A WORKED EXAMPLE IN
UNSTRUCTURED SYSTEMATIC PROGRAMMING

by
M.H. van Emden
Research Report (S-76-27
Department of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

July, 1976

A WORKED EXAMPLE IN
UNSTRUCTURED SYSTEMATIC PROGRAMMING
by
M.H. van Emden
Abstract:

A FORTRAN program, which is both efficient and proved correct, for
fhe quicksort algorithm is obtained by means of Hoare's method of data
abstraction and a certain method due to Dijkstra. According to this
method, a proof with Floyd's assertions is constructed as much as
possible before the program is written. In this paper, Dijkstra's
method is realized by means of 'flowgraphs', a form of program which
can be interpreted as the verification conditions of its own
correctness proof and which can also be translated in a systematic

manner to FORTRAN code.

Key Words & Phrases

programming method, data abstraction, flowgraphs, program correctness,

assertions, verification conditions, quicksort

CR Categories
4.0, 5.24

*)

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

N2L 3Gl

1. Introduction

"Unstructured Systematic Programming" [2] described the method
of programming with flowgraphs and explained by means of a small example
how this method can be used to obtain in a systematic fashion a correct
FORTRAN program. Because the example was so smallsit did not show
A clearly that the method described is useful in practice. The present
paper, which is entirely devoted to the systematic development of an
efficient sorting algorithm, is intended as a companion of, and a
sequel to, "Unstructured Systematic Programming'.

In the systématic development of the sorting algorithm not only the
method of flowgraphs is useful, but also the method of 'data abstraction",
which can best be described by using the following quote from Hoare [4 J:

"In the development of programs by stepwise refinement,

the programmer is encouraged to postpone the decision on the

representation of his data until after he has designed his

algorithm, and has expressed it as an "abstract" program

operating on "abstract" data. He then chooses for the abstract

data some convenient and efficient répresentation in the store

of a computer; and finally programs the primitive operations

required by his abstract program in terms of this concrete

representation'.

Hoare's paper is devoted to an automatic method of accomplishing
the transition between an abstract and a concrete program and to a
proof of correctness of the concrete program. In the develeopment of
the sorting algorithm I do not apply Hoare's automatic method for
effecting the transition. ‘

A few remarks about notation. The brackets [] are used not only
in literature references but also to surround the listing of a
sequence., Braces{ } are used around the assertions in a verification
condition and alsoin the usual way for denoting a set. An expression
consisting of vertical bars | I around the name of a set or sequence

denotes the number of elements in that set or sequence.

2. Two abstract sorting algorithms

The quicksort algorithm [3] is usually regarded as a function
from an array to an array. However, the unconstrained accessibility,
which distinguishes arrays from sequences in general, is not required
for the quicksort algorithm: it may be programmed so as to access the
elements sequentially., This fact suggests an opportunity for decomposing
the task of programming quicksort by an application of the method of
data abstraction: the first subtask is to write an abstract version
of the algorithm to sort from a sequence to a sequence; the second
subtask is to represent the sequence in storage.

But why should the inputto an abstract sorting algorithm be a
sequence? There, surely, order is irrelevant: from an abstract
poiﬁt of view, sorting is a function from a set to a sequence.
According to the method of data abstraction, the representation of
a set is considered only in a later stage of program development. The
choice of representation of a set as a sequence is only one among
several possibilities. Again, the representation of a sequence as an
array is one possibility among several. ‘

By regarding sorting as a function from a set to a sequence we
have succeeded in discarding details of representation which are
irrelevant in an abstract specification of sorting. But we have lost
the advantage that input and output are of the same type. If the
sorting algorithm is to have the simple form of an iteration of one
operation then it is necessary to have the input and output for that
operation of the same type. This same type must be such that both
sets and seduences are special cases of it.

‘Let us suppose that both the input and the output for a sorting
algorithm are a set of sequences. The input would be a set of n
one-element sequences because nothing is ordered yet. The output
would be” set containing one sequence which has n elements in order.

For example:

{[c], [al, [bJ, [d1} > {[a,b,c,dl}

The sorting algorithm proceeds here from a set of many sequences to a

set of one sequence; such an algorithm I call a pergesort

According to the other possibility both the input and the output
are a sequence of sets, The input would be a one-element sequence of
the set containing all objects to be sorted. The output would be a

sequence of one-element sets in order. For example:

> Hal}, {b}, {c}, {d}]

{c,a,b,d}]

Because the sorting algorithm proceéds here from a sequence of one set
to a sequence of many sets, I call it a splitsort .

We are now in a position to begin a first approximation to a
splitsort algorithm. According to the method of flowgraphs there is
at each stage during the development of an algorithm a partially
correct flowgraph. Each successive flowgraph is obtained from the
previous one by accretion of nodes or of arcs or by a change of some
assertion. Each command is a binary relation over the set of states,
which will be specified for the initial version to consist of the
values of one variable LS. The values of LS are sequences of sets.
The following flowgraph, which expresses only the input - output -

specification, is the first approximation.

o S

(Ls = [s_1)
H=(ULS=SO&LSis
ordered & LS contains
no set of more than

one element

o H o)

Flowgraph 2.1

The assertion "LS is ordered'" means that if a set 31 precedes

a set S2 in LS then Slssz, which means that x ¢ S1 and y e S

imply that x < y. This relation among sets generalizes the given

2

order among elements in the sense that it is analogous for the case

of unit sets.

For further development of Flowgraph 2.1 I assume that no useful
command X is available which satisfies {S} X {H}. Then an assertion
L and commands Xl and X2 have to be found such that { S} X {L} and

{1} Xz-{H}. It is straightforward to find Xl and X, if L is such

that both S and H are special cases of it, such as, for example,
L = (ulS = SO & LS is ordered)

It will make things much easier later on if the possibility of an empty
set in LS is ruled out once and for all, as in the next approximation

(see Flowgraph 2.2).

(Ls = [SOJ & 8, nonempty)
(uls = So & LS is ordered

w
<«

& LS contains no empty
set & LS is disjoint
)

= (L & LS contains no set of

more element)

no set in LS
{8} Ls :=1Ls{L}

{L} no set in LS has more than

has more than one

element
one element { H}

Flowgraph 2.2

In Flowgraph 2.2 we only have a terminated computation if

ISOI = 1, because there is yet fio command for changing LS. Suppose

now that there is available a command, split(P), which replaces in

LS a set P with more than one element by a partltlon of P into three
sets: X, a unit set Y, and Z (the replacement to be in that order),
such that X<Y<Z. However, when X or Z is empty, then P is replaced

by Y,Z (in that order) or by X,Y (in that order). Because the command
split(P) preserves the truth of the assertion L, we obtain Flowgraph 2.3

as the next version of splitsort.

Il

(LS = [SOJ& So ﬁonempty)

L= (uLS = So & LS is ordered
& LS contains no empty set
& LS is disjoint)

H= (L & LS contains no set of

more than one element)

no set in LS
has more than
one element

(P e LS & |P| > 1);
split (P)

H
{s} Ls :=1s{L}
{1} (¢ e Ls & |P| > 1);split(P) {L}

{L} no set in LS has more than one element‘{H}

Flowgraph 2.3

The ﬁalidity of tﬂé;ﬁerifiégéiohﬂgéﬁaifiohéwiﬁwflongaphA2.3
implies partial correctness.\ The absence of blocked computations
follows from the complementarity of the guards "P ¢ LS & |P|> 1"
and "no set in LS has more than one element" and from the (hereby
assumed) termination of split(P), under the given guard. The absence
of infinite computations follows from the fact that every infinite
path from S has infinitely many occurrences of split(P) which
decreases ISOI—|LS| by at least one. This quantity is dinteger,
bounded from below, and is increased nowhere.

Now an abstract splitsort algorithm has been completed. It may
be anticipated that a concrete algorithm based on it will ﬁot be
efficient, because a splittable set will have to be selected from among
possibly many sets in LS. Yet the basic idea in Flowgraph 2.3 can be
elaborated, still at the abstract level, so as to avoid search for a

splittable set.

3. Improvement of the abstract algorithm

The most obvious defect of flowgraph 2.3 is that LS has to
be searched for a splittable set. The defect can be remedied by
introducing a set, the Waiting Set, of all splittable sets in LS.
The operation split would then take its argument from the Waiting
Set and would return te it any result, which is itself splittable.
But split is immediately repeated, so that we find ourselves delving
into the Waiting Set to get an element just after having put into it
the results of split.

This inefficiency can be avoided by introducing another set,
say RS (the Ready Set), of at most one element, to hold the next
set to be split. Then, if at least one of the results of split
is itself splittable, such a one goes into RS to be ready for the
next activation of split. 1If both results are splittable, then the
other goes into the Waiting Set to be split at some later time.
It may happen that no result is splittable, but then the Waiting
Set may be nonempty and RS can be filled from it before the next
activation of split. Finally, if the Waiting Set is also empty, then
no splittable set is left in LS, that is, sorting is completed.

The advantage of having the Waiting Set is that it does not
need to be searched, because each of its elements has to be split
sooner or later. Byt with the right choice of an element to be
split ome can achieve a great saving in the size of the Waiting Set:
if at each time the smallest element is transferred to RS for splitting,
then we can expect large sets in the Waiting Set, and hence a small
number of them.

Can efficiency of retrieval (just take for splitting any element
of tbe Waiting Set) be combined with efficiency in the sense that
the Waiting Set remain small? The combination is possible because
if the smallest set is selected for transfer to RS, the next set
(if any) to be stored, being a result of splitting, is smaller
still. This shows that we get the best of both worlds by making
the Waiting Set into a stack, because then automatically smaller
sets will be above larger ones. In fact, the verification conditions

will only prove that the sets

Wy (the bottom),..., v (the top)
of the stack satisfy (from now on the stack will refer to the Waiting Set)
|w.| < 2_1+l IS | for i =1,...,k
i o
and that the set r in a nonempty RS satisfies
el =27 s,
o)

Because |w, | 2 2 we find that k < logZISO], which bounds the height

el
of the stack for a given size |Solof the set to be sorted. The use
of the stack and of RS is summarized in the assertion W shown with
flowgraph 3.1,

In flowgraph 3.1 the state has as components the variables
LS, WS, RS, X, Y, and Z. The differences between flowgraphs 3.1 and
2.3 arise from the use of the stack and of RS: the results X and
Z of splitting have to be compared in size and placed on the stack
or in RS according to the result of that comparison and, of course,
only if the set has more than one element. .

I assume that the validity of the verificatdion conditions in
flowgraph 3.1 requires no further explanation, except possibly

those that contain commands changing the stack. Take for example

{q} |z] = |X|; push(z); RS :={X}{q}

Both Q4 and Ql imply W, which must therefore remain invariant under
the above commands. Let us verify this. X and Z are the results

of splitting r, the contents ovaS before splitting. Initially

W holds: |r]| < 2_k ISO]; hence,]ZI < 2--k |s | and for X, being the
smaller result of splitting, we have |X| < 2 -1 ISOI. When now Z
is. pushed onto the stack, k, the size of the stack, is increased

by one, and we have (IZI =) IWkI < 2_k+1

,ISO!, as required by assertion
W. When X is made equal to r, the set in a nonempty RS, we have
|r] = 27k ISO], as required by assertion W.

The absence of infinite and of blocked computations is proved

in essentially the same way as for flowgraph 2.3.

{ s} stack := empty; RS :={ 8, }

{Qldef (L & W
& (stack u RS) contains all nonunits of LS
)

}

{Q} split{ degf L& W
& (stack u{X,Z}) contains all nonunits of LS

)

}
{o, [x] > 1{Q4 def 2 & (]x] > 1}
fo,} |x] < l{Q3 def Q, & (x| < 1)}
{QB} IZI < l-[Q6 de (L & W& (stack contains all nonunits of LS))}
{3} 2| > 15 R :={z} {q}
o} lz] <Ix] {0, % o, sclz] <]y
{q} lz]| = Ix!; push (2); RS = {x}{q}
{QS} |Z| > 1; push (X); RS :={2} {Ql}
{Q5}‘IZ| <13 RS :={x}{Q}

'{Q6} stack is empty { H}
'[Q6} stack is nonempty; RS := { the result of popping the stack} {Ql}

where

Ls =[s 1&1 <|s |)

L= (uls = S0 & the sets of LS are mutually disjoint
& LS is ordered & LS contains no empty set
)
W= (| <27 s | for i=1,...,k
& |r| < 27k !S |, where k = [stack} and r is the set in RS
)
H= (L & (LS contains no set of more than one element))

Flowgraph 3.1

10

4. The choice of storage representation

The abstract splitsort algorithm of flowgraph 3.1 can now be
turned into a concrete algorithm by determining storage representations
for sets, sequences, and for the stack. The command split!, which is
not elaborated in flowgraph 3.1, will be developed from the start
in concrete terms.

A set is stored as a sequence of contiguous elements of an array
A (a "segment" of A). A sequence of sets is stored as a sequence of
segments contiguous in A. A set

{ A(min) ,A(min+l),...,A(max)}
of contiguous array elements can be represented by a pair (min,max) of
indexes,.of the leftmost and of the rightmost element. The stack
of sets is stored as two arrays, LEFT and RIGHT and an index PRT:

the i-th set (i = 1,...,PTR) of the stack is the set
{ A(LEFT (1)) ,A(LEFT(i)+1),...,A(RIGHT(i))}

The set in a nonempty RS is represented by the pair (M,N) of indexes.
The results X,Y, and Z of split can be stored in the segment
AM),...,A(N) in such a way that they are represented as (M,J-1),(J,J),
and (J+1,N), respectively, for some J such that M <'J < N,

Given the above decisions about storage representation, the
translation of the commands in flowgraph 3.1 to FORTRAN should hardly

need any comment. For example, the fact that the set X is stored as
AQD),...,A(J-1)

implies that the guard IXI < 1 in flowgraph 3.1 translates to J-M < 1,
For example, push(Z) translates to the FORTRAN statements

PTR = PTR + 1
LEFT(PTR) = J + 1
RIGHT(PTR) = N

For example, RS :={ the result of popping the stack} translates to

It

M
N
PIR = PTR - 1

LEFT (PTR)
RIGHT (PTR)

1

11

For the sake of brevity and readability I have not yet followed
FORTRAN syntax for the commands in the verification conditions of
Flowgraph 4.1. The guards and assignments by themselves follow the
style of Algol, embellished with parallel assignments. The semantics
of the commands which are compositions of guards or assignments is
given by relational composifion, as described in the semantics of
flowgraphs [2]-

Now, what about translating the verification conditions? For a
correctness proof of Flowgraph 4.1 we have a choice between two
methods. According to one possibility, we translate each abstract
assertion into its equivalent in terms of the storage representation,
in such a way that, if the verification condition holds true before
translation (of both commands and assertions), then it holds true
afterwards., The difficulty with this method is that the representation
has to be specified much more precisely than has been done here and
that even then it may not be easy or possible to prove that the .
truth of a verification condition always survives the tramslation
process,

Suppose we would not be successful in overcoming this difficulty.
We still have a program (in the form of Flowgraph 4.1) but we do not
have assertions to go into the curly brackets to make the arcs into
valid verification conditions. We would hsve the notoriously difficult
problem of finding assertions to prove an existing program correct,
if we did not, &s we do here, have very clear hints as to what the
assertions should be. According to the second method, which I
adopt here, only the commands are translated, as shown above, and
the abstract assertions are only used as hints for the required
matchipg concrete assertions. Then the verification conditions, with
newly found concrete assertions, are tried for validity.

The following hints are sufficient., The facts that uLS = So
and that the sets of LS are mutually disjoint mean that the array A
is a permutation of Ao, the value of A in the initial state. This

concrete assertion will be called P'.

i2

We also need the concrete version of the assertion that a certain
set B contains exactly the nonunit sets of LS. A segment in LS of
adjacent unit sets corresponds to a segment in A that is already
sorted, that is, each of its elements has already found its definitive
place in the sorted permutation. A nonunit set in LS corresponds to
a segment in A that still has to be sorted, but is such that the place
of each of its elements in the sorted permutation is also within the
segment., Hence, the segment only needs to be sorted locally.

Thus, the nonunit setsof LS correspond to the set V of segments
of A that still have to be gorted: TBS(V) asserts that the elements
of V are those that still have to be sorted. With T being a

permutation that rearranges A into sorted order, we can define

TBS(V) = (index i not in any segment of V -
m{i) = 1
& (index i ¢ segment s & s ¢ V > w(i) € s)

)

For example, instead of the abstract assertion that the union of the
stack and RS is the set of nonunit sets in LS, we will use the

concrete assertion
TBS({(LEFT (L), RIGHT(1)),...,(LEFT(PTR),RIGHT (PTR)), (M,N)})

It may be verified that the concrete assertions satisfy the
verification conditions in Flowgraph 4.1.

The assertion $' requires some explanation. 1In the abstract
algorithm there was no bound on the stack size. But the arrays LEFT
and RIGHT have to have a dimension, say d. In the previous section
we found that k < log2 |So|, where k is the size of the stack at a
particular moment. If we assume log2 |Sol < d, then we can be sure
that k £ d, that is, that we can never have stack overflow. A

generous bound for the size of So is obtained when we take d = 50.

13

{8'} PTR,M,N := 0,1,N_ {Qi}
{Ql’} split {Q}}

{7 -m>1 {q}
{Qé} J-M<1 {Qé}
{of n-ug=<1 fqg}
{Qé} N~-J>1;3M:=J+1 {Qi}
{}N-J3xJ3-u {qg!
{Qi} N-J=J-M; PTR := PTR + 1
; LEFT(PTR),RIGHT(PTR) := J + 1,N
s Ni=J -1 {Qi}
{Q} N =-J>1; PIR := PTR + 1
; LEFT (PTR) ,RIGHT (PTR) := M,J - 1
1 M :i=J+1 . {Qi}
{Qg} N-J=13N:=J-1 {0}
{Qé} PR < 0 {H"}
{Qé} PTR > 0; M,N := LEFT(PTR),RIGHT (PTR)
s PTR := PTR - 1 {Qi}
§'= (M <N <M+ 250)
Q = (' &
TBS({ (LEFT (1),RIGHT(1)),..., (LEFT (PTR) ,RIGHT (PTR)), (M,N)}))
Q, = (P' &

TBS({ (LEFT (1) ,RIGHT(L)),..., (LEFT (PTR) ,RIGHT (PTR), (M,J-1), (J+1,N)}))
Q§ = (Qé & (J-M < 1))

Q) = (@) & (I-Mw> 1))
QL = (@) & (¥=J < J-M))
Q = (' &

TBS({ (LEFT(1),RIGHT(1)), ..., (LEFT (PTR) ,RIGHT (PTR))}))

Flowgraph 4.1

N

N-J2T-M;
PTR:= PTR+1;

14

LEFT(PTR):= T+ 5 (),

RIGHT(PTR):= N
N =71

N-J>1;"
PTR:= PTR+1;
LEFT (PTR)i=M;

EV(}H71PTEJ:=JL[;

M:= LEFT(PTR);
N: =RIGHT(PIR) ;
PTR :=PTR-1

Pictorial representation of the

verification conditions in flowgraph 4.1

15

For a proof of total correctness we can find a counter by
analogy with the counter ISOI - ILSI used in flowgraph 3.1. This
counter expressed how much of LS still has to be sorted. Analogously,
we find that the absence of infinite computations in the flowgraph 4.1

may be proved by observing that

. PTR
N-M+1+ ¥ (RIGHT(i) =~ LEFT(i) + 1)
i=1
ig always integer, is bounded from below, is increased nowhere and

decreases along each of the paths from Qi.to Qi; and that any infinite
path from S' must have infinitely many occurrences of at least one
of these. For a proof of the absence of blocked computations the

termination of the command split will have to be investigated.

16

5. The algorithm for splitting

The only command in flowgraph 4.1 which is not yet immediately

translatable to FORTRAN is the one in
T 1]
{Ql} split {Qz}

The translation must therefore be regarded as a programming problem
in its own right with Qi»as input specification and Qé as output
specification. 1In the same way as before, a set of verificatiom
conditions will be obtained, which can be regarded as a flowgraph for
the splitting algorithm. These verification conditions replace in
flowgraph 4.1 the one shown above.

'Split' only affects the segment (M,N) so that instead of Qi and

Qé as defined before, we can take

Q = P'& M <N)
Qé =P' &§ M < i <J dimplies A(i) < A(J)
& J <1 £ N dmplies A(J) < A(d)

For the latter assertion, and others in this section, the following

shorthand will be used:
Qé =P' &§ AM..J-1) € A(J) € A(J+1..N)

It is advantageous to apply split only if M+2 < N and to take
a shortcut to assertion Qé (where (M,N) no longer needs to be sorted)
by a complete sort of (M,N) when M+2 2 N. Hence we will use
{Q[} 40D < A(W) {R] def Q] & AGD < A}
{0/} aen > A(W); swap (A,M,N) { R}
1 1]
{Rl} MHL > N_{Q6}

where swap(A,M,N) interchanges A(M) and A(N). 1In case M+l < N, where
we have A(M) and A(N) already in the right order, it takes only two
additional conditional swaps to order AM),A((M+N)/2), and A(N):

17

[RJ} MH <N; MN := (#N)/2 {R} def R! & (W1 <N)
&(MN = (MN)/2)}
(RJ} AQD < ACI) {R} def R) &(AQD < ACMN)))

{Ré} AM) > A(MN); swap (A,M,MN) {RZ'L}

dgf

{Ré} A(MN) < A(N) {RZL R} & (AQM) < AN}

‘[R;} A(MN) > A(N); swap (A,MN,N)'{RA}
{R)} k2 2 N{Q)}

Only in the now remaining case, where M+2 <N, will 'split' be
applied. A(M),A(MN), and A(N) are already in sorted order. We can
choose A(MN) to be the element that will be in A(J) when split is
finished. If we assume the initial contents of A(M),...,A(N) to be
a random permutation, then A(MN) is the median of a random sample of
size 3 out of AM),...,A(N). Such a choice of A(J) has been shown [1]
to increase the efficiency of quicksort by about 147 (averaged over
equally probable permutations, asymptotically for large arrays)
compared to the alternative where A(J) is a uniformly distributed
random choice.

For the assertions used with split we are only concerned with

AM),...,A(N). Hence we take for the start assertion

R} = (P! & M2 <N & A(M) < AMN) < A(N))

and for the halt assertion

Q) = P' & A(M..J-1) < A(J) < A(J+L..N)
&M<J <N

At least one intermediate assertion, say R!, is required. Because
s YSs q

])
1 and C2 such that'[Rﬁ} Cl-[RS} and

{Ré} C, {Qé}, we look for an Ré such that both Ri and Qé are special
é that implies

we hope to find commands C

cases of it. I choose an R
P' & AM..I-1) < A(MN) < A(J+1..N)

It is convenient to move the content of A(MN) to a place where it is

guaranteed to stay, so that we can find it later on. Thus I arrive at

AMN); AMN) := A(M+1); A(M+L) := AMN
M+2, N-1 {Rg}

{Rl;} M+2 < N; AMN :
s I,J3 :

18

with

R def pr g A(M..I-1) < AMN <A(J+1..N)
EMFL <I < N&M<J <N & M2 <N

& AMN = A(M+L)

One of the extra assumptions necessary to conclude Qé from Ré is that

I >J. The fact that in Ré possibly ("typically") I <J suggests J-I

as counter within 'split'. A way to decrease the counter is to increase

I or to decrease J; hence:

{Rg} A(I) <AMN; I := 1+1{R5'}

I

{Ré} A(J) > AMN; J : Jfl{RS'}

The wvalidity of these verification conditions illustrates the well-
known technique of the "sentinel". If A(I) < AMN, then we must have
A(I) <A(N) and, hence, I < N; therefore, I < N is still true after
I := I+l. Here A(N) is the sentinel that prevents I from leaving the
sequence to be split: an explicit test I <N is superfluous. This
fact is exploited by Knuth [5] in his "fast inner loop" for quicksort,
and also by Singleton in his algorithm [7] which not only incorporates
the fast inner loop but also the use of the median of é sample of 3
as separating element in split. '

We must now take care of the situation

R def R! & A(I) > AMN > A(3)

If we also know that I < J, then Ré can be made true again after

decreasing the counter:
{RS’} A(I) = AMN = A(J) {Ré}
(R} I <J; swap (A,I,J); I,J := I+l, J-1 {RS'}

&I =T

If, on the other hand, I > J, then we are almost done, because R6

implies
AM..J-1) < AMN < A(J+1..N) & AMN = A(J) & AMN = A(M+L)
Hence we can finish splitting with

{Ré} I >J; swap (A,J,M+l)‘[Qé}

19

The counter J-I is bounded below, always integer, is never
increased, and is decreased along the prickly ares in flowgraph 5.1.
Hence there can be no infinite computations. The absence of blocked
computations depends on the fact, which can be also observed in
flowgraph 5.1, that for each node except Qé and Qé each state is
in at least one of the guards beginning a command on an outgoing
arc and that the remaining commands terminate for all inputs which

they encounter in computations of the flowgraph.

20

(o)} a0 < am) (7] “F o & 0D < A

{Qi} AM) > A(N); swap (A;M,N) {Ri}

{R]} M1 > N{Qé}

{Rl'} M+l < N; MN := (M+N)/2 {Ré def R]'_ & (M1 < N)
& (MN = (M+N)/2)}
{Ré} AM) < A(MN) {Ré def Ré & (AM) < A(MN)) }

{Rz'} AM) > A(MN); swap (A,M,MN) {RZ:}

[R}} A0M) < AQV) { R def Ry & (AQMN) < A(N))
{Ré} AMN) > A(N); swap (A,MN,N) {Rl:}

{Rz:} M2 > N{Qé}

{R;’} M+2 < Nj AMN::= A(MN); A(MN) := A(M41); A(M¥L) := AMN
;I,J = M+2, N-1 {RS'}

{R3} A(D) <AMN; T := T+l {R]}
{R;} AQD) > AMN; J := J-1 {R}}
def

1
Rs

& (A(I) 2 AMN = A(3))}

{Rg} A(I) > AMN = A(J) {Ré

{Ré} I <J; swap (A,I,3); I,J := I+l, J-1{R}}

{Ré} I2J; swap (A,M+l,J) {Qé}

where

Qi = (P' &M <N)

R = (P' & A(M..I-1) <AMN < A(J+l..N)

° & Ml <IT < N&M<J <N&M2 <N
& AMN = A(M+1)
)
Q) = (P' & AQM..J-1) < AQJ) < A(JHL..N)
&§M<J<N
)

Flowgraph 5.1

21

. Q;
@ : MEt <N3MN 2 =(M+nv) /2

o ﬁzf

) MM(AJMJN) :
@ _ 5 ' : R
- . . 3

M+2 <N,
AMN: = A-@?N)j
AMN) = A(Mer) ;
A(M+1): = AMN
L,J:=M+2, M~/

N m

AT)2 AMN 3 A(T)

% Re

T<J;swap(A,r1,7);
I)]:= I'HJ -7—/

I>7;
W(A,MH,‘/)

QZ

Pictorial representation of the

verification conditions in flowgraph 5.1

22

6. The final result
The final result may now be obtained by the following steps:

a) Flowgraph 5.1 replaces the line
{Qi} split {Qé}
in flowgraph 4.1.
b) The individual commands of the resulting flowgraph
are translated to FORTRAN,
¢) The result is translated to FORTRAN according to the
description in [2],
d) The most obvious optimizations are carried out in the
result, with the program fragment below as final result.
The resulting algoriﬁhm is much like Singleton's in [7], which
is based on Scowen's modification [6] of Hoare's original '"quicksort' [3].
Singleton also used the median of a sample of three as bounding element

in split.

10 PTR=0
M=1
N=NO
C ASSERTION Q1
20 IF (A(M).LE.A(N)) GOTO 30

SWAP = A(M)
AM) = A(N)
A(N) = SWAP

C ASSERTION Rl
30 IF (M+1.GE.N) GOTO 130
MN=(M+N)/2
IF (A(M).LE.A(MN)) GOTO 40
SWAP=A (M) '
A (M)=A (MN)
A (MN)=SWAP
GOTO 50
C ASSERTION R3

40

IF (A(MN).LE.A(N)) GOTO 50
SWAP=A (MN)
A(MN)=A(N)
A(N)=SWAP

C ASSERTION R4

50

IF (M+2.GE.N) GOTO 130
AMN=A (MN)

A(MN)=A (M+1)

A (M+1) =AMN

I=M+2

J=N-1

C ASSERTION R5

60

70

80

90

IF (A(I).GE.AMN) GOTO 70
I=T+1

GOTO 60

IF (A(J).LE.AMN) GOTO 80
J=J-1

GOTO 60

IF (I.GE.J) GOTO 90
SWAP=A (I)

A(I)=A(J)

A(J)=SWAP

I=T+1

J=J-1

GOTO 60

AM+L)=A(TJ)

A(J)=AMN

C ASSERTION Q2

IF (J-M.GT.l) GOTO 100
IF (N-J.LE.1) GOTO 130
M=J+1

GOTO 20

23

C ASSERTION Q4
100 IF (N-J.LT.J-M) GOTO 110
PTR=PRT+1
LEFT (PTR)=J+1
RIGHT (PTR)=N
N=J-1
GOTO 20
C ASSERTION Q5
110 IF (N-J.LE.1) GOTO 120
PTR=PTR+1
LEFT (PTR)=M
RIGHT (PTR)=J-1
M=J+1
GOTO 20
120 N=J-1
GOTO 20
C ASSERTION Q6
130 IF (PTR.LT.1) RETURN
M=LEFT (PTR)
N=RIGHT (PTR)
PTR=PTR-1
GOTO 20
END

NOTE: An assertion mentioned in a comment is true just before

executing the line following the comment.

24

7.

Acknowledgment

25

The research reported here was supported by research grants from

the University of Waterloo and from the National Research Council,

8.

References to the literature

1.

2.'

M.H. van Emden:
M.H. van Emden:
C.A.R. Hoare:
C.A.R. Hoare:
D.E. Knuth:

R.S. Scowen:

R.C. Singleton:

Increasing the efficiency of quicksort.
Comm. ACM 13 (1970) 563-567

‘Unstructured Systematic Programming.

Research Report CS-76-09, Dept. of Computer Science
University of Waterloo

Algorithm 64: quicksort. Comm. ACM 4 (1961) 321

Proof of correctness of data representations.
Acta Informatica 1 (1972) 271-281

Structured Programming with goto statements.
Computing Surveys 6 (1974) 261-302

Algorithm 271: Quickersort. Comm. ACM 8 (1965) 669-670

Algorithm 347: SORT
Comm. ACM 12 (1969) 185-186

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

