}].
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Thus 2 |v(e)] = 2 2 (e 2 473 1v(G)]

The importance of this relation lies in the fact that
the number of edges of G iz a lipear function o»f the number
of vertices. This is relevant when evalvating the
computaticonal complexity of algortihms that manipolate

circuit layout graphs.

¥hen the component wmodels become more complicated,
E{G)Y will stii1l be a linear function of V(G) since the

component models are always dlanare.
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44 Embedding Circuit Layout Graphse
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4e1 Introductiona.

In this c¢hapter, the problem of finding a topological
embedding of a circuit layout graph is studieds ffirst the
special reguirements imposed on this embedding are givens
It is shown that the problem of embedding a circuit layout
graph on a multilayer surface cannot be solved by simply
ﬁﬁartitioning‘.the grapﬁ‘ iﬁto a miﬁi;um.'ﬁuﬁbeonf ‘plﬁnéf

subgraphs and then embedding each of these subgraphs

independently.

Since the actual layout problems are in practice very
large, the computational complexity of the solution is very

importantes This is discussed in section 4.1+ 3

Most ot the existing planarity testing methods are
based o trying to censtruct an embedding of the graph in
the planes Therefore, some of the more important alzorithms
are surveyed in section Hae Attempts to use these
algoerithms for sSolwving the circuit layout problem are

discusseds
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In section 443, a mnew O(}{V]) algorithm is presented
for testing the planarity of partially oriented graphse
This algorithas is then used in two approximate algorithms
for finding a maximal planar subgraph of a circuit layout

graphs

4slel Requirements for Fmbedding Circuii Layout Graphs

In the previous chapter, it was shown that circuit
layout graphs reqguire an embedding algorithm with the

folleoewing constraints:

- QCertain wvertices have 0 be positioned on the

peripherye.

- For certain vertices, there is a prescribed order, in

which the edges incident to it must be embeddeds

= If G is non-planar, a wminimal nuwmber of edges has to
e removed to make the remaining graph planar with
the constraint that certain edues {(specifically those
representing component peripheries) cannat be

removeds
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in most cases, the wraph G is non—-planar and can
therefore not be embedded in a single layers. The approach
taken here is te esmbed a wmaximal planar subgraph in the
first layer, subject to certaln constraints, as pointed out
in section 4.+3s. This appreocach is acceptable when the
technological preperties ¢f the problem reguire most of the
connections ta be in the first layer (esgs for integrated

circuit layout)d.

Unless otherwise indicated, components will be
modelled by connected subgraphs and n—terminal nets by

K(1yn) star subgraphs.

The geometrical properties of the problem will be
neglected in this phase. Only the topological aspects will
be considereds The result of the embedding alzorithm is a
list of oriented faces of a maximal planar subgraph as well

as a list of the net—edgzes that were deleted.
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2 The Circuit Layf)ut Graph IEmbedding Problems

In all but very sirmple casesy the circuit layout graph
is non-planare. Usually the aim of a circuit lavout
procedurse is te embed the graph in a minimal number of
layers. Depending on the technological properties of the
problemy; additional constraints may be imposeds FHege in the
layout of integrated circuits, one could try to embed as
many connections as poessible in  the first layer, while the
other layer(s) are used only for embedding the remaining
edgess In printed circuit layout, it would be preferred to
have layers containing approximately the same number of
connections, since this would probably make a better use of

the area availableas

In this chapter, these additional constraints, due to
technologzical factors, will not be considereds. The
precedure proposed, however, is based on embedding a
maximal planar subgraph in the first layer and therefore it

is most suited for IC layout.

An  impertent characteristic of embedding circuit
layout graphs is that on all layvers the compoenents have the

same relative positiogns with respect 1o each other. In
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other words, the embedding of a pltanar subgraph in one
layer infiuences the embedding in the other layerss
Furthermore, i1 is necessary to represent the components by
appropriate graph models on every laver in order to obtain
a meaningtul resalts This differentiates the circuit layout
problem from partitioning a graph Into a minimum number of
planar subgraphse We will illustrate this difference by
means of an  example, shown in  Fige d4e1e1, where 3

components Ay B ard C are connected to each other by € nets

Nl' Nz, LI I | Nﬁ.

For integrated circuit layout, the area used by a
component may net be available for routing connecticons in
any other layertrs Therefore, the adges, modeliling the

ceoemponent boundary have toe be present in every layer.

Figs 44142 shows a possible decomposition of the graph

into a minimum pumber {(iees 2) of planar subgraphsSs

Ii we adhere to the restrictions, imposad on the
embedding of circuit layout graphs, then we have to embed
every component edye on every layer. A minimal embedding,

reqguiring three layersy i€ shown in Fige deleJe
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Ny

Fige 4s41sal Non-planar circuit layout graphe.

Several authors (eegs Ch70) have suzggested a simple
decomposition into planar subgraphs as a sclution to the

circuit layout pgroblems Even if the graph model used is a

simple bipartite gzraphy as used by Chein (Ch70), with

compeonents represented Ly single vertices, then this

partiticoning inte planar subgraphs does not necessarily

result in & sclution that is adeguate for circuit layouts.
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Figs 4s1e2 Partitioning of the circuit layout graph into two
planar subgraphse

The approach taken here igs to find a maximal planar

subgraph first and to embed it in the first layer. The
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Fige 45,143 FEmbedding the circuit layout graph of Fige 4delel.

connections on the other layers can then be embedded using

a classical routing algorithm {(eeze HidH)e
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4+1¢3 Computational Complexity of the Maximum Planar Subgraph

Problems

———— . b g

It was shown earlier (in section 3.8) +thaty for a
circuit layout graph where components are modelled by
cycles and nets by stars, |E{(G)] = ke [VIG)] with
2 2 k 2 4/3s Even if more complicated component models are

used, k will be constant with respect to |V(G)]|.

The compiexity of finding & maximum planar subgraph ol
a non—-planar graph; by deleting a minimum number of edges
is still an open problem in computational complexity. +
Currently, no algortihm is known that solves the problem in
polynomial timee Attempts to reduce a known NP-complete
problem (Ka72, GS574) to this problem have not yet produced

Bn answer to the guestion of NP-completeness.

Since no efficient algorithm for finding a maximum
planar subgraph ls known, we will attempt to find a maximal
solution by using an approximate, polynomial-time

algorithm.

When solving circuit layout problems, the graphs being
investigated can easily have 1,000 or more vertices and in

¥ Me CGarey and P. Johnson,y, private communicatione.
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such cases the computational complexity of the algorithm is

extremely important.

4+144 Definitions.

 ———— - v ———r——

A pumber o definitions related to graphs and their
planarity was given in section 3J.0s %We will introduce some

additional terminclogy herc.

The following detfinitions, related to efficient

algorithms are from (HT74),.

The ad.jpgcency list ¢cf a vertex v is an unordered list

of the verticesy adjacent to vs

The adigcency siructure A of a graph G iss the

collection of adjacency lists for all vertices of Ge.

In a directed graph, v is an apcestor of w and w is a
descendant of v if there exists a path from v fto ws If the
path is of length 1, then v is the father of w and w is the

son of ve

In &2 «circuit layout graph, there exist two types of

vertices: ~vertices belonging to a compenent model anc
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N~verticesy being +the center vertices of XK(1l,n) subgraphs
modelling n-terminal netss.s Similarly, the edges cuan be
classified as Credies, incident to two C~vertices and

N-edgesy incident to one C—-vertex and to one N-vertexs
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In this section,y a number of constructive plararity

testing algorithms are discusseds These algorithas attempt

to construct a planar embedding of the graph

in the planpe

and as such are of interest in solving the circuit layout

problem.s Where possible, attempts to use the algorithm

circuit layout are discusseds. It is assumed here

for

that

graphs are 2-ccnnected without loops or multiple edgess. If

a #raph is not 2-connected, it can be

2=~connected subgraphs, and each of these ©

separatelys A graph is non-planar if |E]|

Therefore, only the case where 1E§‘5 3 vl

investigateds.

492¢1 Fisher and Wirg's Algorithm.

—— . . W A T . by o o s ol o Rl M . ot . 4 ) WD, e oy, o

spiit

into

an be treated

- 6

> 3 {vi

has t

- 6.

0o be

This algorithm has been used in several topological

layout systems (esg. EMT3, K173, GR74).

described using Read's formulation (Re70).

1) Find a ©ycle C.

It

will

ba
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Delete all vertices of C from Gs The resulting graph
consists of a number of connected components F(i),
called frazments. In G, a Ffragment F(1i) is connected
to C by a set L(1i) of lipkredsess There also might be
edges t(j) in 6, Jjoining two vertices of Ce. They will
be called itpransversalse Without loss of generality,
the transversals can be considered as fragments by

placing & vertex in the middle of each transversale.

fach fragment F{(i) has to be embedded either on the
inside or on the cutside of Co Ceonsider the subgraphs
Hi) of Gy formed by Cy, F(i) and L{(i)e Tt all H(1i)
are planar, then G is planar 1f all of the fragmenis
F(i) can ©be embedded such that their Llink—edges do

net Crosse

Let two subgraphs Gy and Gy be called compatible
if both can be embedded on the same side (inside or
outside region) of C, without a crossing. PDefine a
compatibility zsraph K as foellows. For every fragment
F(i)y there is &a vertex in Ke« Two vertices of K are
Joined by an edge if and only iif the corresponding

fragments are incompatibles Then the original graph
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is non-planar if there does not exist a 2-coloring of

the vertices of K.

4) If the fragments can be embedded without crossings,
then the problem is reduced to testing the planarity

of each of the subgraphs H(i ).

In (EM75)y, an iterative algorithm For testing the
planarity of a multiplace graph is givens In the first
sStep, the graph 1s decomposed into a pseudeohamiltonian
cycle Hy a set qb 0f transversals and a collection of
subgraphs GG, that remain after deleting the cycle H and
the transversalse The zZraph is then transformad into a
multiplace graph by replacing the subgraphs Gérby spiders.
¥ In his description of Pisher and Wing?’s algorithm, Read
{Re70) points out that the subgreshs GG can be replaced by
star subgrephs, which is exactiy what is proposed in

{EMTS).

A complicatied method is developoed to determine whether
the subgraphs GG' and the set of transversals %D can be
embedded without crossingsse Theorem 4 in (EM75) is similtar

+ For a definition of spiders and multiplace graphs, see
section 3.2.
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1o Read's fermulation of Fisher and Wing'!s algorithm (Ee70,

F¥édy FWOG6).

According to Shirey (5h68), the runtime of Fisher and
Wing's implementation has a lower bound of at least O(|V]*%)
whereas Targan's algorithm {(Ta71) has a ‘lower bound of

G({v])y where |V| is the number of vertices in the zZraphs

It is not easy to obtain a list of faces when using
this algorithm 10 embed a planar graphe In facty several
implementations of this algorithm for solving the circuit
layout problem make use of interactive graphics to obtain a

plane drawing of the graphe

Some of the restrictions, imposed on circuit layvout
graphs, can be taken intc account guite easily. Eeges the
peripheral cycle cen be enforced to be the external face of
the embedded Zraph by selecting it as the first cycle and
by requiring all fragments 1o be embeddesd on the inside

with respect 1o it.

Enfercing the orientation of the vertices adjacent to

a given vertexy is rather diflficult.
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4e2+.2 Demoucron, Malgrange and Pertuiset!s Algzorithm.

The algorithm, described in (DM64) is similar in
nature to Fisher and Wing's algorithms In fact, both

algorithms are variations of Goldstein's alaorithm {Goeb63).

Rubin (Hu73) describes an inplementation of this
algorithmy, reguiring O({V]|2) time and space {no proot of
this bound is given)s Althouzh it is claimed in this paper
that for ?'practical! graphs, the algorithm tends to behave
linearly, no sufficient evidence is available to

substantiate this claime

An important characteristic of this algorithm is that
it generates a list of +the faces of  the embedding, as

reguired for solving the circuit layoat probleme.
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42243 Lempel, Even and Cederbaum's Algorithns.

The approach, used in this algoritnm ( LE66), is uyuite
different from the previous oness. Ffrom the graph, |V|-1
directed rooted trees + are constructeds Fach tree consists
0of a root vertex and of the outdirecte:d edgesy incident to
the roote The planparity testing method is based on

constructing G in the plane from the rooted treess

Tarjan(Ta7l) reports an implementation of this

algorithm in O{|V]2) time.

Using this algorithmy, it is easy to find a list of the
faces in the embeddings. Furthermore, if G is non—-planar,
deleting an edge to Keep the partially constructed graph
planar is easily implementeds. Although this will create a
planar subgraph of the original zgraph, this subgraph is not
necessarily maximume. However,y, if the component models are
complicated (as proposed in the previous chapter)y, then it
might become necessary to delete a C-edgey contrary te the

reguirements of section de1.

¥+ A directed ruvocted tree T is a directed graph with a
special vertex r, called the root, such that every vertex
in T is reachable from r, no edges enter ry and exactly
cne edge enters every other vertexs
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Uyehara 2t als (US74) report a modification to this
algorithm that takes into account the prescribed
orientation of edges around certain vartices, as is
reguired fIor testing the planarity of circuit layout

graphs.

In erder to satisfy the reguirements,y, cutlined in
section 4«1, it would be necessary to first embed all the
C—edges and then add the N-edges, one at a time,y, each time
testing the new ugraph for planarity as described in (US74).

This reguires O(]V]|3) time it |E] = o(]V¥]).

4.204 Tarjan's Algorithm.

Tarjan's algorithm (Ta7il, HT74) forms the basis for
the algorithms, described in section 4.3 It is required
that the graph being tested 1iIs 2-~connecteds. The graph is
specified in the form of an adjacency structure A. The

algorithm consists of the following major steps:?

1) apply a depth=-first search to G, starting from some
(arbitrarily chosen) vertex S This search imposes a

direction upon the edges of Gy depending on the order



in which its end-vertices were reached by the searchs
By doing so, G is transformed inte a directed graph
G!'y whose edges are partitioned intoe a set of edgesy
forming a spanning tree, and a set ot fronds. The

directed graph G' is called a palm tTree.

In this stepy, the adjacency structure A is ordered,
using the informetion obtained in step 1. This
ordering is done using a radix sort in time O(|V])
{(H174}s The reason for this ordering is te be able to

perform step 3 efficlently.

Partition the gyraph G into a set of edge-disjoint
paths, by performing a depth—first search on the
adjacency structure, ordered in step 2. Each time
anr edge is traversed, it is added fo the current
pathe %hen the edge Is a frond, the current path ends

and a new path is started.

This procedure reguires O(|VI+IE]) time (HT74).
Because of the ordering of the adjacency structure,
these paths have special properties, which will allow
efficient testing of the planarity (Lemma 5 to K in

{HT74))s Let p = (Syees9f) be a path and let pg =
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(sgsessgfg) be the first path generated containing se.
Then p is a special path if f = fg and a normal path

otherwise (Ta71).

Embed the first path (a cycile) in the plane as a
polygons Try to embed the other paths, in the order
in which they were generated in step 3)y, one at a
time. Each new path has exactly two points in common
with the already embedded subgraphs Certain paths
have to be embedded in different faces or in the same
facey, with respect to other pathse. This relaticonship
between paths can be represented by a dependencyv
gZraphe Tar jan proves that it is sufficient to
construct only a subgraph of this dependency graphy
for which the number of edges is a linear function of

[Vv(G )],

Try to bicolor the dependency subgraph, using the
colors L (left) and B (rightde A path P = {Syujesst)
is said to be embedded on the left {(rigsht) if (s,u)
is the first edge clockwise (counterclockwise) from
(vys) in the list of edges incident to sy where (v,s)
is the edge of the spanning tree entering s. A frond

(wyf) descends op the left (right) if it is the first



edgze clockwise (counterclockwise) from {(x,f) in the
1ist of edgesy, incident to f, where (x,f) is the edge
of the spanning tree entering fo. ifr this is not

possible then G is non-planare

Tarjan?'s algorithm for testing the planarity of a
graph is linear in |V(G)|s 1% the graph is not 2-connected,
then it can be decomposed into 2-connected components in
o{]V]) time and the planarity of each of these 2-connected

components has to be tested separatelye.

Although Targan's algorithm tests the planarity of a
graph by enmbedding it in the planey it is not obvious from
{(HT74, Ta71l) how one could obtain a 1ist of the taces of
the plane graphs In (Br74y Br753), an efflcient algmorithm is
given 1or this problems. It is an exteusion ¢t Tarjan's

algorithm, reguiring ©(|V]) time and space.

Firsty, & path free is constructed, in which a wmath Py
ig a son of a path Pp If and only it Py debuts on Pre The

adjacency structure, representing the path tree, is then



recordered in order to allow an efficient search for the
Tfaces. By traversing the new adjacency siructure, using a
depth~first search, the paths are encounterd in the correct
order. Fach time a path is added to the embedding, oche of

the existing faces is split into two new facess
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44341 Plaparity Testing for Partially Oriented Graphse.
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This section is <concerned with an extension to
Tarjan's algorithm for testing the planarity of a partially
oriented graph G in linear time. ¥We can reduce the problem
to testing the planarity of partially oriented graphs with
oriented vertices of wvalency 3 only. This can be
accomplished by replacing every c¢riented vertex of valency

ny greater than 3y by a cycle with n new oriented vertices

of valency Jy as illustrated in Fige 44341

Yeo— *o'd

Fige 443e1 FEeplocing an oriented vertex of valency n by
oriented vertices of valency 3.




Let GV be the partially oriented graphy obtained by

this transformation. Then the following holds.

Iheorem: G' is planar if and only if G is planares

Proonit: a ) suppose G!' is planars Then G can be obtained from

G' by contracting the cycles that replaced 1ihe
oriented vertices of valency greater than 3. Then

is planars

R} If G is planary then ¢' is planar. If G is
planary thern there exists a cycle basis Z(1)yeasZ(m)
and a cycle Z2Z(0) in G, such that every eduge of G
belongs to exactly +two of these cycles (MacLane)l.
Thern, because otf the transformation defined, there
exists a cycle basis Z'(1)yeseeyZ?(nn) and a cycle
Z'(0) in G', such that every edge of G' belongs to

exactly twe of these cyclese.

For most circuit layout graphs, oriented vertices will
he o¢of valency 3. if not, it will be assumed that the
component wmodels have been transformed such that this

property holdse
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It can easily be verified that |E(G? ) < 31E(G)]| and

< 2.]1E(G)}e Therefore, if |E(G)] = k.{v(G)]

that {VI(G? )]

then [E(SYY] = k*'a V(G )],

The following algorithm is a modification of Tar janls
algorithme. It allows one to test the planarity of a
partially sriented graph G(V,3E) with oriented vertices of

valency 3 only, in time propoertional to (V] it |E] = kelV]e

1-3) Steps i-3 are essentially the same as in Tarjan's

algoritnm (section 4+42.4).

4) Examine all paths p = {(Syees3f)e If s is an oriented
vertex, ther determine on which side (Left or Rignt)
p has to be embedded in order to satisfly the
orientation imposed around s. If £ is oriented, then
determine on which side the frond has to descends #He
cen represent this as a function SIDE{w,v)} with
pessible values L{eft)y, R(ight) and U{ndefined).

STPDE(pyv) = U ii vertex v is not orientede.

First assume that p is a normal paths Then the
frond of p has to descend on the same side as the

embedding of the pathe. The following decision table
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SIDE( pyS)

SIDE(p,f) | L | ® | wu
1. It} n | 1
B i o J r | r
U P | r | u

where 13 embed p on the left.
r: embed p on the right.
ul p can be embedded on both sidess
n: the graph is nen planars

irdicates the actien to be taken for each possible

cases

If p = {(sS9s0e9f) is a special pathy, then its
frond has to descend on the same side as the frond of
Ppny lece the path on which s debuts, unless f=fg=1l.
However, if f#£1 then the wvalency of f must be at
least 4 and therefore f cannot be an oriented vertexs
If f=1 and corientedy, then we can reguire withcut 1oss
of generality that the frond of p descend on the same
side as the path's embedding (similar te normal
paths)s The only case leflt for special paths is when
s is an oriented vertexe Then the embedding of p is

determined by SIDE(pys)e
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Build a dependency graphs * This sStep is esentially
the same as in Tarjan's algorithm (section 4.2.4,

step 4).

Try to bicolor the dependency graph DG, using the
colors L{eft) and R{ight)., DG consists of one or more
disconnected components. The difference with Tarjan's
algorithm is that +there are a number of vertices in
V(DG) that have preassigned colors. FEvery vertex in
V(DG) represents & path in the original graphs The
bicoloring procedure consists of the following ma jor

Stepse.

mark all wvertices as unexploreds.

find a colored, but not explored vertex and mark it
as explored.s If no such vertex exists, then find an
unexplored vertex and assign it any color (eege L)e
If all vertices have been explored, then DG can be

colored with 2 colors and hence G is planares

use a depth—first search 1o explore the component of
DGy contairing the selected start~vertex: each time a
vertex 1is reached, check whether it is c¢olored or

nots 1f not, assign it the appropriate colors. If it
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was already colored, check the colors: if they are
compatible, continue; if not, the graph G is

non-planars

The procedure for enfoercing the embedding of paths
{step 4) requires O(]F]) time for general graphs and G(|V])
time if [E] = kelV]e Bicoloring the dependency graph
reguires time proportional to the number of edges in F(DG ).
If a dependency subgraph was constructed and if JE] = kae]V]
then [E(DG)|{ = O(]|V]|) and the time reguired for testing the

planarity of G is O(C|Vi).

4e3e2 Finding a Maximal Planar Circuit Layout Graph 1.

As already pointed out in saction del, the
computational complexity of finding a maximgm planar
sulrgraph of a non—planar graph is unknowne The same is true
tor oriented grophss Thereforey, we will be satisfied with a

maximal solution.

One possible algoritbhm is as followss Apply the
algsorithm of section 4.3.,1 up to step 5 (i.e. finding a

dependency graphle Then try to 2-color DG, wuntil an
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incompatible vertex v is reached. belete this vertexs
eleting a vertex v of DG corresponds to deleting a path p
in the original praphe In fTact, it is sufficlent to delete
a single edge of this paths However, the dependency graph
is no longer a valid representation of the resulting graphe.
Therefore, as sSoon as an edge of +the original graph has
been deletedy steps 1-53 of the planarity testing algorithm
have to be repeated in order to construct a new dependency
graphe This has to be repecated until the dependency graph

can be 2-celored and hence the resuliting graph is planar.

It should be noted that the planar subgraph obtained

in this way is not necessarily maximale

When circuijt layout graphs are considered, it is not
permitted to delete C-edgess. Only N-edges may be deleteds
Therefore, the paths,y, found in the pathfinding procedure
can be classified as C-paths (containing C-edages only) and

N—paths (containing at least one N—edge).

The following approach can be taken for 2-coloring the

dependency graph such that no C—edge will be deletede.



~ construct and bicolor the subgraph of DGy generated
by the vertices, corresponding to C-pathse. This is
always possible, since component models are planar

and connected te each other by N-edges onlye.

- try te add the vertices, corresponding to N=paths, to
the subgraphy as long as the 2-coloring can be

maintaineds.

- if an N-path cannot be addedy the delete an N-edge
belonging to the paths Then reconstruct all paths and

build a new dependency graphe.

The time required for constructing a maximal subgraph
of the dependency graph is O(]|E(DG)|) and the total time
reguired for finding a planar subgraph is O({V(G)|2) it

FE(G) =k {VIG) ]| W

In order to obtain an optimal solutiony =2 final step
is regquired whereby the unembedded edges are added to the

embedding where this is possibles

The algorithm, presented in  the next section allows

this tc be done in O{]|V(G)]|Z) time.
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The algorithm, presented in this section will always

produce a maximal solutione. Let G be a circuit layout

graphy with vertex set V(G) and edge set FE{(G)s Then F(G)

C U Ny where € is the set of all C-edges and N 1s the set

ocf all N—edgese

Rather than starting with the given circuit layout

graph ¢ as the solution and +then deleting edges one

=

time until the resulting subgraph is planar, as in

a

the

previous section, this algoerithm starts with @ planar

subgraph of G {(esu» the null graph) and attempts to add

edgesy one at a times The partially constructed graph will

Le referred to as H{V(H),E(i) ).

1) instead of starting with the null graph, we can make

use of the Tollowing propertys. LlLet G be a circult

layout graphe The graphy obtained by deleting

all

N—edpes from Gy consists nf a collection of mutually

disconnected subgraphss Fach of these subgraphs

represents a component model and is planar. Then the

graph, left after deleting all N-edges from G

n
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planars Therefore let 4 = (V,C) initiallye.

Some of the vertices in V(H) will be of valency O,
Since an edgey inclident to a vertex of valency 1 does
not influence planarity,; add edges of E{G) - E(H) to
H if at least one of their vertices has valency 0 in
Hes Assuming that the circuit has un nets and p
connected terminals, then there are exactly p N-edges
and n N-verticess After step 14 there will be exactly
n vertices in H with valency 0. This allows us to add
exactly n N-edges to Hy leaving p - n edges still to

be embedded.

At this stage, adding an edge to H might create a
non—planar graphe Therefore, the following steps have

to e carried out for every edge in E(G) — B{H).

Select an edge of E{G) ~ E(H) and add it to H.

Find the biconnected components of H.

For every non-trivial biconnected component, perform
the planarity testing algorithm, described in section

4e3slas
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7) 1f at least one of the Dbiconnected components is
nen—planary then delete the edge from H {and Gls This
edge cannot be added later, thereby assuring that the

solution is maximal (but not maximum)e.

#) ¥hile B(G) = E{(Hl) #@4 repeat steps 4-7.

[5s]

Apply Brehaut's mesh-finding aluorithm to the
resulting graph in order to obtain a list of faces of

the embedded graphe

An  example of applyinz this algorithm to a circuit
layout graph is given belows. Consider the simple circuit of

Fige 44322, implementing a full adder, using NAND gatese.

We will attempt to embed this circuit under two

different assumptionse.

1) A1l NAND gates are to be considered as individual
compounentss The graph model for this case is shown in

Fig. 49323

It is assumed in the model that the order of the
external connections is determined in advance and
that for every gatey a mirror—image equivalent is

available. In the resulting maximal planar subzraph,
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N .
2 N N
A3 12 C'
Fige 4432 Full adder inmplemented using NAND sates.
two net-edges were removed, as shown in Fige 44304
The graph model contained 26 vertices and 37
edges and the time reguired was 1.2 seconds on an IBW
360/75.
2) The wgates are to be grouped together into 3

comnponents, 2ach containing 3 gates. This grouping
was done arbitrarily. No wmirror—-image components are

allowed and the order of the external connections is
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Fige 4343 Graph model for the tull adder of Figs 4s3e2.

agaln speciflied in advances The graph model is shown

in Flg- 49345

It contains 74 vertices and 1030 edgess. The
resulting maximal planar subgraph is shown in Fige

40306
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Fige 4234 HNaximal planar subgraph o©of the model of Fig.
44343

Six net—edges had to be deleted. The execution
time reqguired to find the planar embedding was 6.5
secondss Note that the layout procedure performed
seome degree of zate assiponment. As an example,
consider the subcomponents Cil, C2 and C3. In the
original graph model, they appeared in the sequence
ci, C2, C3. In the embedded planar subgraph of Fige

44346 they appear in the seguence Cl, €3, C2.
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Fige 44346 Maximal planar subgraph of the model of Fig.
de3s5a
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5. Using the Technological Properties to Complete the
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Topolegical Layout,

In this chapter, some technigues will be discussed for
using the properties that depenrnd on the technological
aspects of the probleme. Most of thesae technigues are
extremely dependent both on the particular layout sroebhlem
being solved and on the industrial environment in which

they are usede.

Since it would bhe impossible to cover all passible
situations, that could occur in an industrial environment,
only some of the more common technological properties will
considered and technigues for using these in a topeleozical

layout procedure will be suggzested.

Some o f these properties were already taken inte
account in the models, developed in chapter J. For example,
by wusing appropriate models,y, it is freguently possible to
defer pin and gate assignment until a wmaximal planar
subgraph is embeddeds After this embedding, pin and gate
assignnents have to bhe done, according to the embedding
that was obtained. The same holds for the occurrence of

mirror—-image componentse. Azgain, this property can be



modelled by the circuit layout graph and, after embedding a
maximal planar subgraph, it has to be determined whether

the compopnent itself or its mirror—image has 1o be usedos

Sometimes it ig possible to route connections between
the terminals of a compeonent and over or under +the physical
areay cccupied by the componente This property was not
modelled by the circuit layout graphe However, it can be
used to embed connections, that were deleted when embedding

a maximal planar subgraph.

Finally, once the toepological layout is cempleted, the
geometrical characteristics of the circuit have to be taken
into account. An algorithm for constructing a preliminary
physical layout from the topological lLayout is described in

section 5.5,



541 Detecting Mirror—imase Components.

T T A o A e T — T —— i o Yo bl o Y . A S S . T Y o o o e T T —

Sometimes a mirror—image component is readily

availables This is freguently true for integrated circuit

layout. When this is the case, the component models,

derived in chapter 3y will contain an undirected cycle

can be embedded in two different wayse

In order te aveid embedding connzctions inside
component's boundary, it is necessary to ptace o
subgraph inside the cycle (cifre chapter 3)s Therefore,
first step is to delete this star from the embeddings

will result in the <cycle becominzg a faces From

that

the

star

the

This

the

orientation ¢f this face, it can he determined whoether the

original component or its mirror—-image is to be used.

542 Periforming Pin and Gate Assignmenta.

At this stage, the circuit layeut graph (or a maximal

planar subgraph thereof) has been embedderd in 1he nlane.

In

this embeddingy, componenis are represented by sometimes

complicated graph models, while some of the net-odges might

have been deleted.



In the further transformations of the circuit layout
graph, these complicated component models are no longer
needed. Therefore, it is desirable to replace these
component models by simple cyclese. The models, proposed in
chapter 3, take into account physical and logical
egquivalence properties of terminals. In the topolegical
embedding phasey these properties were used for obtaining a

maximal planar subgraphe

As an example -of this, consider the full adder circuit
of Fige 4e3¢2s Assume that three NAND gates were placed in
a wsinzgle physical components The graph model for this
circuit is shown in Fige 44345 and a maximal planar
subgraph is shown in Fige 4e3ebe In the original circuit
greph, the subcomponents of € appear in the order Cl, €2,
C3e In Figs 4.43+04 these subcomponents were embedded in the
erder Cl, T3y C2, thereby effectively performing gate

ssignmente.

After the topological embedding phase, the cemplicated
compenent models of TFigs 443e6 are no longer reguired and
they can be replaced by simple cycles, as shown in Fige

53261



Simplified graph model obtained ftrom the
planar circuit graph of Fige 40346

maximal
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543 Using ¥inite ¥Wiring Capacities.

The models described in chapter 3 de not allow wires
to be routed between pins cr under modules. Embedding of
the graph will lead +to 8 numkber of unrouted conna2ctionss. A
special characteristic of allowing wires ee.gs Detween 2
adjacent ping is that these places have a finite wiring
capacitys Eeze depending on  the technologys one is allowed
to route 0, 1y, 2 or 3 wires between 2 adjacent pins of a

dual—-in~line packape.

Fletcher (F172) proposed a solution whereby the edges
that can be crossed by connections are assisned weights and
whenever a Tpseude crossing! is introduced this weight is

decreased for the edge crosseds

In the method proposed here, finite capacities arsa
represented by vertices; i.2 if 1 wires are allowed between
2 adjacent pinsy, n new vertices will be placed on the sdge
conpnecting the 2 pinse It will be assumed here that final
pin and gate assignments have been performed and that the
graph has been embedded in the plane as far as possibles In
this case the component can simply be represented by a

cycle to nmnodel the seguence of its terminals.



"50 F-

As an example, consider a 14 pin DIP, with one wire

wires under the

allowed between 2 adjacent pins and 6

modules. The model for this is shown in Fige 5+3+41s
-~
Pd
” !
” |
” < |
6 channels
-~ - -
~

pin dual-in~line package with 1

Fige 5431 Moxdel for a 14
channals

channel between pins and 6
longitudinally.

In grder to show how routing can be performed by using

this modely, & simple example is given in Fig. 5.3.23

The circuit consists of twe ©&6-pin packages A and B,

allowing 1 wire between adjacent pins and 2 wires

that the following

underneath (longitudinally). Assume



Flg. 5+3.2

Example of routing connection B4 - Ab.
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connections were routed througzh the use of an embedding
algorithm: Al-B1, A2-B6, A3~35, A5~E3., The connection A6-24
is the next to be routeds The alporithm consists of the

following steps:
1) Place inside each face of the graph a vertexs

2) Connect each Tcenter?! vertex to all free' vertices
in the corresponding face (by 'free! vertices |is
meant the vertices that represent the finite wiring

capacities and that have not been used yet).

Jd) Connect the 'end! vertices (in this cases A6 and 04)

to the 'center?! vertices of the adjacent faces.

4) Consider the new graph so constracted {(consisting of
center, free and end vertices plus connecting edzges)
and apply a shortest path alsorithm (weights can be
assigned to the edges in order to optimize a

parameter such as wirelength).

5) The vertices In this path are alternating center
vertices and other. Remove the edges of the path and
connect every second vertex by a new edges This path

Fforms the connectione.
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6) The edges of the new path divide certain faces into

two new faces; delete the center vertex and incident

edeges for each old face and construct a new ¥'s

for the two new faceses

7) 2o to 3 to route the next connections

S5e4 Using Other Properties.

tar?!

Sometinmes it can be usetul to group o maximal number

of compoenents togethers This is for example the case in LSI
layout. This sgrouping can be attemﬁted after the
topological embedding phase by conwsidering the faces
representing component boundaries and determining whether
they are adjacent.

As an example of this, consider the circult of Figse

423e2e Assuming that gates are treated as individual

components, the graph woedel for this circuit and

its

maximal planar subgraph are shown in Fige 4383 and De3ed

respectivelys

By lookirz at the faces of the graph, it can

be

detected that cowmponents CJ3, A2, C1, HB3 and C2 all appear



cn the same face and in  that order. This allows us to join
them into a single macro component, as illustrated in Fig.

Sedsle

Fige Se4el Merging components 1, A2, Cl, B3 and C2 intn a
fingle macro componente

Fuarthermore, componentis Al and AJ, as well  as
components 31 and H2 can be Joined tozether, thereby
redacing the circuit to three macrocomponents, without

changing the embedding, as shown in Fige Haeda2e
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Figs 544+2 Merging components A1,A3 and Bl,82 into macro
components.

In section 345y it was shewn that a K(1,n) subgraph
was an adeguate model for an n-—terminal net iif and only if
no terminal of the net is a point of articuation of a
component model and all connections are made to the region
external to this models This does net held when one of the
terminals in a net belongs to a set of physically
egquivalent terminals of a components When a net, that is

incident to a set of physically equivalent terminals, is



not completely embedded, then one can attempt to copnnect
sone of the unconnected terminals of the net to the

unconnected terminals of the physically eguivalent set.

The models, derived in chapter 3, did not allow
conneciticns teo ke embedded inside a component!s boundarys.
When this is allowed technologically, this property may be

used to realize some of the unconnected nets.

545 Obtaining & Physical Embedding.

525s1s Introducticons

An impeortant step in a circuit layout procedure is to
obtain a physical embedding of the circuait graphas This
embedding sheuld take into account the gzeometrical
properties of the circuite Deriving a physical embeddlng is

subject to the following constraints:

a) since the Zeometry of the components is

predetermined, all vertices and edzesy representing a
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component, have to be embedded with these geometrical

consiraints in minds.

b) all edges of the graph have toc be embedded within a
danhattan geometryy isee. only vertical and horizontal

Tine segments are alloweds

c) a numkber of external connections has to be placed on
the periphery of the drawing in sprespecified

lLocations.

An attempt te solve the problem of embedding a planar
graph was made in (Ho71), although the constraints (a) and
{b), related to circuit sraphs, ware not taken into
accounts Therefore, this attempt was not succesful for
embedding circuit layout zraphss The system described in
{(Ho71) also reguires a considerabple amount of human
interaction on an interactlve graphics displays This is
guite feasible for emall circuits, but for large scale

circuits,y, interaction should be winimized where possible.



22522 Ap_Alpgcrithm for QObtainire a Prelimipgary Physical

Embedding of Circuit ILavout Graphss

The circuit graph censidered here has the follewing

properties:

- every component is modelled Dy & cycley representing

its physical boundarye

- the pins (terminals) 0f a component are represented

by vertices on this cycle.

- sOome conponents allow a finite number

of

interconnections to be routed between physically

adjacent terminalss This property is alse modelled by

vertices nn the cycle, with every vertex representing

a rounting cavacity of exactly one interconnections

After the topological layout phase, these vertices

are indistinguishable froem those representing

component!s terminalse.

the



The result of the tepological laycut phase is a list of oriented

faces of the graphe

The problem now is to transform this topological
embedding intc a physical one. In a physical embedding, the
geometrical properties of the circuit arve taken into
accounte The relative position of the terminals of a
component is rew a well-defined physical distances The same
is true {for the external connections and for the physical

gsize of the circuite.

The basic outline of the algorithm is as follows:

1) Fipd the inside Tace of the graphe. [ Start by labeling
all faces adjacent to the peripheral cycle with a 1.
Then, label with a 2 all faces not yet labeled that
are adjacent to those with a label 1. Continue to do
this until all faces are labeleds Select one of the

faces with the highest label as the inside face. |

2) Embed the peripherel cycle as a rectangle with the
external connections placed in the prescribed

locations.
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Break down the face into chains of one of the

follewing types:
a) already embedded chaing.
) component periphery chainse
c) net {(interconnection) chains.

4) Let the plane be divided into a number of sguares,
called Pslotstt, large encough to contain the largest
componente. Place each of the components, for which
there is a t¥ype b chain in the current facey, into a
slot and embed the cycley represanting this

componente.

5) Consider each of the net chains? if no part of the
net has been embedded so fary, find an interconnection
path that satisfies the prescribed orientation of the
faces If a part of the net bhas been embedded, Tind an
interconnection between the start-vertex of the chain
and all vertices and pseudo-vertices + of the net
embedded so fars Select the shortest of the paths so
ochtained.

+ {%¥) A pseudo-vertex is a point on the physical embedding
of an edgey where two orthogonal line sezments joine



&) 1f all faces have heen embeddedy stop; else, find the
face, adjacent to the faces already embedded, that is

the closest to the inside faces Go to 2.

While routing the net-chains, it is important that

they be embedded in a well-specified order, such that the

physical enbedding corresponds to the topological
embeddingze. The algorithm, used for routing these

net-chains, is based on a line-searching algorithm by
Hightower (#Hid9)s Its advantages are fast execution and
minimal storage requirements, whiile its disadvantage is
that it does not always find a paths The reason for the
routing algorithn to fail is that the routing is perfovrmed
on a firnite rescolution gride By routing one connectiion, one
might block the only available path for a connection to be
routed later, A  carefuyl implementation reduces this

Blecking to a minimume

Hightower's algorithm is well suited for this preoblem.
In a normal routing problem, the aliecrithm requires storing
and searching lists of already embedded wvertical and
horizental line sepgmentse These lists normally wzrow with
the number of interceornections routed, making the algori thm

less efticient while the routing procesds.s In this case,
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however, the drawing grows from the inside oute At any
given stage, there is a peripheral cycle of the drawing,
corresponding to the sum modulo 2 of all faces embedded at
that timee All connections already routed, that are en the
inside ¢f the peripheral cycle, need net be searched since
any new connection being routed can interact only with the
current peripheral cycles. This property improves  the speed

of the reouting algorithm, especially for large problems.

In 2 Manhattan geometry, no vertex can have a valency
greater than 4. In the topoliogical embedding phase, it is
ensured that all vertices on comporent boundaries have a
valency of at most 4s A vertex on a component boundary is
incident to exactly 2 edges modelling the boundary and to
at most 2 edges modeiling the nets. The vertices modelling
the nets, hawevernr, can have any number of incident edpgese
Fortunately, nets can be embedded as any sSpanning tree on
the component vertices it connectss The me thod, described
in step 5 eof the alporithm usually results in adeguate
results. By slightly modifying the routing algorithm, one
could try to find the shortest Manhattan path between a

£lven vertex and the already embedded part of the pnete.



however, the drawinz gsrows from the inside outs. At any
given stage, there is a peripheral cyclie of the drawing,
corresponding te the sum module 2 of all fuces embedded at
that times ALl connections already routedy that are on the
inside ¢f the peripheral cycle, need nect be searched since
any new connecticn being routed can interact only with the
current peripheral cycles This property improves  the speed

of the routing algorithm, especially for largze problemse.

In a Manhattanr geometry, no vertex can have a valency
greater than 4. In the topological embedding pbhasey it is
ensured that all vertices on componrent boundaries hLave a
valency of at most 4. A vertex on a component boundary is
incident to exactly 2 edges modelling the boundary and o
at most 2 edges modelling tne netse. The vertices modelling
the nets, however, can bave any number of incident edpges.
Fortunately, nets can be embedded as any sSpanning tree on
the component vertices it connectss The me thod, descrlbed
in step 5 of the algorithm usually results in  adeguate
results. By slightly modifying the routing algorithm, one
could try to find the shortest Manhattan path betwean a

given vertex and the already embedded part of the net.



As an example of applying this algorithm, consider the
maximal planar subgraph, shown in Tige. 5s2s1s The
preliminary physical layout, obtained from the topological

embedding is shown in Fige S5.5.1,

It can be seen easily that this preliminary layout
resultas in a very inefficient use ot the area availabie. A
siwmple technigue for reducing +the physical area of the
circuit consist of sgueezing together the preliminary
layout, similar to . .the way prposed in (AG70)s The result of

this operation is shown in Figs 552

B+ Summarys

In this chapter, we have susvested a nuinber of
algorithms for completing the topoleogical layout by using

some o0f the technology-—dependent properties.

Furthermore, a algorithm was developed, for derivipg a
preliminary physical layout from the topological alvoute.
When & second layer of interconnections is neaded, one
could apply a classical routing slgorithm (e.g. Hib68), to

connect the remaining nets in this second layer.

Ui
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Fige Hs5.1 Preliminary physical layout of the zraph of Fige
Se2.1.

AN R TR T 4 A a4 AT e wiois e b o e

T T e T S T LS TR R



—5e22~

=0 = coapoaa st E— e T B 4 S £ TR i,

Fige HDeHe?2 Condensed physical layoute.
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6« Conclusions and Suggesiions for Further Researchs

AR e s i . 207 . o S S . Al o . o o . . s e s

6s1 Conclusions.

T 7 —

The main contribution in +this dissertatiaon is teo
provide a better mathematical model for the formulation and
the solution of the circuit layout problems The concepts of
physical and legical egquivalence of “terminals and
subcomponents were introduced in order to describe the

mathemnatical properties of physical circuits.

Using these properties, greatly improved graph models
for the circuit layout problem were developed in chapter 3.
It is hoped that this mathematical formalation will lead to

a better understanding of the probleme.

A  number of working systems for the lLayout of
integrated circuits make use of topelogical layout methods
{esgs EMT3, BG74, BRT74, K173, K075, 5u74). Howevery these
systems are limited to 2 and 3-terminal devices and rely
heavily en Interactive graphics for obtaining a workable

solutions The actual problems, solved by these systems, are
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usually small-scale ©bipolar integrated circult layocuts,

with fewer tharn 100 componentse.

The models developed in this thesis allow
multiterminal devices with a variety of physical properties
to be used in a topological layout procedures Furthermore,
the algorithms proposed in chapters 4 and 5 reguire far

less human interactionp,

Because of these characteristics, the methods
developed in this thesis are especially suited for the

layout of large-scale integrated circults.

H6e2 Suggestions for Further Researche

£+2010 The problem of finding a minimum set of edzges to be
removed from a non—-planer graph to make the remaining
graph planar has no kKonown efficient solution. it
would be useful to determine whether this problem is
NP-complete or whether thls problem can be solved in

poelynomial times

62222 Assuming that the maximum planar subgraph problem

cannot be solved in polynomial time, it would be
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desirable 1o develop efficient polynomial-time
algorithms for this problem that give an approximate
splution and to provide a lower Dbound of how
optimal' this solution is, both in the general case

and in the case of circvuit layout graphse

62243« Find an algorithm to partition a circuit graph into 2
or more planar suﬁgraphs with eduge sets of almost
equal cardinalitys. Note +that the "pseudo-edges" that
represent the modules have to be repeated in each
subgraphe If possible, the separation should be done

at the vertices that represent the pinse.

62244 In chapter 4, it was pointed out that embedding a
circult layout graph is not the same as sSimply
partitioning the graph into a minismum number of
planar subgraphse. Furthermore, the embedding has to

satisfy a number of constraintse

¥e could define a circuit layout graph to be
k-planar if it can be embedded without crossings on k
layers but not on k-1 layers. The approach taken in
chapter 4, where a maximal planar sSubgraph is found

first and embedded on the first layery, =aight not
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necessarily lead to an embedding in a minimum number
of layerss. It would be useful it Iome
characterization of k—-planar circuit layout graphs

could be found.

Some interesting work or embedding graphs in
muitiple layers with certain boundary conditions {(not
related to the circuit iTayout problem) was reperted

by Bernhardt and Xainen { BKOO).

6425 1In chapter 3, it was mentioned that +there exists an
hierarchical relationship between the physical
properties of circuitse This relation induces a
lattice structure on the set of +terminalss. Further
research into this may lead to a better understanding

of the circuit layout problem.

Ge2e6 When designing large scale integrated circuits, the
numbernr of single components becomes very large
(0(103)). This would result both in excessive time
and space reguirementss. Usually, the circuit can be
functionally partitioned into *macro-cells? such as
NAND g@ates, flip flops, etces Some existing LSI

layout procedures, make use of & library of
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predesigned functional blockss When an automatic
layout procedure is avajilabley it might become
feasible +to redesign a cell topologically, in
function of an optimal layout. The graph model for
such a cell would contain as much freedom as possible
under technoelogical constraintss. The layout procedure
would then provide the order in which terminals have
t§ appear on a component's boundarys Using this
informatlon, a topoelogical layout of - the individual

cell can then be performed.

622+7 The problem of minimizing an IC chip's area is very
important, especlially for designs that are to be
produced in large volumes Assuming thaf the
tecpological layout has been done,y, one ceuld_perfurm a
physical layout of every cell in function of an
optimal use of the chip's areas This would probably
result in very different physical shapes for cells of
the same type.s The approach proposed here and in
62246 actually emulatesy, to some extenty, the steps a
human designer would go through when trying 1o design

an integrated circuilt with a minimal areaes
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