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Abstract

The language and sequence equivalence problem for DOL-systems
1s shown to be decidable. In an algebraic formulation the sequence
equivalence problem for DOL~systems can be stated as follows: Given
homomorphisms h] and h2 on a free monoid Z* and a word o from Z*, is

h?(c) = hg(o) for all n z 07



0. Introduction

The DOL sequence equivalence problem can be stated algebraically
as follows. Given two homomorphisms Ay, hy, on a free monoid Z* and a word
g in I*, is h?(c) = hg(c) for all n 2 0?7 This paper shows that this
problem is decidable, The problem originated in Lindenmayer systems which
are mathematical models of cellular development. In that context it can
be restated as the problem of the developmental equivalence of two genetic
encodings in filamental organisms developing deterministically without
interaction. The Lindenmayer systems without interaction (OL-systems)
were introduced in (Lindenmayer, 1971) and the equivalence problem for
them was posed shortly afterwards in (Problem Book, 1973). Its undecidability
for nondeterministic OL-systems has been shown, e.g. in (Salomaa, 1973).
The same question for deterministic OL-systems (DOL-systems) was conjectured
to be decidable but remained open. Some partial results were obtained in
(Paz and Salomaa, 1973; Johansen and Méi]ing, 1974; Ehrenfeucht and
Rozenberg, 1974; Nielsen, 1974; Culik, 1975; Valiant, 1975; and Karhumiki,
-1976). Our full solution is based on the results and methods shown in
(Culik, 1975). A part of these results, namely, the decidability of the
equivalence problem for smooth DOL-systems, appeared independently and using
different terminology in (Valiant, 1975).

Now, we explain intuitively the basic ideas of our approach. The
technical terms which are not fully explained in the introduction are

enclosed in quotation marks on first use.

We start by showing that, without loss of generality, the testing

for equivalence may be restricted to "normal" systems. The essence of



this paper is to show that every pair of equivalent normal systems has
"bounded balance". It has been shown in (Culik, 1975) that the equivalence
problem is decidable for each family of DOL-systems in which the equivalence
implies bounded balance.

Neglecting many technical details we will now informally describe
the principal ideas of the proof that for normal systems the equivalence
implies bounded balance. In {(Culik, 1975) it has also been shown that
"simple" systems have bounded balance. A normal system is simple iff it
has no "subsystem" in the sense of general algebra. If a system has a
subsystem, then the underlying set of the subsystem is called a "subalphabet".

For two equivalent systems which are not simple we find a common
subalphabet and show that either all substrings of the Tanguage generated
by the systems which are entirely in this subalphabet are "short" (such
a subalphabet is calied "1imited") of the two systems "induced" by this
subalphabet are equivalent. A second pair of normal systems is obtained
by “removing" the subsystem (i.e. by omitting the symbols from the common
subaTphabet). As before, these "remainder"-systems are equivalent because
the original systems are equivalent. Since both the subsystem and the
remainder system are systems over a smaller alphabet we can use the bounded-
ness as an induction hypothesis. The base of the induction deals
(essentially) with systems over one letter so the claim is easy to verify.
This allows us to assume that the remainder-pair and (in the case of a
subalphabet which is not limited) also the induced-pair have bounded
balance. As the case of Timited subalphabets causes no problem, this allows

us to construct a bound on the balance for the original pair.



Some of the more important technical details which were omitted
above are as follows. In every step of the induction we have to consider
the non-propagating systems and another singular case separately. Since
a propagating system may have a non-propagating remainder system we cannot
include the propagating property into the requirements for normality.

Finally, and independently of the main result, we discuss in
section 6 an interesting property of pairs of equivalent DOL-systems which
is equivalent to bounded balance. The property requires the existence of

a regular set R such that:

(i) R contains the language generated by either of the systems;
(it) The homomorphisms of the two systems are equal on every
string in R.

An alternative algorithm for testing equivalence of DOL-systems
can be based on this property. We c&njecture that such a regular set
exists for every pair of equivalent DOL-systems, i.e. every pair of
equivalent systems has bounded balance. Note that although we solve the
decision problem for all DOL-systems, the conjecture is shown correct for

normal systems only.

1. Notation

Given an alphabet &, * denotes the free monoid generated by I,
with unit (empty string) e.

A DOL-system is a 3-tuple G = (&,h,0) consisting of alphabet I,

homomorphism h and a starting string ¢ ¢ Z*. L(G), the language generated
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by G, is defined as {h"(¢):n = 0}. G is said to be reduced, if every symbol
from I occurs in at least one h"(o), nz0. To reduce G means to omit
from Z all symbols which do not have this property.
For w e 2* and a e I, # W denotes the number of occurrences of
a tnw. If (a,...,a;) is an ordering of I, then (#, Wsuoooff, W) is called

n

the Parikh vector of w and is denoted by [w]. The matrix M = (m.

1j)

T<izn®
T<j=n

where My = #a.h(ai) is called the growth matrix for G.
J

If 1 is a number, |i| denotes the absolute value of i; if w is a

string {w| denotes the length of w; later on |A| is also used for length
of a vector A or maximum characteristic value of a matrix A.

For w ¢ 2%, let min(w) = {a: a occurs in w}.

Given G = (I,h,0), we say that w is a G-prefix (G-substring,
G-suffix) if w is a prefix (substring, suffix) of h"(c) for some n = 0.

Two DOL-systems Gi = (E’hi’ci)’ i = 1,2 are called (sequence)
equivalent if h?(o1) = hg(dz) for all n =0,1,... . Two DOL-systems Gy» 6y

are called Parikh equivalent if [h?(o])] = [hg(dz)] for a1l n =0,1,... .
The balance (with respect to Gy,6,) of a string w in I* is defined as in
(Culik, 1975) g(w) = [Ih](w)iw!hz(w)ll. If there exists ¢ > 0 so that
B(x} s c for all Gl-prefixes, then the pair (G1’G2) is said to have

bounded balance. In this case the smallest such ¢ is called the balance

of the pair (G]’GZ)’
For two sets A,B, A u B denotes their union. If A,B are disjoint,
we stress this by writing A+B for the union. Fina]]y, we will often write

a instead of {a} for a one-élement set.



2. The Normal Systems

Let 6 = (Z,h,0) be a DOL-system. We define the function
m: P(Z) + P(z), where P(Z) is the set of all subsets of by putting

m(¢) = ¢,

m({a}) = min(h(a)) for a ¢ I,

m(AuB) = m(A) u m(B).

1

It is easy to see that m'(a) = min(hi(a)) for all 1 2 1., We will write
m{a) for m{{a}) and use My My, My, etc. to denote similar functions based

on h], h2, h]hz, etc.

Definition 1 A DOL-system G = (Z,h,0) is called an &r-system if

L= Eg + ZC + Er is a decomposition of & into three non-empty disjoint

sets such that h(a) ¢ 5,2¥ for a « Zys h(a} ¢ Zg for a e I, h(a) Z:Zr

Loc

fora el ,ando eX Z:Zr. We call L, the core of &, Z, is called the

L L
left side, Zr the right side of Z. The number of symbols in the core Zc of

L is called the order of G.

Definition 2 A DOL-system G = (Z,h,o} is called normal if

(1) G is an &r-system,
(2) G is reduced,
(3) iface mj(b) for some j > 0 then a € m(b),
holds for every a,b ¢ ZC.
The following lemma, which is used to prove that we may consider

normal systems only, is given in somewhat more general form as needed for

Lemma 7.



Let 6; = (Z,hi,c), 1 =1,2 be two DOL-systems. Given n > 1

Tet 1 = (11,...,in) be a sequence of length n of integers Tsen iy, € {1,210,

We denote h(l) = hi ...hf » @ composition of homomorphisms h];hz, i.e.
1 n

h(L)(x) = hil("'hi (x)...).

n
Lemma 1 Let G; = (Z,hi,?), i=1,2,n21, 1 = (i],...,in), 1y = (j],...,jn)
be given. Denote o5 = hg(c) and Tet i1 =1, j] = 2. Under these

assumptions Gy, G, are equivalent iff

. (1) : (1)
(el =G o), 8= (2 ey)

are equivalent for every j = 0,1,...,n-1 and at the same time
(8)  hj(o) = h}(o)

also for every j = 0,1,...,n-1,

Proof If Gq,6, are equivalent then (5) holds for every j and thus

(14) (1
h 1 (o) = h 2 (a) for all possible sequences 1ys 1o This means that

(4) holds for all possible pairs.

Conversely, for each & = 0, h%(c) = (h1hi ...y )kh?(c) =
2 n

(12))k

) 'h}(0), (o) = (hghs, .-.hy ) H3(0) = (r

2 = kntm and 0 < m < n. Since G% and Gg are equivalent and by (5)

(17) k
= (h 17)"h hg(c), where

hT(a) = hg(c) we have h%(c) = h%(c), i.e, G1,G, are equivalent. 0

iy (1)
Note: It is sometimes more convenient to write G% = (Z,h L ,hg(c))

and instead (4) and (5) require that Gj, Gg be equivalent for j = 0,1,...,n-1.
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Lemma 2 Let G = (Z,h,0). Then there is k = 1 such that in all the
systems 61 = (2,0,03(c)), § = 0,1,...,k-1, (3) holds for all a,b « E.

Proof  As the validity of (3) does not depend on j we may consider any
single j. For every a ¢ % consider the sets m(a),mz(a),... where m s
based on the original h of G. A1l the sets mj(a) are subsets of I, so
we can find r(a) > 0, d(a) > 0 such that mr(a)(a) = mr(a)+d(a)(a). From

this mj(a) = mz(a) for all j,& 2 r(a) for which j = £ (mod (d(a)).

Consider the least common multiple d = 2.c.m.(d(a):a « I) and let r be

such that r 2 r(a) for alla e Z and r = 0 (mod d).

i

Obviously m"(a) = mrj(a) for all a e £ and all j = 1,2,... .

It {s thus sufficient to take k = r. O

Theorem 1  The testing whether or not a pair Gys 6y is equivalent may be

restricted to normal systems.

Proof Given any pair G, = (Z’hi’gi)’ i =1,2 of DOL-systems we can
effectively construct a finite set S of pairs of normal DOL-systems such
that G], G2 are equivalent iff each pair in S is a pair of equivalent
systems.-

By Lemma 2 we can find k,, k2 for which h] , h2 meet (3). The
systems constructed for k = i.c.m.(k],kz) meet (3) and G;, 6, are equivalent,
by Lemma 1, iff all Gg, G% thus constructed are equivalent. Next, we reduce

each Gg. Clearly Gq and G% are equivalent iff the corresponding reduced

systems are equivalent.
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Finally, if Gg i{s not yet an &r-system we may create the sides
"artificially". Let &,r be two distinct symbols ¢ L. Put &' = {2} + I + {r}
and h'(a) = h(a) for a e I, while h'(2) = &, h'(r) = r in each G. The
new G'g is normal and again GT’ G2 are equivalent iff all Gq, Gg are

equivalent, a

Note that systems obtained using the construction above meet
(3) even for a,b ¢ L. We will, however, need the more general case subsequentl
The following definitions and facts from linear algebra are needed.

A vector x = (x],...,xp) and a matrix M = (mij) will mean a vector

1<i<p
1sj=<p
and a matrix over real numbers. |[x| = E I | is the Tength of x,
i=1
Ml = E max |m,;.| is the norm of M. [M| will denote max |r.|, where rs
J=1 1<i<p 1<i<p

are the (generally complex) characteristic numbers. A vector x and a

matrix M are called positive (non-negative) and denoted by x > 0, M > 0

(x 2 0,M=0) if X; > 0, m, .

; .. 20) for all 1< i, j<p.

>0 (x_i >0, m; ;

Finally, <x,y> will denote the scalar product E Xi¥is while (x.y) will
i=1
denote the direct sum of x and y.
It is easy to estabiish the following facts.

Proposition 1 Let M be a matrix and q = |M|, the absolute value of the

largest characteristic value. Then for every vector x MM} < qglx[ for

all sufficiently large n and every 49 > 9.

Proposition 2 Let M = (g E) be a decomposition of a matrix M where A

and C are square matrices and 0 a zero matrix. Assume that C has a single

characteristic vector u with respect to the maximal characteristic value
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r = |C| which {s real and positive. We will call such a vector the

maximal characteristic vector. Let ¥ be the characteristic vector of C'

with respect to r. Denote by u = (O,u) and v = (0,v) the characteristic
vectors of M and M" respectively. Assume |A| <r and u >0, v > 0,

From this <u,v> = <U,v> > 0,thus we may normalize them so that <u,v> = 1.
Finally, let x = {y,z) be any vector decomposed also correspondingly to M.
Now if z 2 0, z # O then there exist constants a, b and o

such that a > 0, rg <r and

(6) |xM" -ar™u| < brg for all sufficiently large n.

Proof Let x, 0, V, u, v be as described. Writing x = <x,vou + W

we get <w0,v> = 0. Denote a = <x,v> =<z,v > 0. We have an = arnu + wOMn.
Let W = {w|<w,v> = 0}. By induction wOMn e W, thus W is a subspace
invariant with respect to M. Obvidus]y, u ¢ W. The characteristic value

r is simple, so all characteristic values of Mon W are < r. Let rg <r

be any number larger than absolute vaiues of all characteristic values

of M on W, From Proposition 1 above we get {6) immediately. d

Proposition 3 Let M, u, x be as in Proposition 2. Consider the space

X = [x,xM,xMz;...], the space generated by the vectors'{xMili 2 0}.

It is closed (as any subspace in a finite-dimensional vector space) and

there is a sequence of vectors from X, namely, the sequence —%—xMi which

converges to u. Consequently, the maximal characteristic vegtor lies in

every space X generated by {xMi} starting with x = (y,z) where z 2 0, z # O.
The following definitions and facts about non-negative matrices

can be found in {Gantmacher, 1960).
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A matrix M 2 0 is called irreducible if M cannot be written in
the form M = (g g ), with A, C square submatrices, 0 - a zero matrix,
even after any permutation of rows and the same permutation of columns.
If all Mi, i=1,2,... are irreducible, we call M primitive.

Proposition 4 If M is irreducible, but some power Md is reducible, then

Md is fully reducible -~ i.e. it can be written (after a suitable permuta-

tion of rows and columns) as M = (g g) .

Matrix M is primitive iff some power d of M is positive: Md > 0,
Such a d, if it exists divides the order m of M, i.e. in particular d < m.

A primitive matrix has a positive characteristic value r which
is simple, and r > Iril for all other characteristic values r; of M.
The characteristic vector belonging to r is positive.

Finally, if M = (mik) is drreducible, then for the maximum
characteristic value r we have r = min E M

1<izp k=1

3. The &r-Simple Systems

Definition 3 Let G = <EE+EC+Zr,h,c> be an Lr-system. Homomorphism h is
called &r-simple if for every a,b ¢ Zc and every k > 0 there is j > 0

such that a « ka(b). Equivalently, calling h &r-irreducible if for

every a,b e L. there is j > 0 such that a ¢ mj(b), h is 2r-simple iff hK is
tr-irreducible for all k = 1. We call G &r-simple if h is r-simple,

If G is &r-simple and normal, then from a « mkj(b) we get a € m(b).
Putting a = b we get a ¢ m(a), which implies in turn that a e mk(b) for
all i 2 1. Thus if G is normal, G is &r-simple iff m(b) = £, for all
b e EC. However, the foliowing lemma is needed for systems not necessarily

normal.
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Lemma 3 Let Gi = (E,hi,c), i =1,2 be two DOL-systems, Gy 2r-simple,
the order m of G] at least two. If G], G, are Parikh equivalent then

for every € > 0 there is ng > 0 such that for every w ¢ I*, w ¢ (E£+Zr)*
(7) B(h7(w)) < elhf(w)l  for alln = ng-

Proof Let M] be the growth matrix of G]. If £ is suitable ordered we
can write

I, 0 A

1 1
Mp=1 0 I, A |,
0 0 N
where I], 12 are matrices of the order 1221, 'Zrl’ respectively, with
exactly one 1 in each row and all other elements zero. A], A2 are

rectangular matrices in general, and 0 denotes zero-matrices of appropriate

orders. If the order of G is m, then N is mxm matrix which is primitive,

in particular irreducible. Being primitive, Nd is positive, for some d < m

d

()} are i in 7 nld)
The elements of N, and so of N” = (ni") are integers. Thus min ] n:S

1<ism j=1 9
By Proposition 4, for the maximal characteristic value r' = INdI we have
r' 2m> 1. Denoting r = |N|, we have r' = rd, ie.r>1,
Let u be the characteristic vector of M] with respect to r.
Since all the characteristic values of matrices I], I2 are in absolute

value smaller or equal to one, the assumptions of Proposition 2 are met

I, 0 A
for A ={ ) ,B=(,"),C=N. Let 5 be the Parikh vector of o.
0 1, Ay

From Proposition 3 we get u e [6,6M1,6M§,...] = [E,EMZ,&Mg,...] =M,

= m.
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the first equality following from the Parikh equivalence of GI and GZ'
For every vector x ¢ M we have xM] = xMz, thus, in particular, u(M]—Mz) =
Let x be now the Parikh vector of w. As w ¢ (z£+2r)*’ the conditions on

x in Proposition 2 are met and (6) holds. That is, for suitable a,b > 0,rg

IA

we have |xM?-ar"u] < brg. From this lxM?(Ml-Mz)l bHM1-M2Hr8. From

n n _a n
(6) we further get |xM?[ > |ar lul -bry| = -%EL r

again for sufficiently

large n, These two inequalities combined give

2bj{M, M, |

r
0N
alul )

B(RY(W)) < |xM(My-My)| JELAP

As rg <r, (7) can be met if n is large enough. 0
Lemma 4 Under the assumptions of Lemma 3

(8) for every e > 0 there is K > 0 such that for every Gl-prefix
8

w, |w| > K we have B(w) < e|w]|.

Proof Using Lemma 3, given ;-we find ng- Let w be any G]-prefix, i.e,

h?(c) = wx for suitable n,x. Assume |w| > 1, ifn 2 Ng» then denote

n-n ng
u = h] 0(0). Let u = Ujau,, where a ¢ I be such that h] (u ) is a

pref1x of w but w is a proper prefix of h 0(u a), i.e,
w = h (u])x], h (u a) = WX, s x],x2 e ¥, Now
n
B(w) < B(h (u])) * B(xq) < 21h Oy P+ Blx| < §1w1 + BH 0, where

B = max{B(a)}, and H = max[h (a)|. To prove (8) it is sufficient to take
aeX aek ‘

"o

TW ? 23 i.e. to take K > H max(2B

guarantees that n = ng- a

1). The second case in max-function
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Theorem 2 Let Gi = (E,hi,o) for i = 1,2 be two &r-DOL-systems and let
Gy be Ar-simple. Let Gy and G, be sequence equivalent and let the order of

Gy be at Teast two. Then the pair (G],GZ) has bounded balance.

Proof This result is shown in (Culik, 1975), Theorem 3.2, for pairs of
equivalent simple DOL-systems. However, in the proof of this result only
the following properties are essential:
(a} h?(a) is exponentially growing for each a in I, except possibly
for symbols which occur only as a first or last symbol in any
hq(c) for n 2 0.
(b) (8) holds.
In our case for each a in e h?(a) grows because G] is 2r-simple and
of order at least two, therefore (a) is satisfied. By Lemma 4 (b) is
satisfied. Therefore, the proof of Theorem 3.2 from (Culik, 1975) also proves

our Theorem 2. The only modification required is that when comparing formulae

(2) and (3} we may not say that without restriction of generality

]h](u')| 2 Ihz(u‘)l since the assumptions of the theorem are not symmetric
with respect to G1 and G2 here. However, the proof for the case

]h](u')| < [hy(u')| is fully analogical since only the equivalence of G

and G, is used and this is a symmetric property. d

4. Subalphabets and Induced Systems

Given a DOL-system G = <Z,h,0>, a set 1,0 # II § Zc is called a

subalphabet if h(a)} ¢ I* for each a « 1. Denote 9 = I-I. If G is an
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sr-system we will also use f_ for & -, For every z ¢ £* we denote by

¢ % We define

2 the gtring z with all symbols from Il omitted, thus z
6" as <Q,hﬂ,oﬂ> where hﬂ(x) = (h(x))Q for x € 2. If for a language L we

write R {zglz e L}, then obviously
(9) (L) = L(a").

Glven two DOL-systems Gy» Gy, I is called their common subalphabet if I

1s a subalphabet of Gi for i = 1,2. From (9) we get immediately that if

G], 62 are equivalent and have a common subalphabet T then G?,Aﬁg are
equivalent, It is also obvious that if G is normal, so is 67,

Lemma 5 Let Gi = <Z,hi,c>, i = 1,2 be two normal propagating equivalest DOL-
systems. Then G] and 62 have a common subalphabet I, or the composite

homomorphism h]h2 is Lr-simple.

Proof First, we will show that if there is no common subalphabet then

h]h2 is &r-irreducible. For a,b ¢ EC we say that a immediately derives b,

written a = b, ifb ¢ m](a) umy(a). (See Section 2 for the definition
of m1,m2). Also, we say that a derives b using my or m, ifbe m](a) or
b e mz(a), respectively. Let —* be the reflexive and transitive closure
of binary relation . Finally, for a e I_, let m(a) = {b e I :a =% b},
Obviously, mi(ﬁ(a)) cm{a) for i = 1,2; so either m(a) = £, or m(a) is a
common subalphabet of G] and GZ' This means that if there is no.common
subalphabet, then a =* b for any two a,b e Z..

Let Ai be the subset of ZC of symbols which occur in h?(c) for

infinitely many n = 0, 1 = 1,2. Since G] and 62 are equivalent A] = Az.
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fr-system we will also use o for i -Il. For every z « £* we denote by
2 the $tring z with all symbols from Il omitted, thus 2 ¢ 0*. We define
& as <Q,h9,09> where hQ(x) = (h(x))Q for x e 2. If for a language L we

write LQ = {zn|z e L}, then obviously
(9) (e = L6,

Given two DOL-systems G], Gz, I is called their common subalphabet if II

is a subalphabet of Gi for i = 1,2. From (9) we get immediately that if

G1, G2 are equivalent and have a common subalphabet II then G?, Gg are
equivalent. It is also obvious that if G is normal, so is GQ,

Lemma 5 Let Gi = <Z,hi,c>, i = 1,2 be two normal propagating equivalent DOL-
systems. Then G] and 62 have a common subalphabet I, or the composite

homomorphism h]h2 is Ar-simple.

Proof First, we will show that if there is no common subalphabet then

h1h2 is &r-irreducible. Ffor a,b ¢ EC we say that a immediately derives b,

written a = b, if b ¢ m](a) u mz(a). (See Section 2 for the definition
of m],mz). Also, we say that a derives b using my or m, ifbe m](a) or
b e mz(a), respectively. Let —* be the reflexive and transitive closure
of binary relation =. Finally, for a ¢ Z_, let m(a) = {b ¢ L :a =% b}

Obviously, mi(ﬁ(a)) cm{a) for i = 1,2; so either m(a) = £_ or m(a) is a

c
common subalphabet of G] and G, . This means that if there is no.common
subalphabet, then a =* b for any two a,b « E..

Let Ay be the subset of L. of symbols which occur in h?(d) for

infinitely many n = 0, i = 1,2. Since G] and Gz are equivalent A] = Az.
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Assume that A] § Zen Since G] 1s propagating A1 # ¢ and thus clearly by is
a common subalphabet of G] and GZ' Therefore, if G1 and 62 have no common
17 by = zc‘

Consider arbitrary a,b « ZC. Since G] is propagating there

subalphabet A

exists ¢ e L. such that c ¢ ml(a). Since 4, = I there exists d « Zo

such that b « mz(d). If there is no common subalphabet, then ¢ =* d.

This means that a can derive b using m in the first'and m, in the last step

of the derivation. From condition (3) of normality it follows that if

X =%y for x,y € ZC using only m; (mz) in all steps, then x = y using

m, (mz). Therefore, a derives b using m, and m, alternately starting with

m, and ending with m, . Thus we have shown that for every a,b « Zc thare

exist n 2 0 and CpseeesCy € I, SO that cy € m]z(a); Ci4y € m]Z(Cj) for

J =1,2,...,n-1; and b € my,(c ). We used the fact that the function myo

as defined at the beginning of Section 2 is the composition of m and my .
Thus we have shown that h]h2 is &r-irreducible and we proceed

to show that h]h2 is &r-simple. A system is r-simple iff its growth

matrix restricted to Zc is primitive. From results in {Gantmacher, 1960)

it follows that if the growth matrix is not primitive, then there exist q > 1

and a partition P of ZC with q classes such that for every a,b « ZC, if

a € m?z(b), then a and b belong to the same class of P.

Claim Let a,b « z.. If b = a then a and b belong to the same class

of P.
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Proof Suppose that a ¢ ml(b). Since G; and G, are propagating there
exists ¢ ¢ m](a), and similarly there exists d e mz(c). Therefore d « mlz(a)
and since G; is normal c « m](b) {condition (3)), also d « myp(b). This
means that m]z(a) n m]z(b) # 0 and thus, since G, and G, are propagating,
also m?z(a) n m?z(b) # 0. Therefore, a and b are in the same class of P,
namely, in the class including m?é‘(d).

Similarly, suppose a mz(b). Since Ay = 4, = L. there exist
c,d e L. such that b ¢ mz(c) and ¢ ¢ m](d). Therefore, b « m12(d) and using
condition (3) of normality for G, we have a e my(c) and thus also a « mlz(d).

Therefore, again a and b are in the same class of P. O

Having proven the claim Tet a,b be again any two elements of
L.. We know that a =™ b, From the claim and the definition of —*
through => it follows that a and b belong to the same class of P. Since
this holds for arbitrary a,b in L.s partition P has a single class, i.e.

q = 1, which shows that h]h2 is 2r-simple. 0

Definition 4 Given G = <Z,h,0>. A subalphabet I ¢ & 15 calied limited

if there is a constant k such that for every substring u ¢ I* of L(G)

we have |u] < k. Note that I is Timited with respect to every DOL-system
equivalent to G.

Lemma 6 Let G], G2 be two equivalent systems, with a common subalphabet
II. If I is limited and if the pair (G?,Gg) has a bounded balance, then

the pair (G],Gz) has bounded balance.
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Proof Let the balance of (G?,Gg) be ¢ and let k be such that |u| < k
for all G,-substrings u from *. Then the balance of the pair (G],GZ)

is clearly smaller or equal to (c+1)k+c. O

Definition 5 Let Gys G, be a pair of DOL-systems, G, = (Z,hi,c). Given

k21, the set S = {(e{,ag):o < J < k} of pairs of DOL-systems is called

K = _ . kel
12 hp = hohy™os

= hg(o), i=1,23j =0,1,...,k-1. Instead of 2-combination

) C s J_ = A
k-combination of (G;,G,) where Gy (Z’hi’ci,j)’ hy =h
%,
we will say just combination.

We will say that the set S has bounded balance if each pair

(G%,Gg) e S has bounded balance.

Lemma 7  Let (G,,6,) be a pair of DOL-systems. Let S be their k-
combination for some k 2 1. Then
(1) Gy» 6, are equivalent iff for all (G{,Gg) €S, Gj,Gg are
equivalent.
(i1) Let G, and G, be equivalent. Then (G1,Gz) has bounded balance

iff their k-combination S has bounded balance.

Proof (i) has already been proven in Lemma 1. Now, assume that
(G%,Gg) has bounded balance and let w be a G1-prefix, say, ww' = h?(c)
for some n = 0 and some w' € £*. When proving that the balance is

bounded on a set of strings we may neglect finitely many strings, so,

n-k+1
1

h?'l(u) is a prefix of w, but w is a proper prefix of h#'T(ua). (Such

let n =2 k., Let ua with u e £*, a ¢ £ be a prefix of h (o) such that

ua exists if w is a proper prefix, but if w is the whole string hq(c)
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then 8{w) = 0, so again we may ignore this), i.e. h§'1(u)x = w for

some x ¢ L¥, and x is a prefix of h%'T(a), from which |x| < k=1 ng

B(x) < BHk'], i.e. B(w) < B(h?'](u)) + BHk'], where H = max]h (a)| and
aek
B = max 8(a). The boundedness of 8(w) follows from the fact that

aek
B(hﬁ'](u)) | 1h (U)I-Ihzh (u)ll = 8;(u), where we denoted by B; the

balance 1in (G ,GJ) which is bounded, and J is chosen so that w is a
G%-prefix.
The converse, namely, that if (G],GZ) has bounded balance so

has each (G%,Gg) is obvious and is not in fact needed in our proofs. a

Definition 6 Let G = (Z,h,0) be a DOL-system and let I ¢ £ be a sub-

alphabet, and assume that hQ is propagating. For every avb ¢ QU*Q we

avb b

define an induced system G = (2%+m+

E,H,EVE)Aas follows.

For a ¢ 2, we write h(a) = xcv, where c € 2, v € I*. (Note
that such decomposition is possible because hQ is propagating, and is
obviously unique.) We denote 2(a) = c, £'(a) = v. Similarly, writing
h(a) = v'c'y, where ¢' € Q, v' e I, we define r{a) = ¢*, ri{a) =

We define 2

{C: there is n = 0 and a sequence Cp = 2:CpseeusCy g

. = Cs ¢y € Q such that ¢y = %(ci_]), j=1,2,...,n}, where ¢ is one new

symbol for each c € Q. Similarly, we define bz starting with g = b

and using r instead of %: bz = {C: there is m > 0 and a sequence

¢y = b,c],...,cm =CsCje Q and ¢; = r(cj_]) for j = 1,2,...,m},

and where ¢ is another new symbol, one for each c € Q. Let
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h(3) = T(@R'(a) for a c Q,
h(a) = r'(a)¥a] for a € @,
h(d) = h(d) for d e TI.

Finally, I' is the subset of I of symbols actually used when the homomorphism

h is repeatedly applied to v. That completes the definition of GaVb. When

starting with G] or 62 we will, as usual, talk about H]’ HZ' G?Vb, and GSVb.

Lemma 8 Let G], G2 be two equivalent DOL-systems with a common sub-
alphabet I, Assume both h] and h? are propagating and there exists a
constant k such that for every G]-prefix of the form xav, where a ¢ Q,

x € L%, and v € I* we have
(10)  if [v] > k, then hi(xa) = h}(xa).

Then for every avb ¢ QI*Q, |v| > k, avb a substring of L(GT) the systems
avb .avb
617 6

are equivalent,

Proof As avb is a Gy-substring, we can write xavby = h?(c) for some

X,y € ¥ and some j 2 0. From (10} we have hi(xa) = x'2,(a)4(a),

hz(xa) = x'zz(a)zé(a), where 2],£i and %,,%; are the functions from

definition 6 based here on h] and h2. Similarly,

hi(xavb) = x'ﬂi(a)m%(a)hi(v)r{(b)ri(b)x$, for some x',x{ e £*, i = 1,2, Strings
h](xa),hz(xa) and h](xavb),hz(xavb) are prefixes of the same string

n*(0) = h]"(0), s0 2,(a) = 2,(a) < 25 21(a)hy(V)ri(b) and

Ré(a)hz(v)ré(b) e T*, but they are equal as the next symbol r](b) = rz(b) e Q.
That is, |v| > k implies (through h?(xa) = hg(xa)) that 51(5v5) = HZ(EVS),

As hy - and thus H] - are propagating, also ]h1(v)| > |v| > k. This

avb .avb

proves that 61 s 62 are equivalent. a
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Lemma 9 Let G = <Z,h,a> be a normal DOL-system. Denote H = max({|h(a)|:a ¢ Z)
Let I < Z be a subalphabet and Vody- -2V, @ decomposition of a substring

of hT(o), where n 2 1; CITTRRPL M Q3 VgseeeaVy € I*, Assume that hg is

propagating. Assume further that m = n, and [vol,lvn[ > H". Then
hg(ai) = a, for all 1 = 1,2,...,n.
Proof Suppose that for some a ¢ {a),...,a,} hg(a) 7 a. Let ¢, be

"the father of degree n of our a", i.e. assume that the following

picture {s a part of the derivation tree in G

c
m-n 0
/ [\
m-n+1 S
/N
m-1 /1
m Vgdy.--a...ap v,

There are two possibilities :
(1) There exists b e Q, b « mQ(a), and b # a. As a ¢ (mg)j(cn_j) and G
normal, we have {a,b} ¢ mﬂ(cj) for al1 0 < j < n-1. From this we get

[ ()" (cg)| = ne.

(i) h*a) = a" for some r = 2. As before, from the normality and from

a € (mg)n(co) we get a ¢ mﬂ(co). From this
I(hﬂ)n(co)l 2 " 2 e ifn=1

Thus in both cases h?(co) has at least n+] occurrences of symbols from Q.

In other words, either v, or v must be a substring of h?(co), but

n
from this Ivol or Ivnl < Hn. 0
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5. The Main Theorem

Theorem 3 Every pair of normal equivalent DOL-systems has bounded
balance,
Proof  Let & = (I,h;,0) for i = 1,2. Denote by r the order of G, (same
as GZ)' The proof will be by induction on r.

Base of induction, r = 1, Let ZC = {a}., For i = 1,2 we have:
%i,b

(1) for each b e I, h.(b) = ca for some ¢ e I, and a; , = 0;

B *
(i1) hi(a) = a | for some By = 0;

a-
(iii) for each b ¢ £_, h.(b) = a 1'bc for some c ¢ £_ and a. , = 0.
r* i r i,b

Since G] and G2 are equivalent, obviously, 8] = By and the balance of the

pair (G],Gz) is at most i=1mg¥bez % b j.e. the pair (G],Gz) has bounded

balance. TR
We now make the induction hypothesis that the assertion holds

for systems of order smaller than a fixed ¥ > 1, and consider a pair of

systems of order r, i.e. |zc| =r22,

Case I: Assume that hl(a) = hz(a) = ¢ for some a ¢ L. Then I = {a} is

a common subalphabet. Let @ = & «II, Since G] ana G, are eguivalent also

G? and Gg are equivalent and since IQCI < jzcj the pair (G?,G?) has bounded

balance by induction hypothesis. Subalphabet I is clearly limited and

therefore the pair (G],Gz) has bounded baddnce by Lemma 6.

Case II: Assume that h](a) = ¢ for some a ¢ Zc but not necessarily

hz(a) = g¢. Consider the combination'{(G},G;), (G?,G%)} of (G],Gz).

We have 51(a) = h%(a) = g, Ez(a) = hz(h](a)) = g, so by case I,

(G%,G;) has bounded balance for i = 1,2 and so has (G1,G2) by Lemma 7.
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Case IIl: We may now assume that both G] and GZ are propagating. By
Lemma 5 either the combination of (61,62) is simple, this implies, using
Theorem 2 and LemmaA7, that (G],Gz) has bounded balance, or there is a
common subalphabet I, Denote @ = Z-I ahd Q. = L. We may assume that II
is maximal, i.e. there is no subalphabet II' so that Il g n'g,zc. We may
further assume without loss of generality that either Qc has exactly one
element or h? and hg are propagating. This is so for the following
reasons. In view of Lemma 7, in order to prove that the pair (G],Gz)
has bounded balance we may show this for the combination of (61’62) instead.
Note also that every common subalphabet with respect to G],G2 is also a
common subalphabet with respect to the combination of (G1,Gz), i.e.
with respect to each pair of systems from the combination. Suppose now
that the assumption above is not valid, i.e. for some a in . either
h](a) =g or hz(a) = ¢ and QC-{a} # ¢. Then for the homomorphisms ﬁ],ﬁz
from the combination of (&;,6,) (or (G,,G;)) we have ﬁ?(a) = ﬁg(a) = €.
Therefore, I u {a} is also a common subalphabet with respect to the
combination of (Gl’GZ)' It might not be a maximal one but can be enlarged
to such., If this new subalphabet does not satisfy our assumption we repeat
the above construction. After a finite number of steps we get a maximal
subalphabet, which meets the assumption.

Since G, and G, are equivalent G? and Gg are also equivalent,
and since they are of order smaller than r and normal, the pair (G?,Gg)
has bounded balance by the induction hypothesis. For the rest of the proof

we will use the following notation. The balance of (GQ,Gg) is denoted by

c and H = max (maxlhi(a)l).
i=1,2 ael
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Now, as a part of Class III we formulate and prove the following.
Claim 1  Suppose that for every G]-prefix of the form wav, where w ¢ &¥,

aeQandveI* with |v] > H®

(1) 6%wa) = 0.
Then the pair (GI’GZ) has bounded balance.

Proof  Let Q = H®and Tet S = {w e QI*2 : Q < |w| < HQ}. Now, consider
the pairs of induced systems (cf. def.6) (Gw,Gg) for each w ¢ S. By (11)
and Lemma 8 the systems Gq and Gg are equivalent for each w ¢ S. Clearly,
G? is normal for each w ¢ S and i = 1,2,

Hence, by the induction hypothesis the pair (G?,Gg) has bounded
balance for every w ¢ S. Let the balance of (G?,Gg) be ¢, and let

Cp = max c_, which is well defined since S is finite.

weS ¥

We now proceed in the proof of Claim 1 by considering all
G]-prefixes, and show that their balances are bounded. Every G]-prefix X
can be written uniquely in the form x = A4V434-1Vd-1"31Yq for some
d=1, and a; € @, vy e 1 for 1 = 1,2,...,d. We will consider four cases.

In the first three we assume that x is a prefix of h%(c) for some t > c.

Case A Let d < ¢ and |vi£ < Q for i

B(x} < dQ + dH < c(Q+H).

1,2,...,d. In this case we have

Case B Let d > ¢ and Ivil < Q for i 1,2,...,c+1. Without loss of
generality we may assume that h](x) is a prefix of h2(x), i.e. hz(x) = h1(x)z»
for some z « £*. Since Bﬂ(x) < c, z contains at most ¢ occurrences of

symbols from Q; at the same time Gy 1s propagating and therefore z is
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a suffix of hy(v ...a]vl) (see Fig.1}, thus

c+18cVe

B(x) = |z| < Hlv I (c+1)(Q+T)H.

c+1acvc'
Case C Let there exists an m such that 1 <m < min(d,ct+1) and |vm| > Q;
assume that m is the smallest such index, i.e. |vji <Qfor1<j<m. By

am) = zZU.

i

(11) we have Bg(advd...vm+]am) = 0, this implies that hi(advd"'vm+1

for some z ¢ £*Q and u; « * where u; is a suffix of hi(am), for i = 1,2.

Therefore B(advd.. ) < H. Also B(vm) < B'(amvm) + 2H < cp 2H,

“Vin+1%m
where B' is the balance with respect to the pair (G?,Gg) for a suitable

W e S. Such a w exists since every G]-substring y such that y ¢ Q* and
lyl = Q+1 is a G?-prefix for some w ¢ S. Finally,

B(am_]vm_]...a]v]) < (m=T)H(Q+1) < c(Q+1)H. Since

B(x) = Blagvy...v qa0) + B(v, ) + B(a .ayvq), B(x) is bounded

m-1"m-1""
for all G]-prefixes beionging to Case C.

Case D There are only finitely many G1-prefixes not considered in the
previous cases, thus we may conclude that the balance is bounded on all

'G]-prefixes. 0

We have completed the proof of Claim 1 and will continue with Case III
of the proof of Theorem 3. We will consider four subcases.

Subcase IIIA. Let Zc =1 v {a}, i.e. Q. = ZC-H = {a}, and h?(a) = hg(a) = a,

Let p = 1 be the smallest integer such that if ¢ = bud, then h?(bud) = bvd,
for some v in £*. Then for all n > 0 the first (last) symbol of
h?(o) and of h?+p(o) are the same.

Consider any pair of &r-systems from the p-combination of (G},Gz),
say (GT,G?) where G? = (Z,Ei,om) for i = 1,2. We proceed to show that
(G?,G?) has bounded balance. Let O = bud for some b,d ¢ Q, clearly
E?(om) e bi*d for all n 2 0.
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Denote by»ﬁx, r the number of occurrences of a in h (b) and
Ei(d)’ respectively, (i = 1,2). As %i+r; is the number by which the number of
occurrences of a is increased when ﬁi is applied to any string bwd with w ¢ Z:
we have R,1+r.I = £2+r2. Without Toss of generality we may assume that 2y 2 Lo
If £, = 2,, then also ry = rp and clearly BQ(x) = 0 for every
GT—prefix. Therefore, by Claim 1 the pair (GT,Gg) has bounded balance.
Since this is true for every pair from the p-combination of (GT’GZ)
the pair (G],Gz) has also bounded balénce by Lemma 7.
It remains to consider the case £y > %,. For each n > 0 we can
write ﬁ?(c) = bvgn)avé")...avgn)d, where v§n) e T for j = 1,...,s,.
Thé number of occurrences of anin h?(b) is n&y, thus bv(") v a

1

is a prefix of hq.(b) for each n' = n. Therefore vg" ) - V§n) for

all n,n' and j = 1,2,...,min(n,n')2]. Symmetrically we get

(n ) o n)

i 1
n| J S J ‘For' J 1929--.,m1n(n,n )r‘z'

Let q > (&,+r *s5)/(2,-%,) . Consider any v§n) for n > q. If
j s (n-1)2;, then

(12) vgn) = v§n'1),

ifjz= sn_]-(n-l)rz, then

(13) (n) = V(n 1)

Sp-17Y

Since 5, = so+n(£]+r]) we have s -(n-l)rz-(n—l)ﬂl

n-1
sO+(n--l)(£]+r1)-(n-1)r2-(n-1)2T = so-(n-1)(r2-r1)

i
[}

so-(n=1)(2;-2,) < sg-(2*+ry*sy) < 0. The inequality follows from the

choice of q and n above. Hence, all j = T,Z,...,sn are considered in
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either (12) or (13). Since this is so for all n » q we conclude by

induction that,for each n > q, all the substrings of ﬁ?(c) occurring between
two consecutive a's have already occurred in ﬁ?(o). Therefore, there is only
a finite number of distinct substrings from II, thus I is limited and the

pair (GT,G?) has bounded balance by Lemma 6. Since this is true for each

pair in the p-combination of (G],Gz) the pair (G],GZ) also has bounded

balance by Lemma 7. This concludes Subcase IIIA.

Subcase IIIB. Let Q. = {a} and h?(a) = hg(a) = g, Since here the symbol

a can occur only in,hi(b) for b e 2, u X, we can write the string h?(o)

for each n = 1 in the form £u1a]u2...ukakwb ..b]v]r where £ ¢ T

mvm' 2?
* . *
l“le, ajeﬂc, ujel'[, |uJ.I <H, for j=1,...,k, bjeﬂc, Vje]'{,

vyl < H, for § e 1,2,...,mand w e ¥,
Since G, and G, are equivalent we have h?(i') = fa;...q = hg(k')
where %' is the first symbol in hq"](o). Since BQ(u]a]...uhah) =0,
9] _ _ .
we have B (Eu1a1...uhah) = lza]...ahlnlza]...ah[ = 0. As w is the only
maximal (i.e. with neighbors from Q) substring over I which can be Tonger than

H® we can apply Claim 1 and conclude that the pair (Gl’GZ) has bounded balance.

Subcase IIIC. Let o, = {a}, h?(a) = g and hg(a) # €. We consider the
combination of (G;,6,). For the homomorphisms ﬁ], h, from the combination
we have ﬁ](a) = ﬁz(a) = €, which is the Subcase IIIB, Finally, the pair
(Gy,G,) has bounded balance by Lemma 7. Similarly for h?(a) # € and hg(a) =g,
Subcase D. Let h? and hg be propagating and either Qc contains more than
one symbol, or if 2. = {a}, then h?(a) # a.

We show that the assumption of Claim 1 is satisfied. Let wav

be a Gy-prefix, where w « ¥, a e Q. and v e T* with |v| > H®, Denote
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8%(wa) by p and assume that p > 0, i.e. one of the strings h](wa) and
hz(wa) is a proper prefix of the other, say hz(wa) = h](wa)z, where z

contains p occurrences of symbols from Qc. We may write (see Fig.2)

(14) hz(wav) = h](wa)z hz(v) = h1(wa)u0b]...bpup
where b],bz,...bp < @ and UgaUys s sl € II*. Note that h,(v) is a
suffix of up and since 62 is propagating we have |up1 > HE.

Now, we will show that
(15) I'N < H®, for j =0,...,p-1.

If (15) does not hold, there is s, 0 <s < p-1, such that luél > HC and,
by Lemma 9,-h{(b;) = by for all § = s+1,...,p and i = 1,2. This is
in contradiction with the assumption that 1 is a maximal subalphabet as
we can add any one of the bj (j = s+1,...,p) to Il to obtain a larger
subalphabet. Note that since Qc does not consist of a single symbol a
such that h?(a) = hg(a) = a, the enlargement of II is properly contained in
L.» and therefore it is in fact a subalphabet. Hence (15) is established.
However, using (14) we see that h](v) is a prefix of u, and
since Gy is propagatiné we have |uyl = ih1(V)| > |v| > H, which is in
contradiction with (15). Thus the assumption p > 0 is false, and we have
8%wa) = 0. Finally, we conclude using Claim 1 that the pair (G1,Gz)
has bounded balance also in this Tlast subcase. That completes the proof

of Theorem 3. O
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Corollary 1 The sequence equivalence problem for DOL-system is
decidable.

Proof Theorem 3 shows that the family of normal systems is smooth in
the terminology of (Culik, 1975), therefore, the sequence equivalence
problem is decidable for this family by Theorem 2.1 from (Culik, 1975).
Thus, by Theorem 1, the problem is decidable for all DOL-systems. 0

Corollary 2 Given two DOL-systems G1,Gz, it is decidable whether
L(G]) = L(Gz).
Proof By Corollary 1 and (Nielsen, 1974). O

6. Regular Envelopes

We have shown that every pair of equivalent normal DOL-systems
has bounded balance. This bounded balance was then used to construct a
decision algorithms to test the equivalence. There is another property
which is equivalent to bounded balance and which is quite interesting,
but as the following facts are not needed for the main result we

will state them without a proof.

Definition 7 Let Gy = (E,hi,o), i = 1,2 be two DOL-systems. We say
that a set R is a true envelope for the pair (G],Gz) if

n

(i) L(6;) = R and L(Gy) < R
(i) h1(x) = hz(x) for all x € R.

Obviously, if a pair (G],Gz) has a true envelope then G],G2 are equivalent,
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Theorem 4 Let Gi = (Z,hi,c), 1= 1,2 be two equivalent DOL-systems. Then
the pair (G],GZ) has bounded balance iff there exists a regular set R
which is a true envelope of (Gy,65) .

.The proof is independent of Theorem 3 and the main idea is in
the fact that the bound on the balance is also a bound on the number of
states of an automaton which compares préfixes of L(Gl) and L(6,). In

more details, if x is an G] prefix then either

(16) h](x)'= hz(x)z

or

(17) hz(x) = h](x)z

for some z € L*, The relations (16) or (17) enable us to introduce a
congruence relation x = x' if (16) or (17) holds with the same z. If
the congruence is finite, we have a finite automaton, but this also gives

the bound on the balance as the maximum length of z. 0

The existence of a regular true envelope gives also an alternative,
but essentially the same construction for the algorithm which decides a
possible equivalence.
Theorem 5 If every pair of equivalent DOL-systems has a regular true
envelope, then the sequence equivalence problem for DOL-systems is

recursively decidable.

Proof Let R1,R2,...,Rk,... be any effective enumeration of regular sets
(more precisely their representatives, say finite automata), which of course

exists. For each k = 1,2,... check whether Rk is a true envelope of
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(61,6,). Condition (i) is equivalent to L(G;) n R =0, R is again

regular and for a DOL-system and a regular set we can effectively find
EOL-system G' so that L(G') = L(G]) n R. Finally, emptiness problem is
decidable for EOL-systems. Condition (ii) can clearly be checked since

it is enough to check it for a finitely many strings, e.g. only for simple
paths and Toops of a finite automaton representing R. From our assumption

we know that if G;,G, are equivalent then there exists a true envelope for
(G1,G2) and we will find this true envelope in our enumeration, therefore

our procedure will always halt in that case, and gives a semi-decision
procedure for equivalence. Since a semi-decision procedure for non-equivalence

obviously exists we have completed the proof. 0
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