DESIGN AND CORRECTNESS OF A COMPILER
FOR LUCID

by
Christoph M. Hoffmann

Research Report CS-76-20
May 1976

Computer Science Department
University of Waterloo
Waterloo, Ontario, Canada

" 'Contents

Introduction« ; o e e e
Compilable Programs and Language Definition .
Expressions . . « « ¢ ¢ v 4 v 44 . ; . e
Programs . + « v v o ¢ ¢ ¢ o o o« o o 4 4
Source Simplifications
Quiescence« + .+ . : “ s e s e s e e
Syntactic Requirements
Canstruction of the Dependency Graph . .
Madified Programs and Defining Terms
Compilation of Simple Goals
Compilation of Simple Programs
Nested Blocks . . . v & v v v o v ¢ 4 4 v v o &
Practical Considerations and Compiling Problems
Syatactic Correctness . . v v ¢ ¢ o« o 4 o+ W
Object Code Efficiency . . « v v v ¢« « . . .
Logical Connectives .+ v o v v v 4 4 v o« o
Partial Correctness . . ¢« « o o o « + o
Sobset Choice
Conclusions . . v v ¢« v ¢« 4 o 4 v v 4w e

ﬁéfefences.......c-.o..o..-.-

11
14
17
18
19
22
32
59
66
76
76
77
77
78
80
81

83

1. Introduction

Proving the correctness of a compiler is an important and non-trivial
problem. Without a correct compiler, no program compiled by it can be fully
trusted, even though the program was proved correct. Furthermore, as compilers
for all but very small languages are of substantial size, a correctness proof

lends credibility to program proving as a viable discipline applicable to

practical work.

This paper is concerned with the design and correctness proof of an
efficient compiler.for a very high-level non-procedural programming language,
and combines techniques from various disciplines of Computer Science to shape
a raliabie piece of software. As the syntax of tﬁe source language is almost
trivial, syntax-directed methods for compiling are of little help. New
techniques had to be developed, which are reasonably general in nature and

should be applicable to a broad class of non-procedural languages.

A first version of the compiler has been operational now for over a
year. The subsequent work on a proof for it in turn affected the design
of the algorithms. This development illustrates the maxim that programming
and program proving are complementary efforts which can be done profitably

in parallel.

Proving compiler correctness is difficult for several reasons. To
begin with, it requires a formal model of the semantics of the source
language, as well as the object language, which, moreoever, has to be
convepient for both proof purposes and implementation strategies. Without
such models, a proof cannot be stated, and if the models are difficult

to analyze mathematically, a proof will be awkward and difficult.

Therefore, it is understandable that much of the previous work which
has been done was for compilers of languages baséd on the Lambda
Calculus [13, 16] or for small languages isolating a few of the
constructs present in imperative languages [7, 14, 17]. Present trends
in the work on data structures and programming language design

{10, 11] seem to indicate an awareness of the necessity for a formal

model of semantics.

Another difficulty in proving compiler correctness, as
recognized in [17], dis to find a compiler design structured in such
a way that a proof can be modularized, thereby reducing the complexity
of the task. Not surprisingly, this maxim has analogous formulations

which have long since been principles of software design.

The language which is compiled is Lucid, and was developed
by Ashcroft and Wadge [3, ‘5]. Its motiviation is to bridge the gap
felt to exist between practical demands on language constructs, as
vehicles for expressing algorithms, and constructs amenable to
rigorous mathematical analysis. Unlike other approaches [e.g. 19],
Lucid uses the same denotation for writing and proving properties
about programs, thus it is, at the same time, a formal proof system
and a programming language. Previously published work has strongly

emphasized this point [2, 4].

From a programming point of view it is interesting to note

that the flavour of this language is not unlike that of recently

proposed data-flow languages [e.g. 8, 12], in which, as the name
suggests, the flow of values through a network of processing nodes

is specified and aﬁ explicit notion of the flow of control is absent.
The reason for this similarity may be deduced from the fact that the
meaning of a vardiable in Lucid does not depend on its context in

the program. This property 1s shared by data-flow languages

[8] and, at the same time, simplifies tﬁe notion of environment,

which is crucial to proofs of program properties.

A Lucid program may be viewed as a set of assertions about
streams of values traversing data paths named by the variables in
the program. \It is the task of the compiler to analyze the implied
data dependencies and deduce from that information a strategy
for a coordinated and balanced evaluation of the various streams.
Because of existing machine environments, efficiency considerations
led to an implementation which does not take advantage of the
inherent parallelism in source programs, although this information
is made explicit by the analysis performed by the compiler. A

few comments on this may be in order.

Along with other similar language proposals, there have been
related proposals for new machine architectures specifically
designed to exploit the inherent parallelism of programs written
in these languages [e.g. 15, 18], Névertheless, thére are still
problems to be solved for accomplishing for a given program a

suitable coordination of the various computations and ensuring a

reasonably balanced load across the network. This problem is not
likely to be solved automatically by the hardware design and, therefore,
has to be solved using inforﬁation derived from the source program.

The analysis performed by the present compiler in an effort to derive

a sequential object program can also form the basis for the analysis

to be performed for solving the problems of a parallel implementation.

The paper is structured as follows. First, the language
and a compilable subset are defined. Since the syntax is rather
simple} a BNF notation with additional non context-free constraints

”waé’found to define it adequately while, at the same time, possessing
great clarity. The semantics is described using the denotational
fix-point approach and added comments aid an iptuitive understanding
of the meaning of the constructs. Fortunately, the semantics of
the source language was already completely formalized in [41],
otherwise a proof of the compiler could not have been formulated.
However, since a fix-point semantics is far removed from efficient
implementations, an equivalent operational understanding had to be

sought, This is derived in Section 3 of the paper.

The compilation algorithms are developed first for very
simple programs and analyzed for correctness. The correctness
proof of the object code employs Floyd's method [9] which was
found to be particularly well-suited because of the simple control

structure of the generated code. Because of the nature of the

language Lucid, two easy extensions of the algorithms are possible
which enable a compilation of the full subset. These extensions
are described and proved correct. Practical considerations

in implementing the compiler are addressed and the reasons for the
subset restrictions are discussed. These shed further light on
the nature of the language constructs, as well as on the design

choices made.

2. Compilable Programs and Language Definition

In this section we define the source language Lucid and a sub-
set acceptable to the compiler. Reasons for restricting the com-
pilation to this subset are ﬁiscussed in Section 7.

The description proceeds in stages: First, the syntax of pro-
grams and expressions is given by a cover grammar. The semantics
of the constructs is defiqed following [4] closely. Comments on
the intuitive understanding of the definitions complement this ex-
position. Then, the notion of quiescence is reviewed briefly, and
simplifying source transformations are introduced, which make the
compilation a more manageable task, and which make explicit certain
properties of given programs. Thereafter, syntactically determinable
conditions are listed which must be satisfied by programs in the
compilable subset.

Sections 3 to 5 develop algorithms for programs without nested

blocks, so-called simple programs, and prove the correctness of the

alporithms as well as the code compiled. Section 6 generalizes the
results extending the algorithms to handle programs with arbitrarily
nested blocks, and proving the correctness of the extensions.
Practical considerations are discussed subsequently in detail,
as a compiler implemented along the lines of the concepts developed

can be quite efficient.

. 2.1 Expressions

Expressions are formed in the usual manner from variables, constants,
parentheses, and the following operators listed below from highest

to lowest precedence. Operators of equal precedence bind ieft—to~right
except for the fby operator (pronounced: "followed by"j, which binds

right-to-left.
1. first, mnext
2. %, [/, rem (remainder division)
3. +’ -

4. eq, ne, le, ge, 1t, gt

5. not
6. and
7. or
8. if ... then ... else ...

9. asa (pronounced: '"as soon as")

10. fby (pronounced: "followed by'")

Presently, only types integer and boolean have been implemented,

although the implementation of other data types such as string,

etc., present no difficulty.

2.1.1 Syntax
The syntax for expressions is given by a cover grammar not reflecting
the type restrictions which are listed separately.

<e§pression> ::= <event exp>

[<event exp> fby <expression>
<event exp> - ::= <cond exp>

: l <event exp> asa <cond exp>

<cond exp> t:= <disj exp>

| if <expression> then <disj exp> else <disj exp>
<disj exp> ::= <conj exp>
7 | <disj exp> or <conj exp>
<conj exp> ::= <neg exp>

<conj exp> and <neg exp>

<neg exp> 1:= <rel exp>

[not <rel exp>

<rel exp> ::= <simple exp>
I <gsimple exp><relation op><simple exp>
<relation op> 1= ggjgg|lg|ggjl£]g£
<simple exp> ti= <term exp>

| <simple exp><adding op><term exp>

[<adding op><term exp>
<adding op> 1= +]_
<term exp> i 1= <factor exp>
l <term exp><mult op><factor exp>
<mult op> ii= %|/|xem
<factor exp> 1= <primary>
| first <factor exp>
[next <factor exp>
<primary> ::= <unsigned numbef>|<name>
| <logical value>
| (<expression>)

<logical value> ::= true | false

Tﬁe-operators‘ggggg and next can be applied to expressions of
any type; and the reSultiné expression is of the same type. The
operator fby requires that the <event exp> and the <expression> be
of the same type; the result type remains unchanged. ?he asa re—
quires the <cond exp> to be type boolean; the resulting <event exp>
has the type of the <event exp> on the left of theiggg. All other

type restrictions are as in ALGOL 60.

2.1.2 Semantics

Formally, with every variable X is associated as value a mapping
from NN, i.e. the set of infinite sequences of natural numbers, into
a domain of values. The set V of values is fixed for our purposes to
consist of true, false, I (pronounced "undefined"), and all integers.
Informally, therefore, a variable may be considered as an infinite
sequence of infinite dimensionality over V. Expressions are interpre-

ted as follows.

Definition Let ®, B, and Y denote mappings from NN into V,

and t = totltz... € NN. We write aE ingstead of a(E). Then

M @ - o o

where W is the standard interpretation of not, or

" <adding op>.

(2 (w8

a—=— W b
T Bt

- 10 -~

where w is the standard interpretation of and, or, or

<adding op>, <mult op>, <relation op>.

(3)
(4)

(5)

(6) (o

(7 (v

asa -
asa B);

It

(if o then B else Y)E

o.
0,t,t

%t
0

18200

+1,t.t

1 20--

if oz then BE else YE‘

if t0 = 0
otherwise
if B = true, B = false,
Syt ty. .- £t ty. ..
o # 1 for all r < s;
T, bt ° s
otherwise

Constants are interpreted as operators of degree 0.

Definition The following operators are special operators:

first,

next,

£y,

asa;

all other operators in the subset are standard operators.

Note that, because of (1) to (3) above, standard operators are

'point-wise', i.e. their result under t depends only on their argu-

ment values under t.

Thus their compilation can be accomplished by

familiar techniques. Special operators, on the other hand, can cause

- 11 -

standard operators to combine argumént values of differing index t.
' Of these, the index difference effecfed by first, next, dﬂd fby can
be determined at compile timé.
Also note, that first and next are in part analogous to car and
cdr in LISP. The fby provides a two part definition in a manner re-
miniscent of primitive recursion; while the asa operator is analogous

to the U operator of Recursive Function Theory,

2.2 Programs

2.2.1 Syntax

<program> ::= compute output where <block body>
<block> :t= <block head> <block body>

<block head>

<compute clause> where
<compute clause> <global references> where

compute <name>
. *
using <name> {, <name>}

<compute clause>

<global references> o

<block body>

i

. * *
<assertion> {; <assertion>} end

<assertion> t:= <sequence definition>
| <result definition>
| <block>

<gequence definition> ::= <name> = <expression>

<result definition> 1:= result = <expression>

- 12 -

2.2,2 Semantics

A program 1s an assertion about the sequence output. Other assertions
can be made as part of the program, defining names either as expressions
or as blocks, thereby asserting more complex computational relationships.
The expression in the result definition, in the context of the block

of which it is part, defines the name in the compute clause of the block

head.

Any assignment of mappings to the variable names in a program which
satisfies the program is a solution of it., The meaning of the program

is the minimal solution of it, which was shown to exist in [4].

The global references given in the head of a block B list all names
referenced within B and defined in the containing block. The list

is constructed by the compiler, rather than given explicitly.

Note, that the sequence in which asgsertions are made in a block does

not affect its meaning.

A sketch of the complete formalism defining the semantics of programs
rigorously is added below. For a more detailed exposition the reader

ig referred to [4].

In order to define exactly what is meant by a solution to a program,
the block structure has to be removed by introducing the operators

latest and ;gggggﬁl, which are interpreted as follows.

- 13 -

Let o be a mapping from NN into V, t = t.t_t ...e:NN. Then

0172
(8) (latest Mg = o
t tyty e
-1
(9) (latest o)==«
| ORRRR t 0t tit,...

Transform the program P as follows: Apply igggggnl to each
expression defining result, and substitute the name in the compute
clause of the corresponding block head for result. Remove the
block head and correspondiné end after prefixing each reference
global to the block within the block and every nested block by

latest.

As was shown in [41, the new program is equivalent to the old one,

and furthermore, each variable X is now defined by
X = <expression>

It is now possible to understand a program P as a function FP on the
mappings provided by the variables, so that the meaning of a program
is the minimal fixpoint of the equation

X = FP(X)

where X denotes the vector of all variable names in P.

For an example of a program in latest notation see Example 2.1.
Preference has been given to the block structured notation because
firstly it was found to greatly improve the readability of programs,
and secondly, it does not permit writing certain pathological
programs. A thorough discussion of these points, however, is beyond

the scope of this paper.

- 14 -

- 2.3 Source Simplifications

Several source to source transformations are described which are
applied by the compiler in order to reduce the complexity of the

source program.

2.3.1 Expression Simplification

Expressions are simplified to be in one of three forms, basically

by introducing new variable names.

Definition An <expression> is a formula, if first and next are the

only special operators occurring in it.

By defining new names, all expressions are to be in the following
form:

(1) <formula>

(2) <formula> fby <formula>

(3) <name> asa <name>

where each name in (3) must, in addition, be defined by a formula

and referenced only once, namely by the asa expression.

- 15 -

Example 2.1 Consider the following Lucid program:
‘compute output where
c = 0 fby ctl;
sum = 0 fby sumtroot;
m = first input;

n = pext input;

1

result = sum asa ¢ eq m;
compute root where
cc = 0 fbhy cctl;
y = 1 fby y+2*cc+3;
result = ccgsay gtn
~end

end

After performing the simplifications described, the new program is

compute output where

c = 0 fby ctl;

sum = 0 fby sumtroot;
m = first input;

n = next input;

result = tl asa pl;
tl = sum;

- pl = c eq mj
compute root where

cc = 0 fby cc+tl;
y = 1 fby y+2*cc+3;
result = t2 asa p2;
t2 = ccy
p2 =ysgn
end

end

- 16 -

The equivalent version of the first program using latest notation is:

c =0 fby ctly
sum = 0 fby sumtroot;
m = first input;
n = pnext input; ‘
output = lggggg—l (sum asa ¢ eq m};
y = 1 fby y+2%cct3;
cc = 0 fby cctl;

-1
root = latest (cc asa y gt latest n)

2.3.2 Constructing the Global References

By analyzing the reference structure of the source program, the
compiler constructs for each block with aid of a symbol table a
<global references> clause whenever the list of names in it is not
empty. Given a block Bl’ the global references list in its block
head will contain precisely those names which are defined in the im-

mediate ancestor block, and which are referenced in B, or any block

1
nested in Bl.
Example 2.2 For the program of the previous example a clause
"US inE n"

will be inserted between "compute root" and "where".

In the following programs are assumed to have been simplified in

the manner described above.

-17 -

2.4 guiescence

Within a block B an expression may satisfy the equation

first E = E.
If this can be deduced syntactically, E is said to be quiescent.

Definition An expression E is guiesceﬁt in a block B if
(a) E is a constant, or a name defined in a block global to B; or
() E is a name defined by an expression which is quiescent in B; or
(c) E is defined by the compute clausé of a block 31 immediately

contained in B, and the global references list of B, is empty

1
or contains only names defined by quiescent expressions; or

(d) E = (w, Fl, . Fr)’ where « is a standard operator of degree r

and the expressions F

10 v Fr are all quiescent in B; or

(e) E = first F for some expression F; or
() E = F1 asa F2 for some expressions F1 and FZ; or

(g) E = next F for some expression F which is quiescent in B.

Nothing else is quiescent in B.

Example 2.3 Consider the first two programs of Example 2.1. In their
outer block
first input, sum asa c egn, m
are all quiescent. Also, in their inner blocks, n is quiescent. Note,

however, that n is not quiescent in the outer block.

That the expressions which are defined above satisfy first E = E is

immediate except for part (ec). See Corollary 6.2 for this,

- 18_

2.5 Syntactic Requirements

A <program> is in the compilable subset, if all of'the'following are

satisfied:

2.5.1

2.5.2

2.5.3

2.5.4

2.5.5

All <names> referenced must be defined exactly once, either
by a <sequence definition>, or by a <compute clause> in

a block head, except the name input which is considered

to be implicitly defined‘in the outermost block.

A name defined in an inner block may not be réferenced

in an outer block. Names obey the ALGOL 60 scope rules.

A name in a compute clause of a block B, is defined in

1
the block B immediately containing Bl.
Each block must contain exactly one result definition. The

expression in the result definition must be quiescent.

Each name is either of type integer or boolean, and its def-

inition and use must be consistent with its type.
Construct for each block a directed graph labelling its edges

forming a closed cycle must have a negative sum.

- 19 -

2,6 Construction of the Dependency Graphs

For each block of the source program introduce new names simplifying

all expressions to be in one of the following five forms:

(1) first <name>
(ii) next <name>
(4iii) <name> asa <name>
(iv) <pame> fby <name>
(v) <pointwise expression>

where a pointwise expression is an <expression> in which no special

operators occur.

The nodes of the graph for a block B are all names defined in B.
If X is defined by
(a) first A,

draw an arc from X to A labelled O;

(b) nexe A,

draw an arc from X to A labelled 1;

(c) A asa B,

draw arcs from X to A and from X to B, both labelled «=;

(d) A fby B,
draw an arc from X to B labelled -1, and from X to A

labelled 0;

- 20 -

(e) X = <pointwise expression>,

draw an arc from X to each operand A in the expression

labelled 0;

(f) compute X using <list> where ..,
draw an arc from X to each A in the <list> labelled O.

If a name is not defined within that block, no arc is drawn.

Example 2.4

The additional simplifications described transform the program of

Example 2.3 into:

compute output where

c =0 fby cl;
sum =0 fby sl;
m = first input;
cl = c+l;
sl = sum + root;
n = pext input;
result = tl asa pl;
tl = sum;
pl = c eq m;
compute root using n where
cc =0 fby ccl;
y =1 fby v1;
cecl = cec+l;
vl = y+2xcct3;
result = t2 asa p2;
t2 = cc}
p2 =y gt n;
end

end

- 21 -

The graphs for the two blocks are:

{outer block)

(inner block)

Note that mo are is drawn from y to n in the graph above, since n is
not defined in the same block. Observe also, that all cycles have an

edge sum of -1,

- 22 -

3. Modified Programs and Defining Terms

Recall that the meaning of a Lucid program is defined by a fix-
point semantics. Since, for computation purposes, it must be related
to an operational semantics, expressions are to be manipulated into a
different representation, which makes more apparent the connection
between the fix-point interpretation and an equivalent operational
understanding of the constructs. To this end two mappings, ¢n and T,
where n20, are introduced. At the same time, ¢n and T effect a remo-
val of the operators first and next, and are instrumental in speci-
fying a program transformation needed to arrive at an operational
interpretation of programs.

For the sake of a clear presentation, programs are assumed to con-
tain no nested blocks. It is then justified to iﬁterpret each variable
as a mapping from N into V, i.e. as an infinite sequence over V. 1In
Section 6 the formalism is extended to cover the general case.

Two operators, :i and <i>, where i20, are needed which, applied
to variables as suffix operations, have the following interpretation.

DefInition Let X be a variable, a = |X|an interpretation of ¥, i.e.
o maps N inte V. Then, for all t in N,
(D (|X:i|)t = oy

@ (xDe=ag,

- 23 -

Note the analogy to first amd pext. In fact, with an extended

definition, X:di = first next” X, and Xgi> = ggggi X.

Definition An expression formed from constants,'parentheses,
standard operators and variable names to each of which one suffix
operator :i or <i> is applied 1s called a term. Expressions

formed in the above manner, but also admitting the operators fby and

asa, are called extended terms.

Example 3.1
5, X:0x(Y<l>+Y<0>), X<3>
are all terms., The following is an extended term
X<0> asa (Y:0 fby X<2>) eq 45
whereas
X<3>:4, XHY:3

are neither terms nor extended terms.

The mappings ¢n and Tn’ where n 2 0, which map expressions into

extended terms are defined as follows,

Definition

(a) If X is a variable name, then

¢_(X) = Xin
Tn(X) = X<p>
(b) 1If © is an r-ary standard operator, F10 ... F(') expressions,
then ¢ @, ¥V, L) =, 0), s @@
v @, ¥V, L F) =, oD, L @@

- 24 -

(¢) If F is an expression, then

¢n(ﬁ;§,§,§ F) = ¢0(F)
Tn(first F) = ¢OCF)
¢ (next F) = ¢n+1(F)

T(rext P = T, ()

(d) If F and G are expressions, then

34 (F by O = 4o (F)

T, (F fby ©) = (P fby 7(0)
6 oy (F foy © = 4,(O)
Tn+1(F fby G) = Tn(GD

(e) If F and G are expressions, then

i

¢ (F asa G = 1,(F) asa 75 (®
T (F asa G) = To(F) asa T (6)
Observe that if expressions are restricted to formulae, then the
range of ¢n and T, is the set of terms.
Example 3.2 Consider the expression

E = first(X+next X) fby next(next Y+first Z+3).

Then Ty(E) = ¢n(first(mext X)) fhy 7o(next(next Y+first 2 +3))

dg(Kimext X) fhy T, (next Y+first 7+3)

9o (X)+¢, (next X) fby T,(next Y)+r, (£irsg 2)+t,(3)

i

X:0+¢, (X) fhy T, (D)4, (2)+3

X:0+X:1 fby Y<2>+Z:0+3.
The following theorem formally states the effect of ¢n and T on

the interpretation of expressions.

- 25 -

Theorem 3.1 Let E be an expression, |[an iInterpretation,
and t in N, Then
lo EY[), = (D)
(r @D, = (ED 4y
Proof (By induction on the structure of E)

(a) If E is a variable name, the theorem is trivial.

(b) Let w be an r-ary standard operator, F(l), .y F(r) expressions,
and assume E = (w,F(1)3 ..,F(r)). Then
o@D, = Ao Py, Lo Ol

(1) (r)
(ol o FDD - utle D)
(le,(lF(l)l)n, ..,(|F(r)|)n) (ind. hyp.)
dwr P,)y

il

The argument for Tn is analogous.

(c) Let E = first F, where F is an expression, then

(o ® D, = sy,
= (|¥D), (ind. hyp.)
= (lEl)n (def. of first)

and analogously for Tn. Furthermore, with E = next F,

o, ®D, = o BD,
= (P oy (ind. hyp.)
= ([ED ., (def. of next)

and analegously for Tn.

- 26 =

(d) Let E=TF fby G, F and G expressions. Then

Uag® N, = ([P |2,

= (JF]),

= ([EDyg (def. of fby)
(tg® D = (P fby 1 (@],

Two cases arise,

{1) t=0, then

(oo foy (O = (oD) (def. of fby)
= ({FD,
= (E[) 4y ~ (def. of fby)
(2) t>b,'then
(og(®) fhy 14(®) = Ury@]) (def. of fby)
= (e,
= (JED), (def. of fby)

The argument for b and T, Where m>0 is easy and left to the
reader.

(e) Let E = F asa G, finally, F and G expressions. Then, by definition
of the asa,

(lF])S if (IG|)S?E£EE; (IGI)r=false and
(|E|)t = (lFl)rzl for all r<s;

L otherwise.
Since, by induction hypothesis, (|F|)t = ([TO(F)[)t and
(feh, = 1@, clearly
(lEl)t = (|T0(F) asa To(G)l)t,

and, by definition of asa,

- 27 -

([E[)t = ([EI)O for all t,
from which the theorem follows.
d
Intuitively, ¢n and Tn have the same effect on expressions as :n and
<n> have on variables. Yet they are not simple extensions of theses
operators, as théy, at the same time, accomplish a mapping into ex=-
tended terms which removes all operators first and next.

The notion of transformed program is introduced. The transformed

program of a given (simplified) program P is an infinite equivalent
program containing only extended terms.

Definition Let P be a simplified program. Then the transformed

program P' of P is as follows:

(i) For every statement in P of the form X = E; where E is
either a formula, or of the form F asa G with F and G
formulae, P' contains statements

¢, (E);

Ti(E);

X:i

X<i>
for all i20.
(ii) For every statement X = E fby F in P, where E and F are

formulae, P' contains

X:0 = ¢5(E);
X<0> = ¢0(E) fby X<1>;
X:i = ¢, ,(®);
X<t> = 1y (F);
for all 1>0.

(1i1) P' contains no other statements.

- 28 -

Theorem 3.2 P and P' have the same solutions, and therefore the
same minimal solution.

Proof Tmmediate from the construction of P' and Theorem 3.1.

Since oﬁly the result value is of ultimate interest, and as it
has to be quiescent by syntax requirements, usually a subprogram of
P' is sufficient to define it.

Definition Let P' be the transformed program of P. The modified
Erogram.PO of P is the smallest set of statementsAin P' containing the
definition of result:0 and being closed with respect to the reference
structure, i.e. such that each name in PO is also defined in it.

It should be evident that since PO is closed with respect to the
reference structure, all solutions to PO are restrictions of corresponding
solutions of P', hence also of P.

The remainder of this section is devoted to deriving the result
that P0 is finite for programs P in the subset. Intuitively speaking,
the subset restrictions have been designed primarily to imply this
result, since the finiteness of P, ensures that, at compile time, the‘

0

total amount of storage necessary to evaluate P, iteratively can be

0
predicted.

It is convenient to consider X:i and X[il as new variable names
neglecting that :i and <i> have been interpreted as operators. When

doing so, in order to avoid confusion, we shall denote these new

variables by X.i and X[i], respectively.

- 29 -

Definition Given a variable name X, X.i and X[1i] are qualified
iﬁﬁgﬁi derived from X (i20). TFurthermore, X.i and X[1i] name the terms
X:1 and X%i>, reséectively.

Definitioﬁ Let X be a variable name occurring in a

program P, E and F formulae. The defining term of a qualified name

derived from X is

34 (E) if X = E fby F, i=
b1 if X = E fby F, i>0
def(X.1) =
(P if X = F
\Th(E) asa TO(F) if X = E asa F
ffﬁo(E) if X = E fby F, i=0
| Ty @ if X = E fby F, i>0
def(x[1il) = _
: Ti(F) if X=TF

_TO(E) asa TO(F) if X = F asa F

=]

and where the $i and %i differ from ¢, and T, only in that 6i(Y)=Y.i
and ?i(Y)=Y[i] for variable names Y.

Observe the close correspondence between defining terms and the
statement transformations defined earlier. The only deviation, the
defining term of X[0] where X is defined by a fby expression, is for

a technical reason which will become clear in Section 4.

Definition A qualified name o directly depends on another

qualified name B if B is an operand of def(a). The transitive
closure of "directly depends” is the relation depends, and is denoted

by d > 8.

- 30 -

The following theorem relates the edge labelling conventions of
Section 2.6 to the dependencles among qualified names.

Théﬁremv3;3 Let o be X[1] or X.1, and 8 be Y[§] or Y.]. If a «> g
then there is a path in the dependency graph from X to Y with a sum s
of edge labels such that s 2 j-i.

2592§_~That there is a path from X to Y is obvious from the con-
struction of the graph. The proof of s 2 j-1i proéeeds by induction
on the path length k:

Basis k=1, o depends directly on 8.

(a) Y is the operand of a pointwise expression defining X.

Therefore s=0, and, by definition of $n and %n’ i=j.

(b) X = first Y, thus s=0. Obviously j=0, and since i20, j-i<0.
(¢) X = next Y. Therefore, s=1, and j=it+l.

(d) X=1Y fby z. So, s=0, i=0, j=0.

(e) X =2 fby Y. So, s=-1, i>0, and j=i-1.

(f) X=Y asa Z or X= 7 asa Y. Since s=~, the theorem is trivial.
Step k > ktl:

Assume the theorem is true for a path of length k, and that o *> §

with a path of length k+l. There must be some Z other than X

and Y on the path from X to Y, so there will be some vy = Z[r]

or Z.r such tﬁat o *> 7y and Y *> 8. By hypothesis,

r-1i < s

1

j-r =< Sy

for the edge label sums 4 and s, of the paths from X to Z and

from Z to Y, and since s = s1-+s2 the theorem follows.
0

- 31 -

Corollary 3.4 1If the program P is in the subset, then its

Q

modified program P, is finite.
Proof Suppose P

0 is infinite; Then therg will be qualified
naﬁes ¢ and B such that

o = X{1] or X.i

B =X{j] or X.j
with o *> 8 and j>i, since there are only finitely many variable names.
in P. By the previous Theorem 3.3 there .is a path from X to X in the
dependency graph, i.e. a cycle, with aﬁ edge label sum g > j-i > 0,

contrary to the subset syntax.

0

- 32 -

4. Compilation of Simple Goals

Given a program, subsets of defined variables can be isolated
which are self-contained with respect to their reference structure,
that is, each variable definition in the subset>is made in terms

of other variables also defined in the subset. Such subsets are called

nests.

Given a variable R = E asa F, then R can be evaluated as follows:
Evaluate in a loop IE[O, [FIO;‘IE!l’ [F|l; ... until

|F|s is true for the first time. Then break out of the loop
with |E]S as the value of |R[t for all t (note that R is

quiescent).
- Thus an iteration evaluating expression is done to find

the value of R. For the evaluation of E and F other variables may

have to be evaluated, more accurately, exactly those variables forming

the smallest nest containing R.

Because of the labelling conventions of the dependency graph,
the dependencies among all names defined by an asa expression can be
recorded by a directed acyclic graph. Those variables which are the

leaves of this graph are called simple goals, and this section is

concerned with compiling them. First the algorithms are developed
and basic properties of them are shown., A running example illustrates
the compilation. As target language a bastard ALGOL is used for

readability, -~ compiling machine level code instead is easily

- 33 -

accomplished by well-known techniques. Thereafter, the correctness

of the generated code is proved.

The algorithms of this section must be considered basic, since

only small modifications extend them to compile the full subset.

The code to ﬁe compiled 1s structured to consist of a prelude
followed by a loop. The prelude is essentialiy a straight-line
program containing computations which neéd to be done just once,
e.g. computatiohs of names of the form X.i. The loop iterates the

evaluation of non~quiescent expressions.

Because fby expressions are evaluated by computing a special
case once and thereafter iterating a general case, and because
of the interaction of different fby expressions, the loop may have to
be unrolled a number of times accommodating all special case compu-
tations in the enlarged prelude, until the different fby ekpressions
'catch up' and are all computed from their general case. This is

accomplished as follows.

Given a simple goal R = E asa F, Algorithm A4.l constructs an
operand list containing all qualified names which need to be computed
in order to evaluate E and F. If any name occuring in the list has
to be computed initially from the first part of a fby expression,
then the loop is unrolled once, and a new list is constructed. This
process is repeated resulting in the operand lists LO,Ll,...,Ln

until all names defined by a fby expression are computed in the last

list from the general case. At the same time the existing dependencies

-3 -

among all names are recorded. The intuitive understanding of the
operand lists is that Li consists of all those qualified names which
need to be computed for the i~th and subseduent iterations, but not

for the iterations 0,1,...,1i-1.

Alporithm A4.2 linearizes the dependenéy graph conétructed by
A4.1, thereby determining héw the various names can be computed
sequentially. Because of the syntaxvrequirements this can always
be accomplished. Algorithm A4.3 constructs a schedule for code
generation from the output of A4.2, and Algorithm A4.4 generates

the actual (unoptimized) code.

Note that, from a formal point of view, a partvof the transformed
program P' is compiled after replacing each term X:i and X<i>
by.the corresponding qualified ﬁame. However, P' is never constructed
explicitly, rather it is derived incrementally from the original
program.

(1) (r)

Definition A set of variables X*77,...,X is a nest, if the
definition of each of the X(i) references only variables X(J) in

the set.

Definition A variable X is a goal, if X is defined by an asa
expression. X is a simple goal, if it is a goal and if the definitions
of the variables in the smallest nest containing X do not reference

any goal.

Example 4.1 Consider the following segment of a simple program:

- 35 -

R=E asa F;

E = X;
F=1Y gt 25
X = 0 fby Xt+1;

Y = 1 fby Y+Z;

Z = 2 fby Z+Z;
In it, R is a simple goal, and {R, E, F, X, Y, Z} is the smallest
nest containing R. The compilation of R illustrates the algorithms

of this section with Example 4.5 listing the complled code.

Algorithm A4.1

Input: A simple goal R = E asa F

Output: Operand lists L ,...,Ln containing the qualified names
which are néeded to evaluate R correctly. Also, for
each item in Li’ 0 < i £ n, a dependency list is

constructed.

1. [Initializel
Set n to zZero.
2. [Initialize next operand list]
Set Lﬁ to be the list <E{n], F[nl>.
3. [Process and extend Ln. Construct dependency lists]
Take next item o in Ln and initialize its dependency list
D to be‘empty.'

For each qualified name B in def (o) do the following

- 36 -

(1) 1If B is not in L Ln’ then append 8 to L

0’."’
(ii) I1f B is not in D, then append B to D

4, [Check if L is complete]

If some items in Ln have not yet been processed by the

previous step then go to Step 3.

5. [Check if another list becomes necessary]
If there is an item X[0] in L such that X is defined by
a fby expression, then increment n by 1 and go to Step 2.

Otherwise stop.

- 37 -

Example 4.2 Given the simple goal R of Example 4.1 as input, A4.1

has the following output:

LO: dtems | dependencies
E[0] X[0o]
F{O1 Y{ 0]
X[0] —
Y[o] —_—

Ll: items dependencies
E[1] X113
FL1] Y[11
X(1} X[0]
Y[1] Y[03, Z[03
z[o] -

L2: items » dependencies
E[2] xf2]
FL2] Y[21]
x[21] x[1]
Y[21] Yi1l, 2zf11l
z{1)] ANV

2
a fby expression.

Note that L, does not contain any name P[0] where P is defined by

- 38 -

Theorem 4.1 TFor simple goals in subset programs Algorithms A4.1

always halts.

Proof Observe first, that a new list Lr+1 is constructed only
if Lr contains a name X[0] where X is defined by a fby expression.
Since a new name is appended to a list Lr only if it does not occur

in L Lr already, the n of A4.1 is bounded by k+l, where k

p>°""?
is the total number of fby expressions occurring in the smallest

nest containing R.

Assume next that a list Lr grows infinitely. Then, since
there are only finitely many sequence names in the smallest nest
containing R, there will be qualified names & and B such that

a > B,

o = X[i] or X.1d,

L

B=X[j] or X.j, and j > 1.

By Theorem 3.3, there is a cycle in the dependency graph involving
the node X with edge label sum
s 2 j-1>0
contrary to subset syntax. Hence each list Lr is finite.
g
Algorithm A&.Q is given below. It is essentially a topological sort

with added constraints.

- 39 -

Algorithm A4.2

Input: Operand lists‘Lo,...,Ln constructed by A4.1 for a simple

goal R In a subset program

0,...,Sn

Qutput: Sorted operand lists S
1. [Initialize]
Set m to 0.
2. [Termination condition]

If m > n then stop;

otherwise set Sm to be the empty list.

3. [Determine admissible items]
Scan Lm marking all items as 'admissible' if their

dependency lists are empty.

4, [Selection]
Of all admissible items select one by applying the
féllowing criteria in sequence.
As soon as one criterion is applicable go to Step 5.
4.1: If some X.j is admissible, select the first
such X.j.
4.2 Select the first admissible X[j] such that there

is no X{i] in Lm where 1 < j.

- 40 -

5. [Sort]
Remove the selected item from Lm and from all deéependency

lists, and append to Sm .

6. [Sort completion condition]
If Lﬁ is not empty, goto Step 3;

otherwise increment m by 1 and go to Step 2.

Example 4.3 The sorted lists for input LO,Ll,L2 of the previous

example will be:

w0
i

0 <xfol, Ef0], ¥Y[0l, F[O>

9]
I

<xX[13, Er11, z(0), Y[1], F[17>

w
]

- <x(271, E[23, 2[1]3, Y21, F[2]>

Before proving that A4.2 always halts the notion of close dependency

is introduced.

Definition A qualified name o closely depends on another qualified

name R (in symbols a *> B), if
(i) o *> B, and
(1i) din the direct dependency chain

= o> - . -
o = oy Ay °> .en >0Lk B

each name oy is derived from a sequence X which is defined

by a formula or a fby expression.

Lemma 4.2

- 41 -

1£ X[1] *> Y[4], then

X[441] *> Y[{+11.

Proof (By induction on the length of the direct dependency chain)

Basis

Step

X[i] directly depends on Y[j]. If X is defined by a fby

expression, then, since def(X[0]) depends only on names

of the form Z.m, i must be greater than 0. Consequently,
def (X[11) = T _(¥)

def(X(i+1]) = Tr+1(E) for some formula E,

from which the lemma follows.

Split the dépendency chain such that

X[41 *> zlx] *> ¥[33.
By induction hypothesis

XOi+11 *>Z[r+1]

Zir+1l] *>Y(j+1]

hence X[i+1] ~>Y(j+11].

- 42 -

Theorem 4.3 Algorithm A4.2 always halts.

Proof Observe that none of the lists Li is empty, and that no item in

Li can -depend on another item in L

A
show that the sort succeeds for any list Lr after the lists LO""’Lr—l'

where j. > 1. Thus it suffices to

have been sorted. Suppose, therefore, that Lr cannot be sorted. Two
cases must be considered:
1) No items were found admissible.

2) No admissible item qualified for selection in Step 4.

Case 1l: There must exist a circular dependency, i.e. there is some
o in Lr such that ¢ *> o. By Theorem 3.3 this contradicts the subset

syntax requirements.

Case 2: Observe first that any item of the form X.j depends only on
items of the same form. Hence, if no item can be selected, then only
names of the form X[j] are left in L. and all admissible items violate

Critérion 4.2,

Let al,...,am be all admissible items and assume that none
can be selected. Without loss of genefality, assume that ap+l,...,am
cannot be selected because of some items in al,...,ap. Since the
first p items do not block each other's selection, they are derived

from p different names, and there exist inadmissible items

81,...,BP where

g, = x@rys] o, = xXPri + e 1<3sp, t;>0.

3 3 3 k| |

- 43 -

Furthermore, since ap+1, . am cannot be selected because of

o

1 L ap'))
- x@)
aj = X(j Eik + tj] p <3 <m,
where k 1s such that X(k) = X(j), tj > tk’ and k < p.

Since the Bl cen Bp are inadmissible, they depend on some of the

al cee O Let £(j) be the smallest k such that

Bj > o 1<<p, 1<k<m,
and oserve that Bj closely depends on Oy - Define g by
£@) 4if £(3) < p
g(i) =
k if £(j) > p, where k is such that k< p and

L L EGN

Because of the ordering of the admissible items, g is well-defined.
Consider the sequence 1, g(l), gz(l), ces gp(l). Since g(t) < p by
definition, at least one value j < p occurs twice, so that there is a

k < p such that gk(j) = j. By assumption,

() EGN = L 8li)) -

AX [ij] *> X [if(j)+ tf(j)] X 2 [1g(j)+t13
(g(3)) vs w(E@GEIN . E- 2 6 DD -
X gy] > X Mrean® teegyn! T X (1, | ¥y

. g (i)
k-1, ‘ k .
x(&8 "GNy PR x(& (g L FE]D = xPs, + £]
g () g (1) J

By repeated application of Lerma 4.2, therefore,

(# (1) - -
X [ij] *> XA [ij + t; + .. + th.

_In conjunction with Theorem 3.3 this implies a violation of the subset
syntax contrary to assumption. Therefore, atAleast one item can be
selected from the Oy sev Qe

o

- 44 -

The following algorithm constructs a schedule for code generation
from the sorted lists. This involves combining the lists and marking
the places into which tests for loop termination have to be put, and

determining the exact loop limits. Algorithm A4.4 generates target
code from this output.

Algorithm A4.3 (Construct Schedule S)

Input: Sorted Lists LO’ vy Ln from A4.2.
OQutput: Schedule S for Code Generatiom.

1. [Construct first part of S] |

Let Ti denote the list containing fhe special symbol #i only.

Set S to be the concatenation of L, T0; s L T g
2. [Determine loopl

Let Uys ves O be all items in Ln. |

Scan Ln marking an item Xfi] as 'in-leop' if X[i+1] is not

in Ln' Thereafter, set p to be the smallest j such that aj

is labelled 'in-loop'.

Split Ln into the lists

L' = <ps e ap> (empty if p=1)

L" = a_>

<0lp-i--l’ T 'm
3. [Complete schedulel]
Append to S the lists L', T', L", Tn in sequence, where T'
"contains the symbol % only.

Thereafter stop.

- 45 -~

Example 4.4 The schedule constructed from the sorteq lists of the
previous example is »
s = <x(0], E[0], Y[Ql, F[O], #q» X(11, E[1D, z[01, ¥[1], FL13,

#:., %, x(21, E[2], z[11, ¥(2], FL2], #.>.

1> 2

Algorithm A4.4 (Code Generation)

Input: Schedule S = <qg ses @ from A4.3.

1°
Output: Code evaluating the simple goal R = E asa F which was
input to A4.1.
LI [Initialize iteration count and code S
Emit "ﬁggig t«Q; "
Scan S and code each item o, as prescribed by Step 2.
Thereafter go to Step 3.
2. [Code item o in §]
If o is a qualified name, then
emit " o « B; ", where B is def(a).
If o is #j’ then

emit " if F[j] then begin R.0 « E[j1;

goto Lj

end; "

If o is %, then

L1} "
.

emit repeat forever begin

3. [Code iteration count increment and window shifts]
Emit " t « t+1; "
Scan all qualified names o following %Z in S and perform the

following:

- 46 -

If a name X[1] occurs in def(o) which does not follow
the 7% in §, then generate instructions
X(1] <« x[1+173;

X[i+1 3 xTi+27;

X[§=11+ X[31;
where } is the smallest k > i such that X[k] is in S
following the 7.
Collect all instructions so generated, delete all duplicatioens,

and emit them sorted by the index of their left part.

4, [Code loop end]
Fmit " end; L: end; ".

Then stop.

Theorem 4.7 below shows that to each X[i] found in Step 3 of the

algorithm, there is some X[k} with k>i in § following the %.

- 47 -

t « tt+l;
z[0] « zZ[11];
X[0] « X[11;
Y13 « Y[23;
o end;
L: end;
Note, that the generated code is well-suited for

optimization.

Example 4.5 The code generated .by A4 .4 from the schedule of the
| previous example is:
begin t + 03
X[0] « 03,
E[0] « X[01;
Y{0] « 1; .
F[0] « Y[0] gt 25;
if F[0] then begin R.0 + E[0];
V goto L; end;
X{1] « X(01+1;
E[1].+ X[1];
z[0] « 2;
Y[1] < Y0 2Z[07;
F[1] « Y[1] gt 25;
if F[1] then begin R.0 « E[1];
goto L; end;
repeat forever begin
X[2] « XL1 1
E[2] « X[21;
Z[1] « zZ[OHZ[0];
Y(2] « YL1+2Z[1];
F{2] < Y[2] gt 255
~if F[2] then begin R.0 <« E[2];
goto L; end;

conventional code

- 48 -

The correctness proof of the object program rests on certain pro-
perties of the lists constructed throughout the compilation. These
properties are derived first and summarized by Theorem 4.7. 1In parti-
cular, the theorem proves that no value is computed, unless the next
iteration is necessary, and the computation required by it. Thus, there
g&e no 'look-ahead' computations. ‘Algorithms which do a certain amount
of look-ahead computation can be devised and compile simpler code, but
they would restrict the domain of source programs which can be compiled
éorrectly.

Furthermore, if some X[i] is referenced by a defiping term within
the loop, but is not computed within the loop previously, Theorem 4.7
proves the existence of names X[i+1], .., X[j] such that X[j] is computed
within the loop, and the X[i+11, .., X[j-1] have been initialized before
computing X[j1 for the first time. As a consequence, the new values for
X[i] can be obtained subsequently by a 'window shift', that is, by

Xfil <« X[i+l3;

X[§-11 « XC33;

All these names may be conceptualized to be a fixed-size queue (window)
buffering j-i+l consecutive component values of the sequence X until no
longer needed.

The following results derive some properties of the dependency re-
lation among qualified names, and their effect oh the list construction.

Lemma 4.4 Let LO’ . Ln be the operand lists constructed by
Algorithm A4.1. If X[i] is in L. where r < n, then X[i+l] is in one

of the lists LO’ .oy Lr+1 .

- 49 -

Proof Tf X[1i]l is in Lr’ then E[r] or Flr] closely depend on it.
By Lemma 4.2, E[r+1] or FLr+l1] closely depend on X[i+1J], hence X[i+1]

must occur in LO, . Lr+1 .

O

Corollary 4.5 Let L .o Ln be the operand lists constructed by

0’

A4.1, If X[4i] 4s in Lr for some r, then there is an index i

0 sgch that

X[io] is in L , and, for every X[j] in Lys =+s L1 iO > 3.

Proecf Obvious.
Next, the structure of the sorted lists output by A4.2 is derived.

Lemma 4.6 Let Sr be the r-th sorted list output by Algorithm A4.2.
Then the foliowing is true:
(1) Any name of the form X.i in Sr precedes every name of the
form Y[j] in S+
(2) If X[4i] and X[jl1, j>i, are in Sr’ then X[i] precedes X[j].

(3) Either E[r] or F[r] is the last element in S

Proof Observe that any name of the form X.i depends only on names
of the same form. Therefore, (1) follows from Criterion 4.1 of A4.2.
Furtﬁermore, (2) follows from Criterion 4.2. For (3) observe that,
because of the construction of the corresponding list Lr by A4.1, for
any o in S_ other than E[r] and Flr]l, E[r] or Flr] depend on a.

O

- 50 -~

Theorem 4.7 Let S be the schedule constructed by Algorithm A4.3 from

the sorted lists So,...,Sﬁ'output by A4.2. Let LO,.

corresponding operand lists constructed by Algorithm A4.1, and

..,L be the
n

denote by §" that part of S which follows the special symbol %. Then

the following is true:

(1) If o is a qualified name in S and o *> B, then B is in S
and precedes «o.

(2) If B is a qualified name in S'and is different from E[r]
and F{r} for all r € n, then there is a gualified name o such that
a *> B. Furthermore, if B is in S, then so is o.

(3) If o is a qualified name in S'" and X[il occurs in def(a)
but is not in S", then there are names

X[1+11,...,X[3]
in S such that X[j] is in S" and the X[i+1]l,...,X[j~1] all precede

XLl

Proof (1) Let o = oy > o, > L. > o = B be the direct dependency

chain from o to B. Since o is in S, there is some Sr
and consequently Lr such that o is din Lr' By the

definition of direct dependency, a occurs in def(ai)

i+l

< . . .
for all 1 k, thus, by construction of Lr’ ai+1 is in
LO""’Lr’ for all i < k. B precedes o because Algorithm

A4.2 is a topological sort,

(2) The existence of o is immediaté. That o must be in Sr

follows from the construction of Lr by A4.1.

- 51 -

(3) If X[i] is not in S, then, by repeated application of
Lemma 4.4, there are names
X(4+11,...,X[k]

in SO,

...,Sn such that X[kl is in Sn’ but the'X[i+l],...,X[k-13
are not, and therefore precede X[k] in S.

Furthermore, there are names

X(k]1, X[k+11,...,x[3]

in Sn (possibly k=j), such that X[j+1] is not in Sn' Then X[j7
is labelled 'in-loop' by Algorithm A4.3 and consequently is

in S". By Lemma 4.6 the X(k3,...,X[3-1] all precede X[3]

in Sn and therefore in S.

If X[il] is in 8> then the second part of the above argument

completes the proof.
0

The first two parts of Theorem 4.7 show that the schedule S contains
exactly those names on which E[0], F[0],...,E[n], Flnl] depend as well as
Ef1] and F[i]. Furthermore, for every r < n, SO,...,Sr contain

exactly E[0], F[0J,...,E[r], Flr] and the names on which they depend.
The sequence in which the names are arranged in S is compatible with

the existing dependencies.

The third part of the theorem is instrumental in proving properties

of the instructions generated by Step 3 of Algorithm A4.4.

-52-

At this point 1t is convenient to review the structure of the object

language. The following constructs are available:

o+« E d is assigned the value of E. a is a variable
which can store one element of V,Vthe value
~ domain, and E is an expression over such
>variables, constants and standard operators
in the subset. Note, that the value of E
cannot be L unless at least one variable in

it has that value.

begin ... end delimiters for compound statements and blocks.

repeat forever S an infinite loop with § as its body. Control

may exit from the loop by a goto instruction.

goto L . unconditional transfer of control to the label
L.
if o then S if o has the value true, then § is executed,

otherwise do nothing.

procedure P S non-recursive procedure P with body S. A call
of P is equivalent to the substitution of §

at the point of call.

The semantic concepts of the object language are quite familiar
and easily axiomatized. We assume that a correct interpreter

is available for it, which is justified by other research [e.g. 7, 17].

+ 53 -

Recall that the schedule S is the concatenation of the lists

S0 Tg> = > Spq0 They s', <%>, s", T

where Ti= <#i> and Sn= s' s". Conseduently, the generated code has
the following structure:
begin t <« 0;
P0

Ro

.

n-1

Rh—l
P?

repeat forever begin

L: end;

where Pi, Ri, P' and P" are the coded Si, Ti, S' and S", respectively.

Note that only P' and S' can be empty, and that the only transfers of
control apart from the loop are in the Ri’ all of which are 'goto L'
instructions. In the following, the above symbols are used to denote
the various parts of the object program and the schedule.

Let p be a solution of the source program, and dencote by IXID’
IX:i|p, and IX<i>[p the values of X, X:i and X<i> for the solution g,
respectively., Let (J - |) denote the t component of the value

p t
| - lp’ and recall that, for simple programs, t € N rather than t ENN.

- 54 =

0 denotes the minimal fix-point solﬁtion Qf the source prﬁgram.

Let h be the homomorphiém which maps expressions over qualified
names into terms by replacing each qualified name by its corresponding
term. E.g. h(X.i) = X:1, and hX[1i]) = X<i>.

For proving the correctness.of the object program we prove first
that, after executing an aséignment to a qualified name o In the com-
piled code, the new value v(a) of a is precisely (Ih(a)lg)r, where r
is the current value of the variable t in the object program.

Theorem 4.8 Let r be the value of t before executing the j-th
assignmeﬁt statement to the qualified name ¢ in the object program.
-ThenAthg new value of 0 after the assignment is

v(@ = (fa@)]) -
Proof Part 1: Assume that the j—~th assignment to 0 is executed
for the first time. We show the theorem by induction on j.
Basis: J = 1.
Clearly r=0 and the assignment to o is of the form
o <+ def(a).
Because of the topological sort, no qualified name is referenced
by def(o), and its value is therefore constant. By Theorem 3.1,
for any solution p, since r=0,
(@), = (ntaet@) |,
and thus, in particular, for the minimal solution o
(neey |), = (h(des@)]),
consequently

v() = v(def() = (|n(def@)] g = (@),

- 55 -

§E£B. The theorem is true for the first j-1 assignments to qualified
names. The j-th assignment can be of one of fhrée forms:
d “ defGﬁ) (case a)
R.0 « E[k] (case b)
X1 X[i+1] (case c)
Case a
By hypothesis and Theorem 4.7, for each qualified name B in
def (o) A
(n@)), = v®)
{(Neither t nor 8 can have been assigned since the first time
B was assigned by the k-th assignment, k< j).
A reasoning analogous to thé argument above shows that
v(def (@) = ([ndet@)]|)y = (@]) = v(@).
Case b
The assignment is to R.0, and therefore, by the construction
of the code, F[k] = true. Since FI0J, .., F[k-1] have been
tested before Flkl, and because of the goto L instructions,
the values of the F[OI], .., Flk-1] are all false. By hypothesis

therefore, for r=0 (i.e. F[k] is tested for the first time),

([F<j>|0)0 = false for all j < k,
([7<e>[), = true
(|E<k>]0)0 = v(R.0)

since (!X<s>!p)t = (lxlp)t+s’

(|R:0]0)0 = v(R.0)

by definition of asa.

- 56 -

. For r >0, i.e. k=n and Fln] is tested for the r+l st time,
see Case b in Part 2 of the proof.
Case ¢
The assignment is of the form X[1] « X[i+l] and occurs in Q.
Therefore, r=1, and, by the construction of Q, X[i+1] cannot.
have been assigned in Q preceding this assignment. By
Theorem 4.7, X[i+1] haS'béen assigned oncé by a statement pre-
ceding the t <+ t+1, so that, by hypothesis;
v = (x<ss] 0o = (x|)

from which case ¢ follows.

Part 2 Assume that the]J—th assignment to o is executed for the
n—~th time where n>1. Because of the.control structure, the
assignment must be in the program parts P", Rn’ or Q.

Case a
The assignment is in P" and therefore of the form o <« def(w).
All qualified names B in def(u} fall into one of three
categories:
(1) B =Y.j. Then B is nof assigned in P", Rn or Q, hence,

by part 1, v(B) = (]Y:j!c)0 = (IY:j1O)r A (def. of :4i).

(2) B =Xx[i] and X[i] is assigned in P" by a statement pre-
ceding the assignment to .. By hypothesis, v(B) = (]h(B)lo)r
(3) B8 =X[i] and X[i] was assigned last in Q. By hypotheésis,

as t has not been assigned since, v(B) = ([h(B)!O)r

- 57 -

Therefore, for all qualified names B in def(a),

v(®) = ([n®)|) .
Observe next, that by construction of L by A4.1, a = z2[0]
for some Z defined by a fby expression. Hence, by Theorem
3.1, for all sclutions p,

(I [), = ([n(def(a)]),
for all values of r. Consequently, in particular

(InC) |, = (lh(def(a>)lc>r'
from which, and the above observations, follows

v(e) = (@], .

Case b

The assignment is of the form R.0 « Eln]. Note that the
assignment is executed for the first time, but F[n] is tested
for the r-th time. Consequently, by hypothesis,

v(Flnl) = (|F<n>|c)r = (|F[G)f+n = true,

]

(|F<n>[0)s (|F!c)s+n = false for all s < r, and

it

<k> = <
(!F k IG)O ([F{G)k false for all k < n.
By definition of gsa and by hypothesis, therefore,
= = <> = = .
v(R.0) = v(Eln]) = ([E<n>]) = ([E|), = (JR:O[)_
for all values of s.
Case ¢
The assignment is in Q and of the form X[il] + X[i+l1l. By

reasoning analogously to Case ¢ of Part 1 of the proof,

v(x[1i]) = (|X<i>'c)r'

- 58 -

Corollary 4.9 The code compiled by Algorithms A4.1 through A4.4

correctly evaluates the simple goal R = E asa F which was input to
A4.1. |

Proof If there i1s no t such that.(’FfG)t is true and (IFIG)S
is false for all s < t, then (]R&c)t, is undefined, and the compiled
code will loop forever.

If there is some such t, on the other hand, then the compiled
code must terminate, and correctness of the result follows from the

previous‘theorem. Note, however, that because of the if - then - élse,

some Sequence components may have been evaluated, which are not used
in some particular iteration.

0

- 59 -

5. Compilation of Simple Programs

Even simple programs will, in general, contain more than one
variable defined by an asa expression. A suitable modification of the
algorithms of the previous section is in order, so that they can be

used to compile the more general case.

From the dependency graph G of a block a goal graph G' is

constructed as follows:

The nodes of G' are all those nodes X of G such that X is a goal
and/or the name result, If X and Y are names of nodes in G' and there

is a path from X to Y in G, then draw an edge from X to Y in G'.

Definition The graph G' derived from the dependency graph G

as described above is the goal graph.

Theorem 5.1 The goal graph of a block in a subset program does

not contain any cycles.

Proof There cannot be a cycle in G' passing through the node
result, since there are no edges into the corresponding node of G.
Suppose next that there is a cycle in G' passing through node X.
By the construction of G', therefore, there is also a cycle in G
passing through the node X of G. Since all arcs emanating from X
in G are labelled «, the edge sum of this cycle in G cannot be

negative, contrary to subset requirements.

g

- 60 -

The modifications to the algorighms dé the followingu. Fach goal
not named fééﬁlf is compiled into a procedure evaluating it. This
procedure is to be called when the value of the goal is referenced
by some other computation. Because of the quiescence of goéls,
each such procedure needs to be called at most once, since the value
cannot change subsequently, 'Efficient code taking advantage
of this property is easily generated, but only sketched in its structure.
Essentially it involves testing a special variable which indicates
whether or not the goal whosé value is needed has ever been evaluated.
The code evaluating resulf then acts as the main-line program. Note,
however, that the procedures may call each other as well. Because

of Theorem 5.1, no recursive calls are ever made.

The modifications of A4.1 and A4.4 which accomplish this task
are described below. The modified algorithms are referred to as AS5.1

and A5.4, respectively.

Modification of A4.1

Replace Step 3 of the algorithm by
3" [Process and Extend Ln. Construct Dependency Lists]

Take the next item ¢ in Ln and initialize its dependency list D
to be empty. If o is not derived from amy goal, then process def(a)
as described below., For each B in def (o) do the following:

(1) If B is derived from some goal Z, then replace 8 by Z.0.

(ii) If 8 is not in LO""’Ln’ then append B to Ln.

(1ii) If B is not in D, then append B to D.

- 61 -

Theorem 5.2 Algorithm A5.1 terminates for arbitrary goals R = E asa

F in simple programs in the subset,

Proof Obvious.

Modification of A4.4

Replace Steps 1 and 2 in A4.4 by the corresponding steps below.

1' [Initialize and Code S]
If R is result then
emit "begin INIT;
t<0; "
otherwise

emit " procedure R begin

SETR;

t < 0; ",
where INIT is code initializing all the special variables to
indicate that none of the goals in the simple program have been
evaluated, and SETR is code assigning a special variable to

indicate that the goal R has been evaluated.

Scan S and code each item 0 as prescribed by Step 2'. There~
after, go to Step 3.
2' [Code item a in S

If a is a qualified name derived from a goal Y, then

emit " TESTY;’",

where TESTY is code testing a special variable whether the goal Y

- 62 -

has been eyaluated, and if it has not been, calls procedure Y.
If o 1s a qualified name not derived from a goal, then

emit " a <« B; ",
where B is the defining term of « modified by replacing each

qualified name Y which is derived from a goal Y in it by Y.O.

If o is #j’ then

emit " if F[j] then begin

R.0 « E[j1;
goto L
end;

If o is 7, then

emit " repeat forever begin "
Note that for each goal Z, first Z = Z, which justifies the

modification of the defining terms by A5.4. The label L generated
by A5.4 is local to the section of code for the particular goal,
and likewise the allocated storagé for t and all qualified names.
Exceptions to this are the names R.0, where R is a goal, and the
special variables which indicate whether or not a goal has been

evaluated.

Theorem 5.3 The code T compiled for a goal R ='E asa F in a simple
program in the subset evaluates R correctly, provided the correct

value of each goal Y referenced in 7 is available in Y.O.

- 63 -

Proof (Informal)

Since the goal graphvis cycle>free, observe that T cannot reference
R.0. If R is a simple go%l, no other goals are referenced, and the
modificétions to the algorithms do not affecf the code compiled to

evaluate R. Correctness in this case follows from Corollary 4.9.

Otherwise, since each goal Y is quiescent, the modified defining
term 8 of & has the same interpretation as def(a) . A proof analogous
to the proofs of Theorem 4.8 and Corolléry 4.9 therefore establishes

the Theorem.

O

Whenever result is not a goal, it must be defined by
result = E,
where E 1s quiescent, hence its compilation can be reduced to the
compilation of goals by transforming it into
result = E asa true.
This results in a slight loss of efficiency. A simple modification
anticipating the former definition as a special case is worked out

easily and compiles better code. The details are left to "the reader.

Now the algorithm for compiling simple programs can be given.

Algorithm A5.0 (Compilation of Simple Programs)

Input: A simple program P in the subset

Output: Object program T evaluating output.

- 64 =

1. [Find all goals]

Construct the goal graph for P and reduce it by deleting

all nodes which cannot be reached from result.

2. ({Linearize]
Linearize the reduced goal graph by a topological sort. (Note

that the sort must éucceed because of Theorem 5.1).

3. {Compile]
Compile each goal separately in the sequernce of the linearized

graph by Algorithms A5.1, A4.2, A4.3, and A5.4.

4. [Complete Object Program]

te

Prefix the concatenated program parts by " begin " and suffix

them by "output [0] + result.0; print(outputf0]); end;"

Theorem 5.4 The program T compiled by A5.0 for a simple program P in
the subset evaluates each goal referenced correctly, and does not reference

-

an unevaluated goal.

Proof By Theorem 5.1, the goal graph does not contain any cycles,
and hence no recursive calls are made on the routines evaluating goals.

Also, before referencing any goal Y, the special variable TY’ indica-

ting whether Y has been evaluated, is tested. Since the main program

initializes all such special variables correctly, and only the procedure

- 65 -

- evaluating Y can assign T, subsequently, Y is evaluated beéfore it is

Y
referenced for the first time.
The rest follows from Theorem 5.3 and an induction on the goal

graph.
0

Corollary 5.5 (Partial Compiler Correctness)
Let T be fhe program compiled by Algorithm A5.0 for the simple pro-
gram P in the subset, and let ¢ be the minimal fix-point soluticn
of P. Tﬁen, if P halts, it prints
(Joutput])
and, if
(loutput|)g = 1,
then T does not halt.
Proof If 7 halts, the corollary follows from the previous
theorem observing that A5.0 appends the concatenated program parts

with "output{07 + result.0; print(outputiOl; end. "

If the value (|output|c)0 is undefined, then there is at least
one goal which has thislvalue, and the corresponding loop in T will
not terminate.

0

Thus only partial correctness is accomplished in the presence of

more than one aga expression. This is due to the simplified treat-

ment of the if - then - else, and discussed further in Section 7.

- 66 -

6. Nested Blocks

Two properties of nested blocks suggest a recursive extension
of the compilation algorithms for simple programs, which enables
compiling programs with nested blocks.

In a nested block, all global variables referenced are quiescent,
by the definition of the language, and therefore only the current
component values of global variables need to be known throughout the
evaluation of a given nested block. Thus, the global environment
'freezes' upon entry into a nested block.

Furthermore, if block BZ is nested within block Bl’ and G(l),
G(j) are all variables in the using clause of 82, then the evaluation
of the sequence R defined by B2 may be considered a point-wise function

v G(j)_

with arguments G -

Theorem 6.1 Let R be defined by the block B2 nested in a block

Bl’ where B2 is

compute R using G(l)... G(j) where ... end.
Then R is a point-wise function f in Bl with arguments G(l)... G(j),
ie. r= £cP, .., ¢y,
first 7 = gizse 6, .., £orse 63,
next R = f(next G(l), .., next G(j)).

Proof (Sketch; for a fully detailed proof see [51.)
The proof proceeds by induction on the block structure of the pro-
gram,
Basis Assume that B2 does not contain any nested blocks. Let
(1) (1) .
G ve. G be all variables globally referenced in 32 (-~ B, may

reference variables global to Bl as well), and observe that implicitly

- 67 ~

(k)

one or more latest are applied to the G . Let

- i
G(k) = latest X G(k), l1sk=sr, ik > 0.

O

The interpretation of every expression H in B

2
function fH of the é(k). Let t = totltz... € NN, then

dubg = gz dEP Do o, 3o

may be considered a

-1
Since latest and latest = are the only operations manipulating the t_t

(k)

since all of these are applied to the G . fH does not depend on

the t1t2"' and varies with ty only:

(5 = (5

In particular, because of its quiescence, for the result expression
E,

(g = (£, = (£, = ¢

0 E

Therefore, in Bl’

-1 =(1) =(r)
C(IrRD (Jlatest = (£ (G ... C’'N)
! t1t2”° I E tltz...

(|fE(E(1) 8

Otltz...

b (18]
-

-(1)
£ (D
=(k)

= latest G

)
Otlp DtItZ"
E(k)

Let s then

(IRl)tltz... - fE ((!E(l)[)t toee. 2 700 (IE(r)l)t t)

LEpeee Ltyee
DI)

are all defined in B

By assumption, the G 1° hence

~o k .
G() = G(k), k £ j, and at least one latest is applied to the

E(j+1) ceo E(r), hence (IE(k)l)t . = (Ia(k)l)Ot , k> 1,
1590 - g e

from which the theorem follows.

180

¢

and

- 68 ~

Induction Step Analogous in argument. Observe, however, that

additional global references may Introduce further arguments to
the functions representing the interpretation of the result expression
of nested blocks, on which the functions depend trivially.

a

The theorem justifies the conceptualization of the evaluation of R in

A 3
B1 as a point-wise formula with operands G(I) .o G(~), and therefore

a recursion on the block structure is an adequate compilation stra-

tegy. Once B2 is compiled, it is viewed as a subprogram evaluating

R, which is called at the appropriate point in the code for Bl.
Corollary 6.2 If R is defined by a block B2 nested in a block

is either empty or contains only

Bl, and the using clause of 32

guiescent names, then R is quiescent in Bl'
Proof Obvious.
AThis result explains the definition of quiescence in Section 2.4.
It can also be used for a code transformation which, upon recognizing
the quiescence of R, "li%ts" the nested loop evaluating R to the con-
taining loop level transforming it into a concatenatéed loop. This
is accomplished by replacing every reference to R in B1 by first R.

This technique is well-known from compiler code optimization as

moving invariant computations out of loops.

- 69 -

Definition Let R be defined by
(1)

compute R using G ae G(J) where ... end.

Then R[1] depends directly on G(k)[i], and R.i depends directly on
g, k£ 3. |

This extension of the notion of dependency is justified by
Theorem 6.1; Note that the theorems of Section 3 generalizemimmedia—
tely. This, and the results of Section 4 and 5 are the basis for
proving the correctness of the modified algorithms described below.
Instead of giving all the details, we outline the algorithms intui-
tively.

Algorithm A5.0 is adapted by making it recursive and capable of
compiling R[i] or R.i, where R is defined by a nested block. Initially
called to compile the outermost block for output[0], it proceeds as
follows.

Compiling R{i] or R.i, R defined by a block B, the modified A5.0
compiles B as if it were a simple program which, in addition, requires
certain globgl scalar values. Names derived from a global variable G
are neither added té the operand lists, nor to the dependency. lists.
Instead, they are replaced by *G and collectéd into a separate list,

the parameter list of B. Since G. is quiescent in B, all first and

next applied to it can be dropped without altering the meaning of B.
Recursive calls on A5.0 are made by the modified A5.1 for blocks

nested in B.

Upon completing the compilation of B for R[i] or R.i, the

- 70 ~

parameter list of B is examined. Any sequence G in the list, which
is defined in the containing block (and is therefore in the using
clause of B) is an operand of the pointwise computation of R, and

hence references the qualified name G[i] or G.i, respectively.

A1l other names in the parameter list are global to the containing
block, and hence to be added to its parameter list.
The modified algorithm A5.1 proceeds as follows. When examining

R{i) or R.i, where R is defined by a block B, the dependency list of
(k)

R{4] or R.i, respectively, is set to contain the name G “"[i] or

(0 ()

.1, respectively, where the G are the names in the using

clause.of B. Then a recursive call is made to compile B for R[1] or

R.i. Note that B needs to be compiled only once, since the compilations

for different qualified names differ only in the bindings of the

global references of B. The compiled code is temporarily stacked.
Algorithms A4.2 and A4.3 remain unchanged. A5.4 is modified

such that, when coding R[i] or R.i, R defined by block B, the compiled

(k)

code of B is inserted, and the global references to G are resolved

(x)

by binding them to G(k)[i] or G/ .i. Note that B has local storage

for all names defined within B. A
From the reference graph requirements and from Theorem 4.1 it
should be clear that no infinite recursion is possible, and that the

compilation always terminates. Arguments analogous to those of Sections

4 and 5 establish the following

- 71 -

Theorem 6.3 Let g be the minimal'solution of the progfam P in

the subset, and assume that P contains the definition

(1)

compute R using G . G(j) where ... end.

If, upon entry into the code T compiled for R[i], we have
V(G(k)[i]) = ([G(k)<i>['c)z
as the current value of the G(k)[i], 1 <k < j, then, if T terminates,
the value of R[iJ upon exit from T is
vRIiD) = (ri>| Dz
and, if
(Ir<i>|)= = 1,
then T does not terminate.
Analogous formulation and proof for R.1i establishes the (partial)
correctness of the compiler.
We conclude the section with the compilation of the second
program of Example 2.1. For reasons explained in the next section,
the compiled code is correct, rather than only partially correct.

Example 6.1

Consider the second program of Example 2.1. The compiler is called
CN

to compile the outermost block for output[0]. Since the goal graph

has only one node, the modified A5.1 compiles result and constructs

the following lists before recursively calling the compiler for the

inner block:

- 72 -

parameter
list

operand dependencies
lists
tllo] sum[0]
pl{o0] c[03, ml0}
suml0] -
cl0] -
m{0] input.0
input.0 —
tl[1] sum[1]
pll1] c[13, ml1]
suml 1] sum{ 03, root[0]
el1] cl0]
ml 1] input.0
roo§[0] n[0]

-

When processing root{(], a recursive call is made to compile the

inner block for root{0].

The inner block, too, has a goal graph

consisting of a single node, and constructs the following lists:

L.:

L.:

operand dependencies
lists
t2[0] ccl0]
p2Lo] yl0]
cel0] -
yio] -
t2[1] ccl1]
p2[1] y[1]

parameter
list

*n

- 73 -

. From these tables, the following code is compiled for the inner

block:

begin t' « 03
cc[0] « 0;
t2[0] « ccl0];
yl[0] « 13
p2{0] « y[0] gt *n;
if p2[0] then begin result' <« t2[01;

goto L'; end;
repeat forever begin
cell] « cel[0T+1;
t2[(1] <« cel1];
y[1] « y[O0H+2*cc[01+3;
p2[1]1 + y[1] gt ‘*n;
if p2{1] then begin result' <« t2[1];

goto L'; end;
t' « t'+1;
ccl0] « ccl[17;
yl(0] < y[1];
end;

L': *root <« result'.0;

end;
After returning to the calling level, *n is found to reference n in
the outer block, hence the parameter list of the outer block remains
empty. Processing resumes with nf{0] and, after completing, the

following code is compiled for the outer block:

begin t + 0;
input.0 <« read();
sum{0] « 0;
t1[0] « sum[0];
c[0] « 0;
mi 0] « input.0;
plf0] « cf0] eq mw[0];
if pl[0] then begin result.0 <« tl1[0;

goto L; end;
repeat forever begin
c[1] + c[0M];
m{ 1] « input.0;
pif1] < e[1] eq m[ll;
input[1] « read();
n[0] « input[ll];

begin
(code compiled for nested block
E substituting n[0] for *n, and
) root[0] for *root)
end;

sum[1] + sum[0 Hroot[0];
t1[1} < sum[11];
if pl[1] then begin result.0 + t1[1];

goto L; end;
t « t+l; .
suml0] <+ sum{17;
c[0] <« c[17;
end;
L: output{0] «+ result.0;
end;

print(output[01);

-75 -

The read function will in general have two parameters, one to indi-
cate the index of the qualified name derived from input, and one to
differentiate input(il from input.i. In the example this was omitted,

because the control structure ensures that the correct values are

read.

-76—

7. Practical Considerations and Compiling Problems

7.1 Syntactic Correctness

The compiler as designed in the previéus sections
relies on syntactically correct input, and clearly any implementation
must perform syntax diagnostics as well. Much of this can be done
by the familiar methods, except for Criterion 2.5.5, a direct verification
of which seems hardly practical. Recall how this property, that the
edge label sum of any cycle in the dependency graph be negative, in-
fluenqes the compilation: It guarantees termination of Algorithms
A4.1 and A4.2, implies that the goal graph of any block is cycle-free,
and that no infinite recursion for compiling nested blocks is possible.
This suggests to add appropriate routines throughout the compilation

which test for the presence of these situations.

It is possible to prove that if there is a cycle in the
dependency graph with non-negative edge label sum, then Algorithm
A4.1 or A4L.2 does not terminate, or the goal graph cannot be iinea—
rized, or there is an infinite recursion on the block structure.

In particular, using Theorem 3.3, the following can be proved:

Theorem If the list Li constructed by Algorithm A4.1 (or
A5.1) contains a qualified name X[j] or X.j such that j > s+i#l,
where s is the number of next operators occurring in the block presently

compiled, then the list Li cannot be finite, and there is a cycle

in the reference graph with edge label sum greater than 0.

—77-

Consequently it is possible to test whether A4.l1 terminates,
and if it does not, then the syntax is violated. Terminafion of the
topological sorts A4.2 and of the goal graph 1s easily tested, and
the presence-of an infinite recursion on the block structure can be
known when more than m calls are made on the compiler, where m is the
total number of blocks. This gives a practical way of testing

Criterion 2.5.5.

The details of how to obtain the information necessary to
give meaningful diagnostics'in each of the above situations are left

to the reader.

7.2 Object Code Efficiency

As the examples of compiled code indicate, the generated
object code is somewhat lengthy. Its simple control structure
makes it particularly gratifying to adapt conventional code
optimization methods [see, for‘example, 11 to improve the generated
code. Simple strategies can be worked out which would reduce the
program of Example 4.5 to less than half its size eliminating

two tests and several qualified names.

7.3 Llogical Connectives

In the original language definition [4, Section 3.11

we find the following interpretation of the operator or:

-~78-

VS yields true if at least one argument is true, false if

both are false, undefined otherwise.

Thus, in particular,

v L = 1 Vv true = true
true g s

Since L cannot be tested, the operands of and and or should be

evaluated in parallel, which, in conjunction with other language
constructs, implies spawning an arbitrary number of parallel pro-
cesses at run time, some of which have to be aborted once other
ones terminate with certain values. Efficient compilation of this
seems very difficult, and the two operators have been made strict

in the language definition on which the compiler is based.

7.4 Partial Correctness

The algorithms developed accomplish only partial correctness.
This is due entirely to the treatment of conditional expressions,
and is perhaps best appreciated through an example.

Consider the following section of code:

Z = if P then X else Y;
= X, fhy £(X,6);
G =E asa F;

where £(X,G) represents some computation referencing X and G.
Assume, that Z is to be evaluated by iteration, and that the evalua-
tion of Y does not need the value of G.

Because of the recursiveness of X, it is of advantage to evaluate

-79~

it by an iteration, and the present algorithms accomplish this and
fuse the loops for X and for Z. However, if P is always false, then
X need not be evaluated, and since X references G, partial correct-
ness is introduced if, in that situation, the evaluation of G would
not terminate. If, on the other hand, the evaluation of Y references
G also, then the loop fusion does not introduce partial correctness
and results in superior code.

Further analysis reveals that, in general, the object code must
post-pone sequence evaluations until they are required, and even
avoid evaluating some components altogether. These considerations
lead naturally to an interpretive, demand-driven implemenFation
[see also 6], and the twon existing interpreters for Lucid have
taken this approach. Héwever, present research indicates that, at
the expense of considerably more sophisticated dependency analysis-
and object code structure which is not interpretive, full correctness
is feasable., It involves, on the object code level, a mixture of
iterative co-routines and recursive procedures constituting units
vhich evaluate various sequences, not all of which will be goals.
This can be done since most recursions in source programs can be
replaced by a collection of iterative routines. All recursion,
however, cannot be eliminated, for example for the following wvariable

X =X, fby (if P then £(X) else Y);

it is not possible.

~80-

7.5 Subset Choice

The fundamental choice of our approach to compiling the lan-
guage was to interpret the index sequence t as a sequence of time
parameters. Consequently, the subset was defined to permit an
efficient iterative evaluation of programs requiring only a fixed
amount of storage predictable at compilé time. In this frame, cer-
tain constructs are therefore unnatural, even though they make sense
in the fix-point semantics. For example, the definition of a
variable in terms of its 'future' is possible:

X = if P then Y else pext X.
The crucial restriction is Criterion 2.5.5, which eliminates all
such constructions, even though some may have equivalent formulations
thch satisfy the criterion (for example, X above could be written
as X =Y asa P).
It is not clear how a larger compilable subset can be defined

without having to resort in part to interpretation. It seems, how-—

evér, that major changes to the algorithms would have to be made

in an attempt to accomplish this.

- 81 -

8. Conclusions

Several points emerge from this work: Primarily, it is seen
that 1t is possible to prove compilers correct for larger
languages. Tools for this are available, although better ones
would be desirable, and, in many cases, the complexity of the task
is not prohibitive. Essential for this, however, is a formalized
semantics of the source language which, for many procedural languages,
is still not available. Perhaps this task is easier for data~flow
languages and this may be another reason for the recent interest
in them. On the other hand, it is not clear how such languages
are to be factored into orthogomal constructs given the presently
available target machine architectures, so that a correctness
proof and a compiler design may be modularized in a manner such,
that as proposed by Morris in [17]. 1In the case of Lucid the
problem was to some extent solved by recognizing the key role
played by the asa operator.

Furthermore, it is felt that the style of analysis performed
by the compiler is applicable to a broader class of languages and,
therefore, is of interest in itself. The influence which different
machine archtectures, e.g. network machines, would have on the
designs seems particularly promisiﬁg for future research. The
features of the source language itself, finally, deserve attention.
It is encouraging that a language chiefly motivated by program

proving should share essential properties in design with data-flow

- 82 -

languages which are motivated by the study of parallelism. Thus
it appears, that the work will stimulate deeper insights into

these problems.

Acknowledgements

The many helpful discussions with, and the constructive criti-
cism of, Ed Ashcroft, Andy Blikle, and Tom Maibaum are gratefully

acknowledged.

-~ 83 -

References

1.

Allen, F.E.

Program Optimization
in Annl. Review of Autom. Programming Vol. 5, p. 239-308
Pergamon, N.Y. 1969,

Asheroft, EL.A.

Program Proving without Tears
Proc. of the Intl. Symp. on Proving and Improving Programs,
p. 99-111, Senans, France, July 1975

Ashcroft, E.A., and W. Wadge

Lucid, a Non-Procedural Language with Iteration
forthcoming in Comm. of the ACM, 1976

also Tech. Report CS-75-02, Dept. of Comp. Science,
University of Waterleco (22 p.)

Ashcroft, E.A., and W. Wadge

Lueid, A Formal System for Writing and Proving Programs

forthcoming in STAM Journal of Computing, Sept. 76

Ashcroft, E.A., and W. Wadge

Advanced Lucid
Technical Report CS-76-22, Dept. of Computer Science
University of Waterloo, 1976 (forthcoming)

H

Cargill,

Deterministic Operational Semantics for Lucid
Technical Report CS-76-19, Dept. of Computer Science,
University of Waterloo, 1976.

- 84 -

7. Chirica, L.M., and D.F. Martin

An Approach to Compiler Correctness
Intl. Conf. on Reliable Software, p. 96-103,
June 1976 also SIGPLAN Notices Vol 10, No. 6

8. Dennis, J.B.

First Version of a Data-Flow Procedure lLanguage

MIT Project MAC Tech. Memo No. 61, May 1975

9. Floyd, R.W.

Assigning Meanings to Programs
Mathematical Aspects of Computer Science,
Vol. 19, p. 19-32

Providence, R.I. 1967

10. Guttag, J.

Abstract Data Types and the Development of DPata
Structures Suppl. to Proc. of the ACM Conf. on
Data, p. 37-46, Salt Lake City, Utah, March
1976

11. Hoare, C.A.R., and N. Wirth

An Axiomatic Definition of the Programming
Language PASCAL Acta Informatica Vol. 2,
p. 335-355, 1973.

12. Kosinski, P.R.

A Data Flow Programming Language

IBM Research Rep. RC-4264, 134 p., March 1973

13.

14‘

15,

16.

17.

18.

19.

- 85 -

London, R.L.

Correctness of Two Compilers for a LISP Subset
A.I. Memo 151, Stanford University, 1971

McCarthy, J., and J.A. Painter

Correctness of a Compiler for Arithmetic Expressions
Math. Aspects of Computer Science, Vol. 19,
Amer. Math. Soc., Providence, R.I. 1967

Miller, R.E., and J. Cocke

Configurable Computers: A New Class of General Purpose

Machines, IBM Research Rep. RC 3897, 14 p. June 1972

Milner, R., and R. Weyhrauch

Proving Compiler Correctness in a Mechanized Logic
Machine Intelligence 7, p. 51-71, Edinburgh University
1973

Morris, F.L.
Advice on Structuring Compilers and Proving Them
Correct, ACM Symp. on Principles of Prog. Lang.,
p. 144-152, Boston, Mass. Oct. 1973.

Rumbaugh, J.E.

A Parallel Asynchronous Computer Architecture for
Data-Flow Languages

MIT Project MAC Rep. TR-150, 319 p., May 1975

Van Emden, M.
Verification Conditions as Representations for Programs
Research Report CS-76-03, Dept. of Comp. Sci., University
of Waterloo 21 p., 1976

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

