DETERMINISTIC OPERATIONAL
SEMANTICS FOR LUCID

by
T.A. Cargill
Research Report CS-76-19
Department of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

June 1976

DETERMINISTIC OPERATIONAL SEMANTICS
FOR LUCID

Tom Cargill

0. Introduction

Lucid is a language in which programs can be expressed, and at
the same time a formal system in which properties of Lucid programs can be
derived. The language is defined in Ashcroft and Wadge [1]; and a
knowledge of this definition is assumed. We will be concerned here with
Lucid purely as a programming Tanguage, and with the problem of its
implementation. In particular, the purpose of this paper is to present
operational semantics for Lucid, prove them correct with respect to the
fixpoint semantics of [1] and indicate how the operational semantics have
been used in the construction of an interpreter for Lucid.

Other work on the implementation of Lucid is in progress by
C.M. Hoffmann, M. Farah (University of Waterloo) and D. May (University of
Warwick, England).

Section 1 explains why the implementation of Lucid is difficult
and interesting, by exposing some aspects of the language which are not
immediately observed in the published examples of Lucid programs [2,3].
Section 2 gives the details of the operational semantics and verifies
their correctness. Section 3 is an informal description of the interpreter
as it has been implemented. The conclusion contrasts this approach with
that of the other work mentioned above.

The notation of [1] is used throughout with followed by and

as.s00n as abbreviated to fby and asa, respectively. We will use the word

-1 -

"time" informally when we mean an index Tist of natural numbers. Thus
we say "x at time t" when Xg is meant etc. Lastly, the symbol L will be
used ambiguously to denote the bottom element of a number of c.p.o.'s.

Its exact meaning will be clear from the context.

1. Some Difficult Lucid Programs

The sample Lucid programs which appeared in [2] and [3] might
lead one to believe that there is a natural translation of Lucid programs
into an Algol-like Tanguage. This would make the implementation of Lucid
relatively easy. Unfortunately, this is not the case. A few simple examples
of some of the unconventional constructions that can be achieved in Lucid
should convince the reader that implementation of Lucid is far from trivial.
In order to highlight the significant points of interest, the examples are
kept as short as possible and non-essential details are omitted. The
operation symbols f,g,h,... appearing in the examples are pointwise operations.

The variables x and y of program P] in Fig.1.1 are of interest.
In this program, the variable p acts as a switch to determine whether x is

to be computed from z,and y from x or y is to be computed from z,and X

from y.
p = true fby -p
z = 1 fby f(z)
x = if p then h(z) else h'(y)
y = if -p then g(z) else g'(x)

Py Fig.1.1

If P, were to be translated into Algol it would require a

section of code similar to Fig.1.2

P := Tp;

z := f(z);

if p then begin x := h(z); y := g'(x) end
else begin y := g(z); x := h'(y) end;

Fig.1.2

So in this case we have a translation. But the reader is urged to consider
the problem in the general case. The solution to this problem for
arbitrary programs is not simple. The variables x and y appear, syntactically,
to depend upon each other in a cyclic fashion. It is only when the value of p
is known that the true dependency emerges.

The second example is a result of the definition of the or
operator v. In any standard structure S, Vg the interpretation of v,
is defined such that

true vg i1g = true

g vS true = true

From the point of view of implementation, this implies that when either of
the subterms of the term o v B has the value true, the value of a v 8

is true. The problem is that one subterm may finvolve a non-terminating
computation while the other returns true after some finite time. The

program P, of Fig.1.3 illustrates this.

t = (wasa x) v (y asa z)

.

P2 Fig.1.3

Any implementation cannot decide if either side will or will not terminate.
A11 implementations will have to resort to some degree of parallel activity
to elaborate this program. [Whether such a program is "reasonable" is
beyond the scope of this paper. It is a valid construction in Lucid as
defined.]

Program P3 of Fig.1.4 illustrates the last difficulty to be
mentioned here. The problem in implementing P3 is that there are potentially
non-terminating computations which are not essential to the computation

of the output variable and should therefore be avoided.

p= ...
x = 1 fby if p then g(x) else h(y)
output = x asa ...
begin
y= oo

end
Py Fig.1.4

We observe that values of x are determined either from the previous

value of x or from the separate variable y, where y is computed by an

inner loop whose termination is not guaranteed. A value of x will be
required at some point established by the right hand side of the asg
defining output. But attempting to compute all of the x sequence may
involve computing y at a point where the inner loop does not terminate,
while waiting until it is known which x is required before computing any
will result in programs that are far from simple nested and concatenated
loops.

These three examples should suffice to convince the reader
that a complete implementation of Lucid is not a simple matter if we
require that Algol-like code be generated. We therefore approach the

problem by looking for aniititerpretive means of elaborating Lucid programs.

2. Operational Semantics

2.0 Introduction

At present, the only means of overcoming the problems outlined in
Section 1 is to use a "data driven" or'"request driven“'imp1ementation
that views Lucid as a data flow language. The principle behind such an
implementation is that a set of variables with associated time parameters
is established. This set contains those variable-time pairs whose values
are required to compute the solution to the program. If the first member
of the output sequence is to be computed, say, then this set of "requests"
would initially be the singleton containing <output,0>. When variables
in this request set can be determined directly from the program or from
those variables for which values are already known, this value is associated

with the variable in a "memory". The memory is initially empty but as more

values are computed, it forms a better and better approximation to the
solution of the program. MWhen variables in the request set depend on
other variables which are not in the request set, then those new variables
are added. The process proceeds until the value of the original request
vartable is known.

It is the purpose of this section to make this idea precise and to

establish its correctness.

2.1 A Lucid Structure

It is convenient to choose a Lucid system which will remain fixed
throughout the remainder of Sections 2 & 3. Note that the choices for
alphabet, structure, variables and program are arbitrary and without loss
of generality. Results will be valid for any program in any structure.

Any notation or concept which is used here but not defined is exactly as
in [1].
Suppose then that the following is fixed:
i) A standard Lucid alphabet %.
1) A standard I-structure S, whose Comp(S) structure is C.
A1) F = {first. next. fby. latest. latest™
iv) E is the set of (X u F)-terms, quantifier free with no occurrence
of =.
v) N is the natural numbers.
N* is the set of non-empty words over N.
N = N-{0}.
vi) G is the set of operation symbols in I.

vii) V is a set of variables.

viii) P 1s a program over V such that for v ¢ V there is an equation

vV = ¢V in P with ¢V e E.

ix) <w,p> € V x N is an identified variable-time pair whose solution
is sought.
X) ®:E ~ E simultaneously substitute5¢v for each occurrence of each

variable v ¢ V in a term. & will not be further formalised and
its obvious properties will be assumed.
xi) Let I be the minimal C-interpration satisfying P. That is I is
the solution to P,
Remark The Lucid program under consideration has been restricted from
the class of programs in [1] in two trivial ways. Firstly, asa ¢ F.
This causes no loss of generality since all asa can be eliminated from any
program (at the expense of introducing variables "who depend on their own
future"). For a proof of this see the appendix. Secondly, there is no
input variable and we talk simply of "the solution to the program". Again
there is no loss of generality since input could be simulated by including

an equation "input = ..." in the program.

2.2 Extending Finite Sequences to Infinite Sequences

The formal semantics of Lucid makes use of infinite sequences of
natural numbers. Only finite sequences will appear in the operational

semantics. In order to be able to relate the two we introduce the following

function. Let []:N+ > NN ttt ... where

'Io‘.nnnoo
[1(x) is written [x]. Note that [] is many-one. Thus a finite sequence

such that [t0t1...tn] = tot

can be thought of as representing the infinite sequence obtained by repeat-

ing its last member.

We now simplify the definition of the Lucid operators in F by

generalising their properties. For f ¢ F define 'T’N:NN ~ N~ and fN:NN > NN

N

such that for « e U. and t ¢ N

-I,OLZ...OLn C

f WOne ool)y =
C(OL] OLZ Ol.n t OL'FN(t) .
fN(t)

This is a generalisation of the definition of f e'{ji£§§,ngég,jgx,lg§g§3,1g3g§g’]}

where ?N takes t and selects one of the o and %N takes t and yields a new time.
For each f ¢ F, ?h and %N are determined by the definitions of

these functions in [1]. We now wish to define two further auxiliary functions.

¥+:N+ ~ N~ and f+:N+ » N¥, to be compatible finite versions of the above,

such that
and [f+(t)] = fN([t])
for all t ¢ N+.
The reader may assure himself that the following definitions satisfy
. B N _ +
the above constraints. For t = tot]t2'°' e N and t' = tdtité...tﬁ e N let
ficsty(t) =1 first (t') =1
firsty(t) = Otit,... fivst (t') = otits...t.
nexty(t) =1 ngxt, (t') =1
nexty(t) = tgtltyto... next () = t4Hitits. .t
latesty(t) = 1 latest,(t') =
° - ° _ftits..t) n>0
latest(t) = tityty... latest,(t') —.{ %2+t

t -
to n=20

latesty' (1) = 1 latest] (£) = 1
s en=] _ 2 =] At

latesty (t) = 0tytity... latest, (t') = Otytq.. .ty

. 1ty =0 . 1ty =0

£higy (¢) % thy, (t") j
2 tO >0 2 té > 0.

P 0t,t,... ta=0 o 0tits...t} th=0

O B TN TACD B UL
to-]t.ltz... to >0

] 1+ I]
to"-lt-ltz...tn tO > 0

273 Gomputing the Solution by Syntactic Substitution

We show here that the solution to the program can be computed
by repeated syntactic substitution of terms for variables. We obtain a
sequence which starts with the variable whose value is sought, and interpret
the growing terms with all variables undefined. The details are as follows.
The Kleene Recursion Theorem [4] gives a construction for the
minimal solution of P. If L is the C-interpretation which is everywhere e
and T:(V > UC) + (V> UC)‘such that for <v,t> ¢ v and C-interpretation

I, v = |¢,|; » then I, the minimal solution of P, is given by the
T(I)t viI,

least upper bound of'{ri(L):i > 0}. Since the underlying ordering, =,
is flat (x =y = x =1L or x = y), it follows that
S R AT P
Lol
[The ambiguous use of L,= etc. should lead to no confusion.]
By means of the following lemma, theorem and corollary we

establish that the solution can also be computed by applications of ¢ to w.

- 10 -

Lemma 2.3.0 For C-iterpretation [and o ¢ E

l@(q)ll = IU\[T(I)

Proof by structural induction on o.

—) ! i .
Basis: o ¢ V = (Vt e N)l@(o)llt = l¢GII - 041‘-(1)_[:

= IUI I
. (1)

= l2l)y = lol

Induction step: Assume for all a; with o = g(oq,0,,...50.) and g e F u G

n

[e(a) | lg(e(ay),...e(a)l

= gc(lq)(u])lla---l@(o‘ln)ll)

|a) by hypothesis

el gyl g

Ig(a],...,an)lT(I)

= IGIT(I)-

Theorem 2.3.1 For 0 < j <k, I@j(w)l . = W .
) K

Proof by indugtion on j.
Basis: Consider j = 0, the case is trivial.

Induction step: Assume for j = p < k and consider j = ptl]

pt1 p
o ()] 20" (w) |
I Tk-p_](l) Tk p-](L)
= 2P (w)| by Temma 2.3.0
P(L)
=W b pothesis
Tk(J.) Yy hyp

O

- 11 -

Taking k = j in this theorem we have [d)k(w)ll =w, »and

T \L
combining this with the earlier construction for the solution
L A T
we obtain
Corallary 2.3.2
o FL= (=0 ||, =
Lol [o] [o]

2.4 Memories and the functions "eval" and "req"

We now introduce some objects that will form the building
blocks of the operational semantics to follow. Memories correspond to
interpretations of the variables of the program, but using oniy finitely
many time parameters. [And those memories that are required in the
operational semantics will only be defined at finitely many places. There
is therefore no problem in representing memories.] Eval is a function
which evaluates a term at a given time and with respect to a given memory.
Its value is the interpretation of the term for the time, when the variables
in the term are interpreted with the values associated with them in the
memory. For a term that is undefined under eval, req is a function which
yields a finite set of variable-time pairs which are undefined in the
memory but whose value could influence the result of eval if they were
defined. This is now made formal.

A function M:V x N + Ug is a memory. For any memory M, define

evalM:E x Nt > US inductively as follows:

- 12 -

1) eva]M(v,t) = M(v,t) for <v,t> ¢ V x N
1) evalM(g(u1,u2,...,an),t) = gs(evalm(a],t),...eva]M(an,t))
for <g,t> ¢ G x Nt

ii1) eva]M(f(a1,a2,...,an),t) = eva]M(u¥ (t),f+(t))

* +
for <f,t> ¢ F x N

A memory M is said to be normal iff M(v,t) e

eva]M(¢v,t) for

all <v,t> e V x N*. To motivate this definition observe that for normal
memories a variable is less defined than its corresponding term (on the
right hand side of its defining equation). Memories that appear in the
operational semantics will all be normal because variables will only be

assigned values resuiting from the evaluation of their corresponding

terms.
+ v
For any memory M define reqM:E x N' = 2 as follows:
1) If eva]M(c5t) # L then reqM(c,t) = {1} for <o,t> ¢ E x N
otherwise
i) reqM(v,t) = {Kv,t>} for <v,t> e V x N¥
n
iii) reqM(g(u],uz,...,un),t) = U reqM(ai,t) for <g,t> e G x N
i=1
iv) reqy(floy,00,...50,),t) = reqy(o, (),f+(t)) for <f,t> ¢ F x N
: f (t

+

For a memory M and I' c V x N+ define M updated by ', denoted Mr,

to be the memory

M(¥,t) if <v,t> ¢ T

MF(V’t) B eva1M(¢v,t) if <v,t> e

- 13 -

For normal memories, memory updates assign more defined values to
variables by evaluating the corresponding terms. It will be this process
that enables the definition of a sequence of memories which form better
approximations to the solution to the program.

There are a number of obvious consequences of these definitions
which are established as a series of propositions.

Proposition 2.4.0 For <o,t> ¢ E x Nt and normal M,

eva]M(d,t) £ eva]M(Q(o),t)
Proof by structural induction on o.
Basis: o e V = eva1M(c,t) = M(o,t) = eva]M(¢U,t) = evalM(é(o),t)
Induction step: Case I: o = g(u],uz,...,un), ge@

eva]M(o,t) = eva]M(g(a1,a2,...,an),t)
= gs(eva1M(a],t),...eva]M(an,t))

n

gs(evaiM(Q(u1),t),...eva]M(¢(an),t))

by induction hypothesis and monotonicity of 9g

evaly(e(g(og,0y,...500)),t)

eva1M(®(0),t)

Case II: o = f(oc1,0c2,...,onn), fekF
eva1M(o,t) = eva]M(f(u],uz,...,an),t)

1(()
evaly, a? (+(

+ <
= evaly(e(a),f,(t)) by induction hypothesis
f,.(t)
= eva1M(f(®(a]),...©(a~),...@(un)),t)

£, (1)
eva]M((I)('F(OL-I 90[:2- . -Olvn)) :t)

n

I

eva]M(®(c),t). o

- 14 -

We extend = (ambiguously) to memories in the usual fashion. For
memories M; and M,, M; = M, iff M;(v,t) = My(v,t) for all <v,t> < V x N°.

Proposition 2.4.1 For <o,t> ¢ E x N and normal M,M!

if M= M then 1) eva]M(o,t) S eva]M.(o,t)
ii) requ(Gst)

in

reqM(d,t)
Proof by structural induction on o.
Basis: Consider o ¢ V
eva]M(c,t) = M(o,t) € M'(o,t) = eva]M,(c,t) = 1)
M'(o,t) = L = M(o,t) = L = reqy,(o,t) = {Ko,t>} = req,(o,t))
i " = {i)
M'(o,t) # L = reqy,(o,t) = { } < reqy(o,t)
Induction step: Case I: 0 = g(a],uz,...,an), geG
eva]M(c,t) = eva]M(g(a],az,...,an),t)
= gs(eva]M(u1,t),...eva1M(un,t))

n

gs(evalm.(a],t),...eva]M.(an,t)) by induction hypothesis

and monotonicity of Js -

EVa]M‘(g(a] 30‘2, “ e ’Ocn) Qt)

eva1M.(o,t)

This establishes 1). 11) is again taken in two parts

EVH]M.(G,t) =1l = r‘equ(a,t) = requ(aist)

1

In

IS S
—

req,(a.,t) by hypothesis
=1 M1

reqM(c,t)

(]

evaly,(o,t) # L = reqy,(o,t) = { } c reqylo,t)

Case II: o =

1]

evg]M(c;t)

11

This establishes 1i).

reqM ' (O‘st)

This establishes ii).

Proposition 2.4.2 For

i)

MEM

- 15 -

f(OL],OLZ,...,OLn), f € F
eva]M(f(a1,a2,...,an),t)

eva]M(oc~),%+(t))

+
eva]M,(aN

+
eva1M.(f(a],az,...,un),t)

(,f,(t)) by induction hypothesis
t)!

evalM.(G,t).

= requ(f(O(l-I ,0(,2,. .o san) ’t)

reqy: (o, (t>’°f+(t”

%

reqy(o
"% ()
reqM(f(a],az,...,an),t)

,%+(t)) by induction hypothesis

reqM(c,t)
0

normal Mand T < Vv x N*

r
i) M, is normal.
Proof Consider any <v,t$ eV
W,t> e T = M(v,t) = evaly(o,,t) = Mi(v,t) o h
v,t> ¢ T = Mv,t) = M(v,t)
WLt e T = Mp(v,t) = evaly(s, ,t)

n

evaly (¢V,t) by part i) of this Proposition
r

and Proposition 2.4.1.

- 16 -

Wot> ¢ T = Mo(v,t) = M(v,t)

R

eva1M(¢v,t)

In

evaly (¢V,t) by Proposition 2.4.1 again.
T
These two cases establish ii). N

Proposition 2.4.3 For normal M and F] cly < V x N+,

M., =M. .
Iy 5

Proof Consider any <v,t> ¢ V x N+.

v,t> ¢ T1 = <Ky,t> ¢ F2

= Mrl(v,t)

Wot> ¢ Ty = MT1(v,t)

eva]M(¢V,t) = MFZ(V’t)

M(Vst)

1f

M; (v,t) by Proposition 2.4.2 0
2

We now have the important lemma of section 2.4. We know that
syntactic substitution of terms for variables leads to better approximations
of the solution to the program. Lemma 2.4.4 showsthat memory update of the
variables determined by req is as good as syntactic substitution. A Tittle
consideration should convince the reader that this is exactly what would be
expected.

Lemma 2.4.4 For normal M and <o,t> ¢ E x N+

1,(2(c),t) £ eval (o,t)
eva M (¢} eva MreqM(o-’t) g

Proof by structural induction on o.
Basis: for ¢ ¢ V consider two cases a) M(o,t) = 1

b) M{o,t) # +

b)

eva]M(Q(G),t)

eva]M(Q(o),t)

- 17 -

eva]M(¢g,t)

eval (o,t)

Mico,to1

eva1M (th)
reqM(ogt)

eva1M(¢G,t)
M(o,t) M normal and = flat
eva]M(o,t)

eval (o,t)
My

evaly (o,t)
reqM(o,t)

This completes the basis.

Induction step: Case I: o = g(a],uz,...,un), g ¢ G. There are two

subcases to consider I

i.a)

I
eva]M(Q(G),t)

.a) eva]M(o,t) = 1

.b) eva]M(d,t) # L

= eva1M(g(¢(a1),...@(an)),t)

n

n

gs(eva]M(Q(u]),t),...eva]M(@(an),t))

g.(eval (o ,t),...eval (o ,t))
S MreqM(a]Qt) 1 MreqM(an,t) n

by hypothesis and monotonicity of dg

(u],t),...eva1M (o ,t))
reqM(d,t) reqy(c,t)

gs(eva1M
by definition of req, Propositions 2.4.3 and 2.4.1
and monotonicity of dg

eva]M (g(u],az,...,an),t)

reqM(c,t)

eval (o,t)
MreqM(o,t)

- 18 -

1.b) eva1M(cyt) # L
eva]M(c;t) = eva]M(Q(a),t) by Proposition 2.4.0
eva1M(c5t) S eva]M (o,t) by Proposition 2.4.1 and 2.4.2
reqM(G,t)
From these three facts and the flatness of = it follows that
eva]M(Q(o),t) c eva]M (o,t)
reqM(o,t)

This completes case I of the Induction Step.

Case II: ¢ = f(a],uz,...,an), fefF

evaly(@(0),t) = evaly(f(e(oy),...,2(0,)) ,t)

evaly(o(c, (t)),?+(t))
+

n

evaly .f,(t)) by hypothesis

o '(OLN
LI RRACIREAC

+
= eval (F(0lq 50 senast)st)
MreqM(f(a1,u2,...,an),t) 1772 n
= evaly (o,t)
reqM(c,t)
This completes the proof of Lemma 2.4.4. O

The next Temma is the formal statement of a somewhat obvious fact.

It says that reqM(Q(c),t) can be computed by two levels of application of req.
Firstly, req is applied to o, and then again to the terms corresponding to
the variables returned by the first application.
Lemma 2.4.5 If i) M is normal

ii) <o,t> € E x N*

ii1) <u,s> « reqM(@(c),t)
then (3<u',s'> « reqM(G,t)) <u,s> e reqM(¢u.,s').

- 19 -

Proof by structural induction on o.
Basis: for o ¢ V choose <u',s'> = <o,t>.
Induction step: Case I: ¢ = g(a1,u2,...,an), geh

n
<u,s> e reqy(e(o),t) = <u,s> ¢ U reqy(e(a;),t)
M]:"I M 1

=> <U,SY € reqM(é(uj),t) for some j, 1 <j<n
= (3 <u',s e reqM(aj,t)) U,S> € reqM(¢u.,s')
by hypothesis
But reqM(Q(o),t) 2{} = eva]M(Q(c),t) = 1
= eva]M(o,t) = 1 by Proposition 2.4.0

= teqM(a,t) = 1,U]lr*eqM(oc

= reqM(aj,t) < reqM(c,t)
Combining the above

(I<u',s"> « reqM(03t)) <U,s> € reqM(¢u.,s')

Case Il: o = f(a],ocz,...,cxn), feVF

u,s> e reqM(Q(o),t) = <U,s> ¢ reqM(Q(a? (t)),%+(t))
+

= (Iu',s" « reqM(aTc (t),;+(t)))
+

u,s> e reqM(¢u,,s')' by hypothesis

= (3<u',s"> ¢ r‘eqM(f(wi ,ocz,...,ocn),t))

<U,s> € reqM(¢u.,s')

= (Iu',s" ¢ réqM(c,t))<u,s> € req (¢u.,s').

- 20 -

2.5 The ¢orrectness of evall

We have not yet shown formally that the evaluation function for terms
is correct. We wish to have eval behave consistently with the definition of
the interpretation of terms. The following theorem is not the strongest formu-
lation possible of the correctness of eval but it will be sufficient here.

We use L ambiguously to denote both the undefined C-interpretation and the
undefined memory.

Theorem 2.5.0 For <o,t> ¢ E x N©

+G{*[t] < eval (o,t)

Proof by s&ructural induction on o.
Basis: For o ¢ V the result is trivial.
Induction step: Case I: o = g(a],az,...,un), g € G.

By hypothesis Iaill[t] = eva]l(ai,t) for 1 <1 <n

then by monotonicity of g

gs(la]l coslog) = gs(evall(a1,t),.;.,eva]l(an,t))

el L1t]

= Ioll[t] = eval (o,t)

Case II: o = f(u1,a2,...,an), fefF

|o] = [floqs0ps...s0)]
L[t] 1272 n

[t
fc(la1[1""’|anl¢)[t]
l

o | by definition of ¥, and f
? ([t]) Lo N N
N fN([t])

- 2] -

it

aN

| f+(t)ILE%+(t)]

eval (a_ ,? (t) by hypothesis
L f+(t) +
eva]L(f(a],uz,...,an),t)

0

eva]L(Gyt).]

An immediate consequence of Theorem 2.5.0 and Gorollary 2.3.2 is

Corollary 2.5.1

wy # 1= (3k =2 0) evall(®k(w),p) =y
[e] [e]

In other words, where the solution to the program is defined it
can be computed by applying eval to successive members of the @i(w)
sequence of terms until one delivers a defined result. We have not yet
shown that applying eva]m to every member of this sequence is indeed an
approximation to the solution. But Corollary 2.6.6 establishes that the
operational semantics can never yield a result which is not an approximation

to the solution.

2.6 Operational Semantics

We now have sufficient basis to define the operational semantics
for Lucid. We do this by associating with the program a pair of sequences.
(Repeating the observation from section 2.1, we note that dealing with a
particular program in a particular structure leads to no loss of generality.)
The "M-sequence" is a sequence of memories, each of which approximates the
solution to the program. The "R-sequence" {s a sequence of growing sets

of variable-time pairs which have been "requested". That is, those

- 22 -

variable-time pairs which are added to later members of the sequence
are the variables whose values are required to compute values for earlier
ones. We will show that when the solution to the program is defined
for <w,p> the solution value will ultimately appear in the M-sequence, if
the R-sequence initially contains <w,p>. And further, the memories in the
M-sequence are all approximations to the solution of the program.

Formally, we define two sequences <M(i)>, <R(i)> for 1 = 0,1,2,...;
each M(i) is a memory and each R(i) c V x NT. The sequences are defined

inductively as follows:

RO = fcw,00)
M(O) = L (the everywhere undefined memory)
Y)
R(]]) = R(l) U u . .{,eq (-i)(d)v’t)
v, ter')M

mCit) o ()

We have the following immediate properties of these sequences.

Proposition 2.6.0

i) i< j=uleyld
R C T
i11) iz0= M(i) is normal

Proof 11) is obvious. 1) and 1ii) follow by induction using Proposition 2.4.2.

O

The next lemma shows that as the &'(w) term grows, the undefined

variable-time pairs required for its evaluation are found in the R-sequence.

Lemma 2.6.1 reqM(k)(ék(w),p) c R(k) for k 2 0
Proof by induction on k.

Basis: for k = 0 1t {s trivial.

Induction step: Assume for k = p and consider k = p+I

1
Wot € req (o) (I o) = <t < e (o) (0(8P(0) 0)

=> (I<u,s> € reqM(p+])(ép(m),p))<v,t> € reqM(p+])(¢u,s)

by Lemma 2.4.5

— p
= (3<u,s> « reqM(p)(¢ (w),p))<v,t> « reqM(p)(¢u,s)
by Propositions 2.6.0 and 2.4.1
= (3<u,s> € R(p))<v,t> e req (p)(¢u,s) by hypothesis
M
= <, e RPF) O

The next theorem presented is the central property of the
operational semantics. It establishes an approximation which has on the
left the evaluation of a term in the @1(w) sequence and on the right the
evaluation of ao « 2 term in the sequence but with respect to a memory
that appears later in the M-sequence. In a sense, this says that the
reduction of information about the program that results from choosing an
earlier term is compensated for by the better approximation to the solution

that the memory in the M-sequence provides.

Theorem 2.6.2 eva]l(@k(w),p) = eva]M(k+j)(®k'j(w),@) for 0 < j <k
Proof by induction on j
Basis: j =0

For k = O,M(k) is normal and L € M(k)

eva[L(®k(m),p) S eva]M(k)(¢k(w),p)r

- 24 .

Induction step: Assume for j = p < k = 0 and consider j = ptl

m

evalL(Qk(w),P) eva]M(k+p)(¢k—P(w),p) by hypothesis

= eva]M(k+p)(¢(¢k‘p‘](w)),p) p<k

m

eval (k+p) (Qk-p-](w):p)
e (%P1 () ,0)
"y (krp) wise

by Lemma 2.4.4

H

eval (in) (0"~ 1(w) o)
req (5 PT(w) 1)
M(k‘p‘1) ?

by Propositions 2.4.1 & 2.6.0

I

eval (kép) (@k"p'](w),p) by Lemma 2.6.1 and
ML TP Proposition 2.4.1

r{k-p-1)
£ eval (k+p) (@k—p'](w),p) by Propositions 2.6.0,
M
r{kp) 2.4.1 & 2.4.3

- evalM(k+p+])(¢k'p'1(6),p), n

The interesting case to consider for this theorem is when k=j

and the term on the right is reduced to w

evall(®k(w),p) = eva]M(zk)(w,p) = M(Zk)(w,p)

This can be combined with Corollary 2.5.1 to give

Corollary 2.6.3

£ 1= (3 = 0) nK) (y.0)

n
£
.

o o]

- 25 -

We have therefore achieved the goal of proving that the M-sequence
will eventually contain the solution to the program, when the solution is
defined. It only remains to prove that whenever the M-sequence is defined
then the value is thét of the solution. This will exclude the possibility
of the M-sequence giving a value when the solution to the program is undefined,
The first step towards this is given by the next lemma which shows that when a
memory approximates an interpretation then eval also approximates that
interpretation.

Lemma 2.6.4 If I is any C-interpretation and M is any memory such that

M(v,t) = v for all <v,t> ¢ V x N* then

'e]
eval,(a,t) € |o] for all <o,t> < E x N'.
M I
[t]
Proof by structural induction on o.

Basis: for o ¢ V it holds trividlly.

Induction step: Case I: o = g(a],uz...an), ge G

A

evaly,(o.,t) & |a.] 1 <1 <n by hypothesis
MY il t

[t]
= gglevaly(aq,t),.. evaly(o ,t)

I

gs(lo‘]ll[t]s-';l“nll[t])

by monotonicity of 9g
= eva]M(gS(a],az..,un),t) = |g(u1,u2..,un)|1[t

1
= eva]M(c,t) =]clI

Case II: o = f(a1,a2..,an), feF
evaly(o,t) = evaly(flay,a,..,0,),t)

= eva]M(a;+(t),%+(t))

= eva]M(Of.'_FN([t]) ’%-l-(t))

- 26 -

n

s a by hypothesi
[qu([t])lI[f+(t)] y hypothesis

1

| o 1o
Ay (LEDTIE (ren)
= felloglys-olagl e

= [floqg,0p.050)|
1°72 n I[t]

|a] | 0
Ire]

We use this lemma to prove that an update of a memory which appro-
ximates the solution to the program is still an approximation to the

solution,

Theorem 2.6.5 If M is a memory such that M(v,t) = VI[] for all
t
v,t> e V x N+ then for any I' ¢ V x N+,

Mo (v,t) = vy for all <v,t> e V x N'
[t]

Proof Consider any I' and any <v,t>

V> ¢ T = Mr(v,t) = M(v,t) = vy as required.

[t]
v, e I' = Mr(v,t) = eva]M(¢v,t)

= || by lemma 2.6.4
v I[t]
= |vl; I is a solution
[t]
=y o
frt]

Now since M(O) is cdearly an approximation to I, Theorem 2.6.5
can be applied inductively to the M-sequence to obtain

Corollary 2.6.6

M(k)(w,p) < w; for k = 0
[e]

.27 -

This complétes this section on the operational semantics. It
should be clear that implementation of this scheme presents no problem pro-
vided some means of computing the operations of G is available. It may also
be evident that this method requires that substantial amounts of redundant

“work be performed. The fashion fn which R(i+]) and M(1+]) are defined
involves computing req and eval across the whole of R(i), whereas a more
restricted set would be sufficient. A more sophisticated algorithm is
presented in the next section which is much closer to that used for the

implementation in AlgolW.

3. Informal Description of the Interpreter

In this section we present more sophisticated operational semantics

for Lucid in the form of a very high level description of an interpreter
for Lucid programs. Noyproof of correctness of this algorithm will be given.
An intuitive understanding of the validity of this interpreter may be
acquired by observing the correspondence between the actions of the interpreter
and the operational semantics of the previous section. The algorithm is
described by an Algol-like program in Fig.3.1. A formal description of this
language will not be given. The tupling, set theoretic operations and where
construct have obvious interpretations. The program is explained here line
by line.

1. The three global variables Q, M and G are initialised. Q is a
queue of variable-time pairs (it is of type (V x N")*) and is initialised
to be of length 1 and contain the sought variable-time pair, <w,p>. The
"Teft" of the string is the "head" of the queue. Q corresponds to the R-
sequence of the previous semantics. It is a Tist of variable-time pairs to be

computed. An important distinction is that Q (considered as a set) both

- 28 -

grows and shrinks, whereas the R-sequence always grows. M is a memory

(it is of type V x N US) and is initialised to be the everywhere undefined

function. M corresponds to the M-sequence. G is a directed graph of variable-
. . s (W) (v) s e

time pairs (it is of type 2) and is initially empty. When G

contains an edge <a,b> (where a,b « VXN+) it means that the evaluation of a

requires the value of b, i.e. that a depends on b. It is initially empty

because nothing is known of the dependencies in the program at this point.

Q,M,G> := <Kw,p>,L,{ 1> 1
while M{@,p) = L A Q # A do 2
begin <Q,<v,t>> := <Q',x> where Q = xQ' A x ¢ VxN'; 3
e,r> := <eva1M(¢v,t),reqM(¢V,t)>; 4
if e =1 then 5
begin for uer do begin G := G u {<Kv,t>,wl; 6

if u ¢ Q then Q := Qu 7

end 8

end 9

else 10

begin M(v,t) := e Y

for<u,<v,t>> ¢ G do if M(u) = LAU¢Q then Q:= Qu 12

end 13

end | 14

Figure 3.1

- 29 -

2. The interpreter Toops until one of two conditions is satisfied.
The ioop will terminate if M(w,p) # L which means that the value for the
sought variable has been found or if Q = A (i.e. Q is empty) which means
that there are no outstanding requests for variables. On exit of this loop
we will have M(w,p) = wI[
el

3. This assignment removes the first element of Q, assigning the
variable component to v and the time component to t.

4, Eval and req are applied to the term corresponding to v using the
current memory and time t. The results are saved in e and r. If e = 1 then
r will be the set of variable-time pairs needed to evaluate v at t.

5. - A test on e decides whether eval failed and 6-9 are to be executed
or eval succeeded in obtaining a value and 11-13 are to be éxecuted.

6&7. Control is here only when evalM(¢v,t) = 1. If ¢, cannot be
evaluated with the current memory then the variable-time pairs of reqM(¢V,t)
should be requested. Taking each member of reqM(¢V,t) an edge is added to G
to record that the variable is needed for the computation of <v,t>. Then
if this variable is not already on the request queue (viewing Q as a set),
it is added to the "far" end of Q. There would be no point in having two
copies of a request for a variable. A% this point <v,t> becomes "suspended".

It does not appear in Q and will not return to Q until one of the variables
requested at this point becomes defined.

11&12. Control is here ¢nly when eva]M(¢V,t)# L. In this case the memory
is "updated" at <v,t> with the computed value. Now when <v,t> # <w,p>
this value was computed to enable the computation of one or more other variables.
It is therefore necessary to find all those variable-time pairs which depend

on <v,t> (i.e. <u,<v,t>> ¢ G) and add to Q those which are still undefined and

are not already in Q.

- 30 -

~ The while Toop continues to request and define variables until a
value for <w,p> is obtained. ‘

This description is still far from an accurate portrayal of the
implementation as written. The interpreter {s approximately 1000 lines of
AlgoTW. It would be a major undertaking to give a detailed model of such a
program. And since no mathematical analysis of the program has been attempted

it would be unjustifiable to treat it in depth.

4. Conclusion

We have shown that Lucid can be implemented by means of a request
driven interpreter. And indeed this approach has been used as the basis for
an implementation of Lucid written in AlgolW for the IBM 360. May has also
implemented Lucid by means of requests. In fact, his implementation extends
the Tanguage to include arrays. However, he modified the Tanguage to eliminate
the parallelism inherent in the original definition of v. He redefines L v true
to be x and can then satisfy requests in a "depth first" fashion: Hoffmann
has written a compiler for a subset of Lucid by eliminating the difficult
constructions from the language.

The work of Farah is quite close to the work presented in this paper.
But his is a theoretical implementation in Culik's linked forest manipulation
system [5] and exploits the non-determinism of the method to handle the
parallelism. |

At the time of writing it is not known whether any of the above

mentioned work is to be published.

- 3] -

References

[1] E.A. Ashcroft and W.W. Wadge, "Lucid - A Formal System for Writing
and Proving Programs", Tech. Report CS-75-01, Dept. of
Computer Science, University of Waterloo, 1975 (to appear
SIAM J. Computing).

[2] E.A. Ashcroft and W.W. Wadge, "Deriystifying Program Proving:
an Informal Introduction to Lucid", Tech. Report CS-75-02,
Dept. of Computer Science, University of Waterloo, 1975.

[3] E.A. Ashcroft.and W.W. Wadge, "Program Proving without Tears",
IRIA Symposium on Proving and Improving Programs ,
G. Huet and G. Kahn (Editors), Colloques IRIA, 1975.

[4] S.C. Kleene, "Introduction to Metamathematics", Van Nostrand, 1952,
[5] K. culik II, "A Model for the Formal Definition of Programming

Languages", International J. Computer Math., Section A, vol.3,
pp.315-345, 1973.

- 35 -

Case i1 (¥i=0) zy, = false
iu
= Wpyo = W for i 20 since I' satisfies (3)
iu itT u
= Wi, =L for i 20 since I' 1is minimal
iu
= (flestwp g =wp =1
ou
= ST since I' also satisfies (2)
=> Xpoo = (yII asa zI.)t by definition of asa
.t .
Therefore I' satisfies (1).
This completes Part B and the proof. O

Remark Observe that, in general, programs m and m' of the above theorem

do not have the same set of solutions. Consider the programs m and 7' below

x = first w
x =1 asa false w = 1if false then 1 else next w
m m!

The only solution to m is x = 1. However, any quiescent value for x and

w will satisfy m'. The minimal solutions do, of course, agree.

- 34

Case i1 (vi=0) z; = false
{u
= Wiy T Wiy for 10
= Wiu = 1 for {20 since w is minimal
= Wouy T L
But x; = 1 by definition of gsg and from (1). Therefore x; =W, = (firs
t t

as required.

This completes the two cases of Part A.

Part B We now verify that I' satisfies m. H&gain A is common and it is

sufficient to show that x;..¥q..2;, satisfy (1). That is, we prove

for all t « Nﬂ xpo = (¥ asa
t

2py

As before consider any t.e NN and let t = tou where to e Nand u € NN.

Again there are two cases

i) (3s=20) z;, 7 false and Osr<s = z;, = false
su ru
ii) (vi=0) zy, = false
iu
Case i By an argument similar to case i of Part A we have

Wpo = ij_(zl. = true) then yI} else 1
ou su su

= WI(')u = (.Vln asa ZI')t

= (flest wpa)y = (ypooasa 2740y
R T (y71 2sa 77,0
and thus [' satisfies (1).

by definition of asa

since I' satisfies (2)

- 32 -

APPENDIX

Programs as defined in section 2.1 do not contain the asa operator.
At first sight this may appear to restrict the power of the language since
asa is somewhat like a minimisation operator. But we prove a theorem here
that enables all occurrences of asa to be removed from any program, leaving
an equivalent program.
Theorem For any Lucid program, w, containing an occurrence of asa there

is a Lucid program m' such that

1) Every variable that appears in 7 also appears in w',
2) The minimal solutiongof m and 7' agree over the variables in .
3) There {s one less occurrence of asa in w' than in 7.

Proof

Notation: Let nextX denote k applications of next for k =2 0. We will

write first, next etc. where first., next. would be strictly correct.

C
Assume, without loss of generality, that gsa occurs in m in the form
X = y asa z where x,y and z'are variables, If A is the set of the remainder
of the equations in m then 7 has the form
A

X =y asa z (1)

PV]

Construct the following program, '

A
x = flest w . (2)
w = if z then y else next w (3)

where w is a new variable not occurring in 7.

- 33 -

To prove that m and 7' have the same minimal solution over all
variables but w it is sufficient to show that
A) The minimal solution of m, denoted I, satisfies w'.
B) The minimal solution of m, denoted 1', satisfies m.
The proof of each part follows separate1y.
Part A We verify that I satisfies m' by extending I to assign a meaning to
w and then showing that all the equations of 7' are satisfied. Let w be
assigned to w where w is the minimal solution of

w = if z; then y; else next w (4)

Since w satisfies (4), we have immediately that w, Yis 7g satisfy
(3). The set A is common to m and w', It therefore only remains to show
that x; and w satisfy (2). That is we must prove

N

b4

for all t € N

xIt = (first W)t

Consider then any t « NN. Let t = tqu where‘t0 e Nand u e NN.
We divide the argument into two cases

i) (3s=0) zg # false and Osr<s = z; = false
su ru

i1) (vi=0) zy = false

1u

Case i Apply ﬂg%&i to each side of (4) for i 2 0

next! W = if_53531 z; then ggzgl yp else ggg;l+] W iz0
= W, =if z then y else W,
iu — Iiu Iiu —— i+l u
= Wy = Wiy, for i <sandw = lf_(ZI = true) then y; elseu
su su
= Wy, = lf'(zlsu = true) then yIsu else 1
But, by the definition of asa and from (1)
Xp = jj_(zI = true) then 2 else &
t su su
= xp =W, = (first W), as required.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

