LUCID: SCOPE STRUCTURES
AND DEFINED FUNCTIONS

by

E.A. Ashcroft W.W. Wadge

Dept. of Comp. Science Dept. of Comp. Science
University of Waterloo University of Warwick
Waterloo, Ont., Canada Warwick, Warwickshire

Research Report CS-76-22
November 1976



LUCID: SCOPE STRUCTURES AND DEFINED FUNCTIONS

by

E.A. Ashcroft
Computer Science Department
University of Waterloo
and
W.W. Wadge

Computer Science Department
University of Warwick

Abstract
Lucid is augmented by constructs allowing the use of local
variables and defined functions. This is achieved while Tosing none

of the aspects of Lucid as a formal system.



0. Introduction

We consider the addition to Lucid of features allowing local variables
and defined functions. Such additions seem necessary if Lucid is to be a

useful programming language.

The development of Lucid requires a different approach than the
development of conventional programming languages. Lucid is first and
foremost a formal logical system, with axioms and rules of inference, used
for reasoning about particular sorts of formulas as assertions. Lucid
programs are built up from such assertions in certain restricted ways.

If the programming aspect of Lucid is to be developed, then the whole formal
system must be developed also. A crucial feature of Lucid is that in a

proof of a program, assertions derived at any stage have the same status,

in the formal system, as the program itself. There is a smooth continuum
from straightforward mathematics to Lucid programs. Thus if new constructs
are developed for the programming language, one must consider the more
general use of these constructs in proofs where they may be used not for
defining computations but for stating more general assertions. We can add
any assertion derived from a program to the program itself without changing
its meaning. What if such assertions, which need not look at all like pieces

of program themselves, are added within our new constructs?

Therefore, what must be developed is the formal system and, as before,‘
special syntactic subclasses of formulas will correspond to our improved
Lucid programs. So, in what follows, we consider the new constructs as new
types of assertions, as might occur in proofs. We consider such questions

as: what are the free and bound variables in such assertions, what equiva-



-2-

lence preserving manipulations can we perform on such assertions, and
how do we substitute terms for variables in such assertions (a common
operation in logical systems). We also indicate the extra syntactic

restrictions that must be obeyed if these assertions are to be used as

parts of programs.

There will be no formal semantics in this paper of the type
given in [1]; the presentation will be informal. However the
equivalence preserving manipulation rules we present should be sufficient
to convey the meaning of constructs at an intuitive level, and should

enable programs to be written and proofs carried out.



1 Clauses

Lucid has "constructs" for structuring programs analogous to the
blocks, while loops and procedure dec]arétions of Algol-like imperative
languages. In the more general framework of the formal theory, clauses
are collections of assertions considered és single assertions. They are
used in programs to define variables (data variables or function variables)
by means of locally defined variables. The "scope rules" will turn out

to be essentially the same as those for Algol.

1.1 Produce Clauses

The simplest type of clause is the produce clause. A produce clause

is used to 1imit the scope of certain variables so that the same variable
can be used in different places with different meanings. A produce clause

has the form

produce <expression> using <variable list>
<set of assertions>

end.

The <expression> is called the subject of the clause, the <variable list>

is the global 1ist, and the set of assertions is the body of the clause.

The variables occurring in the global 1ist are the global variables

of the clause; all other variables are local variables of the clause whether

or not they occur within the clause. A produce clause is an assertion about

the subject and about the globals of the clause whose free variables are

the global variables together with the free variables of the subject expression.
Inside the body, the special local variable "result" refers to the subject

expression. (The variable "result" cannot be a global variable.) More



-4-

precisely, a produce clause asserts that there are values for the Tocal
variables which make all the assertions in the body true when "result" has

the value of the subject expression.

A produce clause is used in a program as a pseudo-equation defining

its subject and possibly some of its globals. In this case, the body of the
clause is a sub-program which will contain definitions of "result" and of
every local variable occurring in the body and also of those globals that

are to be defined (these definitions may be by means of clauses).

A1l examples will be of programs, but generally arbitrary assertions
could be used instead of definitions of variables, to give more general

clauses.

Example 1
produce meanX using X, sqdev
first SUM = first X
first SUMSQ = first X
next SUM = SUM + next X

next SUMSQ = SUMSQ + next X2

sqdev = (SUMSQ - SUM®)/1
result = SUM/I

end

Here "X" and "sqdev" are global variables, with "sqdev" being defined within

the clause, and "result", "SUM", "SUMSQ" and "I" are local variables.

Example 2
produce minY using Y
first result = first Y
next result = if result < next Y then

result else next Y
end. R



Here "Y" is global and "result" is local.

A Tocal variable of a clause (other than "result") can be consistent-
1y renamed without changing the meaning of the clause, provided the neW name
is not a global and is different from all other Tocals occurring in the

clause.

The produce-end parentheses of a produce clause can be removed
(giving a set of assertions) by '
(1) renaming all Tocal variables so that they differ from all variables
in the smallest enclosing clause that are globals of that C]ause or

occur freely in that clause, and

(2) rep]écing all free occurrences of the variable "result" in the body
by the subject expression.

For example, if the produce clause in example 1 occurs in another clause

in which the variables "A", "B" and "C" are not globals nor occur freely,

then the produce clause can be replaced by

first A = first X
first B = first X°
next A = A + next X
next B = B + next X°

C = 1 followed by C+1
sqdev = (B - A%)/C
meanX = A/C

This renaming rule implies that the "scope" of a local variable of a clause

is just that clause.



-6~

1.2 Compute Clauses

Lucid has a type of clause, called a compute cTause, similar to

the produce clause, which is used to write nested loops. It is of the form

compute <expression> using <variable Tist>
<set of assertions>

end.

A compute clause asserts that there exist values for the local
variables which make all the assertions in the body true when all the
globals refer to their latest values and “"result" refers to the Tatest

value of the subject.*

In a compute clause in a program, the local variable "result" and

any globals defined in the clause must be defined by quiescent expressions
(see [1]). The other global variables are also taken to be quiescent.
The compute clause replaces the begin-end construct described in [2]. In
other words, its effect is, intuitively, to "freeze" the values of the

giobal variables during 'computation' of the inner loop.

Example 3
compute next R using X, tolerance
first app = X/2
next app = (app + X/app)/2

RS N

end.

* Formally, the compute clause is equivalent to the corresponding produce
clause obtained by substituting latest X for all free occurrences of global
variable X except those in the subject expression (see 2.6), replacing the
subject expression E by latest E and the word compute by produce.




The effect of this loop is to define the value of "R" at time t+1 to be
the square root of the value of "X" at time t, calculated to a precision

determined by the value of "tolerance" at time t.

Example 4. Here we combine produce and compute clauses.
produce meanX using X, dev
first SUM = first X
first SUMSQ = first X
next SUM = SUM + next X
next SUMSQ = SUMSQ + next, X°
I =1 followed by I+
to]efance = SUM/(Ix10,000)
sqdev = (SUMSQ - SUM)/I

compute dev using sqdev, tolerance

first app = sqdev/2 |

next app = (app + sqdev/app)/2

result = app as_soon as sqdev - app2 < tolerance
end
result = SUM/I

end

Clearly, the produce clause gives the "running-mean" of “X", while also
making "dev" be the "running-standard-deviation" of "X", calculated to a

continually increasing precision.

1.3 Function Clauses

Function clauses are assertions about function variables. A

function clause is of the form



function < function variable>(<variable 1ist>) using <variable 1list>
<set of assertions>

end.

The function variable is called the function name; the variables within the

parentheses are the formal parameters; together these constitute the

function header. These variables in the header must all be distinct, and.

may not occur in the global list. The global variables are those in the
global list together with the function name. These are also the free

variables of the clause considered as an assertion.

A function clause is an assertion about the free variables. It
asserts the truth, for all values of the formal parameters, of the produce
clause obtained by replacing the word "function” by the word "produce"
and by adding the formal parameter variables and the function name to the

global list.

When used in a program, a function clause is a definition of the
function name and possibly of some of the globals, and the body of the
clause must be a subprogram defining the variable "result". The formal
parameters must not be defined in the body. Since the function name is
a global of the clause, the function name being defined can, of course,
be used in the body, i.e. recursive functions are allowed.

Example 5

function min{X)

first result = first X

next result = if result < next X then result else next X
end

(Here the word "using" was dropped because the global list is empty.)



Example 6
function mean(X) using dev

First SUM = first X

first SUMSQ = first X

next SUM = SUM + next X

next SUMSQ = SUMSQ + next X°
I =1 followed by I+

tolerance = SUM/(Ix10,000)

sqdev = (SUMSQ - SUM?)/T

compute dev using sqdev, tolerance

first app = sqdev/2

next app = (app + sadev/app)’

result = app as_soon as sqdev - app2 < tolerance
end
result = SUM/I

end

Note that both "mean" and "min" are non-pointwise functions of their
arguments, i.e. their values at time t do not just depend on the values

of their arguments at time t.

1.4 Mapping Clauses

A mapping is a pointwise function. It is often useful to know
that a function is pointwise, and so Lucid provides a fourth type of

clause, called a mapping clause, for defining mappings. The general




-10-

form is

mapping < function variable>(<variable Tist> using <variable list>
<set of assertions>

end.

The function variable is called the mapping name of the clause.

A mapping clause asserts the truth, for all values of the formal
parameters, of the compute clause obtained by replacing the word "mapping"
by the word "compute" and by adding the formal parameters and the mapping

name to the global ist.

When used in a program, the syntactic restrictions are those for
a function clause, together with the constraint that the variable "result"
and all globals defined within the clause must be defined by quiescent

expressions. The globals and formal parameters are taken to be quiescent.

Example 7
mapping root(X) using tolerance
first app = X/2
next app = (app+X/app)/2
result = app as_soon as X - app2 < tolerance

end.

The mapping "root" is pointwise in its argument and in the global "tolerance".



-11-

Example 8

Here we combine a function and a mapping.
function mean(X) using dev
mapping root (X) using tolerance
first app = X/2
next app = (app + X/app)/2
result = app as_soon as X - app2 < tolerance
end

first SUM = first X

I~

first SUMSQ = first X°

next SUM = SUM + next X

next SUMSQ = SUMSQ + next X2

tolerance = SUM/{(Ix10,000)
dev = root ((SUMSQ - SUM®)/I)
result = SUM/I

end



2.
2.1

-12-

Manipulation Rules

Adding global variables

There are three cases in which a variable can be added to the global

1ist of a clause, without changing the meaning of the clause:

(a)
(b)

2.2

when the variable does not occur freely within the body of the clause,
when the clause is a produce or function clause and the variable to be
added is not a formal parameter of the clause and does not occur freely
in the body of the smallest enclosing clause, and is not a global or
forma1 parameter of that clause,

when the clause is a compute or mapping clause and the variable to be
added is quiescent and is not a formal parameter of the clause and does
not occur freely in the body of the smallest enclosing clause and is
not a global or formal parameter of that clause. (In this case, for

programs, the result will be a program only if the variable is defined

to be quiescent.)

Removing global variables

A global variable may be removed from the global list of a clause

if it could immediately be replaced according to the rules above (2.7).

2.3

Adding assertions

There are two cases in which assertions can be added to the set

comprising the body of a clause;

(a)

(b)

any assertion may be duplicated, giving two or more copies,
and

any assertion
<variable> = <expression>



-13-

can be added to a clause provided the variable is a local variable, other

than a formal parameter, not occurring freely in the body of the clause.

2.4 Moving clauses

Lucid also provides rules for moving assertions in and out of
clauses. These rules allow us to extend the techniques for nested proofs

and program massage given in [1,2].

Each type of clause has its own "moving rules".

2.4.1 Produce and Function Clauses

Any assertion can be moved in or out provided all its free variab]es‘
are global variables of the produce or function clause. If the assertion
to be moved out also has "result" as a free variable, it can be moved out
provided all free occurrences of "result" are replaced by the subject
expression, in the case of a produce clause, or by the function header in

the case of a function clause.

2.4.2 Compute and Mapping Clauses

The rule is the same except the assertion being moved must be a

point-wise assertion.

A pointwise assertion is either
(a) a Luéid term whose free variables do not occur within the scope of

a nonpointwise function. This is called a pointwise expression;

(b) a compute clause whose subject is a pointwise expression;
or

(c) a mapping clause.



-14-

2.5 Moves which change the moved assertion

A useful additional rule is that any compute clause with a point-
wise subject expression can be moved into a compute or mapping clause,
becoming the corresponding produce clause, and>any produce clause with a
pointwise subject expression can be moved out of a compute or mapping clause
becoming the corresponding compute clause. In both cases, the free variables
of the clause being moved must be global variables of the clause being
moved into or out of, except that, when moving out, the variable "result"

may océur, and is replaced by the subject expression.

Note: The corresponding transformation between mapping clauses and function

clauses does not work.

2.6 Substitution

Clauses are examples of assertions in the Lucid formal system. One
very basic operation that is used a great deal in formal systems is the
substitution of a term for all free occurrences of a variable. We must define

this notion for clauses.

We will assume that we are only concerned with substituting for data
variables. In that case the variable to be substituted must occur (i) in the
subject expression and/or (ii) in the global 1list. The result of substituting
term t for free occurrences of variable X in the clause is then obtainedA
by substituting t for all free occurrences of X either in the subject
expression or in all assertions making up the body of the clause (in case (i)
and (ii) respectively) and by replacing X in the global 1ist by all the free

variables of t.



-15-

We say the term t is free for X in the clause if the substitution

of t for X would not result in any of the occurrences of local variables
in the clause (including sub-clauses) becoming global variables of the

clause. This notion plays a crucial role in most formal systems.

3. "Computational Behavior" of Functions and Mappings

The formal definitions of clauses and the manipulation rules above
are sufficient to answer questions of an operational nature about functions

and mappings.

We will first illustrate how the rules can be used to perform

symbolic execution of a function call. Consider

produce output

function min(X)
first result = first X
next result = if result < next X
then result else next X
end
X = 3 followed by 1 followed by 2
result = min(Xz)

end

We first rename the formal parameter of "min" so that it doesn't

conflict with any variable used in the enclosing produce:



-16-

produce output
function min(Y)
first result = first Y
next result = if result < next Y then result
else next ¥
end
X = 3 followed by 1 followed by 2
result = min(X2)

end

Now we can add an assertion to set up the correspondence between

actual and formal parameters, and substitute for the actual parameters:

produce output
function min(Y)
first result = first ¥
next result = if result < next Y then result
else next Y

end

TSN NI N VRSN AN NN

VR

result = min(Y)

end

The function clause can now be replaced by the corresponding produce

clause:



-17-

produce output
produce min(Y) using Y, min
first result = first Y
next result = if result < next Y then result
else next Y
end
X =3 followed by 1 followed by 2
v = X
result = min(Y)

end

(The global function variable "min" of the produce clause could subsequently

be dropped.)

We can now show that

in the outer produce clause. This can then be moved into the inner produce
clause, because "Y" is a global variable of this produce clause. In the

inner produce clause we can then get

A SISO L N

I A

This gives us the value of “result", so that we eventually move out of the
outer produce clause the assertion

output = 9 followed by 1 followed by 1.

Any mechanism to implement functions and mappings must produce



-18-

effects that are consistent with all properties that can be proved using

the manipulation rules. One such mechanism is the call by name rule as

considered in Vuillemin [3]. To see that call by value does not work,

consider

produce output
mapping f(X,Y)
result = if X eq O then 0 else f(X-1,f(X,Y))
end
result = f(1,0)

end

We can duplicate the mapping clause, and then replace one of the copies
by the corresponding compute clause (after setting up the actual/formal

parameter correspondence) giving

produce output
mapping f(X,Y)
result = if X eq 0 then 0 else f(X-1,f(X,Y))
end

compute f(X,Y) using X,Y,f
result = if X eq 0 then 0 else f(X-1,f(X,Y))

end
X =1
Y=20

result = f(X,Y)

end



-19-

The mapping clause and the assertions about "X" and "Y" can be moved into
the compute clause, since they are all pointwise assertions, and after

simplifications we obtain

produce output
compute f(X,Y) using X,Y,f

mapping f{X,Y)
result = if XeqO then 0 else f{X-1,f(X,Y))

end
result = f(O,f(O,]))
end
result = f(X,Y)

end

We can now drop “X" and "Y" as global variables of the compute clause,
allowing us, without renaming the formal parameters to set up the actual/formal

parameter correspondence and replace the mapping clause by a compute clause:

produce output
compute f(X,Y) using f
compute f(X) using X,Y,f
result = if Xeq O then 0 else f(X-1,f(X,Y))

end
X=0
Y = f(0,1)

result = f(X,Y)
end
result = f(X,Y)

end



-20-

Taking "X = 0" into the inner compute clause, we then obtain "result = 0",
which becomes "f(X,Y) = 0" when we move it out. Therefore, we get "result = Q"
in the outer compute clause, and hence "f(X,Y) = 0" in the produce clause.

This gives “"result = 0" at this outer level, which moves out of the outermost

(produce) clause to become "output = 0".

In a call by value implementation of this function, the program would

diverge, which is inconsistent with the fact that "output = 0".

A more efficient mechanism than call by name is the "delay rule" of
Vuillemin [3], and Lucid may be the first programming language that can

actually use it.

It is also worth noting that implementing non-recursive functions

and mappings is no more difficult than implementing produce and compute
clauses, since the latter can be used as 'macro expansions' of "calls" of

functions and mappings.

4. More Exotic Features

4.1 Create Clauses

We have seen that the globals of a compute clause are "frozen" within
the clause. We can "unfreeze" these variables, within the compute clause, by

using a create clause, which turns out to be a dual construct of the compute

clause in many respects. A create clause is of the form

create <expression> using <variable Tist>
<set of assertions>

end

The idea is that globals of the create clause may be quiescent outside

the create clause but are unfrozen within it. In a program, the values of




- -21-

the Variab]e "result" and of any globals defined within the create clause
need not be quiescent, but the value of the subject expression and of these
globals, in the enclosing clause, will nevertheless be quiescent. (The
unfrozen value of the subject expression is the value of "result" within
‘the create clause.) Moreover, the globals defined outside the create

clause must be quiescent in this enclosing clause.

Example 9

In this example, the loop defines the value of "R" at time t+]
to be the square root of the value of "X" at time t, calculated to a
precision given by the minimum value of "tolerance" up until time t:
compute next R using X, tolerance
first app = X/2
next app = (app + X/app)/2
create mintol using tolerance
first result = first tolerance
next result = if result < next tolerance
then result else next tolerance
end
result = app as_soon as X - app2 < mintol

end

4.2 Transform clauses

We also have the dual of mappings, which we call "transforms".

A transform clause is of the form

transform <function variable>(<variable Tist>) using <variable list>
<set of assertions>

end.



-22-

In a program, the arguments and globals of é transform should

always be quiescent.

In contrast to mappings (and functions) the transform name is
not a global of the transform clause, so recursive transforms are not

allowed.

Example 10
compute next R using X, tolerance
transform min(Y)
first result = first
next result = if result < next Y then result
else next ¥
end
first app = X/2
next app = (app + X/app)/2
result = app as_soon as X - app2 < min(tolerance)

end

4.3 Manipulating create and transform clauses

The manipulation rules for create and transform clauses are
summarised below. In the following it is required that the free variables
of an assertion being moved be global variables of the clause being moved
into or out of. In addition, when moving out, free occurrences of the
variable "result" are replaced by subject expressions or headers as appro-

priate.



-23-

a) Moving through other clauses
Produce and function clauses treat create and transform clauses

1ike any other assertions (see 2.4.1).

Create and transform clauses are not pointwise assertions and
may not pass unchanged into or out of compute and mapping clauses. However,
a create clause can be moved out of a compute clause, becoming the correspond-

ing produce clause,

b) Moving other clauses through create and transform clauses

Only pointwise assertions may move in or out unchanged.

However, produce or create clauses can be moved in, becoming the
corresponding compute and produce clauses respectively. Conversely,
compute and produce clauses can be moved out, becoming the corresponding

produce and create clauses.

It is important to note that compute and mapping clauses can now
not be considered as pointwise assertions if they contain create or
transform clauses that are not contained within other compute or mapping

clauses.

To illustrate these rules, we will manipulate Example 9. We first
notice that "mintol" is quiescent in the compute, because it is defined
by a create clause. Provided "mintol" does not occur freely in and is
not a global of the clause containing the compute clause, we can add

"mintol" to the global Tist.



24

compute next R using X, tolerance, mintol
first app = X/2
next app = (app + X/app)/2
create mintol using tolerance
first result = first tolerance
next result = if result < pext tolerance
then result else next tolerance
end

result = app as_soon as X - app2 < mintol

end.

Now we can move the create clause out of compute clause, becoming the

corresponding produce clause:

produce mintol using tolerance

first result =‘jig§g tolerance

next result = if result < pext tolerance

then result else next tolerance

end
compute next R using X, tolerance, mintol

first app = X/2

next app = (app + X/app)/2

RV NN ]

end

Since "tolerance" now does not occur within the compute clause, it can be

dropped from the global list of that clause. What we have obtained



-25-~

describes the meaning of Example 9 without using create clauses. Thus
the compute clause of Example 9, which is not a pointwise assertion,
becomes a pointwise assertion by giving it a different global variable

("mintol" instead of "tolerance").

The usefulness of create and transform clauses is debatable, but
the clauses have been included here because they arise naturally in the

development of the theory.

5 Comment on the design of clauses

We have emphasised that clauses are designed as extensions to the
formal system of Lucid, not just to the programming language. This
distinction can be well illustrated by considering another construct which

we investigated before settling on clauses.

A clause is a pseudo-equation, which in programming language terms
means it is a sort of compound statement. It is possible to achieve the same
effect in the programming language, by USing a sort of compound expression.
Instead of using

produce X using A,B

0
m

result

end

we could say

X = valof E using A,B where

end



-26~

Here valof E using A,B where

end

is a term. Thus construct is appealing in the context of the programming
language, although it does have some drawbacks. (For example, globals
could not be defined within the valof body, as they could in the produce
body, without introducing complicated syntactic restrictions on fhe use

of several valof terms within a single term.)

Its great drawback is that it doesn't fit well into the context
of the Lucid formal system. The construct only seems to make sense if
the body is a piece of program, i.e. definitions of variables. Using

it in proofs could result in terms Tike

valof X+Y using Y where X > Y

end

To give meaning, a formal semantics, to such terms would involve talking
about sets of possible values for the term, for example the possible values
of the term above are all numbers greater than twice Y. This causes all
sorts of problems in the formalism. We could insist on only giving meaning

to whole equations using valof terms, such as

X = valof X+Y using Y where X > Y

end
which states that X is greater than twice Y. This weakens the case for
valof terms as entities in their own right, and leads directly to the

use of clauses instead.



-27-~

Using clauses, from

produce X using Y

X>Y
result = X+Y

end

we immediately get

produce X using Y

result > 2Y

end

from which we can remove the produce-end parentheses to give X >'2Y,
We could also manipulate the valof term to give the same result. First
we rename the local variable X of the valof body so that it differs from

all variables occurring outside:

X = valof Z+Y using Y where Z > Y

end

Then we can remove the valof-end parentheses, letting the assertion Z > Y
join the others in the program:

Z>Y

X = Z+Y.

From this we immediately get X > 2Y.

So we see that reasoning about valof terms is quite straightforward.

Their only real drawback is a technical one--it is difficult to give them



-28-

a semantics. When this is satisfactorily overcome, they may well be
added to Lucid. But the point we are making is that the difficulty is
caused by the necessity for new constructs to fit into the more general

setting of a formal system, not just a programming language.

6. References

[1] Ashcroft, E.A. and Wadge, W.W. "Lucid, a Formal system for writing
and Proving Programs". SIAM J. on Computing, 5, 1976.

[2] Ashcroft, E.A. and Wadge, W.W. "Lucid, a Non-Procedural Language
with Iteration”. To appear in CACM.

[3] Vuillemin, J. "Correct and Optimal Implementations of Recursion in
a simple Programming Language", 5th Annual ACM
Symposium on Theory of Computing, Austin 1973.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

