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0. Introduction

The development of formal systems for program verification
starts with the representation of the computer by a 1st-order theory, in
which the function and predicate symbols denote the machine operations
and tests, and the axioms describe the characteristics of the operations
and tests in the intended interpretation. The results of Godel on the
non-categoricity of theories that contain arithmetic show that a Ist-
order theory can never characterize a machine in its intended interpreta-
tion: the axioms for the machine will always admit a Targe number of non-
standard models, and hence a proof of a program property from the axioms
is not only a proof of the property for the intended machine, but is also
a proof for non-standard machines (with enlarged domains) that also satisfy
the axioms. The implication of this is that no axiom system can be strong
enough to verify all properties of programs that are true; the power of a
system for program verification (measured by what properties are verifiable
within the system) is dependent on the strength of the axioms. We might
ask if the power of verification systems is wholly dependent on the strength -
of the machine axiomatization, or if some aspects of the "control
structures” of the programming language are also uncharacterizable. By

control structure, for example the IF-THEN-ELSE and WHILE constructs found
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in many programming languages, we mean a feature which specifies the
composition of machine operations that defines the function computed by
the program. Control structures can be construed to have logical proper-
ties that are invariant with the machine interpretation, for example, the
statement

IF p(x) THEN f(x) ELSE g(x)
has the property that "if p(x) is true then its value is f(x), and if
p(x) is false, then its value is g(x)". This property is clearly indepen-
dent of the interpretations of p, f, g and x; hence an axiom for process-
ing such a statement is not tied to the axioms for p, f, g and x.

Probably the first important contributions to formal systems
for program verification were made by Manna [5] and Hoare [4]. The
approach of Manna fails to distinguish in any way between control structure
and machine operation; he considers programs in flowchart form, and shows
how to construct a formula whose validity is equivalent to the correctness
of the given program. The verification takes place entirely within the
axiom system for the machine, the control features of the program having
been replaced by formula constructs. This loss of distinction precludes
an answer to our question. The approach of Hoare does.distinguish control
structures in that special rules of inference are given for the reduction
of program segments containing, for example, IF-THEN-ELSE and WHILE
constructs., However, in the absence of a completeness result for Hoare's
system, we cannot know if the rules for the control structures are in any
sense "adequate", i.e. if the system would become more powerful by the

addition of new rules for the structures. We build on the work of



Ashcroft and Wadge [1,2], and are able to answer the question in the
negative, i.e. the controls structures found in most languages are
characterizable, and the power of verification systems is wholly dependent
on the machine axiomatization.

In [1,2] the programming language LUCID is described. LUCID
was designed with simple semantics and ease of program verification in
mind, and the language maintains a sharp distinction between machine
operation and control structure. The language itself has the remarkable
property‘that any LUCID program is not only a recipe (to use the authors'
own word!) for computing a function, but also a mathematical assertion
in a system of three-valued logic. The program, as an assertion, can be
used (without modification) to define itself for the purpose of verifica-
tion. Our development starts with a study of three-valued logic; the
system that we use is somewhat weaker than that in [1,2], but it is still
strong enough to encompass the syntax and semantics of LUCID. The
advantage of reducing the power (and we are speaking here of the power of
languages for logic, not axiom systems within a logic) is that we have
semantic completeness, i.e. valid formulae are provable. This is important
since verification methods require that formu]ae be shown to be true
in certain classes of models (i.e. "valid" in the models; this is also
termed "semantic implication" since the concept is independent of the
symbolic aspects of the formulae). A completeness result assures us
that symbolic proofs of such implications are always possible. In section
2, we describe a verification method for structured LUCID programs and

prove that the method is complete, in that if a program has a stated



property in every model admitted by the axioms, then the proof method
will verify the property. The proof method, however, is described in
terms of semantic implication, and in section 3 we show that we can apply
the results of section 1 to deduce that (i) syntactic proofs of semantic
implications within the proof procedure are always possible, (ii) contrary
to a conjecture in Ashcroft and Wadge [2], proof by contradiction can be
used without sacrificing completeness, and (i1i) the power of the proof
system is dependent only upon the strength of the machine axiomatization.
The result ({i1) is obtained in the course of proving (i), and (ii) is an
immediate corollary of (i}.

The reader is assumed to be familiar with elementary concepts
of mathematical logic, as described in [8], and the fixpoint theory of

computation, as in [6].

1. Many-Valued Logic

Our goal in this section is to define the system of three-valued
Togic within which LUCID is defined, and establish the semantic

completeness of the system. We begin with a review of many-sorted alphabets

and their associated algebras, which we use to define the syntax and

semantics of many-valued logic. A many-sorted alphabet is a collection.

where I is a set of sorts and each set 2 is a collection of

W,oi>

function symbols of type <w,i>. Ifw = SIRRRL and f ¢ L then f is

w,i>?

a function symbol that takes arguments of sorts s+ eaSy and produces a

result of sort i. Note that if w = A, then f is a constant of sort i.



We attach meaning to the symbols in I by specifying a L-algebra, which
is a collection A =’{A1:1 e I} of domains and an assignment of maps to

the symbols in Z so that for f ¢ E<w’1>, fA is a map from As X...XA

S
1 k
to Ai for i € I, we define the set of Z-terms of sort i inductively:
each member of Z(A i> is a term of sort i, and if t1,...,tk are terms of
SOrtS Sp,...s8) respectively, and f ¢ Z(w,i> then f(t],...,tk) is a term
of sort 1. For i ¢ I we denote the set of I-terms of sort i by (wz)i.
Now let W be the L-algebra where the domain of sort i is (wz)i and the

value f, (t.,...,t,) is the term f(t,,...,t,). W. has the property that
Wz 1 k 1 k X

for any L-algebra A, there exists a unique_homomorphism hA from wZ to A.

A homomorphism from a Z-algebra B to a Z-algebra C is a family of maps

{hizi e I} where hi:Bi - Ci’ and for f ¢ Z<w,i> and bj € st we have
fc(hs](b]) 9 v e !hsk(bk)) = h.i(fB(b-’ [ IRy ’bk)) .

The unique homomorphism h, from W, to A is given by (hA)i(c) = ¢, for

Ce Z<A’1>, and
(hy) ;(F(Eqs. 0nty)) = fA((hA)s1(t1)""’(hA)sk(tk))

for f ¢ Z<w,1>' The verification that hA is a homomorphism (and unique)
is an easy exercise. Now let Xi be a denumerable set of variables of

sort 1 € I. Z(X) denotes the I-sorted alphabet obtained from Z by adding
the set Xi to Z<A,i> for each i € I, Given‘a z-algebra A, and a family of
maps

{uizxi - Ai:i e 1}

let A[u] denote the £(X)-algebra obtained by extending A so that for



X € X, Xaru] = ui(x). Now the homomorphism hA[u] assigns values to
Z(X)-terms under the interpretation u of the variables.
Example Let I = {0,1}. The sort 0 is for "truthvalue" and the sort 1

is for "integer". Let Z<A,0> = {T,F}, & = {0,1,2,...1},

AL,
2<11’}> = {+,-,%,/} and Z<]],0> = {=}. Let Z(w,i) be empty in all other
cases. Now £ 1s an alphabet for simple arithmetic; (WZ)O is the set of
equations of the form "=(s,t)" and (NZ)1 is the set of arithmetic terms
from which s and t would be chosen. Let A be the Z-algebra where

Ag = {true,false} and A, is the:set of natural numbers, Let the symbols
+,-,%,/ and = be interpreted as usual. Now for o ¢ (wz)o, we have

(hA)O(a) = true if and only if o is a true arithmetic identity.

We are now ready to define our system of logic. A lst-order
alphabet is an n-sorted alphabet X (n = {0,...,n=-1}) with distinguished
symbols T,F € Z<A,0>, Y e 2<00’0>, =€ Z<O,O> and =; € Z<11’0> for each
i <n. We will omit the type-specifying subscript on the = symbol since
it is clear from the context in which it is used. Sort 0 is distinguished
as the sort for "truthvalue", and the remaining sorts may be chosen at
will. Note that the symbols = and v are the familiar negation and
disjunction connectives, and = is the equality predicate. We will always
use the latter tw°‘symbo]s in any infix way, e.g. we write s = t rather
than =(s,t). We choose many-sorted alphabets to form the base of our
machine representation because it seems natural: many programming languages
distinguish data sorts, and incorporate the sorts into the syntax. In

addition, many-sorted alphabets allow us to treat the sort 0 just as any

other sort, and hence operations on truthvalues can be included in a



uniform way. Now, a Ist-order alphabet I defines the basic machine

operations and tests, and a L-algebra defines an interpretation of the
machine. In order to make statements in the langage, we need variables
and quantifiers. To this end, let Xi be a denumerable set of variables

for each i < n. Let I' come from Z(X) by adding the quantifiers "¥x" to

Z(X)<0 0> for each x ¢ Xi and i < n. The set of 1st-order terms of sort i

is (W +)1, and the set of 1st-order formulae is (W +)0. An occurrence
L z
of a variable x that is below a quantifier Vx is said to be bound. An

occurrence of x is free if it is not bound. For example, in the formula
Vx(P(x,y) + vy(P(y,2z))

the single occurrence of x is bound, the single occurrence of z is free,
and y has one free occurrence and one bound occurrence. We use lower case
roman letters for terms (of any sort), and lower case greek letters for
formulae. Constructs of the form t[x] (or a[x]) denote an occurrence of
the variable x in t (or o), and t[s] (respectively o[s]) denotes the result
of replacing all free occurrences of x by the term s. Note that, syntacti-
cally, the symbol "¥x" is a function. We cannot interpret "¥x" as a
function, however, since its purpose is to bind the variable x in the terms
that occur below it. To circumvent this problem, we will define a

L-interpretation for 5" as an extension of a L-algebra; the former will not,

in general, be a Z+-a1gebra. We will consider L-algebras A that satisfy
the following minimal conditions:
(1) The elements T, and F, of Aq are distinct.
(ii) For b ¢ AO’ “A(b) = TA iff b= FA’ "A(b) = FA iff b = TA,
and " A(b)) = b,



(111)  Forb,b' e Ay, b vy b' =T, iff T, « {b,b'} and

b VA b' = FA {ffb=0>b'= FA'
(iv) For a,a' ¢ Ai’ (a =1 a') = TA iff a = a' and (a =n a') = F

iff a # a'.

A

Note that we do not require AO = {TA,FA}. Below, we consider only the

case where A0 has three elements, but this constraint is not necessary just
yet. We now define a Z-interpretation to be a pair (A,Q) where A is a
Z-algebra satisfying (i)-(iv), and Q is a map from the set of subsets of

AO to A0 such that for any subset B of AO, Q(B) = TA iff B = {TA} and

Q(B) = Fp 1ff Fy < B. Given an assignment u:X + A of the variables, we

define the evaluation map

ALQ,ul:W _ + A
[Q,ul o+

inductively: if t is a Z+-term that contains no quantifiers, then

A[Q,u](t) = hA[u](t)' If the term t is the formula ¥x(s) then we define
ALQ,ul(vx(s)) = Q({A[Q,u(x/a)](s):a < A.})

where X ¢ Xi' Hence the value of x is allowed to range over Ai’ and the
resultant set of truthvalues is processed by Q. Note that u(x/a) is the
assignment that agrees with u at every point except that u(x) = a. Given a
Z-interpretation A (we discard the notation (A,Q) and consider Q to be
included in A), an assignment u to the variables, and a formula o, we

write A |=h o if A[Q,ul(a) = T. We write A |=o if A l=h o for every
assignment u to the variables. If A is a set of formulae, then we write

A |=o (read "A semantically implies o") if whenever A |=A (i.e. A|=6

for all 6 € A) we have A |=a.



Example Retaining the notation of the last example, we have

A |=v¥x(x # 0+ x*x # 0).
The construct "a - B" abbreviates "o # T v 8" and we have abbreviated
""‘(S‘t) It by "Sft".

We now consider syntactic operations on systems of logic. A

derivation system consists of a set of axioms, which are formulae to be

used as initial assumptions in proofs, and rules of inference which allow

certain formulae to be derived from other formulae. A formal proof is a
finite sequence Gys...sa, Of formulae such that each o is either an axiom,
or follows from previous formulae in the sequence by a rule of inference.
We are free to specify axioms for the machine, which are used when proving
properties of programs, subject to the constraint that the axioms be true
in the intended interpretation of the machine. We include in all axiom
systems the following formulae, which are valid in every L-interpretation.

L. o> (8~+a)

L2 (o> (B+7v)) > ((a>8) > (a~+y))

L3. (a#T+B#T)> ((a#T~>8)+a)

El. t=1t

E2. s

t > (afs] + a[t]) where no free variable of s or t is

quantified in a.

E3. s=tvs#t
T1. T#F
T2. a> (o =T1)

T3. (a=T) +a
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NT. o+ (o= F)

N2. ((m) = F) »a

N3. () = a

D1. a¥B>(a=Tvg=T)
D2. (v Rg)=(RBVa)

D3. Tvoao

D4, (o v B) >

D5. o+ ("8 + ~(a v B))

G1. vx{a[x]) > a[t] where no free variable of t is quantified in a.
G2. ¥x(a + B) > (o + vx(B)) where & contains no free occurrences of x.
G3. ¥x(a) < vx(a = T)

G4. ~(¥x(a)) < ~(¥vx(a # F))

The axioms L1-L4 define the properties of implication (=), E1-E3 the
properties of equality (=), T1-T3 the properties of truth (this is needed
because our system is not two-valued), N1-N3 the properties of negation (7),
D1-D5 the properties of disjunction (v) and G1-G4 the properties of
quantification. We admit two fundamental rules of inference, namely,

Modus Ponens (from o - B and o, infer B) and Generalization (from a infer

vx(a)). We can add other rules of inference, provided that if a rule
infers o from a set of formulae A, then A |=a. It is easily seen that
Moduls Ponens and Generalization have this property.

Having defined the syntax and semantics of 1st-order languages,

we define a Many-Valued Logic (abbreviated "MVL") to be a triple

(2,{A},D) where L is a 1st-order alphabet, {A} is a collection of Z-

interpretations such that for all A,A' ¢ {A}, A0 = Aé and Q = Q', and D is
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a derivation system containing the basic axioms given above, the rules

of Modus Ponens and Generalization, and any other axioms and rules of
inference that are admissible., Admissible rules are defined above, and

an axiom o is admissible if {A} |=a, i.e. A [=0o for all A ¢ {A}. We
write D |— o if a is derivable in D, and it is clear that if D |—a

then {A} |=a. The reader should observe that the power of the language
is determined by the breadth of {A}. For example, if Z is the alphabet

for arithmetic, and {A} consists solely of the standard structure for
arithmetic, then the language is as powerful as it can possibly be. Godel's
Theorem shows that such an MVL cannot be complete no matter how extensive
the axiom system, At the other extreme, {A} could consist of all I~
interpretations that satisfy all of the axioms in D. In this case, it
would be complete. However, {A} does not have to be quite as wide as this
for completeness; we will restrict ourselves MVL's that are full. An MVL
(z,{A},D) is full if {A} is the set (up to isomorphism) of all countable
models of the axioms in D. Assuming that D is consistent, {A} is non-empty.

We now consider MVL that are three-valued, and prove that every

full, three-valued MVL is complete (i.e. {A} |=a implies D |=a). An MVL

(x,{A},D) is three-valued if there is a constant L e & such that

L0
D |— ¥x(x=T v x=F v x=1)

where x is a variable of sort 0. If this is the case, then we must have |

Ay = {TA,FA,lA} for all A € {A}. Note also that the quantifier function Q

is completely determined for three-valued MVL; the only definition to Q

that satisfies the conditions is

!
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Q({T}) =T
Q({F}) = Q({T,F}H)
Q({+}) = Q({T,s})

Three-valued MVL have an important normal form property; the observant

Q({F,}) = Q({T,F,e}) = F

L

reader will have noticed that we allow quantifiers to occur below non-
Togical symbols in formulae, whereas this is not permitted in standard
predicate lTogic. (A non-logical symbol is a symbol other than -, v,

VX and =0,) This flexibility does not increase the power of the logic, as
we will show. A formula a is said to be normal if no quantifier occurs
below a non-logical function symbol. The following result is required
when we prove the Model Existence Theorem for MVL; it assists us in using
structural induction on formulae.

Proposition Let (2,{A},D) be a three-valued MVL. For every formula
a[x],...,xk] with free variables in XqsenesXp there exists a formula
u‘[x],...,xk] with the same free variables as a such that o' is normal,
and D |=o = a'.

Remark  The derivability of o = o' implies that o and o' take the same
value under every IZ-interpretation and assignment to variables,

Proof (Sketch) Let us call an occurrence of a quantifier in o "bad" if

it occurs below a non-logical symbol. We use induction on the number of
bad quantifiers in a. If there are none, then a is already normal. Now
assume that the Proposition is true for formulae with no more than m-1 bad
quantifiers, and suppose that o has m bad quantifiers. Now o must have a
topmost bad quantifier, i.e. there must be a bad quantifier that does not

occur below any other bad quantifiers. Hence o can be written as



- 13 -

BLy[vx(s)1]
where the new variable z, in B[z], occurs below logical symbols only, the
topmost symbol of vy is non-logical of type <w,0$ for some w, and the new
variable y does not occur below quantifiers in y[y]. This can be verified
formally by structural induction on o. It should be obvious that none of
B[z], yLy] and & has more than m-1 bad quantifiers. Hence we can apply the
induction hypothesis to find normal forms for 8[z], v[y] and &, say B'[z],

v'[y] and &' respectively. Now consider the formula o', defined as
B'[cT & UFh& 01]

where for k € {T,F,L}, 9 is the formula
vx(8') = k + y'[k]

o' is clearly in normal form, and in fact D {~ o = a'. To prove this, it

suffices to show that
D |—vy'[¥x(8")] = (0T & 9p & 01)

This can be proved by substitution on the (propositional) theorem
D |—&£[x] = ((x=t ~ £[t]) & (x=F >~ £[F]) & (x=2 + g[1]))

where £[x] is an arbitrary formula. This, of course, depends on the fact
that D is three-valued, and the above formula can be proved without the
use of quantifiers. We omit the details.

We now turn to the Model Existence Theorem and the Completeness
Theorem for three-valued MVL. Our method is that of Boolean Representa-
tion, introduced by Rasiowa and Sikorski [9] and used by Bell and

Stomson [3] for the two-valued calculus. We want to prove
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that in a consistent MVL, every consistent formula has a model.

The idea of the Boolean Representation Method is to construct a

Boolean Algebra of formulae from a MVL, show that certain ultrafilters
in the Boolean Algebra induce models of themselves (i:e. of the formulae
within), and show that any consistent formula is contained in such an
ultrafilter. So let (Z,{A},D) be a three-valued, full MVL. Define a

binary relation E on (W +)0 by
z

E{o,8) iff D |—a « B,

It is easily verified that E is an equivalence relation; let the equivalence

class of a formula o be |a|, and Tet
Ly = {Jaf:a e (w2+)0}

We define |a| < |B] if D |[—a + B, and it is easy to show that (Ly,<) is a

Boolean Algebra where

inf(Ly) = |F]
sup(Ly) = [T|
meet(|al,|B]) = o & 8]
join(lal,|8]) = [a v 8}

comp1(|al) = |a# T|

The ultrafilters in Ly that we consider are those that are Q-preserving.

An ultrafilter U in Ly is Q-preserving if for every formula o[x], if
la[t]] € U for all terms t, then |vx(a[x])|e U. It can be shown that for
any formula alx],

[¥x(alx])] = inf({|a[t]] :any term t})
and so the following result is a direct consequence of a theorem of

Tarski [10].



-15 -

Ultrafilter Theorem for~L2 Every non-zero element (i.e. element distinct

from |F|) of L, is contained in a Q-preserving ultrafilter.

Before proceeding with the model existence theorem, we return to manv-sorted
algebras. Given a Z-algebra A, we say that an equivalence relation C on

the domains of A is a Z-congruence if for each function symbol f, and
members (of the appropriate sorts) a7s...58, and bys...sby of the domains,

if C(a1,b1) holds for i = 1,...,n then
C(fA(a],...,an), fA(b]""’bn))

holds. We define the quotient algebra A/C to have the equivalence classes

of the domains of A as its domains, and to interpret the function symbols
by representative, i.e. if the equivalence class of an element b is

denoted b/c then

fA/c(b]/C,...,bn/C) = fA(b],...,bn)/C

It is easily verified that A/C is a Z-algebra; this type of quotient
construction is very common in algebra, e.g. quotient groups, rings and
fields.

Model Existence Theorem: Let (Z,{A},D) be a full, three-valued MVL.

For each Q-preserving ultrafilter U in Ly there exists A ¢ {A} such
that for every closed formula o, |a| € U if and only if A [=a.
Remark A formula is closed if it does not contain free variables.

The universal closure of a formula o 1S

Vx](...(Vxn(a))...)
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where XyseoesXy are all the free variables of a. From the axioms G1-G4,
it is clear that o is consistent iff the universal closure of o is
consistent, Hence, in conjunction with the Ultrafilter Theorem, this
result shows that every consistent formula has a model.

Proof (Sketch) Let U be given, and define a binary relation C on W,

by C(s,t) iff |s=t| ¢ U. Recall that Wy is the set of I-terms without
variables or quantifiers, and that wz is a r-algebra. Now by virtue of

the axjoms E1-E3 for equality, C is a IZ-congruence. Let A be the Z-algebra
WE/C. We claim that A.is a Z-interpretation, and has the required property
that |a| ¢ U iff A |=o for all closed formulae o. To show this, we show

that for every formula a[x],...,xn] in normal form, with free variables

XpsevesXos and for any selection of terms t],...,tn from Wz,
(*) A [==u[t],...,tn] if and only if |u[t1,...,tn]| e U

If, in addition to this, we show that A satisfies the conditions for a
Z-interpretation, then we can conclude
(i) A |=o iff |a| € U for all closed, normal a.
(1i) A |=a iff |a] € U for all closed o, since there exists a
closed, normal o' such that D |—a = o'
(ii1) A € {A} since for each axiom o in D, D |— a and hence
|a] = |T|, i.e. [a] € U. Note that we are using the hypothesis
that {A} is full (i.e. contains every countable model of D)
and we are assuming that I is countable (and hence wz/c is

countable.)
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First, the fact that A qualifies as a Z-interpretation follows from the
hypothesis that D is consistent; the latter tells us that the equivalence
classes of T and F in W;/C are distinct (lest D |- T=F which contradicts
axiom T1). The remaining conditions for a Z-interpretation then follow
immediately from the definition of C and the axioms. To prove (*), we note
that A |=a iff A |=o=T and |a| ¢ U iff |0=T| < U. Hence, it suffices
to prove (*) where we assume o to have the form B[x],...,xn] = k, where
k is T,F or L. The proof of this is a straightforward structural
induction on 8, Note that since g 1s in normal form, the induction is
on the number of quantifiers and logical connectives. We start with
formulae with no quantifiers or connectives, and then proceed with the cases
y v, ~(y), vy =0 ¢ and ¥x(y) where the result is assumed true for y and §.
We do not give the full proof here, but illustrate the reduction for two
of the cases:
If 8 is vy v 8§ and k is T, then we assume, inductively, that (*)
holds for y and §. Now by axiom D1 we have
Al=8lty..std=T

iff A |==y[t],...,tn] =Tv G[t],...,tn] =T

iff A [=vlty,....t ] or A |==6[t],...,tn]

iff Iy[t],...,tn][ e Uor |6[t1,...,tn]| e U

iff [8[ty,...,t,]]  U.

If B 1s =(y) then
A I==B[t],...,tn] =T
iff A l=v[t,,....t 1=F
iff y[ty,...5t, 1 =Fl U
iff [ =~(y[tys.. ot D] e U
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Completeness Theorem Let (Z,{A},D) be a full, three-valued MVL. Then

for every formula o, if {A} |=o then D |—a.
Proof Assume that {A} |—a, but o is not derivable in D. Then we do
not have D |[—a # T -~ F (otherwise D |- T +~ o, i.e. D |—a); so |o#T|
is non-zero in LZ’ and by the Model Existence Theorem, oo # T has a
mode].in'{A}. This contradicts {A} |=a, and so we must have D |-«
as required.

We end this section with a summary of results on partially

ordered sets. A partial order < on a set X is a complete partial order

(abbreviated "c.p.0.") if there exists in X a unique minimal element
under <, and if every ascending chain

XOSX] S ...

in X has a least upper bound. We usually identify a set with its order,
and hence "X is a c.p.o." means that the order on X is a c.p.o. The
least element of a c.p.o. is denoted ., which coincides with the constant
introduced with three-valued MVL and is explained below. A c.p.o. X
is "flat" if for any two elements x,y ¢ X, x <y iff x =y or x = L.
In our application, L denotes an "undefined" element and the order <
expresses approximation. A flat c.p.o. is a set in which . approximates
everything, and defined (i.e. non-minimal) elements approximate themselves,
but nothing else. Now, given c.p.o.'s X and Y, a map f:X = Y is continuous
if it is monotonic (i.e. x < x' implies f(x) < f(x')) and for each
ascending sequence

Xg S Xy < ...

in X, we have
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f(u{xi: i=0,1,...}) = u{f(xi): i=0,1,...}

The symbol U denotes the least upper bound operation; hence f is
continuous if it preserves least upper bounds. A1l computable functions
will be continuous, although the converse of this is not true. The
following result is central to fixpoint semantics.

Fixpoint Theorem Let X be a c.p.o. and let f:X -~ X be a continuous map.

Then f has a least fixpoint, i.e. there exists e ¢ X such that f(e) = e
and whenever f(e') = e' for some other e! ¢ X, e <e'. In fact,
e = U{ei: i=0,1,...}

where &g = L and €41 = f(ei).

Given a c.p.o. X and an arbitrary set S, [S » X] denotes
the set of all maps from S to X. [S =+ X] can be ordered by

f s g iff f(s) < g(s) forallseS
and in fact [S - X] is a c.p.o. under this order. The order < on

[S - X] is the point-wise extension of the order < on X. Given a continuous

map f:X -~ Y where X and Y are c.p.o.'s, the point-wise extension fS of f
to [S » X] and [S + Y] is defined by

fg(g,h)(s) = f(g(s),h(s))
[t is easily verified that fs is continuous with respect to the order < on
[S+ X] and [S - Y]. In the next section, we define the semantics of
LUCID as:ifixpoints of continuous maps on c.p.o.'s of the form

[w~+ A] where A is the basic data domain.

A three-valued MVL (Z,{A},D) is continuous if for each A ¢ {A},

each domain in A is a fiat c.p.o. and for each function symbol f of I,
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except the equality symbols, fa is continuous. In the case of the domains
of sort 0, we assume that the constant L already introduced is the
minima] element. The basic logical functions = and v are then continuous.
The equality relation can never be continuous, but it does not matter
since this form of equality is not computable. Later on, we introduce
a computable equality predicate which takes the value L if either of its
arguments is L (recall that = always returns T or F). Finally, we note
that axioms of continuity of function symbols in Z can be included in D
to ensure that (Z,{A},D) is continuous. It is easy to show that in a
flat c.p.o., a function is continuous iff it is monotonic. Hence, D
should contain the axiom

Vﬁ.uw%Vyr.N%#ﬁ sy]&...xnsyn

> Fxpeox) S flyqs.y))

for each function symbol f, and the definition

(x <y) = (x=1 v x=y).
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2. The Semantics of Lucid

In this section, we define the programming language LUCID
and describe a method for representing and proving assertions about LUCID
programs. The reader is referred to Ashcroft and Wadge [1,2] for a
complete description of LUCID with detailed examples and discussion;
~ we give only the definitions and some illustrative examples,

LUCID is based on the idea that the value of a variable within
a program is not just a single member of some data domain, but a history
of the values that the variable has taken during the execution of the
program. Time is considered to pass in discrete units, and so the domain
of a variable is a set of the form [w ~ A] - the set of all maps from the
natural numbers to some data domain A. If the value of the variable x
i{s h, then at time t ¢ w, the value of x is h(t). For any particular
input to a program, each variable in the program takes exactly one value
in the set [w - A], and hence the semantics of LUCID tells us how the
value of each variable is assigned. The result of a program's "execution"

i{s the value of the output variable at some time. The time at which the

output variable represents the result of the program is, in general,
determined by the values of other variables at other times. Let us take,
as an example, a LUCID program that finds the largest square number not

exceeding its input:

first X =0

next X = X+1
square = XX

output = square as_soon as (next square) > input
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In this program, the symbols "{nput" and "output" are respectively the

input and output variables, and the symbols "X" and "square" are

auxiliary variables. The first two statements assert that the initial

value (at time t=0) of X is 0, and that at time t+1 the value of X is
X{t)+1. Hence X is the sequence <0,1,2,3,...>. The third statement

asserts that the value of square at any time t is X(t)*X(t); hence square

is the sequence <0,1,4,9,...>. The final statement asserts that the

value of the output variable is the value of square at such time t as

square (t+1) > input(t+1). We consider the value of the input variable

to be constant through time, i.e. input is a sequence <n,n,...>. Furthermore,
the result of an gs_soon as expression is constant through time; hence

the value of output is constantly square(t) where t is the least number

such that square(t+1) > input, i.e. output is the largest square number not
exceeding input. Observe that each statement of the above program is not
only an executable command (in that it can be used to generate a computation
sequence) but also an assertion; the value of a variable (as a sequence)

is fixed for any given input, and the statements of the program are
equations that must hold for an assignment of values to the variables to

be correct. At this point, it becomes apparent that some means for handling
non-terminating computations must be included. For example, if the

definition of X is as above, then the statement
output = X+10 as_soon as X < 0

is non-terminating because there does not exist a time t at which

X(t) < 0. In this case, the value of output would be "undefined", and
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the most elegant and usable way to formalize this is with fixpoint
semantics. With fixpoint semantics, a particular element of the data
domain is singled out as the element to represent "undefined"; as a
result, all functions may be considered to be total, thus simplifying
the equational approach outlined above. Hence, in the case where the
conditional part of an as_soon as expression is never true, the expression
takes the value undefined,

We now give the full syntax of LUCID; the main constituent of
a LUCID language is a continuous, three-valued MVL (Z,{A},D). The machine
operations and tests are given by the alphabet Z; the interpretations
in {A} determine the semantics of LUCID programs over L, but note that
the breadth of {A} does not affect the syntax or semantics since inter-
pretation is with respect to a single member of {A}. The derivation
system D is the basis of the proof system; we will discuss this in section
3. In order that expressions can be formed which take w-indexed sequences
as values, we duplicate the alphabet I so that each new symbol is the point-
wise extension to w of the symbol that it duplicates. More precisely,

(assuming that I is n-sorted) let I' be the 2n-sorted alphabet defined by

! .. = 4 .
<s]...sk,1> <S]"'sk’1>

! . = {f':felX .}
<(s]+n)...(sk+n),1+n> <s]...sk,1>

where SEREREL and i range from 0 to n-1 and kK € w. The sorts i+n are
the sequences of sort i; thus if ¢ ¢ Z<A > then ¢' is a constant of sort

i+n, and cA will be interpreted as <cA,qA,...> where Cp is the
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interpretation of c. If f e I then f' is a function that

<s]...sk,i>
takes sequences of sorts Sqsee+sSy 3S arguments and produces a sequence
as a result; more precisely, if Z],...,Zk are sequences of elements of
sorts SyseessSy respectively, and if fA is an interpretation of f, then

the value of fA(Z1""’Zk) is a sequence where
falZys a2 ) (1) = (24 (1), .00, (1))

j.e. f' is the point-wise extension of f. We now obtain ZL from L' by

adding the symbols

first, and next., each of type <i,i>
23,5000 35S, of type <in,n>

fol lowed in of type <ii,i>

Ei of type <i,i-n>

=5 of type <ii,0>

where i ranges from n to 2n-1. We will omit the type-specifying sub-
scripts, since the types will be clear from the context. The operator

first produces a constant sequence, each member of which is the initial
member of the argument. Hence first <aj,a;,...> = <3gs3),...>. The
operator next truncates the initial member of its argument; thus next
<a0,a],...> = <a],a2,...>. The binary operators as soon as and followed by
will be written as infix; the operator followed by has the property that for

any sequences X and Y,

first (X followed by Y) = first X

and next (X followed by Y) Y.
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Hence the followed-by operator concatenates the initial value of X to the
sequence Y; this is used to eliminate definitions of the form

"first X = s; next X = t", replacing them by "X = s followed by t".

The operator E is used to extract the initial value of a sequence, not

as a constant sequence, but as an individual element. Thus E(<a0,a],...>) = a,-
This operator is needed for technical reasons; we will dispense with it in

the next section. Finally, we have added new equality predicates for each

sort from n to 2n-1. The reason for this is that when L' is formed, the
equality predicates in I {(and, note, the logical connectives v and ™)

are duplicated, but their interpretation is point-wise. For example, if ='

is point-wise equality, then the value of
0,1,2,3,4,5,...> =' £0,0,2,0,4,0,...”

is the sequence <T,F,T,F,T,F,...> whereas strict equality returns "F"
since the sequences are distinct. We need a strict equality predicate
for each sort if the alphabet is to qualify as a first-order alphabet.
We also need the strict equality for technical reasons. To distinguish

the point-wise and strict equality, the former will be written ='.

L

We can form terms from I~ just as from any other many-sorted

alphabet. A LUCID-term is a member t of (W L( ))1 where i > n-1 and

Zo(X
t contains no occurrences of = or ='. Note that t cannot contain quantifiers,
L

since we are considering Z-(X) rather than (ZL)+. Note also that

function symbols from I, and the operator E are precluded. Only the

duplicate symbols denoting point-wise extensions, and the LUCID functions
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are permitted. We do not allow = or =' because they are not continuous;
"~comparisons for equality are made via a computable form of equality, which

is included in the basic alphabet Z. Now, a Lucid-module is an unordered

set P of assertions, each of the form

first X = s
next X = t
or X=1t

where s and t are LUCID-terms and X is a variable name. The following
constraints are placed on the assertions;
(1) Each variable is defined exactly once by one of the two
assertion types. This is with the exception of a distinguished

set of input variables which are not defined, but may be

used in terms just as constants.

(i) If a definition of the form first X = s occurs in P, then
the term s must be quiescent. A quiescent term is one which
always evaluates to a constant sequence; we define the set
of quiescent terms (which depends, in part, on P) inductively:
a constant of Z' of sort > n-1 is a quiescent term, as is an
input variable; if t],...,tk are quiescent terms and f 1is a
function symbol of Z , then f'(t1,...,tk) is a quiescent
term; any term of the form (first t) or (s as_soon as t) is a
quiescent term; finally, if the definition Y =t is in P and t is
a‘quiescent term, then Y counts as a quiescent term.

(i11)  There is a distinguished output variable O which is defined

by an assertion 0 = s where s is quiescent.
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Let P be a Lucid module; we will write P[I],...,Ik] to distin-

guish the input variables I]""’Ik' Given an interpretation A ¢ {A}

and input values Apser ey (note that I],...,Ik have sorts, and the sort of an

input value for Ij must be sj-n where Ij has sort sj) we define a system of

equations over c.p.o.'s such that the least fixpoint of the system (viewed

as a continuous function) provides the values of the variables in P. The

c.p.o.'s that we use will be the point-wise extensions of the c.p.o.'s in A.

We have already described informally the interpretation of the new symbols

in £7; we now give a formal definition. For A ¢ {A} let A' be the

L

2.

L -algebra defined as follows:

1.

For i < n, A% = Ai

For i > n-1, A% = [w > Ai-n]’ the set of all maps from w

to Ai-n

For f e I, fj = f,

For f ¢ Z, fA. is the point-wise extension of fA to
[w~> Ai-n]’ and = s true equality on [w > Ai]
For sequences <a0,a1,...> and <b0,b],...>,

first A.<a0,a],a2,...> =}<a0,a0,a0,...>

next A.<a0,a],a2,...> = <a],a2,...>

<a0,a],...> followed by A.<b0,b],...>
=:<a0,b0,b],....>

For sequences <a0,a1,...> and <b0,b],...>, the latter being
in Aﬁ, if there exists j such that

b0 = b] = .., = bj_] = FA and bj = TA
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Calling the resultant module P'[I1,...,Ik], we see that P' is a set of

equations

= t][x1,...,xm,11,...,1k]

—
i

»

tm[X] IR ,meI'I L L] QIk]

xm

where t],...,tm are LUCID terms with variables in X1,...,Xm and I],...,Ik.
Given A ¢ {A} and assignments Z],...,Zk of constant sequences to the input
variables I]"“’Ik’ the Lemma shows that P' represents a continuous map
from

[w~ Asi“n]x...x[w > Asémn]

to itself, given by

P'[Z-l,-o- ,Zk](w-l ,...,wm)

= <t]A[N1,...,Nm,Z],...,Zk],...,th[w1,...,wm,Z],..,,Zk]Z

Note that the sort of the variable Xj is sj, and that the output variable
of P is one of X],...,Xm. Now the Fixpoint Theorem states that
P'[Z],...,Zk] has a least fixpoint. This fixpoint is a tuple <w',...,w$>,
and assuming that the output variable is X], the value of P on input Z]"“’Zk
is Wi (recall that the output variable is quiescent, and so Wi is a constant
sequence).
Having defined the value of a LUCID module on a given input,
we can now consider each module to be a function; the value PA(Z],.;.,Zk)
is EA.(WQ) where <W',...,W$> is the least fixpoint of P'[Z],...,Zk],

Z],...,Zk being the constant sequences

<Z]’Zl"">""'<Zk’zk"">
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respectively. It is easy to show that PA is continuous with respect

to the flat c.p.o.'s in A, and this suggests the possibility of LUCID
modules referencing other LUCID modules in the same way as they reference
basic functions in Z, namely, as point-wise extensions. Let us define a

LUCID-program to be an ordered set {P1,...,Pm} of LUCID modules. We

attach the name pj to each module Pj and we will allow the names
p],...,pj_1 to appear in the module Pj in the same contexts as basic
function symbols. Note that the sorts of the input variables and of the
output variable of Pj determine the type of the symbol pj, j.e. if
Iysenssl
0 of Pj has sort i, then the type of the symbol pj is <s],...,sk,1>.

K have sorts Sqse-+sSy respectively, and if the output variable

Given A ¢ {A}, we define the semantics of LUCID programs by induction

on the number of modules (observe that if {P],...,Pm} js a LUCID program
then so is {P1,...,Pj} for each j <m). Form =1 the semantics is

as above, since P1‘cannot reference any other procedures.+ The value
ascribed to Py is (P1)A' Now assume that the semantics of {91,...,Pj_]}
has been defined; let Q1,...,Qj_1 be the (continuous) functions ascribed to
p],...,pj_] respectively., Let A'[Q],...,Qj_]] be the extension of A; to

the symbols Pyse--sPyy SO that (pR)A[Q],...,Qj_]] is Q,. Then the value
for Pj is (Pj)fA[Q],..-,Qj_1] . Hence, the tree-like structure of {P],...,Pm}
allows us to define the function computed by each module inductively,
starting at the tips of the tree and proceeding towards the root.

Example We define two modules - one that calculates the square root of

an integer, and another that decides whether or not its input is the

¥ Note that the definition precludes recursion of any form; the results of
this paper will be extended to include recursion in a future paper.
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the sum of two squares. The basic alphabet consists of the arithmetic
operators +, - and *, the relational operator > ("greater than") and the
weak equality predicate EQ. Note that all of these operators return the
value 1 if either argument is 1. The constants in the alphabet are the

natural numbers {0,1,2,...}. First, here is the square root module:

root(N):

first X = 0
next X = X+1

first ¥ =1

next Y = Y+2*X + 3

0

X as_soon as Y > N

The input variable is N, and the output variabie is 0. This program
has the property that for N = 0,

0%0 < N < (0+1)*(0+1).
We will formally prove this in section 3. The decision procedure for
integers that are sums of squares is

sumsquare(I):

first X = 0
next X = X+I
S1 = root(X)*root(X)
S2 = root(I-X)*root(I-X)
sum = S1 + 82
test = (sum EQ I) v (X EQ I)
0 = (sum EQ I) as_soon as test



- 32 -

The strategy of sumsquare is to check if

root(x)2 + root(I—X)2 = ]

for some X between 0 and I. This probably isn't the most efficient
way of solving the problem, but the programs do illustrate the use of
LUCID modules. The principal advantage is that "block structure" can
be implemented; the variables of root are local to the procedure body
and it is correct to think of the auxiliary variables of root as being
distinct and completely independent of the variables of sumsquare. The
reader has probably noticed that we have yet to use a construct of the
form IF-THEN-ELSE. The reason why IF-THEN-ELSE is not included as a
LUCID function is that it can be a member of Z. For each sort i <n
we yse a ternary function symbol ITE of type <0ii,i> and add to D the

axiom

vb(¥x,y((b + ITE(b,x,y) = x) & (™ ~ ITE(b,x,y) = y)
& (b = L » ITE(b,x,y) = 1)))
This axiom completely characterizes IF-THEN-ELSE and it is easily
checked that ITE is continuous as defined. As an example of the use of
ITE, here is a module that find the largest sum of squares not exceeding
its input (in a rather inefficieht way)

largest-sumsquare(I):

first X = 0
next X = X+I
first N = 0
next N = IF sumsquare(next X) THEN
next X ELSE X
0 =N as soon as X EQ I

We prefer the infixed IF-THEN-ELSE to ITE,
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We now turn to the verification of LUCID programs. Let
{P],...,Pm} be a LUCID program, and let us assume that we are to verify

a number of input-output conditions for the procedures, i.e. for each

procedure Pj we are given IL-formulae rj[x] and wj[x,y] for which it is
alleged that whenever the input condition rj[x] holds, the output
condition nj[x,y] holds where y is the result of the computation of Pj
on input x (for the sake of brevity, we will consider all modules to
have but one input variable - the extension to several input variables
is quite trivial). Since some of the modules in {P1""’Pm} reference
other modules, we would Tike to make some assumptions about the results
of modules references within modules. The tree-like structure of
{P]""’Pm} is useful here; if we show that P] satisfies the alleged I-0
condition without making any assumptions (for P1 cannot reference any
other modules) and then show that for j = 2,...,m, Pj satisfies its I-0
condition where we assume that P1,...,Pj-] satisfy their I-0 conditions,
then we have proved that each module in {P],...,Pm} satisfies its I-0
condition. The main result of this section is that there are formulae

Orseens and W1,...,Wm such that the above proof procedure can be

formalized as

{A'} [=(e; & ... & q>j_]) > ¥

for j = 1,...,m. Note that {A'} is the class {A':A ¢ {A}} of gk
interpretations, and that we are verifying the properties of the modules

in all of the machine interpretations in {A}.



- 34 -

We denote the LUCID program {Pl""’Pm} by P, and for A ¢ {A},

we denote the extension of A to the module names PysesesPp by A_, where the

p
symbo]1 P is interpreted as the function (Pj)A - i.e. the function
computed by Pj under the interpretation A. We denote the conjunction

of the assertions in Pj by (&Pj), and define the formula Wj to be

(first I =1 & Tj[E(I)] & (&Pj)) - wj[E(I),E(O)].

The formula Wj asserts that if the value of the input variable is
constant, the input condition is satisfied, and the assertions of the
module are true then the output condition is satisfied where the value of

the (constant) output variable of Pj is substituted for y. Now let ¢j

be the formula

VX(Tj[XJ - ﬂj[x,pj(x)]).

The formula @i expresses the assumption that Pj satisfies its I-0
condition.

Theorem A Let p = {Py,...,P_} be a LUCID program, and let 1. and m.
—_— 1 m i i

be I-0 conditions for i = 1,...,m. If, for j = 1,...,m, we have
] —
then each module of P satisfies its I-0 condition.
Remark We will consider the symbolic demonstration of these semantic
implications in section 3. We have here a sufficient condition for

the modules to satisfy their I-0 conditions, but it is not always

necessary. We will consider necessity below.
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Proof Note that the class {A'} of interpretations does not specify
the interpretation of the module names py,...,p . The meaning is that
the interpretation of the latter can be arbitrary, but this is of no
consequence since the procedure names only appear in the bodies of
the modules, and in the conclusions of the formulae ®j.

Given A ¢ {A}, we must show that Ap {=@, for i =1,...,m.
We use induction on i1; let A ¢ {A} and let z be an input to Pi such
that A, |==T1[ZJ. Let u be the assignment of variables of P, so
that u(l) = <z,z,...> and the auxiliary variables of Pi are assigned the
Teast fixpoint of the system P;[u(I)]. Using the premiss of the theorem
and the induction hypothesis, we deduce that Ap fé=n1[E(I),E(0)] and
hence A, |==<1>,.l as required.

Theorem A gives a sufficient condition for the I-0 conditions
on P to be true. We are interested in the circumstances under which
those conditions are necessary, the reason being that we want to apply
our completeness result for many-valued logic to get a symbolic method
of verification that will always succeed in verifying conditions that
are true. The choice of the formulae T, and T has been unrestricted
so far, but for the converse of Theorem A to hold, we must impose a
number of constraints. First, we allow neither Ty nor m, to contain
occurrences of the procedure names PposeesPy: Secondly, the formula
ni[x,y] must be monotonic in the variable y, i.e. for each A ¢ {A} and
assignments of variables u and u', if u and u' agree except possibly

u(y) < u'(y) where < is the flat c.p.o. on the domain of y, then

hA[u]('ﬂi[x;y]) < hA[u.](ni[x,y]).
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This constraint corresponds to m being an "admissible predicate" as
used in program verification by computational induction [7]. Thirdly,
the formula T must be categorical in y, i.e. for all x such that Ti[X]
holds, if there exists a y such that ni[x,y] holds then there exists

exactly one such y. This can be expressed as
{A} |= Vx’-y!y.(T-i [X] & Tf.i[x,,Y] & TT.][X,‘Y.] -> y=y')

and if this is satisfied, then T and 5 effectively define the function
computed by Pi’ The final condition that must be satisfied is that if a
module Pi makes reference to a module Pj (hence j < i) then the parameters
given by Pi to Pj must satisfy the input condition of Pj. This amounts

to ensuring that the I-0 conditions provide adequate information for a
proof of correctness. We formalize this condition as follows: let rj[x]
be the formula that comes from Tj[X] by replacing each symbol in T, by

its counterpart in Z' (recall that T is a Z-formula); hence a symbol of
type <s]...sk,1> is replaced by its counterpart of type
<(s]+n)...(sk+n),i+n>. Now for each occurrence in P, of a term of the

form Pj(t) we must have
{A'} |= o1 & ... &0y 1 & T_i[E(I)] & (&P].) > TJ![t].

If all of these four constraints are satisfied, then we say that the I-0

conditions are admissible.

i
be admissible I-0 conditions for i = 1,...,m. If each of the I<0 conditions

Theorem B Let P = {P],...,Pm} be a LUCID program, and let t; and m,

is correct, then for j = 1,...,m we have
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{A'} |x:" (¢-I & " & Qj_]) +IPJ'-

Remark  This is the converse of Theorem A,

Proof We use induction on j, and simultaneously prove
(*) For j = 1,...,m if A" is some extension of A e {A}
to the module names p1,...,pj such that

+
A M@l&“.&%

then for k = 1,...,j and all assignments u such that
A ‘=h 7, [x] we have
(pdy + (ulx)) = (pk)AP(u(x))

i.e. the interpretation of Py by A+ agrees with the function

computed by p at all points where the input condition of Pk

is satisfied.
We start with the case j = 1. Let A ¢ {A} and assume that the premiss
of ?] is satisfied by an assignment of variables u. We must show that
A |mh w][E(I),E(O)], thus demonstrating A' l=h ¥y (note that the latter
is vacuously true if the premisses of ¥, are not true). If the auxiliary
variables of p; are X;,...,X then <u(X]),...,u(Xm)> is a solution of
Pi[u(I)]. This solution, however, is not necessarily the minimal solution.
Let u' be an assignment of variables that agrees with u except that
<u'(X]),...,u'(Xm)> is the least fixpoint of P{[u(I)]. Since the I-0
conditions for P are correct, we know that A' |=D' wi[E(I),E(O)]. But
u'(0) < u(0) and since ms is monotonic in the variable y, we have

Al Ish s [E(I),E(0)}] as required.
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To verify the condition (*) for j = 1, we note that
A |=h 11[x] implies both

Ap |:h w][x,p](x)] (since P is correct)

and At I:h wi[x,p(x)] (by the above proof).

Now the categoricity of m; in the variable y shows that
(Pl)AP(U(X)) = (P])A+(U(X))

as required.

Now assume the results to be true for j' < j,‘where ji>1.
Let A ¢ {A} and Tet A+ be an extension of A to the symbols p],...,pj_1
such that |

+
A |=®'I&...&©j_-|-

We must show that At |==Wj. Let u be an assignment of variables such
that the premisses of Wj are satisfied. We want to argue along the
same lines as in the case j = 1, but first we must argue that
<u(X1),...,u(Xm)> (where Xys---oX, are the auxiliary variables of Pj) is

greater than or equal to the least fixpoint of Pj[u(I)]. In the case j

this was immediate since P, does not reference any other modules. In this

J

case, however, Pj may contain references to the modules P],...,Pj_].

The

interpretations of p],...,pj_] are furnished by A+, and we can invoke (*)

to deduce that the functions (pk)A agree with (pk) + at points that
P A

1,

satisfy the input condition for Pi- By the conditions on the modules in P,
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we know that if a term pk(t) occurs in Pj, then each element of the
sequence t (when interpreted in A+) satisfies the input condition Ty
Hence the vector <u(X]),...,u(Xm)> is also a solution to Pj [u(I)]

in the interpretation A', and we can apply the same reasoning as in case
J = 1 to deduce that A' |= -Trj[E(I),E(O)].

The verification of (*) is as in the case j = 1, using the
truth of (*) for j-1 and the proof above that ) &80 4 ]==Tj. This
compietes the proof.

We have shown that the verification of a wide class of I-0
conditions is equivalent to the verification of a semantic implication.
The advantages of this equivalence are twofold: first, the semantic
implications only require manipulation of one module at a time - hence
the complexity of proofs is reduced; second, we are able to use the
equivalence to apply completeness results, and study the characterization
of the LUCID control functions by formal axiom systems. This is the topic

of the next section.
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3. Formal Derivation Systems for LUCID

In section 2, we studied the pure semantics of LUCID without
regard to axiomatizations of the LUCID control functions. In this section,
we present an axiomatization that is the basis of a formal (symbolic)
proof system for LUCID programs. We will see that the axiomatization
completely characterizes the LUCID control functions for the purpose of
program verification.

Given a continuous, three-valued MVL we have constructed
extensions that encompass the syntax and semantics of LUCID programs.
However, our extensions are not quite strong enough to axiomatize the
fact that LUCID control functions operate on domains of the form [w -~ A]
and that the basic operations act point-wise on these domains. What we
must do is add an indexing set to the extensions, and express the above
two concepts by adding an operator that extracts individual values from
indexed sequences. Hence the characterization problem for the LUCID control
functions reduces to the characterization problem of the canonical indexing
set, namely w; since w is not characterizable (as noted in the Introduction)
1t appears that the LUCID control functions cannot be characterized.

This is true in the general case, but for the purpose of program verifica-
tion we use the LUCID functions in a restricted way, namely within programs
and in the absence of quantifiers. For this case, a relatively weak

axiomatization of the indexing set suffices to characterize the LUCID

functions.
For the remainder of this section, (Z,{A},D) will be a continuous,
full, three-valued MVL, where © has n sorts. We have constructed zL as a
L N

2n-sorted alphabet, and we extend £~ to a (2n+1)-sorted alphabet &

as follows:
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(1) We alter the type of the symbols E1 (of type <i+n,i> for
1<n) to <(2n)(1+n),1>. Ey 1s the operator which extracts
ind{vidual elements from sequences which are indexed by the
domain of sort 2n.

(i1) We {ncTude the symbols 0 e z<x.(2n)>’ =(2n)*< ¢ Z¢(2n)(2n) ,00

and s € Z¢(zn),(2n)>*
The new symbois allow a weak axiomatization of w; the purpose of 0
should be clear, and s is the successor function. < and = are the "less
than" and identity relations respectively. We now extend the derivation
system D to include axioms for the index set and for the LUCID control

functions. First, the indexing set:

1. vx(x=0 ¥. Okx)

12, ¥x(0 < s(x))

13, ¥x(x < s(x))

14, vx(x > 0 + 3y(x = s(y)))

15, vx,y(x <y + (y = s(x) v s(x) <y))
16. VX, ¥,2{X <y &y <z+x<2)

17. Yx((x < x))

18. X, y(X <y VvVy<xvxsy)

19, VX, y(x <y > x #y).
This axiomatization is fairly standard. Note that the domain of sort
2n is not meant to be a c.p.o. in any sense, There is no undefined element,
and hence all operations and tests on the domain of sort 2n are total (i.e.
tests return either T or F). The axioms for the LUCID functions are as

follows:
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vX,z{(E(z,first X) = E(0,X))
vX,z(E(z,next X) = E(s(z),X))

¥X,Y(E(0,X followed by Y) = E(0,X))
¥X,Y,z(E(s(z),X followed by Y) = E(z,¥))
vX,B,z(E(z,B)&vz'(z"" Tz - -E(z',B))

+~ vz '(E(z',X as _soon as B) = E(z,X)))
YX,B(Vz(3w(w < z & E(w,B) # T) v 3w(w < z & E(w,B) = 1))

+~ z(E(z,X as_soon as B) = 1)

The first two axioms define first and next respectively. The next two

axioms define followed by and the Tast two are for ags_soon as. Finally, we
include axioms that define the dupiicate symbols in %' to be point-wise
extensions of the symbols in I, and an axiom which states that if some
member of a sequence is equal to x, then there exists a minimal indice such
that the corresponding element of the sequence is x. This imposes a
constraint on the order < on the index domain, but note that it does not
make < a well-order. The axiom is included so that as soon as is well-defined:
if some member of a sequence is true, then g§~§ggg~g§ must select the
indice of the first occurrence of T in the sequence., The axioms are as
follows:

(i) For each symbol f ¢ Z,

VX]ae e X (VZ(E(Z, 1 (Xg L0000 X))
= f(E(z,X1),...,E(z,xk))))
(11) VA, x(3z(E(z,X) = x) - Bminz(E(z,x) = X))

where x(¢[x]) abbreviates the formula

E'rrn‘n
3z(¢[z] & vz'(z' < z > ~(o[2'D)).
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N

Let D' denote the result of extending D as above. Now {A} is

the set of all countable models of the axioms in D; let‘{AL} denote the

N. Each member AL of‘{AL} can be

set of all countable models of D
considered as a triple (A,A+,N) where A ¢ {A}, N is a model of the axioms
[1-19 and

R L R IR
Note that A" is a proper subset of AN, since the latter is uncountable.
Hence A" does not contain all N-indexed sequences, but this is of no

consequence. In section 2, the zt

-interpretation A' was defined, and
it should be clear that A' is essentially the same as (A,A”,w). We
showed how to define the semantics of LUCID programs under interpretations

of the form A', and the definition of semantics under the interpretation AN

N are continuous -

is straightforward: all of the functions on the domains of A
a fact which is easily verified. Hence for each LUCID program P = {P1,.‘.,Pm}
and interpretation (A,AN,N) we can define the function computed by P

under the interpretation AN. If N is not w, then we can consider P to be
executing with "non-standard" control functions, since N is a non-

standard model of the axioms for w. It seems possible that non-standard
control functions will cause P to compute different functions; such is

not the case, as we will show. The axioms I1-I9 are strong enough to ensure
that the function computed by P under the interpretation AN is the same

as the function computed under the interpretation A, This result shows

that the axioms for the LUCID functions characterize them for the purpose

of computation with LUCID, and a consequence of this is the completeness
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result for program verification., Before proving the characterization of
the LUCID functions, we prove some technical results,

Lemma 1 Each model N of the axioms I1-I9 is an end-extension of w.

Proof For N to be an end-extension of w means that N contains a copy
of w, and for each element x of the domain of N, either x is a member of
the copy of w, or x is greater than every element of the copy of w,

under the order N The copy of w within N is clearly {ON.sN(ON),...}.

If x is a domain member that is not in this set, then we can prove X >y
for all y in the set by an induction argument: by axiom I1, x > 0; if x > ¥
then axiom 15 asserts that either x = s(y) (in which case x 1s in the set)
or X > s(y). By hypothesis, only the latter can be true, and hence x > y
for all y in the set. This completes the proof.

Lemma 1 is simply an assertion that the axioms I1-I9 have a
certain degree of strength. It shows that w is an "initial segment" of
each model of the axioms. Let N be a model of I1-I9, and let X be an
N-indexed sequence. We say that X is finitary if there exists n e w
such that X(n) = X(z) for all ze N such that z > n (note that we now consider
a1l models N of I1-I9 to contain w). Hence X is finitary if it only contains
finitely many distinct elements. The next lemma shows that LUCID terms
preserve finitary sequences.

Lemma 2  Let t[X;,...,X ] be a LUCID term, and Tet A e {A} and N be a
N

model of I1-I9, Let u. be an assignment of variables to A" such that each

u(xi) {s finitary. Then the sequence hAN[ ](t[x1,....xk]) is finitary.
u



- 45 -

Proof We use structural induction on t. If t contains no LUCID
functions, then t is {essentially) the point-wise extension of a Z-term.
In this case, the result is immediate. If we assume that result to.bé\tfue

for the terms s and s', and consider the cases where t is first s, next s,

s followed by s' and s as soon as s' then the result follows immediately.
Note that a first or as _soon as expression always evaluates to a constant
sequence, which is clearly finitary. This completes the proof.

Given that LUCID terms preserve finitary sequences, we now
consider the interpretation of terms in the standard control structure w,
and in a non-standard structure N. Given an w-indexed sequence X and an
N-indexed sequence Y, we say that "X is contained in Y" if for each n ¢ w,
X{n) = Y(n}.
Lemma 3 Hypothesis as in Lemma 2. Let u' be an assignment of variabtles

to A® such that u’(xi) is contained in u(X;) for i = 1,...,k. Then

h ., (t) is contained in h N (t).
A°[u'] A[ul®
Proof We use structural induction on t. The case analysis is as in

Lemma 2, and the only non~trivial case is the terms of the form s
soon as s', where the result is assumed true for s and s'. We must

show that if h (t) is undefined, then so is h N (t) (the converse
A [u'] A'[u
is trivial since h (s') is contained in h N (s')). This,
ALu'] 4 A [ul

however, is immediate by Lemma 2, since if it were not true then we would

have

h (§') = CFpoFpsunesFpseed
Aw[u‘] A A A
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and

h (s'){(z) = T, for some z outside of w.
AN[u A

which is a contradiction. (Note the use of the induction hypothesis

here.) If both h N (t) and h " (t) are defined, then the latter
. u

A [u] A°[u']

must be contained in the former since h o ](s')(n) must be true for
A [u'

some n € w. This completes the proof.

Given a LUCID program P = {P,,...,P }, A ¢ {A} and a model N

N N

of I1-19, let AP denote the extension of A" to the symbols Pyser-sPpy SO

that pj is assigned the function computed by Pj in AN.

The Characterization Theorem For each model N of I]§I9 and i = T,...,k

the functions (pi) , and (pi) y are identical.
A A

Proof We prove the theorem for the case k = 1. The extension to all k
is quite trivial, given the method of section 2 for assigning semantics
to LUCID programs. Let a be an input to the module Pis and let I and
I' be <a,a,...> and <a:i e N> respectively. Now (py) (a) is the least
A
p
fixpoint of the system Pi[I] of equations under the interpretation AL,

this fixpoint is, by the Fixpoint Theorem, of the form
TR FORUIVIR & FUUI o AURROINE 3 P S

where the assertions of Pi[I] are

t

Xy = tXqse e X 1]

><
t

m - tm[x-lg " s 3xm,I]



- 47 -

The same is true of (p1)AN(a), except that the interpretation of the

P
terms t],...,tm is in AN rather than A“. Now each element of the above

tuple is a sequence, and the evaluation of the least upper bound of

sequences is point-wise., It follows that we need only show

(DL l]) (1)
and hAw(tg[L,...,L,I]) (2)

to agree at points in w (i.e. (2) is contained in (1)) for all j € w
and i = 1,...,m. We will then have shown that the least upper bounds agree
at points in w,and since the output variable is quiescent, we will have

proved that

(p]‘)AN(a) = (p1)Aw(a)

as required., But the sequences L and I are clearly finitary; hence
inductive application of Lemmas 2 and 3 shows that (1) and (2) are finitary,
and agree at points in w for all j e wand i = 1,...,m. This completes
the proof.

We now return to the verification of LUCID programs. In section
2, we defined the formulae ¢1 and Wi; if, in the formulae ¥,

i
the terms E(I) and E(0) by E(0,I) and E(0,0) respectively, then Theorems

» we replace

A and B assert that a LUCID program P = {Py,...,P } is correct in all
interpretations in {A} iff

w_...
A]‘W&'”&%ﬂ+%
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for j = 1,...,k, and all A ¢ {A}. If we show this to be equivalent to
(AL} |- (0 & ... & @j_l) > Y,
for j = 1,...,Kk, then we can invoke the completeness theorem for three-
valued MVL to deduce the equivalent
oV |- (0 & ... &0y 4) > ¥y

which gives us a complete symbolic method of verification.

The Verification Completeness Theorem Let P = {P],...,Pm} be a LUCID

program. Then the modules in P are correct with respect to admissible I-0

conditions Tys T if and only if

O S R 7 (1)

for j = 1,...,k.

Proof We use the method outlined above, i.e. we show that

(0] .
A® = (0 & ... & ¢J._1) > ¥y (2)

for all A ¢ {A} iff

L
(AT} [= (27 & ... 805 1) > ¥y

; (3)

First, if (3) holds, then (1) holds by the completeness theorem for three-

N is consistent.

valued MVL. Hence (2) holds since the derivation system D
The converse is not quite so trivial. If (2) holds for all A e {A},

then let AL € {AL} and assume that

A=y b aey
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and that u 1s an assignment of variables such that the premisses of wj

are true, 1.e.
A l=h first I = 1
L
and A" |= TJ[E(O,I)]
L
and A I“h (&Pj)
Now the values of the variables of P:j under the assignment u represent a
solution to the equations in Pj[u(I)]; however, they need not represent the
least solution. Let u' be the assignment of variables such that u' agrees
with u except that the variables of Pj are assigned the least fixpoint of
Pj[u(I)]. By the Characterization Theorem, we know that
u'(0)(0) = (py) ,Lu(1)(0)]
, A

P
and so, since Pj is correct with respect to the I-0 conditions 75 and My

we have

A =y (D) E(0)]

Now u'(0) < u(0), and wj[x,y] is monotonic in the variable y. Hence

AL |=U ﬁj[E(O.’I) !E( ’0)]

as required. This completes the proof.

The Verification Completeness Theorem shows that if a program is
correct in all models of the machine axioms, then a symbolic proof of the
correctness if possible. A corollary of this is that proof by contradiction
can be used without sacrificing completeness, i.e. the program P is

correct if and only if we can deduce a contradiction from the assumption
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Conventional techniques, such as resolution, can be applied to find
contradictions from such assumptions, and it is certainly of practical
advantage to be able to incorporate proof by contradiction into an implementation.
We end this section by formally verifying the program
{root, sumsquare}

of section 2., The I-Q conditions for root are

Tr[x] 1 x20

m [xyd s vty s xo & x < (y1)*(y+1)
and the I-0 conditions for sumsquare are

TS[X] 1 xz20

X))

ws[x,y] sy vy & (y » 3a,b(a*atbh*b
& (=y -+ va,b(a*atb*b # x)).

Note that our alphabet is normal arithmetic on the integers. The first
conjunct in e asserts that y is defined; this is not needed in o since
nr[x,L]'can never be true, whereas ﬂs[x,l] is always true in the absence of
the conjunct y v =y. To verify root, we must show that D l-wr. The
deduction theorem for (virtually any) system of logic states that to prove
o+ B it suffices to take o as a hypothesis, and prove B without generalizing

over any free variables of a. Hence we make the hypotheses
(1) first I =1
(2) E(0,I) = 0
(3) &root
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First, we demonstrate the termination of the statement
0= X ag.so00.88 ¥ > N
Using the termination rule
VZ(Z > pext Z + ¥n3w(E(w,Z) =2 n)
and noting that
Y+ 2% +3>Y
i.e. next Y > Y, we can use the rule to introduce a constant c and the
deduction
E(c,Y) > E(O,N) & vw(w < ¢ » E(w,Y) < E(O,N)) (4)
By the axiom for as_soon as and (4), we can deduce E(0,0) = E(c,X). We
must therefore show that
E(c,X*X) < E(O,N) < E(c,(X+1)*(X+1))
First, we show that Y = (X+1)*(X+1). We use the LUCID induction formula
(first P) =T & (P+nextP) =T >P =T

This formula is a consequence of the axiom (ii) on page 42 .
The variable P is of sort n, i.e. is a sequence of truthvalues. Here,
we substitute the formula Y =' (X+1)*(X+1) for P; note that =' is point-
wise equality. Using the point-wise nature of =', + and * we find that
first P is

first Y =' (first X+1)*(first X+1)
ie. (1 =" (0+1)%(0+1))
where we use the definitions of X and Y to reduce the expression. We
clearly have an arithmetic identity, and so we conclude that first P
is true. We must now show

P -+ next P
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This reduces to

WW(E(w,Y =t (X£1)*(X+1)) + E(s(w),Y =" (X+1)*{(X+1)))

Using the definitions of X and Y, this reduces to
y = (x1)*(x41) > y+2*x+3 = (x42)*(x+2)

which is an algebraic truth. We now have
E(c,Y) = E(c,(X+1)*(X+1)) (5)
Combining this with (4), we get

E(O,N) < E(c,(X+1)*(X+1)) (6)

Wwhich s half of what we set out to prove. To complete the proof, we
must show that

E(c,X*X) < E(O,N)
We use proof by contradiction. Note that both E{c,X) and E(O,N) are
defined, the former by nature of its definition, and the Tlatter by
hypothesis (2). So we can assume

E(c,X*X) > E(O,N)
for the purpose of reduction. We consider two cases: if ¢ = 0 then
since E(0,X) = 0, we have E(O,N) < 0, contradicting (2). Now, assuming
that ¢ > 0, there exists c¢' such that ¢ = s(c'). Hence

E(c,X*X) = E(c',(X+1)*(X+1)) = E(c',y)
But now E(c',Y) > E(O,N). Since c¢' < c, this contradicts (4), and
completes the proof.

We now verify the module sumsquare; we must show

DI—%+WS
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and as above, we use the deduction theorem. Our hypotheses are

(1) x 2 0+ (root(x)*root(x) < x & x < (root(x)+1)*(root(x)+1)
(2)  flrst I =1
(3) 120
(4) dsumsquare
First, we show that E(0,0) v =E(0,0) holds, i.e. that the statement
0 = (sum EQ I) as_soon as test
terminates. By the definiftion of test, we need only show that
E(w,X) = E(0,I) for some w. This follows from the termination rule
x 20 & firstdZ = 0 & next Z = (Z+1) + 3w(E(w,Z) = x)
Hence we can introduce a new constant c, and the deduction
(5) E(c,test) & vw(w < ¢ » E(w,test))
Note that we do not specify which disjunct of test is true at time c;
we have demonstrated that the disjunct (X EQ I) will be true at some
time, but it is possible that (sum EQ I) is true before (or at) time c.
We now prove |
E(0,0) » Ja,b(a*a+b*b = x)
This is immediate, since by the definition of 0,
(6) E(0,0) +~ E(c,sum EQ I)
and hence
(7) E(0,0) ~ E(c,S1) + E(c,S2) = E(0,I)
The definitions of S1 and S2 show that E(c,S1) and E(c,S2) are both
squares, and hence the existence of a and b such that a*atb*b = E(0,I)
has been demonstrated. We must now show that

~E(0,0) + Va,b(a*atb*b # E(0,I))



- 54 -

We use proof by contradiction. Assume E(Q,0) and
(8) p*p + q*q = E(0,I)
for some integers p and q. We may assume that p and q are non-negative,
and we claim that root (p*p) = p and root(q*q) = q. This is to be
expected, of course, but we did not prove that root finds the exact
square root of a square number. Assume that root(p*p) # p; by (1), we
know that
root(p*p)*root(p*p) < p*p
By our hypothesis, we have removed the option of equality, and so (taking
the actual square root of each side) we have
root(p*p) < p
But now root(p*p)+1 < p, and hence
(root(p*p)+1)*(root(p*p)+1) < p*p
contradicting (1). Hence root(p*p) = p, as required. In the same way,
root(q*q) = q, and since p*p+q*q = E(0,I) there must exist d such that
E(d,S1) = p*p and E(d,S2) = q*q
But then E(d,sum EQ I) is true. Noting that p < E(0,I) and q < E(0,I),
we see that d < ¢ and this contradicts the hypothesis that E(0,0) is false.
This completes the proof.



4, Conclusions

We have seen that the control functions of LUCID can be
characterized by a formal axiom system, and that this characterization
yields a symbolic verification system, the power of which is wholly
dependent on the axiomatization of the machine functions. The constraints
placed on the I-0 conditions of programs were rather strict from a
practical point of view; in particular, the exclusion of formulae which
describe I-0 properties in terms of the results of other modules is rather
unfortunate, although, theoretically, such formulae are not needed for
complete generality.

Perhaps the most notable omission from the control structures
considered is that of recursion. A paper is in preparation in which the
characterization and completeness results of this paper are extended to
include recursion; as a bonus, the constraints on the I-0 conditions
mentioned above are relaxed quite considerably. Another control structure
that may be investigated i{s that of non-determinism, and perhaps, ultimately,
that of parallelism. We hope that the analysis of control structures will
lead to better understanding of the semantics of programming languages,

and the verification of programs.
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