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Let A be a finite alphabet and A* the free monoid generated by 4. A language is any
subset of A*. Assume that all the languages of the form {a}, where a is either the empty
word or a letter in A, are given. Close this basic family of languages under Boolean opera-
tions; let # be the resulting Boolean algebra of languages. Next, close & under
concatenation and then close the resulting family under Boolean operations. Call this new
Boolean algebra &%, etc. The sequence #', BV ..., % ... of Boolean algebras is called
the dot-depth hierarchy. The union of all these Boolean algebras is the family & of
star-free or aperiodic languages which is the same as the family of noncounting regular
tanguages. Over an alphabet of one letter the hierarchy is finite; in fact, #* = £V, We
akcw in this paper that the hierarchy is infinite for any alphabet with two or more letters.

INTRODUCTION

Let A be a finite, nonempty alphabet and A* the free monoid generated by A, with
identity 1 (the empty word). Elements of 4* are called words. The length of a word
x € A* is denoted by | x |. Note that | 1 | = 0. The concatenation of two words x, y € A4*
is denoted by xy.

Any subset of 4% is called a language. If L, and L, are languages then L, = A* — L,
is the complement of L, with respect to 4%, L, UL, is the union, and L; N L, is the
intersection of L; and L,. Also LL, ={weA*|w = x;x,, ¥, €L, , x, €L,} is the
concatenation or product of L; and L, .

For any family & of languages let #M be the smallest family of languages containing
F U{{1}} and closed under concatenation. Similarly let # B be the smallest family
containing & and closed under finite union and complementation. Thus #M and #B
are the monoid and Boolean algebra, respectively, generated by .#.

* This work was supported in part by the National Research Council of Canada under Grant
A-1617.
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38 BRZOZOWSKI AND KNAST

Let & = {{a} | ac A}; this is the finite family of languages whose elements are
languages consisting of one word of length 1. We will write & U I for & U {{1}}. We
use % U 1 as the basic family of languages aver the alphabet 4. Now define the following
sequence A0, N ... F* ... of Boolean algebras:

#F0 = (1 v ¥)B,
B — (F*VY MB — BO(MBY:, for k=1.

This sequence (Z®, ZV,.., BW,..) is called the dot-depth hierarchy. A language L
is of {dot) depth O iff L € ', and of depth k, k = 1, if L e #* — Z*D, Thus k is the
minimum number of concatenation levels necessary to define L.

Let o — Jyp #; clearly o is the smallest family containing %\ 1 and closed
under Boolean operations and concatenation. This family is known as the aperiodic
or star-free family [4, 5], and is identical to the family of noncounting regular languages
[2, 4]. It was shown by Schiitzenberger [5] that & C A* is star-free iff its syntactic
monoid is finite and group-free, i.e., contains only one-element subgroups.

For languages over a one-letter alphabet one casily verifies that the dot-depth hierarchy
is finite [1]. In fact, for 4 = {a},

A, = (1 U %) BMB = B,

where %, = {{a}}, 7, is the family of aperiodic languages over a one-letter alphabet
and #" is the corresponding family of depth-one languages.

It was conjectured in [3] that the dot-depth hierarchy is infinite if the alphabet has
two or more letters, 1.e., that for each k& > 0 there exists a language that is of depth
k + 1 but not of depth 2 We prove this conjecture in this paper.

This paper is written by induction on &. In Sections 1-4 we treat the case kb = 1
which provides the basis. The induction step consists of Sections 17—4+.

I. BASIS: £ = |
1. DEcomposITIONS AND EQUIVALENCE RELATIONS

Let (A*)" be the Cartesian product of # copies of 4%, forn 2= 1. Let ar,: (4*)* — A*
be defined as follows. For X = (x,,..., x,) € (4*%)", m(X) = x, ~** x,,. An n-decom-
position is any element X of (A*)*. We say that X is an n-decomposition of x e A*
iff 7,(X) = x. Let £2,(x) be the set of all n~decompositions of x. Clearly 2,(x) is a finite
set. For example, let A — [a, b} and x = gba. Then x has the following 2-decompositions:

2(x) = {(1, aba), (a, ba), (ab, a), (aba, 1)}.

DerFINITION 1. Let ~ be any equivalence relation on 4*, We define an equivalence
relation ~ on (A*)* derived from ~ on 4% as follows. If X = (x,,...,»,) and ¥ ==

(yl 0y yﬂ) then
X~Y Hf x;, ~y; for 7==1,.., n
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Let the equivalence class of ~ containing x € 4% be [x]. Similarly, let the class of ~
containing X € (4*)* be [X]. Clearly [X] = [(%;,.., %,)] can be identified with

([‘xl]a"-) {xu])- Let
Qo) = {[X] | X € ()}

for all xe A*. Thus £,(x) is “the set of all n-decompositions of x that are distinct
with respect to the relation ~."" For example, consider the equivalence defined by:

x ~1 ff x = |,

and for x -~ 1,
X~y iff y /1.

Under this equivalence Q,(aba) = {({1}, [a]), ([a], [4]), ([a], {1])}-

DerINITION 2. Let ~ be any equivalence relation on A*, »n 2z 1 and x, y e 4%,
() Define the binary relation C,, on A*:
xCy iff Q(x) C Q).
(b) Define the equivalence relation ~, on A*:
X~y iff x(r;yandy(";x.
We will say that an equivalence relation ~ on A* is 1-pure iff ¥ ~ 1 implies ¥ = 1
for all xe A%
ProrosITiION 1. For alln = 1 and x, y, 2, , 2, € A%,
(a) C, is reflexive and transitive.
(b) If ~ is 1-pure then
xCyimpliesx ~y  and  x n% y tmplies x C y.
(¢) If ~ is a 1-pure congruence, then
x g y imphes 2 %2, (;U: 2, VL, .
Prosf. (a) Obvious.

(b) Clearly X = (x, 1,.,1)ef(x). If xC,y there exists Yec&,(y), Y =
(¥1 y--» ¥n) such that X ~ Y, Since ~ is }-pure, ¥ = (y, |,..., ). Hence x ~y.

"T'o prove the second claim, suppose X = (x; ..., £,) € 2,(x). Then X = (%} oo, %, , 1€
Qu(®). If xC, ;v and ~ is 1-pure, there exists ¥ = (¥} ,.., ¥, 1) € 2,,4(¥) such
that X ~ ¥. Then Y — (¥, ,..., ¥».) € 2,(») and X ~ Y. Therefore x C,, y.

(¢) We will first show that x C, y implies ax C,, ay for all @ € A. By induction
on the length of z; it follows that x C,, ¥ implies #x C, z;¥. The claim for z, follows
by left-right symmetry.
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Let U = (u y..., u,) € 2,(ax). Let u; be the first component such that |#; | > 0.
Such a #; always exists since | ax | > 0. The form of #; must be #, = au for some
ue A%, Thus U = (1,.., 1, au, sy oy 1) Let X = (1,0, 1, %, 4,4 .., ,); clearly
X e 2,(x). By the hypothesis xC, y and 1-purity of ~, there exists ¥ = (1,..., 1,
U, Uy sees Un) € 825(y) such that X ~ V. Note that # ~ v, and ax ~ av because ~ is
acongruence. Let I/ = (1,..., 1, av, ©,44 ,..., @,). Then U ~ V and ¥ € £, (ay). Therefore
axC,ay. |}

ProvosirioN 2. For alln > 1 and x, vy € A%,
(a) If ~ is of finite index then so is ~,, .
(b) If ~ is 1-pure then so is ~,, and
X~y implies £~y
(¢) If ~ is a l-pure congruence then so is ~,, .

Proof. (a) If ~ is of index i, then there are i n-decomposition classes. There are
therefore <<2¢" sets of the form £2,(x).

(b) The fact that ~,, is 1-pure is obvious, and the second claim follows directly
from Proposition 1(b).

(¢) This follows directly from Proposition 1{c). |}

2. DEcoMPOSITIONS AND CONCATENATION

From now on we assume that ~ is a 1-pure equivalence relation of finite index on 4¥,
Define
#'0 = {L C A*|L is a union of equivalence classes of ~1.

Clearly #® is a finite Boolean algebra with the equivalence classes [x] as atoms. In
this section we characterize Z#'"WA B with the aid of ~,, .
Denote by [x],, the equivalence class of ~, containing x. For X € 2,(x) let

Wn[X] - [xlj [xﬂ]'

Here, each [x;] is viewed as a language and the multiplication is just concatenation
of languages. Clearly

mlX) = fre 4% [X] e Go(a)).
Define the languages Y(x) and N(x) (for yes and no):
Y(x) = [} m[X] and N = [} =[X]

[Xiedd, () [X]¢83,(x)

ProrosiTION 3. [x], = Y(x) N N(x).
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Proof. 1f ze[xl, then 2,(3) — @u(%). Thus [X]eQ,(x) implies [X]cQy(2)
and z em[X]. Therefore z¢ V(). Similarly if [X]¢€L,(x) then zé7,[X] and
RE w,,[X ]. Therefore z € N(x).

Conversely 2 € ¥(x) N N(») implies & € m,[X] iff [X]e G,(x). Hence G,(s) = 3,(*)
and zefx],. §

Corresponding to each 7 define the family:
#, =4{L C A% | I is a union of equivalence classes of ~}.
N "
Again 4,, 1s a finite Boolean algebra, ~,, being of finite index. Let

BV~ {) B, .
nzl

ProvosiTioN 4. For all n = 1,

(@) HuC HBpy.

(b)y &, — (#'Y"B. Hence BV C 4, .

() #V — BOMB, ie., U By = U (BV)B) = (U (Z))B.
Proof. (a) This follows directly from Proposition 2(b).

(b) Suppose L e, . Since (#'9)"B is a Boolean algebra, it suffices to show
that each [x], is in (#®)*B. By Proposition 3, [x], is 2 Boolean function of elements
7. [X] from {# ). Hence #, C (A ) B.

Conversely it is enough to show that 1. = (#%)" implies L. € %4,, , since #,, is a Boolean
algebra. In fact, any L ¢ (#'%)" can be expressed as a finite union of languages of the
form [x,] -+ [x,] = 7,[X], since concatenation distributes over union. Thus we need
to show only that =, [X]e A, for all X e Q,(x). We claim that

m [ X] = U [l (1)

weS

where | = {z| [X]e 2.(2)}. For suppose vem,[X] Then v — y, - y,., v e [x],
1= 1,...,7n Let Y == (3 ,..,¥,); then {X] = [Y]. Thus yen,[X] imples [X]e
Q.(»), ic., ve J. But then v e Jyey [, - :

On the other hand, suppose y € [w], for some we j. Now [w], = Y(a) N N(w)
and m,[X] appears in Y(w) since [X]eQ,(w). Thus ye[w], implies ye ¥Y{w) and
y € m,[X]. This completes the proof of the claim (1). By (1), m,[[X] € Z,, and (#") C Z,, .

(c) Le#Y implies L €%, for some n and by (b) %, — (£9)BC % MB.
Thus #V C BOMB. Conversely L € #“"MB implies L € (#)"B for some 7 and
(BB = B, . Thus L e FOMB implies L ¢ #, C V. Hence FOMRBC AV ||

In summary, if a family & of languages is defined by an equivalence relation ~,
then the family (#'9y'B is defined by ~,, .
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3. LaNncuaces ofF Dor-DeptH 1

Let ~ be the largest 1-pure equivalence on A* for any 4. Then there are only two
equivalence classes [1] = {1} and [4] = A+, ae 4. Now let #© be the family defined
by ~, i.e.,

RO — {$, {1}, A*, A%}.

One verifies that the equivalence classes of ~,, are:

[l]ﬂ = l’
la}, = A,

[, = 42

[anfl]% — Anfl,
[a"],, = ArA*,

Now it is easily seen that FV = ZFOMB = { )., (F ") B is closed under concatena-
tion, Thus #? = ZW, In the case of a one-letter alphabet A = {a}, this means that
& = BV, ie., a language over a one-letter alphabet is star-free iff 1t is of depth 0 or 1.
We now consider the case of two or more letters.
From now on ~ represents the following equivalence:

(a) Ifxeludthen x~yiff x =y.
by Hax¢luAthenx~yiffyédl U A

This is the largest equivalence relation on A* that is pure for all a1 U 4 in the
sense that a ~ x implies @ = x for all e 1 v A. If the cardinality of A is #A, the
index of ~ is #A + 2. One easily verifies that ~ is a congruence. We will call this
the 2-pure congruence meaning that x ~ 3y implies x = y for | x| < 2.

LemMma 1. Foralln = 1, y e A%,

2N q2n+1
% v .
"

Proof. We first show that ,(y2+1)C 0, (™). There is nothing to prove
if y = 1. Now suppose y = a, where ae 4. Let U — (4 ,..., 1) € L(3*"). There
must be at least one u; = @° with s ;> 3. Otherwise

] = @t =21 = Y fug] < 2
i=1
a contradiction. Let u, = a* 1. Since | a®t| 22 2, a®* ~a*1. Let U = (4y youry thi_q ,
U,y Uiy 3oy Uy). Then o (U’) == a** and U’ ~ U. Thus a**t1 C,, &*.

Assume now that | v | = 2. First suppose that |#; | > |y | for all &. Then all %; in U
must be of the form u; = v, ¥%y, where y, is a prefix of y, y, is a suffix of y, and s = 0.
If there exists a u; with ¢ 2> 2, then |y, 9%y, | = 2 and [y,377y, | = 2, e, 3,37, ~
Y195 'y, . If there exists a wu; with s = 1 and | y;9, | = 2 again y, y5y, ~ 3,957y, .
Therefore, assume that for all z; either s = 1 and |[y,7,| <1 or s = 0. In the first
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case [ ;| = |y, ¥2 | << 1y |+ 1. In the second case |y, v,| << 2| | In both cases
lu;] <2|y|. Hence |y*"1 | = (2n + 1) |y | = X1 | % | < 2n|y)|, a contradiction.
Finally, if there exists a u; with | ;| <[y |, then there also exists a u,, with | 2, | > 2|y .
This #; must be of the form u; — y,y%,, where either s > 1 or s —= 1 and |y, 3, | >
| ¥| > 2, and we proceed as above. Therefore, one can always find U" € £2,(3*") such
that U’ ~ U. We have therefore shown that y*+t C 4%

The argument for y*» C, y*+! is essentially the same except we insert y instead of
removing it. For y = a, there must be a #; with | %; | = 2. Then u; = a% s >> 2 and
a5 ~ a**, For | y| => 2, there must exist #; = y,¥%p, with |%; | > 2. Then y, y%y, ~
SR AR T

LEMMA 2. Let ~ be the 2-pure congruence on A*, let n > 1 and %,y A%, Then
| % | > n implies x (;; XV,

Proof. let X = (xy,..., x,) € £,(x). Let x; be such that | x; | = 2; such an x, always
exists since | x| =35 1% > 7 Let ¥ o= (%) ey %y s ¥ King reeny x,) where x;' =
x; o x,yx, - x;. Then | x| 2= 2, &, ~ %,/ and X ~ Y. Since #,(Y) = xyx, we have
xC, xyx. |

Levma 3. Let x,yv,z€ A*, n =1, and | x| > n. Then

x( yxax)n ~~ x(zayx)e,
n
Proof. Let u = x(yxzx)®*. By Lemma I,

u ~u = x(yrax)*l = xycaxn( yrzx)n 1 yxzx.
n

Let w = zu( yxzx)?* 1y. Then u ~,, (xyx)w(xzx). Let v = a(zxyx)?® = xzx( yxzx)* Yyx =
xwx. By Lemma 2, x C, xyx and & C,, xzx. By transitivity of C,, , v = xewx C,, xyxwx C,
xyxwxzx = w' ~y,u. Thus » C,u and, by symmetry, ©C, v. Therefore v ~, v. |

We now give an example of a language that is not in V. Tet A, = (A4, 0, ¢, F, )
be the finite automaton of Fig. 1, where 4 = {a, 8} is the alphabet, Q = {0, 1, 2, 3}

>

Frc. 1. Automaton

2 .
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1s the set of states, ¢; = 1 is the initial state, F = {3} is the set of final states, and r
is the transition function given by Fig. 1. One verifics that A, is reduced. Let L, be
the language recognized by A, , L, = (ab)* aaA*.

PROPOSITION 5. L,c B'Y — BV, ie, L, is a depth-2 language.

Proof. Suppose L, ¢ V. Then L, is a union of congruence classes of ~,, for some
n = 1. Let x = (ab)*, y — a and 2 — b. One easily verifies that

* yxzx)yr e L, and x(zxyxy*? ¢ L, .

But by Lemma 3, x(yxsx)* ~, x(zxyx)?”, and these two words are in the same con-
gruence class. This is a contradiction. Hence L, ¢ #Y.

In automaton A,, let Z;, = {we A* | 7(1, ) = i}, and let D, — (ab)*. Then, from
Fig. 1, ‘

Zy = DbA*,
Zy =D,
Zy = Da,

Ly, = Z; = (D,a) aAd*,
and D, = bA* U A*bbA* U A*a U A*aad*, showing that D, e BV, since 4* = ¢
is in B0,
It now follows that L, = D,a?A* is in #®. Altogether L, is a language of depth 2. |

4. ON SynNTaAcTIC SEMIGROUPS OF DrEpTH-ONC LANGUAGES

Let L C A* be a language. The syntactic congruence of L is defined as follows. For
Cx,ye A ,
X =y iff for all u, v € A%, uxv el < uywel.

Let §; = A*[=, be the quotient semigroup of A+ modulo the congruence =, ; S, is
called the syntactic semigroup of L [4]. Let p: A* — S; be the natural morphism
associating with each x € 4", the equivalence class of =, containing x. We will denote
by x the image of x under u (ie., u(x) = x).

We will say that a semigroup S is aperiodic iff there exists m 2> 1 such that fm = fm+1
for all f& S. We say that S is 1-mutative iff there exists m = 1 such that

(fey" = (ef)m,

for all f, g€ S. The two conditions are equivalent to S being #-trivial if .S is finite [6].
The reasons for our choice of terminology will become clearer in the induction step.
The following gives a necessary condition for membership in FW,

PROPOSITION 6. Let L C At and let S, be the syntactic semigroup of L.

(a) If LeB'Y then for each idempotent e € S, , €S, eis finile, aperiodic, and 1-mutative.

(b) Suppose S; is @ monoid. Then L € BV implies that S; is finite, aperiodic, and
1-mutative.
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Proof. (a) If L € W, then L is a union of congruence classes of ~,, for some n > 1.
Since ~,, is of finitc index, S is finite. Since S, is the image of A+ under p, there exists
y € At such that y = f for each f€ S, . By Lemma |

ym ,:l_, y2n+l_ (2)

Since L is a union of congruence classes of ~,, it follows that x ~, &’ implies x = &’

for all x, x" € At. Therefore by (2)

f27& — f2n+1_ : ‘ (3)

(The reader should note that we have just shown that if L 1s in # then its syntactic
semigroup .S, satisfies (3) for all fe §; , ie., is group-free [4].) '

Now let g, f, g € 5, let e be an idempotent, and let u, x, y, € A+ be such that u — e,
y =Ff g —g and x == y**1. By Lemma 3,

x( yazx)tn ~ x(zxyx)?, (4)
and
of fege)'™ = c(gefe)tn. (5)

From (3) and (5) it follows that &S;e satisfies the required conditions with m = 2n,
since

((efe)ege))™ = e fege)" — e(gefey™ = ((ege)(efe))™. (6)

{bj Let 1 be the identity of S; . Since (6) holds for all idempotents, it holds for
e = | and we have (fg)™ = (gf y. This and (3) show that .S} is |-mutative and aperiodic.

These results were obtained first by Simon [6] by different means. He also showed
the converse of (b), i.e.:

(b") Suppose S; is a monoid. If .S} is finite, aperiodic, and 1-mutative then I, € .

This concludes the basis.

II. INDUCTION STEP: &k > 1
1+, DECOMPOSITIONS AND (GENERALIZED EQUIVALENCE RELATIONS

We now assume that Section I corresponds to & = 1, and we generalize all the notions
by induction on k. The induction hypothesis is that everything has been done for &,
and we consider k& - 1.

DerInNITION 1+, For each & > 1, n 2> | let ~J be an equivalence relation on A%,
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We define a relation ~#1 on (4*)* derived from ~; as follows. If X — (%;,..., %)
and Y = (¥, ,..., ¥) then

=0 X~Y iff X~ Y asin Definition 1,

E>0: XLV i xeeyifori =1,

Let the equivalence class of ~% containing x € A* be [«]} . Similarly let the class

of ~* containing X = (%, ..., x,) € (4*)* be [X]*. Clearly [X]**! can be identified
with ([#]5 ..., [%a]%). Let
Q.Mx) = {IX]| X e .=},

for all x e A*.

DEFINITION 2+. Let ~ be any equivalence relation on A%, 7,k 2> 1 and x, y€ A*.

(a) Define a binary relation Cj; on A*:

k=1 é = g of Definition 2,

k> 1 xéy Q5% C QM)
(b) Define the equivalence relation ~p on A*:

Bl ~— ~ of Definition 2,

k k k
k=1 x~y ift x(;yandygx.

To illustrate this inductive procedure, we have the following order in which the
concepts appear:
(1) x~,yis defined in the basis.
() X ~2Yiff x; ~}y, for all i = 1,..., 2 (Definition 1%).
(3) ‘This yields [X]2 and ©Q,%(x).
@) =C2yiff 3,.2(x)C 2.2 ().
(5) *~2yiff xClyand yC;
Thus we have gone through the full cycle.

ProrostTioN 1*. Letn, k == 1 and x,y, 2y, 3,€ A*.
(2) CE is reflexive and transttive.
(b) If ~ is 1-pure then

k1 & k A . k
x (E- y impliesx ~y  and X n(;rl y implies x (,; ¥
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(c) If ~ is a 1-pure congruence, then
koo k
x (ﬂ: y implies z,x3, %‘ 2, Y%y -
Proof. (a) Trivial.
(b) % = 1: Proposition 1(h).

k> 1: Clearly X = (x, 1,..., 1) € 2,(x). if x CE*! y thereexists ¥ = (3, ,..., ) €
Q,(y) such that X ~*11 Y. Since ~7 is 1-pure by the inductive assumption (Proposi-
tion 2+), Y is of the form ¥ = (y, 1,..., 1) and & ~£ y.

For the second claim, suppose X = (x, ,..., x,) € 2,(»). Then X = (%) 0y %, D E
2, ,.(x). If x CE_, v and ~ is T-pure there exists ¥ = (y, ,..., ¥,,, 1) such that X ~*t ¥
and Y e 2,,:(y). Then ¥ = (9, ..., ¥») € 2,(¥) and X ~F Y. Therefore x C* y.

(c) Same argument as in Proposition 1{c). ||

PROPOSITION 2+. For alin, k > 1 and x, y € A*:
(a) If ~ is of finite tndex then so is ~E .
(b) If ~ is 1-pure, then so is ~* and

3 N k
x ~ vy tmplies x ~ y.
n-Hy P ‘n ¥

(c) If ~is a 1-pure congruence then so is ~~ .

Proof. Same as Proposition 2 after ~,, is replaced by ~* . |}

2%, DECOMPOSITIONS AND REPEATED CONCATENATION

Again ~ is assumed to be a I-pure equivalence relation of finite index. Denote by
[x]% the class of ~F containing », and for X e 2,(x) let

mal X7 = [ o [l

We have
X[ = {z e A% [ X € 05 (),
Define also
Yiy = () mlX}F and  Nex) = [} XN
(X8, @ (X1, F )

ProposSITION 3+, [x]% — YH(x) N N*(x).

Proof. Repeat the proof of Proposition 3 with ~% instead of ~, . ||
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Corresponding to each ~% define:
2P = {L. C A* | L is a union of equivalence classes of %}.
Again # is a finite Boolean algebra. Let
200 _ ()
BT = nLZ)l By,
ProposrrioN 4+, For alln b > 1,
@ #7CB7,,

(b) BED — (BOV B, hence B C B,
(©) BEV — (BOYMB — BO(MBY+,

Proof. Repeat the proof of Proposition 4 with ~*

. instead of ~_ . ]

[t follows that the family of aperiodic languages is

o =) B,
k>0

3+. LanGuaces ofF DoT-DEerTH &
Again, let ~ be the 2-pure congruence.

LemMa 1+, For all m, k > 1, y c A%, there exists m > | such that y™ ~% ymH,
Proof. Letm, = 211(2;:01 n') for k = 1. We claim that yms ~fF ymei1,

k = 1: We have m; = 21 and the result holds by Lemma 1.
k > 1: Assume the result holds for %, and that |y | > 1.

Let U = (u ,..., #,) € £,(y™=+1#1), Then there exists at least one #; such that

Iui\mkﬂl’izki b= {2 k_lz‘ 2
>y =2 Y #)ly = (X # )+ 2) 1y

i=0 i==0
=(m +2)|y .

Now #u; must be of the form u, = ¥, ¥%y, where {1,y,| < 2!y |. Hence s > m, and
by the induction hypothesis 5 ~% 571, Let U’ = (g yoor, #s_y , %y Uzyg yory Uy,) Where
u! =3,y Yy,. Then u; ~fu/ and U~F1 U’ Since w,(U') = y™+1, we have
y"’-k+l+1 C]:LJrl Y,

To prove ymen Citl ymeatl yse a similar argument, replacing y¢ by y*#! instead

of 1. |
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Levma 2+, Letk >0,n > 1, x, y€ A* | x| > n. Define

uo = X
and
T,
10y, =y g Y2ty 1), for k>0,
where my, 15 defined in Lemma ', Then
ki1 41

;, g i, and u, E Uty

Proof. k = 0: This reduces to Lemma 2.
k>0 Letw = Yty 13ly_; . We must show

k+1 :
Uy = wy_qw"Ht g ty,_q20" 5y, ™R, (7

Because of Proposttion [+(c) it 1s enough to show that
R "
B4l k4l 75
w (1; w"F iy o 2. (8)
Let W — (w; ,..., %,) € 2p(w™+1). There must exist w; such that | 2, | 2> (myq/n) |w| =

(m; + 2} | 2 |. Also =, must be of the form w'zw®»", where @’ is a suffix and " is a
prefix of w. It follows that s 2= m, . Hence

k &
s ney, EHURSS B my My
w -‘*; w ";J w - W yuk_lzuk_lw = P

Now we have the inductive assumption:
E 8
Up Cn Up 1 YUy and Up—1 (n: 1 BUy_g -

Therefore

k
g Py g 1
q — W YU W E—w ) ORI

39 — P.
On the other hand,

ko
g~ @y @™ — (Y T, ) Y 2™
”
and
E
Ly o™ O gy 1y, k
p o Wi syt Cw Vi y2{ny v, yw ~q

Thus p wfl g, showing that
k
s ~ Wy, ™ = gq.

By Lemma 1+,

L ;
o’ ~ "y, g,
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Now let ;' = w'w™aypy, jw™+w”, and let W’ = (wy 0, Wiy, W, Wipg ey Wy)-
Then w(W') is of the form w'w™nyy,  wmagt which is ~Jt! equivalent to
WMy, ™t = v, Now W' ~*1 W, ie., we have shown that w1 C;* 0. This is
(8), and (7) foltows.

To prove u; CE* uyzu, use a very similar argument, except that we show that

k
W™ ~ o™, W™ = .
4

This holds since
W™ ~ ™y gz qw”t C ™y g3 St )W ~ 7,
n n n
and
& Re3) My k Ly, 17y k "y
v~w Vidy_13(Up 1) g W (n:w Vit 13(Ugo_y Y3 Rty oW T |
Lemma 3+, Letn,h =21, |x| > n, and x,y, 2€ A*. Let uy = x and for k > 1, let
uy =ty Yihy 120 1) and vy = U (R0 Yty )"
Then m can be chosen in such a way that u, ~ v .

Proof. k = 1: This is Lemma 3.

k> 1: Letm = m,,, ; then Lemmas 1+ and 2+ hold for ~%+" and Ck*, respec-
tively, By Lemma It 1, ~5 u (yuem )™t = uyyu2u yupzu)™ yuzu, . Let
wy, = z(yupzy™ty. Then uy,y ~57 (uyuy) wp(uzu). Also, vey = wau, . By
Lemma 2%, %, C-+1u, yu, and u, C5 uzu, . Hence uy, C&7' vy, . Similarly, vy, C5F
#,,, and the result follows. {

We now give an example for each k& > 1 of a language that 1s not in Z®. Let Ay .y =
(4,0,q,F, 7>, where A4 ={a, b}, O ={0,1,...,k+2}, ¢4 =1, F —{k+ 2} and
fori =1,.,k+1

(i, @) — 1+ 1, (@, by =1 — 1,
(0, a) = (0, b) = 0,
Tk +2,a¢) =7k} 2,6) — &+ 2.

This is shown in Fig. 1*. One verifies that A, ,; is reduced.

Fic. 1*. Automaton Ag,, .
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Before proceeding we will prove the following property of A, . Let
#y = (ab),
and forj = 1 let
u; = u; (au;_bu; \f* and v; = uy; 4(bu; au; )",
be defined as in Lemma 3+, with x — (ab)*, y — a and 2 = b. Then
T(Z:, u) =1 fér 1 éz <k —f, ©)
(i, u;) =k +2 for k—j+1<Ci<<k+ 1
We verify this claim by induction on j.
7 =0: This is easily verified for u, = (ab)".

] > 0: Assume that (9) holds for »; . Denote by x the transformation on the set @
of states of A, caused by x. The transformation u; is as shown in the first row of Fig. 2+
by the inductive assumption. From Fig. 1+ it is easily verified that w;a, w;au; , and waub
are as shown in Fig. 2+, and that T T

u,-au?-bui == u,-au,-b (10)
and
waubu;a = wau; .
Thus

ujaujbuja(u,-bu,-) = u,vauju,-bu,- .

Noting that w;u; = u;, we have

ui(aubuy)® = uanbu;).

Hence

Uy = wy(aubu;)™ = ujaubu;).

From (10) and Fig. 2+, we have the claim (9) for u,_, .

12 R R L LI B S L B ko k+l
'S i 2 k-j=Il k-j | k+2 k+2 | k+2
}E 2 3 K-j (k-j+l | k+2 k+2 | k+2

you 2 3 k=-j |k+2 [ k+2 k+2 | k42

UjOUJ‘b 1 2 e K-j-1| k+2 | k+2 k+2 | k+2

Fic. 2*. 'Transformations in Ay, .
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PROPOSITION 5+, Ly, € B%D — BW, je., L., is a depth-(k + 1) language.

Proof. First we show that L, ¢ 2. By (9) 7(1, u,;) = 1 and (2, 5, 4) = k& + 2.
Thus
(1, uz) = (1, wp(au,ybu,4)") = &k + 2,
and

'T(_], 'U]C) - 0

Therefore #; € Ly, but v, ¢ Ly,; . By Lemma 3% u, ~£ v, . Hence L., cannot be a
union of congruence classes of ~ , and Ly, # #%.

Next we will show that the language L,., recognized by A, is in #%i1, We will
show in Lemma 4+ that a related language, D, , is in . Let

Do = I, .
D, = (aD;_,b)%, for k> 1.
One easily verifies that D, = {we A* | 7(1, w) = 1} in Az, . Note also that
D._,CD, forall 2 > 1.
Let Z, — {we A* | 7(1, w) = i}. Then:
Zo = DkbA*,
Zl = Dk )
Ziy = ZaD,_; for 1 <i <k,

and
LIC-E—I = ZIC+2 - Zk+laA* s (DkaDk_laDk_2a e DzaDla) aA*, (11)

for we have
Zk+1 == Zka — Zkal - Z;CaDD,
Zy = Zya(ab)* = Z; qaDy

ete. The claim that L, € %1 now follows from (11) if we assume Lemma 4t. |

Levva 4+, For B = 1 let
E, = D,_,bA* U A*HbD,_ Y1 bA* U A*aDy ;U A*a(Dy @)t ad*.
Then E, = D, , showing explicitly that D, € B*.
Proof. We verify:
(a) x¢eD,_,bA* implies 7(1, x) = 0.
(b) xe A*b implies (1, ) # & -+ 1. Hence y & (Dy40)* 84* implies =(1, xy) e
{0, & + 2} ’
(c) xc A*aD,_, implies (1, x) 5= 1. :
(d) xe A*a(Dy ja)~'aA* implies (1, x) €{0, & + 2}.

Therefore, we have shown that x € E;, implies 8 € Dy .
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Conversely, if xe D, and 7(1, ) €{2,..., k + 1}, then x€ 4%aD;, ;. Thus xc E,.
Next suppose 7(1, x) = 0 and & = xyx, implies 7{1, ¥;) 5= & -} L. Then x e D, _,b4*.
Now suppose (1, ) = 0 and x “goes through’ k4 1. Let », be the longest prefix
of x such that 7(1, x,) = & -+ 1. Then & is of the form & = x;bx, where (1, x,6) = k.
Now x,0 € A*b and '

2y € 51D, -+ DDy (bA* C (0D () bA*.
Thus x,bx, € A¥6(bD;_,)" 1 bA* and x € E; . Similarly we verify that (1, x) =&+ 2
wmplies

x € A*a{Di_ja)"1 ad*.
For let x, be the longest prefix of x such that =(1, ;cl) = 1. Then x is of the form
x = xax,, where
x2 [ (DkwlaDk_Qa e Dla) aA’k g (Dk,_la)k"l a.{q*.

Hence the claim holds and in all cases x € D, implies x € I, . Therefore D, C E; and
the lemma follows.

This concludes the induction step and we can now state our main result:

'THEOREM. The dot-depth hievarchy of star-free languages is infinite.
Proof. For each & > 1 we have exhibited a language Ly, that is in Z%+0 — Z%,

4+, On SyNTAcTIC SEMIGROUPS OF DEPTH-A LANGUAGES

We now generalize the notion of I-mutativity. Let S be any semigroup and & >> 1
an integer. S is k-mutative iff there exists m 2> 1 such that for each f, g€ §

ho o (fl_ 18l )" = by (ghey fhp )™
where
= (g

and
b = b (s ghia)™ for k> 1.

The following is a necessary condition for membership in Z%:

ProOPOSITION 6%. Let L C At and let S, be the syntactic semigroup of L.
(2) If LeB® then for each idempotent ee S, , eSpe is finite, aperiodic, and
k-mutative.
(b) Suppose Sp is a monotd. Then L e B® implies S; 15 finite, aperiodic, and
k-mutative.
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Proof. (2) Suppose L € #*, Then L is a union of congruence classes of ~¥ for some
n > 1. Since ~F is of finite index, S, is finite.
Let f€ .S, and let y € A* be such that y = f. By Lemma I+

k
"y myt1
Py,

Since L is a union of congruence classes of ~f it follows that

fre=fre, (12)

Hence S, is group free.
Now let ¢, f, and g € S; be such that e is an idempotent and let #, x, y, z € 4+ be such
that = e,y = f, 2 = g, and ¥ = u*1. By Lemma 3+

1, k L

gy ( Yy 1RUp 1) ~ gy (Bt Yty 1)
Thus

Wiy (fih 180 2)™ = (G20 fii o)™
Now one easily verifies by induction on % that u; = enge for all £ > 0. Thus

e = tha((efe) 1 _y(ege) up.)™.
Now let
by = 1y = el(efe) elege)e)™ — ((efe)(eze))™,

and

k., = LA for &> 1.
Then u, = v implies
hy._s((efe) f_y(ege)hy_y)™ = hy1((ege) iy (efedh_1)™. (13)

Now (a} follows from (12) and (13).
(b) Let 1 be the identity of S ; then (12) and (13) hold with e = 1. §

Observe that the notion of k-mutativity defines an infinite hierarchy of finite semi-
groups. This follows from the example in Fig. I+, since the syntactic semigroup of
A; ., is (B 4 1)-mutative, but not k-mutative.
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