The Dot-Depth Hierarchy of Star-Free Languages is Infinite*

J. A. Brzozowski

Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

AND .

R. KNAST

Institute of Mathematics, Polish Academy of Sciences, 61-725 Poznań, Poland
Received May 10, 1977

Let A be a finite alphabet and A^* the free monoid generated by A. A language is any subset of A^* . Assume that all the languages of the form $\{a\}$, where a is either the empty word or a letter in A, are given. Close this basic family of languages under Boolean operations; let $\mathcal{B}^{(0)}$ be the resulting Boolean algebra of languages. Next, close $\mathcal{B}^{(0)}$ under concatenation and then close the resulting family under Boolean operations. Call this new Boolean algebra $\mathcal{B}^{(1)}$, etc. The sequence $\mathcal{B}^{(0)}$, $\mathcal{B}^{(1)}$,..., $\mathcal{B}^{(k)}$,... of Boolean algebras is called the dot-depth hierarchy. The union of all these Boolean algebras is the family \mathcal{A} of star-free or aperiodic languages which is the same as the family of noncounting regular languages. Over an alphabet of one letter the hierarchy is finite; in fact, $\mathcal{B}^{(2)} = \mathcal{B}^{(1)}$. We show in this paper that the hierarchy is infinite for any alphabet with two or more letters.

Introduction

Let A be a finite, nonempty alphabet and A^* the free monoid generated by A, with identity 1 (the empty word). Elements of A^* are called words. The length of a word $x \in A^*$ is denoted by |x|. Note that |1| = 0. The concatenation of two words $x, y \in A^*$ is denoted by xy.

Any subset of A^* is called a language. If L_1 and L_2 are languages then $\bar{L}_1 = A^* - L_1$ is the complement of L_1 with respect to A^* , $L_1 \cup L_2$ is the union, and $L_1 \cap L_2$ is the intersection of L_1 and L_2 . Also $L_1L_2 = \{w \in A^* \mid w = x_1x_2, x_1 \in L_1, x_2 \in L_2\}$ is the concatenation or product of L_1 and L_2 .

For any family \mathscr{F} of languages let $\mathscr{F}M$ be the smallest family of languages containing $\mathscr{F} \cup \{\{1\}\}$ and closed under concatenation. Similarly let $\mathscr{F}B$ be the smallest family containing \mathscr{F} and closed under finite union and complementation. Thus $\mathscr{F}M$ and $\mathscr{F}B$ are the monoid and Boolean algebra, respectively, generated by \mathscr{F} .

* This work was supported in part by the National Research Council of Canada under Grant A-1617.

Let $\mathscr{L} = \{\{a\} \mid a \in A\}$; this is the finite family of languages whose elements are languages consisting of one word of length 1. We will write $\mathscr{L} \cup 1$ for $\mathscr{L} \cup \{\{1\}\}$. We use $\mathscr{L} \cup 1$ as the basic family of languages over the alphabet A. Now define the following sequence $\mathscr{B}^{(0)}$, $\mathscr{B}^{(1)}$,..., $\mathscr{B}^{(k)}$,... of Boolean algebras:

$$\mathscr{B}^{(0)} = (1 \cup \mathscr{L})B,$$

 $\mathscr{B}^{(k)} = (\mathscr{B}^{(k-1)})MB = \mathscr{B}^{(0)}(MB)^k, \quad \text{for } k \geqslant 1.$

This sequence $(\mathcal{B}^{(0)}, \mathcal{B}^{(1)}, ..., \mathcal{B}^{(k)}, ...)$ is called the *dot-depth hierarchy*. A language L is of (dot) *depth* 0 iff $L \in \mathcal{B}^{(0)}$, and of *depth* $k, k \ge 1$, iff $L \in \mathcal{B}^{(k)} - \mathcal{B}^{(k-1)}$. Thus k is the minimum number of concatenation levels necessary to define L.

Let $\mathscr{A} = \bigcup_{k \geq 0} \mathscr{B}^{(k)}$; clearly \mathscr{A} is the smallest family containing $\mathscr{L} \cup 1$ and closed under Boolean operations and concatenation. This family is known as the aperiodic or star-free family [4, 5], and is identical to the family of noncounting regular languages [2, 4]. It was shown by Schützenberger [5] that $\mathscr{L} \subseteq A^*$ is star-free iff its syntactic monoid is finite and group-free, i.e., contains only one-element subgroups.

For languages over a one-letter alphabet one easily verifies that the dot-depth hierarchy is finite [1]. In fact, for $A = \{a\}$,

$$\mathscr{A}_a = (1 \cup \mathscr{L}_a) BMB = \mathscr{B}_a^{(1)}$$

where $\mathcal{L}_a = \{\{a\}\}\$, \mathcal{A}_a is the family of aperiodic languages over a one-letter alphabet and $\mathcal{B}_a^{(1)}$ is the corresponding family of depth-one languages.

It was conjectured in [3] that the dot-depth hierarchy is infinite if the alphabet has two or more letters, i.e., that for each $k \ge 0$ there exists a language that is of depth k+1 but not of depth k. We prove this conjecture in this paper.

This paper is written by induction on k. In Sections 1-4 we treat the case k = 1 which provides the basis. The induction step consists of Sections 1^+-4^+ .

I. BASIS:
$$k = 1$$

1. Decompositions and Equivalence Relations

Let $(A^*)^n$ be the Cartesian product of n copies of A^* , for $n \ge 1$. Let $\pi_n : (A^*)^n \to A^*$ be defined as follows. For $X = (x_1, ..., x_n) \in (A^*)^n$, $\pi_n(X) = x_1 \cdots x_n$. An n-decomposition is any element X of $(A^*)^n$. We say that X is an n-decomposition of $x \in A^*$ iff $\pi_n(X) = x$. Let $\Omega_n(x)$ be the set of all n-decompositions of x. Clearly $\Omega_n(x)$ is a finite set. For example, let $A = \{a, b\}$ and x = aba. Then x has the following 2-decompositions:

$$\Omega_2(x) = \{(1, aba), (a, ba), (ab, a), (aba, 1)\}.$$

DEFINITION 1. Let \sim be any equivalence relation on A^* . We define an equivalence relation \sim on $(A^*)^n$ derived from \sim on A^* as follows. If $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_n)$ then

$$X \sim Y$$
 iff $x_i \sim y_i$ for $i = 1,..., n$.

Let the equivalence class of \sim containing $x \in A^*$ be [x]. Similarly, let the class of \sim containing $X \in (A^*)^n$ be [X]. Clearly $[X] = [(x_1, ..., x_n)]$ can be identified with $([x_1], ..., [x_n])$. Let

$$\tilde{\Omega}_n(x) = \{ [X] \mid X \in \Omega_n(x) \}$$

for all $x \in A^*$. Thus $\tilde{\Omega}_n(x)$ is "the set of all n-decompositions of x that are distinct with respect to the relation \sim ." For example, consider the equivalence defined by:

$$x \sim 1$$
 iff $x = 1$,

and for $x \neq 1$,

$$x \sim y$$
 iff $y \neq 1$.

Under this equivalence $\tilde{\Omega}_2(aba) = \{([1], [a]), ([a], [a]), ([a], [1])\}.$

DEFINITION 2. Let \sim be any equivalence relation on A^* , $n \ge 1$ and $x, y \in A^*$.

(a) Define the binary relation \subset_n on A^* :

$$x \subseteq y$$
 iff $\widetilde{\Omega}_n(x) \subseteq \widetilde{\Omega}_n(y)$.

(b) Define the equivalence relation \sim_n on A^* :

$$x \sim y$$
 iff $x \subset y$ and $y \subset x$.

We will say that an equivalence relation \sim on A^* is 1-pure iff $x \sim 1$ implies x = 1 for all $x \in A^*$.

PROPOSITION 1. For all $n \geqslant 1$ and $x, y, z_1, z_2 \in A^*$,

- (a) \subset_n is reflexive and transitive.
- (b) If \sim is 1-pure then

$$x \subset y$$
 implies $x \sim y$ and $x \subset y$ implies $x \subset y$.

(c) If \sim is a 1-pure congruence, then

$$x \subseteq y \text{ implies } z_1 x z_2 \subseteq z_1 y z_2$$
.

Proof. (a) Obvious.

(b) Clearly $X = (x, 1, ..., 1) \in \Omega_n(x)$. If $x \subset_n y$ there exists $Y \in \Omega_n(y)$, $Y = (y_1, ..., y_n)$ such that $X \sim Y$. Since \sim is 1-pure, Y = (y, 1, ..., 1). Hence $x \sim y$.

To prove the second claim, suppose $X=(x_1,...,x_n)\in\Omega_n(x)$. Then $\hat{X}=(x_1,...,x_n,1)\in\Omega_{n+1}(x)$. If $x\subset_{n+1}y$ and \sim is 1-pure, there exists $\hat{Y}=(y_1,...,y_n,1)\in\Omega_{n+1}(y)$ such that $\hat{X}\sim\hat{Y}$. Then $Y=(y_1,...,y_n)\in\Omega_n(y)$ and $X\sim Y$. Therefore $x\subset_n y$.

(c) We will first show that $x \subset_n y$ implies $ax \subset_n ay$ for all $a \in A$. By induction on the length of z_1 it follows that $x \subset_n y$ implies $z_1x \subset_n z_1y$. The claim for z_2 follows by left-right symmetry.

ŧ

Let $U=(u_1,...,u_n)\in\Omega_n(ax)$. Let u_i be the first component such that $|u_i|>0$. Such a u_i always exists since |ax|>0. The form of u_i must be $u_i=au$ for some $u\in A^*$. Thus $U=(1,...,1,au,u_{i+1},...,u_n)$. Let $X=(1,...,1,u,u_{i+1},...,u_n)$; clearly $X\in\Omega_n(x)$. By the hypothesis $x\subset_n y$ and 1-purity of \sim , there exists $Y=(1,...,1,v,v_{i+1},...,v_n)\in\Omega_n(y)$ such that $X\sim Y$. Note that $u\sim v$, and $u\sim av$ because \sim is a congruence. Let $V=(1,...,1,av,v_{i+1},...,v_n)$. Then $U\sim V$ and $V\in\Omega_n(ay)$. Therefore $ax\subset_n ay$.

Proposition 2. For all $n \ge 1$ and $x, y \in A^*$,

- (a) If \sim is of finite index then so is \sim_n .
- (b) If \sim is 1-pure then so is \sim_n and

$$x \underset{n+1}{\sim} y \text{ implies } x \underset{n}{\sim} y.$$

(c) If \sim is a 1-pure congruence then so is \sim_n .

Proof. (a) If \sim is of index *i*, then there are i^n *n*-decomposition classes. There are therefore $\leq 2^{i^n}$ sets of the form $\tilde{\Omega}_n(x)$.

- (b) The fact that \sim_n is 1-pure is obvious, and the second claim follows directly from Proposition 1(b).
 - (c) This follows directly from Proposition 1(c).

2. Decompositions and Concatenation

From now on we assume that \sim is a 1-pure equivalence relation of finite index on A^* . Define

$$\mathscr{B}^{(0)} = \{L \subseteq A^* \mid L \text{ is a union of equivalence classes of } \sim \}.$$

Clearly $\mathcal{B}^{(0)}$ is a finite Boolean algebra with the equivalence classes [x] as atoms. In this section we characterize $\mathcal{B}^{(0)}MB$ with the aid of \sim_n .

Denote by $[x]_n$ the equivalence class of \sim_n containing x. For $X \in \Omega_n(x)$ let

$$\pi_n[X] = [x_1] \cdots [x_n].$$

Here, each $[x_i]$ is viewed as a language and the multiplication is just concatenation of languages. Clearly

$$\pi_n[X] = \{z \in A^* \mid [X] \in \widetilde{\Omega}_n(z)\}.$$

Define the languages Y(x) and N(x) (for yes and no):

$$Y(x) = \bigcap_{[X] \in \tilde{\Omega}_n(x)} \pi_n[X]$$
 and $N(x) = \bigcap_{[X] \notin \tilde{\Omega}_n(x)} \overline{\pi_n[X]}$.

Proposition 3. $[x]_n = Y(x) \cap N(x)$.

Proof. If $z \in [x]_n$ then $\widetilde{\Omega}_n(z) = \widetilde{\Omega}_n(x)$. Thus $[X] \in \widetilde{\Omega}_n(x)$ implies $[X] \in \widetilde{\Omega}_n(z)$ and $z \in \pi_n[X]$. Therefore $z \in Y(x)$. Similarly if $[X] \notin \widetilde{\Omega}_n(x)$ then $z \notin \pi_n[X]$ and $z \in \overline{\pi_n[X]}$. Therefore $z \in N(x)$.

Conversely $z \in Y(x) \cap N(x)$ implies $z \in \pi_n[X]$ iff $[X] \in \widetilde{\Omega}_n(x)$. Hence $\widetilde{\Omega}_n(z) = \widetilde{\Omega}_n(x)$ and $z \in [x]_n$.

Corresponding to each n define the family:

$$\mathscr{B}_n = \{L \subseteq A^* \mid L \text{ is a union of equivalence classes of } \sim \}.$$

Again \mathcal{B}_n is a finite Boolean algebra, \sim_n being of finite index. Let

$$\mathscr{B}^{(1)} = \bigcup_{n \geqslant 1} \mathscr{B}_n .$$

Proposition 4. For all $n \geqslant 1$,

- (a) $\mathscr{B}_n \subseteq \mathscr{B}_{n+1}$.
- (b) $\mathscr{B}_n = (\mathscr{B}^{(0)})^n B$. Hence $\mathscr{B}^{(0)} \subseteq \mathscr{B}_n$.
- (c) $\mathscr{B}^{(1)} = \mathscr{B}^{(0)}MB$, i.e., $\bigcup_{n \geq 1} \mathscr{B}_n = \bigcup_{n \geq 1} ((\mathscr{B}^{(0)})^n B) = (\bigcup_{n \geq 1} (\mathscr{B}^{(0)})^n) B$.

Proof. (a) This follows directly from Proposition 2(b).

(b) Suppose $L \in \mathcal{B}_n$. Since $(\mathcal{B}^{(0)})^n B$ is a Boolean algebra, it suffices to show that each $[x]_n$ is in $(\mathcal{B}^{(0)})^n B$. By Proposition 3, $[x]_n$ is a Boolean function of elements $\pi_n[X]$ from $(\mathcal{B}^{(0)})^n$. Hence $\mathcal{B}_n \subseteq (\mathcal{B}^{(0)})^n B$.

Conversely it is enough to show that $L \in (\mathscr{B}^{(0)})^n$ implies $L \in \mathscr{B}_n$, since \mathscr{B}_n is a Boolean algebra. In fact, any $L \in (\mathscr{B}^{(0)})^n$ can be expressed as a finite union of languages of the form $[x_1] \cdots [x_n] = \pi_n[X]$, since concatenation distributes over union. Thus we need to show only that $\pi_n[X] \in \mathscr{B}_n$ for all $X \in \Omega_n(x)$. We claim that

$$\pi_n[X] = \bigcup_{w \in J} [w]_n , \qquad (1)$$

where $J = \{z \mid [X] \in \tilde{\Omega}_n(z)\}$. For suppose $y \in \pi_n[X]$. Then $y = y_1 \cdots y_n$, $y_i \in [x_i]$, i = 1, ..., n. Let $Y = (y_1, ..., y_n)$; then $\{X\} = [Y]$. Thus $y \in \pi_n[X]$ implies $[X] \in \tilde{\Omega}_n(y)$, i.e., $y \in J$. But then $y \in \bigcup_{w \in J} [w]_n$.

On the other hand, suppose $y \in [w]_n$ for some $w \in J$. Now $[w]_n = Y(w) \cap N(w)$ and $\pi_n[X]$ appears in Y(w) since $[X] \in \tilde{\Omega}_n(w)$. Thus $y \in [w]_n$ implies $y \in Y(w)$ and $y \in \pi_n[X]$. This completes the proof of the claim (1). By (1), $\pi_n[X] \in \mathcal{B}_n$ and $(\mathcal{B}^{(0)})^n \subseteq \mathcal{B}_n$.

(c) $L \in \mathscr{B}^{(1)}$ implies $L \in \mathscr{B}_n$ for some n and by (b) $\mathscr{B}_n = (\mathscr{B}^{(0)})^n B \subseteq \mathscr{B}^{(0)} MB$. Thus $\mathscr{B}^{(1)} \subseteq \mathscr{B}^{(0)} MB$. Conversely $L \in \mathscr{B}^{(0)} MB$ implies $L \in (\mathscr{B}^{(0)})^n B$ for some n and $(\mathscr{B}^{(0)})^n B = \mathscr{B}_n$. Thus $L \in \mathscr{B}^{(0)} MB$ implies $L \in \mathscr{B}_n \subseteq \mathscr{B}^{(1)}$. Hence $\mathscr{B}^{(0)} MB \subseteq \mathscr{B}^{(1)}$.

In summary, if a family $\mathscr{B}^{(0)}$ of languages is defined by an equivalence relation \sim , then the family $(\mathscr{B}^{(0)})^n B$ is defined by \sim_n .

3. Languages of Dot-Depth 1

Let \sim be the largest 1-pure equivalence on A^* for any A. Then there are only two equivalence classes $[1] = \{1\}$ and $[a] = A^+$, $a \in A$. Now let $\mathscr{B}^{(0)}$ be the family defined by \sim , i.e.,

$$\mathscr{B}^{(0)} = \{\phi, \{1\}, A^+, A^*\}.$$

One verifies that the equivalence classes of \sim_n are:

$$[1]_n = 1,$$
 $[a]_n = A,$
 $[a^2]_n = A^2,$
...
 $[a^{n-1}]_n = A^{n-1},$
 $[a^n]_n = A^nA^*.$

Now it is easily seen that $\mathscr{B}^{(1)} = \mathscr{B}^{(0)}MB = \bigcup_{n \geq 1} (\mathscr{B}^{(0)})^n B$ is closed under concatenation. Thus $\mathscr{B}^{(2)} = \mathscr{B}^{(1)}$. In the case of a one-letter alphabet $A = \{a\}$, this means that $\mathscr{A} = \mathscr{B}^{(1)}$, i.e., a language over a one-letter alphabet is star-free iff it is of depth 0 or 1.

We now consider the case of two or more letters.

From now on \sim represents the following equivalence:

- (a) If $x \in 1 \cup A$ then $x \sim y$ iff x = y.
- (b) If $x \notin 1 \cup A$ then $x \sim y$ iff $y \notin 1 \cup A$.

This is the largest equivalence relation on A^* that is pure for all $a \in 1 \cup A$ in the sense that $a \sim x$ implies a = x for all $a \in 1 \cup A$. If the cardinality of A is #A, the index of \sim is #A + 2. One easily verifies that \sim is a congruence. We will call this the 2-pure congruence meaning that $x \sim y$ implies x = y for |x| < 2.

LEMMA 1. For all $n \ge 1$, $y \in A^*$,

$$y^{2n} \sim y^{2n+1}.$$

Proof. We first show that $\widetilde{\Omega}_n(y^{2n+1}) \subseteq \widetilde{\Omega}_n(y^{2n})$. There is nothing to prove if y = 1. Now suppose y = a, where $a \in A$. Let $U = (u_1, ..., u_n) \in \Omega_n(y^{2n+1})$. There must be at least one $u_i = a^s$ with $s \ge 3$. Otherwise

$$|y^{2n+1}| = |a^{2n+1}| = 2n + 1 = \sum_{i=1}^{n} |u_i| \leq 2n,$$

a contradiction. Let $u_i' = a^{s-1}$. Since $|a^{s-1}| \ge 2$, $a^s \sim a^{s-1}$. Let $U' = (u_1, ..., u_{i-1}, u_i', u_{i+1}, ..., u_n)$. Then $\pi_n(U') = a^{2n}$ and $U' \sim U$. Thus $a^{2n+1} \subset_n a^{2n}$.

Assume now that $|y| \geqslant 2$. First suppose that $|u_i| \geqslant |y|$ for all i. Then all u_i in U must be of the form $u_i = y_1 y^s y_2$ where y_2 is a prefix of y, y_1 is a suffix of y, and $s \geqslant 0$. If there exists a u_i with $s \geqslant 2$, then $|y_1 y^s y_2| \geqslant 2$ and $|y_1 y^{s-1} y_2| \geqslant 2$, i.e., $y_1 y^s y_2 \sim y_1 y^{s-1} y_2$. If there exists a u_i with s = 1 and $|y_1 y_2| \geqslant 2$ again $y_1 y^s y_2 \sim y_1 y^{s-1} y_2$. Therefore, assume that for all u_i either s = 1 and $|y_1 y_2| \leqslant 1$ or s = 0. In the first

case $|u_i| = |y_1yy_2| \le |y| + 1$. In the second case $|y_1y_2| \le 2|y|$. In both cases $|u_i| \le 2|y|$. Hence $|y^{2n+1}| = (2n+1)|y| = \sum_{i=1}^n |u_i| \le 2n|y|$, a contradiction. Finally, if there exists a u_i with $|u_i| < |y|$, then there also exists a u_i with $|u_k| > 2|y|$. This u_k must be of the form $u_k = y_1y^sy_2$, where either s > 1 or s = 1 and $|y_1y_2| > |y| \ge 2$, and we proceed as above. Therefore, one can always find $U' \in \Omega_n(y^{2n})$ such that $U' \sim U$. We have therefore shown that $y^{2n+1} \subset_n y^{2n}$.

The argument for $y^{2n} \subset_n y^{2n+1}$ is essentially the same except we insert y instead of removing it. For y=a, there must be a u_i with $|u_i| \ge 2$. Then $u_i=a^s$, $s \ge 2$ and $a^s \sim a^{s+1}$. For $|y| \ge 2$, there must exist $u_i=y_1y^sy_2$ with $|u_i| \ge 2$. Then $y_1y^sy_2 \sim y_1y^{s+1}y_2$.

LEMMA 2. Let \sim be the 2-pure congruence on A^* , let $n \geqslant 1$ and $x, y \in A^*$. Then

$$|x| > n$$
 implies $x \subseteq xyx$.

Proof. Let $X = (x_1, ..., x_n) \in \Omega_n(x)$. Let x_i be such that $|x_i| \ge 2$; such an x_i always exists since $|x| = \sum_{i=1}^n |x_i| > n$. Let $Y = (x_1, ..., x_{i-1}, x_i', x_{i+1}, ..., x_n)$ where $x_i' = x_i \cdots x_n y x_1 \cdots x_i$. Then $|x_i'| \ge 2$, $x_i \sim x_i'$ and $X \sim Y$. Since $\pi_n(Y) = xyx$, we have $x \subset_n xyx$.

LEMMA 3. Let $x, y, z \in A^*$, $n \ge 1$, and |x| > n. Then

$$x(yxxx)^{2n} \sim x(xxyx)^{2n}$$
.

Proof. Let $u = x(yxzx)^{2n}$. By Lemma 1,

$$u \sim u' = x(yxxx)^{2n+1} = xyxxx(yxxx)^{2n-1}yxxx.$$

Let $w = zx(yxzx)^{2n-1}y$. Then $u \sim_n (xyx)w(xzx)$. Let $v = x(zxyx)^{2n} = xzx(yxzx)^{2n-1}yx = xwx$. By Lemma 2, $x \subset_n xyx$ and $x \subset_n xzx$. By transitivity of \subset_n , $v = xwx \subset_n xyxwx \subset_n xyxwxxx = u' \sim_n u$. Thus $v \subset_n u$ and, by symmetry, $u \subset_n v$. Therefore $u \sim_n v$.

We now give an example of a language that is not in $\mathcal{B}^{(1)}$. Let $\mathbf{A}_2 = \langle A, Q, q_1, F, \tau \rangle$ be the finite automaton of Fig. 1, where $A = \{a, b\}$ is the alphabet, $Q = \{0, 1, 2, 3\}$

Fig. 1. Automaton A₂.

is the set of states, $q_1 = 1$ is the initial state, $F = \{3\}$ is the set of final states, and τ is the transition function given by Fig. 1. One verifies that \mathbf{A}_2 is reduced. Let L_2 be the language recognized by \mathbf{A}_2 , $L_2 = (ab)^* \ aaA^*$.

Proposition 5. $L_2 \in \mathcal{B}^{(2)} = \mathcal{B}^{(1)}$, i.e., L_2 is a depth-2 language.

Proof. Suppose $L_2 \in \mathcal{B}^{(1)}$. Then L_2 is a union of congruence classes of \sim_n for some $n \ge 1$. Let $x = (ab)^n$, y - a and z = b. One easily verifies that

$$x(yxzx)^{2n} \in L_2$$
 and $x(zxyx)^{2n} \notin L_2$.

But by Lemma 3, $x(yxzx)^{2n} \sim_n x(zxyx)^{2n}$, and these two words are in the same congruence class. This is a contradiction. Hence $L_2 \notin \mathcal{B}^{(1)}$.

In automaton A_2 , let $Z_i = \{w \in A^* \mid \tau(1, w) = i\}$, and let $D_1 = (ab)^*$. Then, from Fig. 1,

$$egin{aligned} Z_0 &= D_1 b A^*, \ Z_1 &= D_1 \, , \ Z_2 &= D_1 a, \ L_2 &= Z_3 &= (D_1 a) \, a A^*, \end{aligned}$$

and $\overline{D}_1 = bA^* \cup A^*bbA^* \cup A^*a \cup A^*aaA^*$, showing that $D_1 \in \mathcal{B}^{(1)}$, since $A^* = \overline{\phi}$ is in $\mathcal{B}^{(0)}$.

It now follows that $L_2 = D_1 a^2 A^*$ is in $\mathcal{B}^{(2)}$. Altogether L_2 is a language of depth 2.

4. On Syntactic Semigroups of Depth-One Languages

Let $L \subseteq A^+$ be a language. The syntactic congruence of L is defined as follows. For $x, y \in A^+$,

$$x \equiv y$$
 iff for all $u, v \in A^*$, $uxv \in L \Leftrightarrow uyv \in L$.

Let $S_L = A^+/\equiv_L$ be the quotient semigroup of A^+ modulo the congruence \equiv_L ; S_L is called the syntactic semigroup of L [4]. Let $\mu \colon A^+ \to S_L$ be the natural morphism associating with each $x \in A^+$, the equivalence class of \equiv_L containing x. We will denote by x the image of x under μ (i.e., $\mu(x) = x$).

We will say that a semigroup S is aperiodic iff there exists $m \ge 1$ such that $f^m = f^{m+1}$ for all $f \in S$. We say that S is 1-mutative iff there exists $m \ge 1$ such that

$$(fg)^m=(gf)^m,$$

for all $f, g \in S$. The two conditions are equivalent to S being \mathcal{J} -trivial if S is finite [6]. The reasons for our choice of terminology will become clearer in the induction step. The following gives a necessary condition for membership in $\mathcal{B}^{(1)}$.

PROPOSITION 6. Let $L \subseteq A^+$ and let S_L be the syntactic semigroup of L.

- (a) If $L \in \mathcal{B}^{(1)}$ then for each idempotent $e \in S_L$, $eS_L e$ is finite, aperiodic, and 1-mutative.
- (b) Suppose S_L is a monoid. Then $L \in \mathcal{B}^{(1)}$ implies that S_L is finite, aperiodic, and 1-mutative.

Proof. (a) If $L \in \mathcal{B}^{(1)}$, then L is a union of congruence classes of \sim_n for some $n \geqslant 1$. Since \sim_n is of finite index, S_L is finite. Since S_L is the image of A^+ under μ , there exists $y \in A^+$ such that y = f for each $f \in S_L$. By Lemma 1

$$y^{2n} \sim y^{2n+1}. \tag{2}$$

Since L is a union of congruence classes of \sim_n it follows that $x \sim_n x'$ implies $\underline{x} = \underline{x}'$ for all $x, x' \in A^+$. Therefore by (2)

$$f^{2n} = f^{2n+1}. (3)$$

(The reader should note that we have just shown that if L is in $\mathcal{B}^{(1)}$ then its syntactic semigroup S_L satisfies (3) for all $f \in S_L$, i.e., is group-free [4].)

Now let $e, f, g \in S_L$, let e be an idempotent, and let $u, x, y, x \in A^+$ be such that u = e, y = f, z = g, and $x = u^{n+1}$. By Lemma 3,

$$x(yxzx)^{2n} \sim x(zxyx)^{2n}, \tag{4}$$

and

$$e(fege)^{2n} = e(gefe)^{2n}. (5)$$

From (3) and (5) it follows that eS_Le satisfies the required conditions with m = 2n, since

$$((efe)(ege))^m = e(fege)^m = e(gefe)^m = ((ege)(efe))^m.$$
(6)

(b) Let 1 be the identity of S_L . Since (6) holds for all idempotents, it holds for e = 1 and we have $(fg)^m = (gf)^m$. This and (3) show that S_L is 1-mutative and aperiodic.

These results were obtained first by Simon [6] by different means. He also showed the converse of (b), i.e.:

(b') Suppose S_L is a monoid. If S_L is finite, aperiodic, and 1-mutative then $L \in \mathcal{B}^{(1)}$. This concludes the basis.

II. INDUCTION STEP: k > 1

1+. Decompositions and Generalized Equivalence Relations

We now assume that Section 1 corresponds to k = 1, and we generalize all the notions by induction on k. The induction hypothesis is that everything has been done for k, and we consider k + 1.

Definition 1⁺. For each $k \ge 1$, $n \ge 1$ let \sim_n^k be an equivalence relation on A^* .

We define a relation \sim^{k+1} on $(A^*)^n$ derived from \sim^k_n as follows. If $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_n)$ then

$$k = 0$$
: $X \stackrel{1}{\sim} Y$ iff $X \sim Y$ as in Definition 1,
 $k > 0$: $X \stackrel{k+1}{\sim} Y$ iff $x_i \stackrel{k}{\sim} y_i$ for $i = 1,..., n$.

Let the equivalence class of \sim_n^k containing $x \in A^*$ be $[x]_n^k$. Similarly let the class of \sim^k containing $X = (x_1, ..., x_n) \in (A^*)^n$ be $[X]^k$. Clearly $[X]^{k+1}$ can be identified with $([x_1]_n^k, ..., [x_n]_n^k)$. Let

$$\widetilde{\Omega}_n^k(x) = \{ [X]^k \mid X \in \Omega_n(x) \},$$

for all $x \in A^*$.

Definition 2⁺. Let \sim be any equivalence relation on A^* , n, $k \geqslant 1$ and x, $y \in A^*$.

(a) Define a binary relation \subset_n^k on A^* :

$$k=1$$
: $\overset{1}{\overset{}{\subsetneq}}=\overset{}{\overset{}{\subsetneq}}$ of Definition 2, $k>1$: $x\overset{k}{\overset{}{\hookrightarrow}}y$ iff $\tilde{\Omega}_n{}^k(x)\subseteq \tilde{\Omega}_n{}^k(y)$.

(b) Define the equivalence relation \sim_n^k on A^* :

$$k = 1$$
: $\frac{1}{n} = \frac{1}{n}$ of Definition 2,
 $k > 1$: $x = \frac{k}{n} y$ iff $x = \frac{k}{n} y$ and $y = \frac{k}{n} x$.

To illustrate this inductive procedure, we have the following order in which the concepts appear:

- (1) $x \sim_n^1 y$ is defined in the basis.
- (2) $X \sim^2 Y$ iff $x_i \sim_n^1 y_i$ for all i = 1, ..., n (Definition 1+).
- (3) This yields $[X]^2$ and $\tilde{\Omega}_n^2(x)$.
- (4) $x \subset_n^2 y \text{ iff } \tilde{\Omega}_n^2(x) \subseteq \tilde{\Omega}_n^2(y).$
- (5) $x \sim_n^2 y$ iff $x \subset_n^2 y$ and $y \subset_n^2 x$.

Thus we have gone through the full cycle.

Proposition 1+. Let $n, k \geqslant 1$ and $x, y, z_1, z_2 \in A^*$.

- (a) \subset_n^k is reflexive and transitive.
- (b) If \sim is 1-pure then

$$x \stackrel{k+1}{\underset{n}{\subset}} y \text{ implies } x \stackrel{k}{\underset{n}{\subset}} y \text{ and } x \stackrel{k}{\underset{n+1}{\subset}} y \text{ implies } x \stackrel{k}{\underset{n}{\subset}} y.$$

(c) If \sim is a 1-pure congruence, then

$$x \stackrel{k}{\subset} y$$
 implies $z_1 x z_2 \stackrel{k}{\subset} z_1 y z_2$.

Proof. (a) Trivial.

(b) k = 1: Proposition 1(b).

k > 1: Clearly $X = (x, 1, ..., 1) \in \Omega_n(x)$. If $x \subset_n^{k+1} y$ there exists $Y = (y_1, ..., y_n) \in \Omega_n(y)$ such that $X \sim_n^{k+1} Y$. Since \sim_n^k is 1-pure by the inductive assumption (Proposition 2+), Y is of the form Y = (y, 1, ..., 1) and $x \sim_n^k y$.

For the second claim, suppose $X=(x_1,...,x_n)\in\Omega_n(x)$. Then $\hat{X}=(x_1,...,x_n,1)\in\Omega_{n+1}(x)$. If $x\subset_{n+1}^k y$ and \sim is 1-pure there exists $\hat{Y}=(y_1,...,y_n,1)$ such that $\hat{X}\sim^k\hat{Y}$ and $\hat{Y}\in\Omega_{n+1}(y)$. Then $Y=(y_1,...,y_n)\in\Omega_n(y)$ and $X\sim^k Y$. Therefore $x\subset_n^k y$.

(c) Same argument as in Proposition 1(c).

PROPOSITION 2+. For all $n, k \ge 1$ and $x, y \in A^*$:

- (a) If \sim is of finite index then so is \sim_n^k .
- (b) If \sim is 1-pure, then so is \sim_n^k and

$$x \underset{n+1}{\overset{k}{\sim}} y \text{ implies } x \underset{n}{\overset{k}{\sim}} y.$$

(c) If \sim is a 1-pure congruence then so is \sim_n^k .

Proof. Same as Proposition 2 after \sim_n is replaced by \sim_n^k .

2+. DECOMPOSITIONS AND REPEATED CONCATENATION

Again \sim is assumed to be a 1-pure equivalence relation of finite index. Denote by $[x]_n^k$ the class of \sim_n^k containing x, and for $X \in \Omega_n(x)$ let

$$\pi_n[X]^{k+1} = [x_1]_n^k \cdots [x_n]_n^k$$
.

We have

$$\pi_n[X]^{k+1} = \{z \in A^* \mid [X]^{k+1} \in \widetilde{\Omega}_n^{k+1}(z)\}.$$

Define also

$$Y^k(x) = \bigcap_{[X]^k \in \tilde{\Omega}_n^k(x)} \pi_n[X]^k$$
 and $N^k(x) = \bigcap_{[X]^k \notin \tilde{\Omega}_n^k(x)} \overline{\pi_n[X]^k}$.

Proposition 3+. $[x]_n^k = Y^k(x) \cap N^k(x)$.

Proof. Repeat the proof of Proposition 3 with \sim_n^k instead of \sim_n .

Corresponding to each \sim_n^k define:

$$\mathscr{B}_{n}^{(k)} = \{L \subseteq A^* \mid L \text{ is a union of equivalence classes of } \sum_{i=1}^{k} \}.$$

Again $\mathscr{B}_n^{(k)}$ is a finite Boolean algebra. Let

$$\mathscr{B}^{(k)} = \bigcup_{n\geqslant 1} \mathscr{B}^{(k)}_n,$$

Proposition 4+. For all $n, k \ge 1$,

- (a) $\mathscr{B}_n^{(k)} \subseteq \mathscr{B}_{n+1}^{(k)}$,
- (b) $\mathscr{B}_n^{(k+1)} = (\mathscr{B}_n^{(k)})^n B$, hence $\mathscr{B}_n^{(k)} \subseteq \mathscr{B}_n^{(k+1)}$,
 - (c) $\mathscr{B}^{(k+1)} = (\mathscr{B}^{(k)}) MB = \mathscr{B}^{(0)}(MB)^{k+1}$.

Proof. Repeat the proof of Proposition 4 with \sim_n^k instead of \sim_n . It follows that the family of aperiodic languages is

$$\mathscr{A} = \bigcup_{k\geqslant 0} \mathscr{B}^{(k)}.$$

3+. Languages of Dot-Depth k

Again, let \sim be the 2-pure congruence.

LEMMA 1+. For all $n, k \ge 1$, $y \in A^*$, there exists $m \ge 1$ such that $y^m \sim_n^k y^{m+1}$.

Proof. Let $m_k = 2n(\sum_{i=0}^{k-1} n^i)$ for $k \geqslant 1$. We claim that $y^{m_k} \sim_n^k y^{m_k+1}$.

k = 1: We have $m_1 = 2n$ and the result holds by Lemma 1.

k > 1: Assume the result holds for k, and that $|y| \geqslant 1$.

Let $U = (u_1, ..., u_n) \in \Omega_n(y^{m_{k+1}+1})$. Then there exists at least one u_i such that

$$|u_i| > \frac{m_{k+1}}{n} |y| = 2 \left(\sum_{i=0}^k n^i \right) |y| = \left(2n \left(\sum_{i=0}^{k-1} n^i \right) + 2 \right) |y|.$$

Now u_i must be of the form $u_i = y_1 y^s y_2$ where $|y_1 y_2| \le 2 |y|$. Hence $s > m_k$ and by the induction hypothesis $y^s \sim_n^k y^{s-1}$. Let $U' = (u_1, ..., u_{i-1}, u_i', u_{i+1}, ..., u_n)$ where $u_i' = y_1 y^{s-1} y_2$. Then $u_i \sim_n^k u_i'$ and $U \sim_n^{k+1} U'$. Since $\pi_n(U') = y^{m_{k+1}}$, we have $y^{m_{k+1}+1} \subset_n^{k+1} y^{m_{k+1}}$.

To prove $y^{m_{k+1}} \subset_n^{k+1} y^{m_{k+1}+1}$, use a similar argument, replacing y^s by y^{s+1} instead of y^{s-1} .

Lemma 2+. Let $k \ge 0$, $n \ge 1$, $x, y \in A^*$, |x| > n. Define

$$u_0 = x$$

and

$$u_k = u_{k-1}(yu_{k-1}zu_{k-1})^{m_{k+1}}, \quad \text{for } k > 0,$$

where m_k is defined in Lemma 1+. Then

$$u_k \stackrel{k+1}{\underset{n}{\subset}} u_k y u_k$$
 and $u_k \stackrel{k+1}{\underset{n}{\subset}} u_k z u_k$.

Proof. k = 0: This reduces to Lemma 2.

k > 0: Let $w = yu_{k-1}zu_{k-1}$. We must show

$$u_{k} = u_{k-1} w^{m_{k+1}} \int_{-\pi}^{k+1} u_{k-1} w^{m_{k+1}} y u_{k-1} w^{m_{k+1}}.$$
 (7)

Because of Proposition 1+(c) it is enough to show that

$$w^{m_{k+1}} \stackrel{k+1}{\underset{n}{\subset}} w^{m_{k+1}} y u_{k-1} w^{m_{k+1}} = v.$$
 (8)

Let $W = (w_1, ..., w_n) \in \Omega_n(w^{m_{k+1}})$. There must exist w_i such that $|w_i| \ge (m_{k+1}/n) |w| = (m_k + 2) |w|$. Also w_i must be of the form $w'w^sw''$, where w' is a suffix and w'' is a prefix of w. It follows that $s \ge m_k$. Hence

$$w^{s} \stackrel{k}{\sim} w^{m_{k}} \stackrel{k}{\sim} w^{2m_{k}+1} = w^{m_{k}} y u_{k-1} z u_{k-1} w^{m_{k}} = p.$$

Now we have the inductive assumption:

$$u_{k-1} \stackrel{k}{\underset{n}{\subset}} u_{k-1} y u_{k-1}$$
 and $u_{k-1} \stackrel{k}{\underset{n}{\subset}} u_{k-1} z u_{k-1}$.

Therefore

$$q = w^{m_k} y u_{k-1} w^{m_k} \stackrel{k}{\subset} w^{m_k} y (u_{k-1} z u_{k-1}) w^{m_k} = p.$$

On the other hand,

$$q \stackrel{k}{\underset{n}{\sim}} w^{m_k+1} y u_{k-1} w^{m_k} = w^{m_k} (y u_{k-1} z u_{k-1}) y u_{k-1} w^{m_k}$$

and

$$p = w^{m_k} y u_{k-1} z u_{k-1} w^{m_k} \stackrel{k}{\subset} w^{m_k} y u_{k-1} z (u_{k-1} y u_{k-1}) w^{m_k} \stackrel{k}{\sim} q.$$

Thus $p \sim_n^k q$, showing that

$$w^s \stackrel{k}{\sim} w^{m_k} y u_{k-1} w^{m_k} = q.$$

By Lemma 1+,

$$w^{s} \stackrel{k}{\sim} w^{m_{k+1}} y u_{k-1} w^{m_{k+1}}$$

Now let $w_i' = w'w^{m_{k+1}}yu_{k-1}w^{m_{k+1}}w^n$, and let $W' = (w_1, ..., w_{i-1}, w_i', w_{i+1}, ..., w_n)$. Then $\pi_n(W')$ is of the form $w'w^{m_{k+1}}yu_{k-1}w^{m_{k+1}}w^t$ which is \sim_n^{k+1} equivalent to $w^{m_{k+1}}yu_{k-1}w^{m_{k+1}} = v$. Now $W' \sim_{k+1} W$; i.e., we have shown that $w^{m_{k+1}} \subset_n^{k+1} v$. This is (8), and (7) follows.

To prove $u_k \subset_n^{k+1} u_k z u_k$ use a very similar argument, except that we show that

$$w^{m_k} \stackrel{k}{\sim} w^{m_k} z u_{k-1} w^{m_k} = v.$$

This holds since

$$w^{m_k} \stackrel{k}{\underset{n}{\sim}} w^{m_k} y u_{k-1} z u_{k-1} w^{m_k} \stackrel{k}{\underset{n}{\subset}} w^{m_k} y u_{k-1} z (u_{k-1} z u_{k-1}) w^{m_k} \stackrel{k}{\underset{n}{\sim}} v,$$

and

$$v \stackrel{k}{\sim} w^{m_k} y u_{k-1} z(u_{k-1}) z u_{k-1} w^{m_k} \stackrel{k}{\subset} w^{m_k} y u_{k-1} z(u_{k-1} y u_{k-1}) z u_{k-1} w^{m_k} \stackrel{k}{\sim} w^{m_k}.$$

LEMMA 3⁺. Let $n, k \ge 1, |x| > n$, and $x, y, z \in A^*$. Let $u_0 = x$ and for $k \ge 1$, let

$$u_k = u_{k-1}(yu_{k-1}zu_{k-1})^m$$
 and $v_k = u_{k-1}(zu_{k-1}yu_{k-1})^m$.

Then m can be chosen in such a way that $u_k \sim_n^k v_k$.

Proof. k = 1: This is Lemma 3.

k > 1: Let $m = m_{k+1}$; then Lemmas 1+ and 2+ hold for \sim_n^{k+1} and \subset_n^{k+1} , respectively. By Lemma 1+ $u_{k+1} \sim_n^{k+1} u_k (yu_kzu_k)^{m+1} = u_k yu_kzu_k (yu_kzu_k)^{m-1} yu_kzu_k$. Let $w_k = zu_k (yu_kzu_k)^{m-1}y$. Then $u_{k+1} \sim_n^{k+1} (u_k yu_k) w_k (u_kzu_k)$. Also, $v_{k+1} = u_k w_k u_k$. By Lemma 2+, $u_k \subset_n^{k+1} u_k yu_k$ and $u_k \subset_n^{k+1} u_kzu_k$. Hence $u_{k+1} \subset_n^{k+1} v_{k+1}$. Similarly, $v_{k+1} \subset_n^{k+1} u_{k+1}$ and the result follows.

We now give an example for each $k \ge 1$ of a language that is not in $\mathcal{B}^{(k)}$. Let $\mathbf{A}_{k+1} = \langle A, Q, q_1, F, \tau \rangle$, where $A = \{a, b\}$, $Q = \{0, 1, ..., k+2\}$, $q_1 = 1$, $F = \{k+2\}$ and for i = 1, ..., k+1

$$au(i, a) = i + 1, au(i, b) = i - 1,$$
 $au(0, a) = \tau(0, b) = 0,$
 $au(k + 2, a) = \tau(k + 2, b) = k + 2.$

This is shown in Fig. 1⁺. One verifies that A_{k+1} is reduced.

Fig. 1⁺. Automaton A_{k+1} .

Before proceeding we will prove the following property of A_{k+1} . Let

$$u_0=(ab)^n,$$

and for $j \ge 1$ let

$$u_j = u_{j-1}(au_{j-1}bu_{j-1})^m$$
 and $v_j = u_{j-1}(bu_{j-1}au_{j-1})^m$,

be defined as in Lemma 3⁺, with $x = (ab)^n$, y = a and z = b. Then

$$\tau(i, u_j) = i for 1 \le i \le k - j,
\tau(i, u_j) = k + 2 for k - j + 1 \le i \le k + 1.$$
(9)

We verify this claim by induction on j.

j=0: This is easily verified for $u_0=(ab)^n$.

j > 0: Assume that (9) holds for u_j . Denote by \underline{x} the transformation on the set Q of states of \mathbf{A}_{k+1} caused by x. The transformation \underline{u}_j is as shown in the first row of Fig. 2+ by the inductive assumption. From Fig. 1+ it is easily verified that $\underline{u_j a}$, $\underline{u_j a u_j}$, and $\underline{u_j a u_j b}$ are as shown in Fig. 2+, and that

$$u_i a u_j b u_i = u_i a u_i b \tag{10}$$

and

$$u_j a u_j b u_j a = u_j a u_j.$$

Thus

$$\underline{u_j a u_j b u_j a (u_j b u_j)} = \underline{u_j a u_j u_j b u_j}.$$

Noting that $\underline{u_j u_j} = \underline{u_j}$, we have

$$\underline{u_j(au_jbu_j)^2} = \underline{u_j(au_jbu_j)}.$$

Hence

$$u_{j+1} = u_j(au_jbu_j)^m = u_j(au_jbu_j).$$

From (10) and Fig. 2+, we have the claim (9) for u_{j+1} .

	1	2		k -j -1	k-j	k-j+l		k	k+1
<u>u</u> j		2		k-j-1	k-j	k+2		k+2	k+2
<u>ս</u> յ օ	2	3		k - j	k~j+l	k+2		k+2	k+2
սյ o ս յ	2	3	•••	k –j	k+2	k+2	.,.	k+2	k+2
սյոսյե	l	2		k-j-i	k+2	k+2	[<u> </u>	k +2	k+2

Fig. 2⁺. Transformations in A_{k+1} .

PROPOSITION 5⁺. $L_{k+1} \in \mathcal{B}^{(k+1)} = \mathcal{B}^{(k)}$, i.e., L_{k+1} is a depth-(k+1) language.

Proof. First we show that $L_{k+1} \notin \mathscr{B}^{(k)}$. By (9) $\tau(1, u_{k-1}) = 1$ and $\tau(2, u_{k-1}) = k+2$. Thus

$$\tau(1, u_k) = \tau(1, u_{k-1}(au_{k-1}bu_{k-1})^m) = k+2,$$

and

$$\tau(1,v_k)=0.$$

Therefore $u_k \in L_{k+1}$ but $v_k \notin L_{k+1}$. By Lemma 3^+ $u_k \sim_n^k v_k$. Hence L_{k+1} cannot be a union of congruence classes of \sim_n^k , and $L_{k+1} \notin \mathcal{B}^{(k)}$.

Next we will show that the language L_{k+1} recognized by \mathbf{A}_{k+1} is in $\mathscr{B}^{(k+1)}$. We will show in Lemma 4+ that a related language, D_k , is in $\mathscr{B}^{(k)}$. Let

$$D_0 = 1,$$

 $D_k = (aD_{k-1}b)^*, \quad \text{for } k \geqslant 1.$

One easily verifies that $D_k = \{w \in A^* \mid r(1, w) = 1\}$ in \mathbf{A}_{k+1} . Note also that

$$D_{k-1} \subseteq D_k$$
 for all $k \geqslant 1$.

Let $Z_i = \{w \in A^* \mid \tau(1, w) = i\}$. Then:

$$egin{aligned} Z_0 &= D_k b A^*, \ Z_1 &= D_k \,, \ Z_{i+1} &= Z_i a D_{k-i} & ext{ for } 1 < i \leqslant k, \end{aligned}$$

and

$$L_{k+1} = Z_{k+2} = Z_{k+1}aA^* = (D_k a D_{k-1} a D_{k-2} a \cdots D_2 a D_1 a) aA^*, \tag{11}$$

for we have

$$Z_{k+1} = Z_k a = Z_k a 1 = Z_k a D_0,$$

 $Z_k = Z_{k-1} a(ab)^* = Z_{k-1} a D_1,$

etc. The claim that $L_{k+1} \in \mathscr{B}^{(k+1)}$ now follows from (11) if we assume Lemma 4+.

LEMMA 4+. For $k \geqslant 1$ let

$$\bar{E}_k = D_{k-1}bA^* \cup A^*b(bD_{k-1})^{k-1}bA^* \cup A^*aD_{k-1} \cup A^*a(D_{k-1}a)^{k-1}aA^*.$$

Then $E_k = D_k$, showing explicitly that $D_k \in \mathscr{B}^{(k)}$.

Proof. We verify:

- (a) $x \in D_{k-1}bA^*$ implies $\tau(1, x) = 0$.
- (b) $x \in A^*b$ implies $\tau(1, x) \neq k + 1$. Hence $y \in (D_{k-1}b)^{k-1}bA^*$ implies $\tau(1, xy) \in \{0, k+2\}$.
 - (c) $x \in A*aD_{k-1}$ implies $\tau(1, x) \neq 1$.
 - (d) $x \in A^*a(D_{k-1}a)^{k-1}aA^*$ implies $\tau(1, x) \in \{0, k+2\}$.

Therefore, we have shown that $x \in \overline{E}_k$ implies $x \in \overline{D}_k$.

Conversely, if $x \in \overline{D}_k$ and $\tau(1, x) \in \{2, ..., k+1\}$, then $x \in A^*aD_{k-1}$. Thus $x \in \overline{E}_k$. Next suppose $\tau(1, x) = 0$ and $x = x_1x_2$ implies $\tau(1, x_1) \neq k+1$. Then $x \in D_{k-1}bA^*$. Now suppose $\tau(1, x) = 0$ and x "goes through" k+1. Let x_1 be the longest prefix of x such that $\tau(1, x_1) = k+1$. Then x is of the form $x = x_1bx_2$ where $\tau(1, x_1b) = k$. Now $x_1b \in A^*b$ and

$$x_2 \in bD_1bD_2 \cdots bD_{k-1}bA^* \subseteq (bD_{k-1})^{k-1}bA^*.$$

Thus $x_1bx_2 \in A^*b(bD_{k-1})^{k-1}bA^*$ and $x \in \overline{E}_k$. Similarly we verify that $\tau(1, x) = k+2$ implies

$$x \in A^*a(D_{k-1}a)^{k-1} aA^*.$$

For let x_1 be the longest prefix of x such that $\tau(1, x_1) = 1$. Then x is of the form $x = x_1 a x_2$, where

$$x_2 \in (D_{k-1}aD_{k-2}a \cdots D_1a) \ aA^* \subseteq (D_{k-1}a)^{k-1} \ aA^*.$$

Hence the claim holds and in all cases $x \in \overline{D}_k$ implies $x \in \overline{E}_k$. Therefore $\overline{D}_k \subseteq \overline{E}_k$ and the lemma follows.

This concludes the induction step and we can now state our main result:

THEOREM. The dot-depth hierarchy of star-free languages is infinite.

Proof. For each $k \ge 1$ we have exhibited a language L_{k+1} that is in $\mathscr{B}^{(k+1)} - \mathscr{B}^{(k)}$.

4+. On Syntactic Semigroups of Depth-k Languages

We now generalize the notion of 1-mutativity. Let S be any semigroup and k > 1 an integer. S is k-mutative iff there exists $m \ge 1$ such that for each $f, g \in S$

$$h_{k-1}(fh_{k-1}gh_{k-1})^m = h_{k-1}(gh_{k-1}fh_{k-1})^m$$

where

$$h_1 = (fg)^m$$

and

$$h_k = h_{k-1} (f h_{k-1} g h_{k-1})^m$$
 for $k > 1$.

The following is a necessary condition for membership in $\mathscr{B}^{(k)}$:

PROPOSITION 6+. Let $L \subseteq A^+$ and let S_L be the syntactic semigroup of L.

- (a) If $L \in \mathcal{B}^{(k)}$ then for each idempotent $e \in S_L$, $eS_L e$ is finite, aperiodic, and k-mutative.
- (b) Suppose S_L is a monoid. Then $L \in \mathcal{B}^{(k)}$ implies S_L is finite, aperiodic, and k-mutative.

Proof. (a) Suppose $L \in \mathcal{B}^k$. Then L is a union of congruence classes of \sim_n^k for some $n \ge 1$. Since \sim_n^k is of finite index, S_L is finite.

Let $f \in S_L$ and let $y \in A^+$ be such that y = f. By Lemma 1^+

$$y^{m_k} \sim y^{m_{k+1}}.$$

Since L is a union of congruence classes of \sim_n^k it follows that

$$f^{m_k} = f^{m_{k+1}}. (12)$$

Hence S_L is group free.

Now let e, f, and $g \in S_L$ be such that e is an idempotent and let u, x, y, $z \in A^+$ be such that $\underline{u} = e$, y = f, $\underline{z} = g$, and $x = u^{n+1}$. By Lemma 3^+

$$u_{k-1}(yu_{k-1}zu_{k-1})^{m_k} \stackrel{k}{\underset{n}{\sim}} u_{k-1}(zu_{k-1}yu_{k-1})^{m_k}.$$

Thus

$$u_{k-1}(fu_{k-1}gu_{k-1})^{m_k} = u_{k-1}(gu_{k-1}fu_{k-1})^{m_k}.$$

Now one easily verifies by induction on k that $\underline{u_k} = e\underline{u_k}e$ for all $k \geqslant 0$. Thus

$$\underline{u_k} = \underline{u_{k-1}}((efe) \ \underline{u_{k-1}}(ege) \ \underline{u_{k-1}})^{m_k}.$$

Now let

$$h_1 = \underline{u_1} = e((efe) \ e(ege)e)^{m_k} = ((efe)(ege))^{m_k},$$

and

$$h_k = u_k$$
 for $k > 1$.

Then $\underline{u_k} = \underline{v_k}$ implies

$$h_{k-1}((efe) h_{k-1}(ege) h_{k-1})^{m_k} = h_{k-1}((ege) h_{k-1}(efe) h_{k-1})^{m_k}.$$
(13)

Now (a) follows from (12) and (13).

(b) Let 1 be the identity of S_L ; then (12) and (13) hold with e=1.

Observe that the notion of k-mutativity defines an infinite hierarchy of finite semi-groups. This follows from the example in Fig. 1⁺, since the syntactic semigroup of A_{k+1} is (k+1)-mutative, but not k-mutative.

ACKNOWLEDGMENT

The authors wish to thank K. Čulík II for suggesting the form of the expression in Lemma 4+.

REFERENCES

- 1. J. A. Brzozowski, Hierarchies of aperiodic languages, Rev. Française d'Automatique Informat. Recherche Operationnelle Série Rouge (Informatique Théorique) 10 (1976), 35-49.
- 2. J. A. Brzozowski, K. Culík II, and A. Gabrielian, Classification of noncounting events, J. Comput. System Sci. 5 (1971), 41-53.
- 3. R. S. Cohen and J. A. Brzozowski, Dot-depth of star-free events, J. Comput. System Sci. 5 (1971), 1-16.
- 4. R. McNaughton and S. Papert, "Counter-Free Automata," M.I.T. Press, Cambridge, Mass., 1971.
- M. P. Schützenberger, On finite monoids having only trivial subgroups, *Inform. Contr.* 8 (1965), 190–194.
- 6. I. Simon, Piecewise testable events, in "Lecture Notes in Computer Science 33," Springer-Verlag, New York, 1975.