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abstract: We are currently engaged in the design and implementation
of portable minicomputer system software. In this paper we focus on
an important component of this system: a highly-portable linking
relocating loader. In our system, the language processors produce a set
of directives which contain all of the information necessary to load a
program for a specific machine. The loader is implemented as an
abstract machine which "executes” these directives to build an absolute
form of the executable module. With a proper set of directives, the
loader can load for any machine architecture. The loader itself is por-

table and can therefore function as a cross-loader using the same input

directives.

We discuss, in detail, the design of the loader and its directives. We
also give some performance figures which indicate the costs of this

approach.

1. introduction

As minicomputer hardware continues to decrease
in cost and increase in speed and reliability, and
software production costs increase, software por-
tability becomes increasingly important. Por-
tability is a measure of the effort required to move a
piece of software from one environment to another.
A piece of software is said to be portable over a set
of machine environments if it is significantly easier
to port to a new environment than to reimplement.
To be practical, it should not require much more
effort to initially implement a portable version of a
program than it takes to implement it in a machine-
dependent form; and the portable version should
not be prohibitively less efficient.

Techniques for writing portable programs entail
programming in some abstraction of the machine
environments over which portability is desired. One
well-known technique is to devise an "abstract
machine” appropriate for the application which can
be implemented on a variety of machines. The
abstract machine code may be executed in-
terpretively or translated to the target computer’s
machine language using a portable macro

processor or vendor-supplied macro assembler.

Existing methods for achieving portability
share common shortcomings: the interface between
programs and various operating systems and/or
support software is usually crude at best, severely
limiting the applications for which portable
programming is possible. This problem is difficult
to avoid since many operating systems provide onty
primitive services, and available support software
varies widely from one system to the next.

We may enhance the portability of a large set of
programs by writing them in a high level language
and by developing a highly portable compiler for
the language. A large degree of the portability of
the set of programs will then depend upon the por-
tability of the compiler. One difficulty of this
approach is the reliance upon a pre-existing
assembler and/or relocating loader of the target.
Each system has different restrictions and conven-
tions for external symbols and linkage. Relocation
capabilities differ. Libraries are either not im-
plemented or follow no standard search rule.
Hence, serious development of portable systems of
programs for use in a variety of operating en-
vironments is difficult simply because one cannot



insure that external names remain unique, that
libraries are searched in the proper order, or
myriad other vagaries of the pre-existing software
on the target machines.

Many of these standard problems of portable
software can be avoided if one is able to port sup-
port software with user programs. That is, the more
we port of the program’s environment, the fewer
aspects of the program’s "system dependence”
cause problems. Of course, porting a system
presents a number of new problems, many of which
are difficult to solve. However, these problems
must be addressed only by the persons who port the
system, not by every user programmer who wants
to write a portable program.

In this paper we present our solution to a major
share of these difficulties: a highly-portable linking
relocating loader. In our system, the language
processor produces a set of directives which the
loader “executes” to build an absolute form of the
executable program. With the proper set of direc-
tives, the loader can load for any machine architec-
ture. The loader portability is achieved by im-
plementing it in a high-ltevel language which is dis-
cussed in the next section.

2. the systems implementation
language Eh

We have designed and implemented a language
which we call Eh [Braga (1976}]. Eh is based on the
language B, which was developed at Bell
Laboratories. Along with its predecessor, BCPL
fRichards (1969)], and successor, C [Ritchie
(1974)], B has been extensively used as a systems
implementation language.

Like its companion languages, Eh is a language
in which a program must be written as 4 collection
of functions. The functions are dynamically nested,
so that all program variables are either global to
the whole program, or local to a particular function
and dynamically altocated in a stack. Eh is typeless
and word oriented; it contains a powerful set of
operators and control structures. Its code is
reentrant and functions may be recursive. Thus, it
is well suited to systems programming,

The Eh compiler is designed for portability. It
consists of two separate programs, or passes. The
first is a syntax-directed parser which produces an
intermediate language called EhIL. The second
generates relocatable load code from EhIL. The
first pass is the same for all machine implemen-
tations of Eh. The second pass generates machine-

specific directives for the loader. The second pass

- must be partially rewritten to generate code for a

new machine. Both passes are written in Eh, that is,
they are self-compiling. In addition, Eh requires
very little input/output support for system
programs such as the compiler and loader.

It is important to observe that although the load
code generation pass is machine-specific, it is not
machine-dependent. The compiler can execute on
any machine to generate code for the target
machine. In this way it can function as either a
compiler on the target, or as a cross compiler on
another machine,

Of the alternative methods for code generation,
we have already eliminated those which must rely
on existing software on the target machine.
However, we still might consider those compilers
which translate programs into absolute modules
directly, bypassing the assembling, linking and
relocating steps altogether. We feel that this type of
compiler is inappropriate for maintaining a large
library of interrelated systems programs, parts of
which may be written in languages other than Eh.
In particular, we wish to interface with programs
written in assembly language and assembled by a
rudimentary assembler [Stafford (1976)} which out-
puts relocatable load code compatible with that
output by the Eh compiler.

3. the linking loader

A linking loader has three major functions: (1) the
linking of modules via external symbols, (2) the
relocation of addresses within modules, and (3)
loading the executable module into memory, and
(perhaps) initiating execution of it. The relocation
and loading steps may be combined, depending on
the machine architecture. The three functions may
be accomplished by one or more programs.

Our Universal Loader is an abstract machine
which takes the language processor output (load
code) and executes it as a set of directives to build
an executable program. With the proper use of the
directives, the loader can toad for any machine
architecture we have encountered. Several of the
load code directives describe to the loader the
addressing structure and relocation procedures to
be followed; this machine-specific information can
be included as a standard "prolog” which is the first
load code module presented to the loader.

We have implemented the Universal Loader as
two distinct phases; first, the /inking relocator per-
forms all linking and relocation, and outputs an ab-
sotute form of the executable module which is load-



ed by the second phase, or absolute loader. The first
phase generates an absolute module instead of a
core image for two reasons:

(1)  during a port, we must communicate ex-
ecutable programs to a bare target machine.
This final communication step is easily ac-
complished by an absolute loader which can
usually be coded in a small number of
machine instructions. For example, an ab-
solute loader for the Data General NOVA
has been programmed in 39 instructions.

(2)  the Eh compiler relies on a backplugging
capability during code generation, and ULD
doesn't resolve these since it is much easier
to take care of with an absolute loader.

The linking relocator is written in Eh and forms
the heart of the Universal Loader; we shall
henceforth refer to it as "ULD”. ULD makes two
passes over the load code before generating the ab-
solute module. This means that ULD need not
reside in the same storage as the absolute module it
is building, and therefore does not impose any size
restrictions. The two pass operation also avoids the
necessity of forming lists of unresolved references.
In the first pass, symbol tables are built and the
sizes of program modules are computed. In the

second pass, external references are resolved,
relocations are performed, and the absolute module
is generated.

In order to avoid machine dependencies, ULD
works with 8-bit bytes. Arithmetic is done as a
byte-serial operation by an algorithm which re-
quires at least 9 bits per word on the machine ex-
ecuting ULD. It is also assumed that pointers into
the symbol tables can be stored in a word. On
machines in which the largest addressable cell is in-
sufficient for these requirements, the Eh compiler
generates code which simulates a “word” using two
or more cells.

A list of the load directives interpreted by the
ULD machine and their semantics is given in the
appendix.

The abstract machine which defines ULD is il-
lustrated in Figure 1. The control unit reads com-
mand bytes into the command byte register (CBR)
and operates on the remainder of the directive and
the registers based on the CBR and the PASS (1
or 2). The working register (WR) is a 32 byte
register used to hold data to be relocated and out-
put as absolute module records. The relocation unit
is capable of performing the byte-serial arithmetic
and logical operations necessary for relocation. It
adds symbol values from the working symbol dic-
tionary (WSD) into fields of the WR indicated by

RD[0] ®1  Relocation
. Unit
Working Register {(WR) lgg————pnd
RD[TN i AC I
RBR[0] Control = output
. CBR -y input
RBR[4)]
PASS
[ I &
WSD[0] Bnd
’ Symbol
Tables
WSD[255]

Figure I: Structure of the ULD "abstract machine”,



the specified relocation descriptor (RD[0] through
RD[7]). The AC register is used to hold in-
termediate results. The relocation base registers
(RBR][0] through RBR[4]) are used to establish the
absolute locations of symbols to be entered into the
symbol table during the first pass. Multiple RBRs
are provided so each module can be loaded into
several "sections” of memory to take advantage of
addressing features of the target machine.

Relocation is accomplished by first loading the
working register, then issuing the directive to
relocate and output. This directive operates on data
in the working register, a relocation descriptor and
a symbol value from the working symbol dic-
tionary. The relocation descriptor contains a shift
count which allows division of a symbol value by a
power of 2, and a string of mask bytes used to
define a field within the working register. The shift
count is used because pointer values in Eh are
sometimes different than addresses in the machine.
Up to 8 different relocation descriptors can be
defined at any time. If more are needed, the com-
piler can redefine relocation descriptors as many
times as necessary during a load. The working sym-
bol values are kept in the symbol table as strings of
bytes. In each module, up to 256 different working
symbols can be referenced. '

In order to clarify the role of the working
register, relocation descriptors and working sym-
bols, we will describe the ‘operation of the
relocation unit in more detail. The relocate and
output directive (issued after a load working
register directive) contains, for each field to be
relocated, the following information:

- the byte of the working register containing the
rightmost bit of the field

- the relocation descriptor number

- the working symbol number

This information is encoded as byte pairs in the
relocate and output directive.

Note that a different relocation descriptor must
be defined for each possible address size and each
possible rightmost bit position in a working register
byte. We will show two examples: if the target
machine has a word size of 20 bits, and the address
is located in the lower 10 bits, a target machine
word would be defined as 3 bytes with the first byte
having data only in the rightmost 4 bits. The
descriptor for relocating such addresses contains:

- shift count: 0
- mask bytes: 003 377 (octal notation)

If the address could appear in the upper 10 bits of a
word, then another descriptor would contain:

- shift count: 0
- mask bytes: 017 374 000

Using the information from each byte pair in
the relocate and output directive, ULD locates the
byte of the working register containing the right-
most bit of the field to be relocated, then from the
relocation descriptor mask, the field within the
working register which must be modified is
isolated. The working symbol number tells us
which symbol table entry to use for the relocation
(i.e. what value to add into the field). After all byte
pairs in the directive are processed, one record is
output in absolute load code form:

1. inter-record bytes (defined by the B direc-
tive)

2. address bytes (typically 2 or 3)

3. byte count

4. data bytes

5. checksum byte

The final record contains the starting address
(defined by the S directive) and a byte count of
zero. The inter-record bytes option is provided for
ease of locating and positioning of the records if
paper tape is used. In the cases of magnetic tape or
disc peripheral devices, the B directive is not used.

4. Experience with ULD

We have tested ULD by loading programs for the
Honeywell 6060, Data General NOVA/2,
Microdata 1600/30, and TI 990. The ULD loader
has executed on the Honeywell and Microdata. The
ULD program consists of 387 Eh statements
(approximately 9000 characters), it requires 7,040
36-bit words on the Honeywell, and 13,950 bytes on
the Microdata. One may obtain an idea of the
relative sizes of programs and load modules from
the data of Table 1, in which we present the results
of compilations and loads for several machines.
The figures given in Table ! are for an Eh program
called Thoth, a small real-time executive [Melen
(1976)]. Thoth consists of 237 statements which im-
plement 21 functions; without comments or inden-
tation, Thoth source is 6385 characters. The EhIL
module output by the first pass of the compiler is
5935 characters.



Sizes of ULD load code, absolute modules and executable

modules for Thoth. All figures given below are in 8 bit bytes.

Table 1:
target ULD
machine module
HIS 6060 9482
NOVA 11027
Microdata 7568
1600/30

The internal structures of the four machines we
have loaded for show a great deal of variation:

()  Honeywell 6060: 36 bit word, word
addressing, 18 bit address, the address may
appear in the left or right half of the word

(2)  NOVA: 16 bit word, word addressing, 8 or
15 bit address

(3)  Microdata: 16 bit word, byte addressing, 8
or 15 bit address, variable-length instruc-
tions

(4)  TI: 16 bit word, byte addressing, 8 or 16 bit
address

Converting the Eh compiler to generate code
for a new "target” machine requires four important
tasks:

(I)  write new code generators for the second
pass of the Eh compiler

(2)  construct a prolog module for the target

(3)  implement a few primitive input/output
functions

(4)  write an absolute loader for the target

The first of these tasks will consume by far the most
time. Constructing the ULD prolog requires less
than one hour. For the input/output functions, we
have used two approaches; first, we have hand-
coded ULD modules for the functions, and second,
we have used a rudimentary "pre-fabricated”
assembler [Stafford (1976)] to generate the ULD
modules. This assembler can be adapted to assem-
ble code for a new machine in approximately one
day by an experienced person. The assembler has
been developed mainly to alleviate the problems of
coding interrupt-driven input/output functions. As
was mentioned in the previous section, the absolute
toader requires only a small number of machine in-

absolute core
module image
5225 4153
5332 3854
4136 3250

structions. If necessary, the absolute loader can be
hand coded in machine language and keyed into the
target's memory.

Once these tasks have been accomplished, one
may concentrate on the physical movement of the
system to a new (target) machine from the old
(host) machine. In order to get the Eh compiler and
ULD to the target machine, both must be compiled
on the host and the primitive input/output func-
tions must be prepared on the host. The version of
ULD which executes on the host can then be used
to create an absolute module of the ULD program
for the target. At this point, one has the choice of
creating the absolute module of the Eh compiler on
the host or the target, and as more systems
software moves to the target, the potential uses of
the software for cross and on-site operations grow.

5. conclusion

Our primary use of the software described in this
article has been to compile, link, relocate and load
programs using the Honeywell 6060; core images
are then transmitted to the appropriate minicom-
puter for execution. The reason for the cross-
operation is the lack of an adequate editor and file
system on the other machines. Qur solution to this
problem will of course be to implement these as
further components of our portable programming
system. These will require support from a portable
operating system which is currently under
development.

We are beginning to feel liberated from the
jungle of software which confronts anyone who
deals with more than one minicomputer; ULD is
one of the key tools in this liberation. With it, we
have recognized and overcome an obstacle which
others have typically treated as an integral part of
their target machine; The result is that they have a



broader interface to fit on their target, with
resultant limitations on the complexity of the
software systems they can support. We are finding
that we are already developing highly inter-related
components for our portable system, secure in the
knowledge that we can support these inter-
relationships on any new machine.
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8. Appendix: ULD Directives

The general form of a ULD directive is:

csd.dk
where:
c is the command byte

$ is the number of data bytes
d..d are the data bytes
k is a checksum (computed as the exclusive-or of c, s, and d...d).

Individual directives are listed below. Refer to the section describing the structure of
the ULD abstract machine for a more complete description of the registers, tables,
etc. Since directives may have different actions during passes 1 and 2, the descriptions
are divided into explanations of their actions for the two passes.

G global symbol definition

G s rb aa nn..n k

where:
rb

aa
nn...n

pass 1:

pass 2:

indicates the relocation base register (RBR)
is a two-byte offset value relative to RBR[rb]
is the symbol name (<= 16 characters)

If the symbol is already in the symbol table and defined, an error
message is printed and the second pass is not executed. Otherwise,
the value of the symbol is defined to be the result of aa+ RBR{rb],
and the symbol and its value are added to the symbol table. If this is
the first global symbol in the module, it is taken as the "module
name”,

The first global symbol definition encountered in a module causes
WSDI[0] to be set to a pointer to the symbol's entry in the symbol
table. This symbol, the module name, determines the local symbol
table to which local symbol references are made.

T  local symbol definition

T srbaa nn.n k

where:
rb

dd
nn...n

pass 1:

pass 2:

indicates the relocation base register
is a two-byte offset value relative to rb
is the symbol name (<= 16 characters)

The value of the symbol is defined to be the result of aa+RBR[rb],
then the symbol and its value are added to a symbol table which is

associated with the module in which the definition occurs.

nothing.



global symbol reference

gspann.nk

where:

p is a number which is used to refer to this symbol in subsequent O
directives.

nn...n is the symbol name.

pass I: If the symbol name is not already in the symbol table, an entry is
made for it and its value is set to "undefined”.
The referenced symbol is accessed by placing a pointer to its symbol

pass 2:

table entry in WSD[p] .

focal symbol reference

tspnn.nk

where:

p is a number which is used to refer to this symbol in subsequent O
directives.

nn...n is the symbol name.

pass 1: nothing

pass 2: The referenced symbol is accessed by placing a pointer to its symbol

table entry in WSD[p] .

beginning of module

MOM

pass 1:

pass 2:

used to detect when the next global symbol should be used as a
module name.

same as in pass 1, plus the WSD is initialized to zeros to prepare for
loading of the new module.

end of module

EOE

This directive is used to indicate the end of a relocatable object rhodule. The next
directive should be either M or §.



increment relocation base

Isrbaak

where:

rb is the relocation base register to be incremented

aa is a two-byte increment value

pass 1: RBR[rb] = RBR][rb} + aa

pass 2: RBR[rb] = RBR[rb] + aa

note: the use of a two-byte increment here and in the G and T directives

gives a practical limit of 2**16 addressable units per relocation base
register for any single relocatable object module. However, the out-
put absolute module can be arbitrarily large.

relocation descriptor definition

Dsdbmm.mk

where:
d

b
mm...m

pass 1:

pass 2:

is the descriptor number

is a shift indicator (see explanation of O directive below)
is a mask which defines the field to be relocated

b and mm...m are copied into RD[d].

b and mm...m are copied into RD[d].

load working register

L sdd.dk

where:

dd...d is a string of bytes to be copied into the working register.

pass 1: nothing

pass 2: The string is copied into the working register, starting at the leftmost

byte. The contents of WR will later be output (by the O directive) as
an absolute module record. Thus, the contents of WR must resemble
an absolute module record; the most convenient form of these
records will vary according to the machine and the device used. As
an example, we may decide that each absolute record should consist
of a two-byte address followed by a byte count and the number of
data bytes indicated by the byte count. In this case, the first two
bytes of WR must be converted to an absolute address by the next
O directive.



relocate and output working register

Oscwew ... k

where:

cw is a two-byte pair, as follows:

c has two fields: the first 5 bits (bn) give a byte number in the working
register; the remaining 3 bits (rn) is a relocation descriptor number.

w is an index into the working symbot dictionary (WSD).

pass 1: nothing

pass 2: For each cw pair, the following relocation algorithm is executed. The

symbol table value pointed to by WSD[w] is copied into the AC
register, then the AC is right-shifted (as in a division by a power of 2)
the number of bits specified in the b field of relocation descriptor
RD[rn]. Next, a field F in the working register is isolated by aligning
byte bn of WR with the rightmost byte of the mask bytes from
RD[rn]; the 1 bits in the mask bytes define the field F. The value in F
is added to the (shifted) value in AC and the result is stored in F. In
the event of overflow (the sum cannot fit in F) an error message is
printed. Note that linking is a special case of relocation. Because of
the information collected during pass 1, a "link” to another module is
established by adding its symbol table value into the field F rather
than the current module symbol table value (from WSDI[0]).

rb definition

R s tb aa..a k

where:

rb is the relocation base register to be set
aa...a is the value to be stored into RBR[rb].

pass 1 RBR[rb] = aa...a

pass 2; RBR[rb] = aa...a

start symbol definition

Ssnn.nk

where:

nn...n is a global symbol which must appear in the input module.
pass 1: nothing

pass 2: An appropriate starting address record is placed at the end of the ab-
solute module.



il

inter-record bytes
Bsdd.dk

where: :
dd...d is a string of bytes.

pass : nothing

pass 2: the bytes dd...d are placed between each absolute module record out-
put by ULD. Such inter-record bytes may be useful in certain media
such as paper tape. If no B directive is specified, a null string is used.

end of file

$05%

This directive denotes an end of file. It is used due to the lack of end of file in-
dicators on some devices.



	
	
	
	
	
	
	
	
	
	
	
	

