ON THE APPLICATION OF THE MINIMUM DEGREE
ALGORITHM TO FINITE ELEMENT SYSTEMS

by
Alan George
and ,
David R. McIntyre
Department of Computer Science
University of Waterloo

€5-76-16

March 1976



ON THE APPLICATION OF THE MINIMUM DEGREE
ALGORITHM TO FINITE ELEMENT SYSTEMS

by
Alan George
and

David R, McIntyre

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada



~ ABSTRACT

We describe an efficient implementation of the so-called minimum
degree algorithm, which experience has shown to produce efficient orderings
for sparse poSitive»definite systems. Our algorithm is a modification of the
original, tailored to finite element problems, and is shown to induce a
partitioning in a natural way. The partitioning is then refined so as to
significantly reduce the number of non-null off-diagonal blocks. This
refinement is important in practical terms because it reduces storage over-
head in our linear equation solver, which utilizes the ordéring and partition-
ing produced by our algorithm. Finally, we provide some numerical experiments
~comparing our ordering/solver package to more conventional band-oriented

packages.



§1 Introduction

In this paper we consider the problem of directly solving the

Tinear equations

(1.1) Ax = b,

where A 1s a sparse N by N positive definite matrix arising in certain
finite element applications. We solve (1.1) using Cholesky's method or
symmetric.Gaussian elimination by first factoring A into the product LL',
where L is lower triangu]ar, and then sb]ving the ﬁriangu]ar systems Ly = b
and LTx =y,

It is well known that when a sparse matrix is factored using
ChoTesky's method, the matrix normally suffers fill; that is, the triangular
factor L will typically have nonzeros in some of the positions which are
zero in A, Thus, with the usual assumption that exact numerical cancellation
does not oCcur, L+LT is usually fuller than A.

For any N by N permutation matrix P, the matrix PAP' remains
sparse and positive definite, so Ch61esky’s method still applies. Thus, we

could instead solve
(1.2) (PAPT)(Px) = Pb.

In general, the permuted matrix PAP' fills in differently, and a judicious
choice of P can oftén drastically reduce fill. If zeros are exploited, this
can in turn impl a reduction in storage requirements and/or arithmetic
requirements for the linear equation solver. The permutation P may also be
chosen to ease data management, simplify coding etc. In general, these vary-

ing desiderata conflict, and various compromises must -be made.



A heuristic algorithm which has been found to be very effective
in finding efficient orderings (in the Tow-fil1l and Tow-arithmetic sense)

is the so-called minimum degree algorithm [10]. The ordering algorithm we

propose in this paper is a modification of this algorithm, changed in a
number of ways to improve its performance for finite element matrix problems,
which we now characterize,

Let M be any mesh formed by subdividing a planar region R with
boundary 3R by a number of 1ines,all of which terminate on a line or on 3R.
The mesh so formed consists of a set of regions enclosed by lines, which we
call elements, The mesh M has a node at each vertex (a point of intersection
of lines and/or 3R),and may also have nodes on the lines,on 3R, and in the

interiors of the elements, An example of such a finite element mesh is given

in Figure 1.1.

/\

Figure 1.1 An example of a finite element mesh



Now let M have N nodes, Tabelled from 1 to N, and associate a

variable X4 with &he i-th node.

Definition 1.1 [4]

A finite element system of equations assotiated with the finite
element mesh M is any N by N symmetric positive definite system Ax = b
having the property that Aij # 0 if and only if Xy and x, are associated

J
with nodes of the same element. 0

In one respect this definition is more general than required to
characterize matrix problems arising in actual finite element appiications
in two dimensions. Usually M is restricted to consist of triangles or
quadrilaterals, with adjacent elements having a common side. However,‘just
as in [4], we intend to associate such meshes with matrices which arise
when Gaussian elimination is applied to A, and these matrices require meshes
having a less restritted topology in order that the correspondence be
correct in the sense of Definition 1.1,

In a second respect, the above definition is not quite general
enough to cover many matrix problems which arise in finite element applica-
tions because more than one variable is often associated with each node.
However, the extension of our ideas to this situation is immediate, so to
simplify the presentation we assume only one variable is associated with
each node. (The gode which produced the numerical results of section 5
works for this nore general case with no changes.) Thus, in this paper we

make no distinction between nodes and variables in this paper.

An outline of the paper is as follows. In section 2 we review

two closely related models for symmetric Gaussian elimination, and describe



the basic minimum degree algorithm. In section 3 we show how the special
structure of finite element matrix problems can be exploited in the implemen-
tation of the minimum degree algorithm. We also show how the algorithm
induces a natural partitioning of the matrix. In section 4 we describe a
refinement of the partitfoning produced by our version of the minimum degree
algorithm which normally leads to a considerable reduction in the number

of non-null off-diagonal blocks of the partitioning. This refinement is
important since it reduces storage overhead when thevmatrix is processed as
a block matrix, with only the non-null blocks being stored. Seétion 5
contains a brief description of the method of computer imp1ementatioh of the
ideas of sections 3 and 4, along with some numerical resu1ts.' Section 6

contains our concluding remarks.



§2 Models for the Analysis of Sparse Symmetric Elimination

Following George [4] and Rose [10], we now review for completeness
some basics of the elimination process for sparse positive definite matrices.
We begin with some basic graph theory notions and define some quantities we
need in subsequent sections. Much of the notation and the correspondence
between symmetric Gaussian elimination and graph theory is due to the work
of Parter [9] and Rose [10]. |

An undirected graph G = (X,E) consists of a finiie nonempty set
X of nodes together with a set E of edges, which are unordered pairs of
distinct nodes of X. A graph G' = (X',E') is a subgraph of G = (X,E) if
X' < X and E' < E. The nodes x and y of G are adjacent (connected) if

(x,y) € E. For Y c X, the adjacent set of Y, denoted by Adj(Y), is
Adj(Y) = {x|x € X\Y and 3y € Y > (x,y) ¢ E}.

When Y is a single node y, we write Adj(y) rather than Adj({y}). The degree
of a node x, denoted by deg(x), is the number |Adj(x)|, where [S| denotes

the cardinality of the finite set S. The incidence set of Y, Y < X, is

denoted by Inc(Y) and defined by
Inc(Y) = {(x,y)ly e Y and x ¢ Adj(Y)}.

For a graph G = (X,E) with |X| = N, an ordering (numbering,
labelling) of G is a bijective mapping a:{1,2,...,N} >~ X. We denote the
labelled graph and node set by 6% and X* respectively.
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A path in G is a sequence of distinct edges {xy,X;},{xpsxo}. o {x 5%}
iwhefe all nodes except possibly Xq and Xy are distinct. If Xg = Xps then the
path is a cycle. .The distance between two nodes is the length of the shortest
path joining them. A graph G is connected if every pair of nodes is connected
by at least one path. If G is disconnected, it consists of two or more maximal

connected components .,

We now establish a correspondence between graphs and matrices. Let
A be an N by N symmetric matrix. The labelled undirected graph corresponding

A s 1abelled as the

to A is denoted by G = (X*,E), and s one for which X
rows of A, and (xi,xj) ¢ R o Aij #0,1# J. The unlabelled graph
corresponding to A is simply GA with its labels removed. Obviously, for
any N by N permutation matrix P # I, the unlabelled graphs of A and PAP™ are
identical but the associated labellings differ. Thus, finding a good ordering
of A can be viewed as finding a good labelling for the graph associated with A.
A symmetric matrix A is reducible if there exists a permutation |
matrix P such that_PAPT ié block diagonal, with more than one diagonal block.
This implies GA is disconnected. In terms of solving linear equations, this
means that solving Ax = b can be reduced to that of solving two or more
smaller problems. Thus, in this paper we assume A is irreducible, which
méans that the gfaph associated with A is connected. |
Following Rose [10], we now make the connection between symmetric
Gaussian elimination applied to A, and the corresponding graph transformations
A

on G'. Symmetric Gaussian elimination applied to A can be described by the

following equations,
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Consider now the labelled graph GA, with the labelling denoted by
the mapping a. The deficiency Def(x) is the set of all pairs of distinct nodes

in Adj(x) which are not themselves adjacent. Thus,

Def(x) = {{y,z}|y,z € Adj(x), y # z, y ¢ Adj(z)}.



For a graph G = (X,E) and a subset C < X, the section graph G(C) is the

subgraph G = (C,E(C)), where
E(C) = {(x,y)|(x,y) ¢ E, x e C, y € C}.

Given a vertex y of a graph G, define the y-ellimination graph

Gy = {X\{y}, E \ Inc(y) v Def(y)}.

The sequence of elimination graphs G1’GZ""’GN-] is then defined by

G‘I = GX-I and Gi = (Gi—]) = 2,3,...,N_]o

i
9
3

The elimination graph Gi’ 0 < i< N,is simply the graph associated

with_the matrix H.; i.e., G, = 6. e define G, = G, and note that G, ,
consists of a single node. The recipe for obtaining Gi from Gi-]’ which
is to delete X and its incident edges, and to then add edges so that Adj(xi)
is a clique, is due to Parter [9]. A clique is a set of nodes all of which
are adjacent to each other,

This graph model has many advantages for describing and analyzing
sparse matrix computations. However, except for rather small examples,

it is not easy to visualize; although GO may sometimes be planar, the Gi

rapidly become nonplanar with increasing i and become difficult to draw and



and interpret. For our class of matrix problems, which are associated with

planar mesh problems, we can define a sequence of finite element meshes

M = MO’MT""’MN such that Gi can easily be constructed from Mi’ i=20,1,...,N-T.
Formally, a mesh M = (X,S) is an ordered pair of sets, with X a

(possibly empty) set of nodes and S a set of mesh lines, where each mesh line either

Joins two nodes, is incident to only one node (forming a loop), or else forms a

nodeless loop. Let M, = (XO,SD) be the original finite &dement mesh M, wiﬁh nodes

of the mesh forming the set XO’ and the lines joinihg the nodes comprising the set

SO' A boundary mesh line is a member of S shared by only one element.

Starting with MO’ the mesh Mi'= (Xi,Si), i=1,2,...,N is obtained

from M. g = (Xi_],si_]).by

a) Deleting node X5 and its non-boundary incident mesh lines.
b) Repeatedly deleting mesh Tines incident to a node having degree
equal to one.
Here the degree of a node y inva mesh is the number of times mesh lines are
incident to y. When X3 is eliminated from Mi-] and X3 has incident boundary
lines, these boundary lines are simply "fused" to form & new line 6f Si’ as

depicted in the transformations Mg + Mg and Mip > My3 in Figure 2.1. The

+ M, and

application of step b) is illustrated in the transformation M 7

Mg = M2

We now describe how to obtain Gi from Mi' Since the node sets are
identical, we need only describe how to construct Ei‘ Since the sequence Mi
is generated by removing nodes and/or mesh lines, the meshes of the sequence

are all planar, having faces (elements) with nodes on their periphery and/or
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in their interior as shown in Figure 2.1. Also recall that by definition 1.1,
GO is a graph such that each set of nodes Cg c X0 associated with an element
(interior to and/or on the periphery of a face of MO) formsi a clique. This

construction is illustrated in Figure 2.2,

Figure 2.2 A mesh M, and corresponding graph 6

The construction of Gi from Mi is essentially the same. The
graph Gi is one having the same node set Xi as Mi’ and which has an edge set Ei
such that each set of nodes C% = Xi associated with the same mesh element
forms a clique,

Using this mesh model, every numbering of M = MO determines a
sequence of meshes Mi’ i=1,2,...,N which precisely reflect the structure
of the part of the matrix remaining to be factored (H;). The mesh My consists

of a single element, devoid of nodes, whose boundary is 3R. Thus, symmetric
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Gaussian elimination on finfte element matrices can be viewed in terms
transforming finite element meshes, by a sequence of node and 1ine removals,
to a s1nglé element,

As mentioned before, our mesh model has the advantage that the
meshes are planar and therefore easy to visualize and interpret. In
addition, people involved in the application of the finite element method
are accustomed to thinking in terms of é]ements, super-elements, substructures
etc. [1,12]. The graph model, on the other hand, even if initially planar,
rapidly becomes nonplanar as the elimination proceeds, and is less easy to
visualize. It has the advantage that there is some well established notation
and terminology for.the description and manipulation of graphs. Our attitude
is that the connection between the models is so close that statements about
one can immediately be recast in terms of the other. We will therefore use
both models in this paper, choosing the one which appears to transmit the
information in the most lucid manner. |

We now describe the minimum degree algorithm using the graph
theory model., Let GO = (XO,EO) be an unlabelled graph. The minimum degree
a]gorithm labels X (determines the mapping a) according to the following
pseudo-Algol program:

for i = 1,2,...,N do
1) Find y e X; _; such that deg(y) < deg(x) for all x e X, ;.
2) Seta”l(y) =1andif i <N form Gy from G, ;.

Various strategies for breaking ties have been proposed, but in our applica-
tion we found they made 1ittle difference to the quality of the ordering

produced. Thus, we break ties arbitrarily.
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Notice that the ordering algorithm requires knowledge about the
current state of the factorization; that is, the choice of the i-th variable
is a function of the structure of the partially factored matrix. Thus, one
could argue that the ordering algorithm (i.e., the pivot selection) should
be imbedded in the actual numerical factorization code. (Of course, this is
more or 1ess‘essentia1 when the pivot selection is partially determined by
numerical stability considerations.)

However,‘in our situation we have the option of isolating the
ordering and the factorization in separate modules, and we prefer to do so
for the following reasons:

1. If the ordering is done a-priori, the factorization code can
utilize a static data structure, since the positions where fill will occur can be
determined during the ordering. If the ordering is imbedded in the factoriza-
tion, the data structure must be adaptive to accommodate fill as it occurs.

By isolating the ordering and factorization, data structures can be tailored
specifically for each function.

2, In éome engineering design applications, many problems with the
same matrix A, or with coefficient matrices having the same structure, must
be solved. In these situations, it makes sense to find an efficient ordering

and set up the appropriate data structures only once.
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§3 The Minimum Degree Algorithm

From the graph model developed in section 2, we see that symmetric
Gaussian elimination can be viewed as transforming GA by a sequence of
graph transformation rules to one having a single node and no edges. Using
the mesh model, we see that the algorithm can also be viewed as transforming
the original mesh according to some precise node and 1ine removal rules
so that the final mesh My consists of a single nodeless element. We also
esfab1ished a correspondence between the two models, so that Gi can be
constructed from Mi' 0 <i <N. In this section we show that for our
finite element matrix problems, the local behavior of the minimum degree
aTgorithm can be precisely characterized. In addition, we show that the algorithm
induces a natural partitioning of theAnode set X, or equivalently, of the
reordered matrix A. In the next section we show how this ordering can be
refined so that the trianguiar factor L of A can be efficiently stored.

We begin with some definitions. For a graph G = (X,E), let

C c X and let G(C) = (C,E(C)) be the corresponding section graph of G

determined by C.(see section 2). The node x is an interior node of C if

X e C and Adj(x) = C. If x e C but Adj(x) & C, then x is a boundary node

of C.

As we have described before, nodes associated with a mesh element
correspond to a clique in the corresponding graph. Generally, interior nodes
of a‘c1ique in Gi correspond to interior nodes of an element in Mi' However, there

are exceptions. inhe nodes on the periphery of an element which fofms part of 3R
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‘are interior nodes of the corresponding graph clique. Also, when all the
nodes.form a clique, in the element model they could be interior
nodes and/or boundary nodes. Thus although the element model is very helpful
in visualizing the changing stkucture of the matrix during the decomposition,
{ts meaning in terms of the corresponding graph must be interpreted carefully
‘near dR and for the last c1ique of nodes.

In what follows, the sequence G, i=0,1,...,N-1 will refer to
the graph sequence generated by the minimum degree algorithm.
Lemma 3.1

Let C be a clique in G(X,E), let x be an interior node of C, and
let y be a boundary node of C. Then deg(x) < deg(y).

The proof is trivial and is omitted.
Lemma 3.2

Let C be a clique in 6; = (X;,E;), 0 51 <N, and Tet x be an
interior node of C. Then if x is eliminated, the degree of all nodes in C

is reduced by one, and the degrees of all other nodes in Gi remain the same.

Proof Since Adj(x) < C, the elimination of x cannot affect nodes y ¢ C.

Thus deg(y), ¥ € Xj41\Cs is the same as it was in G;. On the other hand,
since x « C and C is a clique, the elimination of x causes no fill. Thus,

E is obtained from E; by deleting Inc(x) from Ess thereby reducing the

i+l
degree of all nodes in C\{x} by one. a

Theorem 3.3

Let C be a clique in G; = (Xi’ET)’ 0 <1 <N, and let Q; be the

set of all interior nodes of C. Then if the minimum degree algorithm chooses

X € Qi’ at the i-th step, then it numbers the remaining |Q1|"1 nodes of Qi next.
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Proof Let deg(x) = d, and note that deg(y) 2 d, y ¢ Qs> with deg(y) > d if
y € C\Q;. By Lemma 3.4, after x is eliminated, the degree of all nodes remaining in
C will be reduced by one, and nodes not in C will have their degrees unchanged.
Thus, if Qi+1
Repeatedly using Lemma 3.2, we conclude that the minimum degree algorithm

= Qi\{X} # ¢, then the node of minimum degree in Gi+1 is in Qi+1'

w111vchoose nodes 1in Qi until it is exhausted. B

Corollary 3.4

In terms of the mesh model, Lemma 3.2 and Theorem 3.3 imply that
nodes in the interior of an element, or those on the boundary of an element
Which forms part of 3R, will all be eliminated before other nodes assdciated
with that element.

Theorem 3.5

Let C1 and C2 be two cliques in Gi’ 0 <1 <N, with Ki = 01 n C2 7 o

C1 ¢ Cys and C2 ¢ C]. Let

Ky = {yly « K; and Adj(y) < Cy u Cyk.

Then if the minimum degree algorithm chooses X e Ki at the i-th step, then it

numbers the remaining nodes of Ri+1 = Ki\{x} next, in arbitrary order.

Proof First, note that C] and Cz cannot have any interior nodes, since
otherwise the minimum degree algorithm would not choose a node from Ki‘

Thus, for all y e R;, deg(y) = d = |Cy v Cp|-1. Also, note that if y « K \Ks s
then deg(y) > d, because it is connected to all other nodes in CyuCys and
at least one other node. (Otherwise, it would be in Ki‘) Finally, if

y € X;\K;, then deg(y) = d, because otherwise the minimum degree algorithm

would not choose x. We now want to show that after x is eliminated, yielding



- 17 =

‘ 6147 = (XgppoEqqp)» that deg(y) = d-1 if y ¢ Ki+1’ and deg(y) = d for
Ve X\

First, if Ri+1 = ¢, there is nothing to prove, so suppose E1+1 # ¢}
Now the elimination of x renders (C; u C,)\{x} a clique, but since
Adj(x} < Cq v C,, nodes y eXi\(C1 u Cz) are not affected by the elimination
of x, so deg(y) = d as before. Suppose y e C;\C,, and let its degree in G,
be p = d. Then after elimination it is p + ICZ\C1|-1 > d, since [CZ\C]I 7.
Similarly, after elimination of x, deg(y) 2 d for y Co\Cy Now consider
Yy e Ki+1 = Ki\{x}. Before elimination of x, y is connected to all nodes in
(C1 v CZ)\{M}, since C] and C, are cliques., Since the elimination of x
only involves nodes in C] u C2, y cannbt be connected to any new variables.
Moreover, after elimination of x, y is no longer connected to X, SO deg(y) is
reduced by one for y ¢ Kiyq. Thus, in Gi .y, deg(y) = d-1 for y ¢ Ki+]
and deg(y) = d for y ¢ Ki41\Kj47-

The minimum degree algorithm will now choose a node in K1+], and
by Theorem 3.3, it will continue to choose nodes from Ki+] until‘it is

exhausted. g

Corollary 3.6

Let G, k =1,2,...,r be cliques in G;, i ¢ {0,1,...,N-1}
K = PG #9oandCn (XA UC)) #9o. Let
k=1 kit
- r
Ky = iy e K; and Adj(y) < (kg]ck)}.

Then if the minimum degree algorithm chooses X ¢ Ri at the i-th step, then it
numbers the remaining nodes of Ki+1 = R;\{x} next, in arbitrary order.

The proof is similar to that of Theorem 3.5 and is omitted.



- 18 -

Theorems 3.3 and 3.5, and Corollary 3.6 have important practical
implications, It is easy to recognize when their hypotheses apply, and they
allow us to immediately number sets of nodes by doing only one minimum degree
search, _>

Thus, after each minimum degree seafch, a set of r 2 1 nodes will

be numbered, inducing a partitioning of X. We will denote this partitioning

Y

by P = {Q sPosPas...sP 1, where U P, = X. Figures 3.1a,b contain an L-shaped
1°72°°3 p j=1 1

triangular mesh MO together with a few of the meshes Mi’ 0 < i < N generated

by the minimum degree algorithm. Figure 3.2 shows the matrix structure of

L+L" corresponding to the ordering, with the column partitioning P indicated

by the vertical lines.
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Ortginal mesh M,

25

Figure 3.1a A selection of meshes from the sequence
Mcs k= 0,2,...,N
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Figure 3.1b A selection of meshes from the sequence
Mk’ lk = 0,T,...,N
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Figure 3.2 Structure of L+LT corresponding to the ordering
produced for the mesh of Figure 3.1.

The partitioning

P is indicated by vertical lines. The character *

represents nonzeros of L which correspond t
i ile X 0 non
in A, while X represents fill. P onzeros
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§4 A Refinement of the Minimum Degree Ordering

In the Tast section we saw how the minimum degree algorithm
naturally induces a partitioning of the matrix A (and therefore also of L).
Consider each "block column" of L, determined by the members of the parti-

tioning P. Within each such block column the rows are either empty or full,

and we can partition the rows according to contiguous sets of non-null
rows, as indicated in Figure 3.2.

Basically, the storage scheme we use in our linear equation
solver is one which stores the dense submatrices determined by this row-
within-(block) column partitioning. Now each non-null block incurs a
certain amount of storage overhead, so we would 1like the number of these
blocks to be as small as possible. The purpose of this section is to
describe a way of reordering the members of each partition member Pi SO as
_ to reduce the number of non-nuil blocks in this row-within-column partitioning.

Our reordering scheme is most easily motivated using the mesh
model of elimination we introduced in section 2. First, note that most of
the partition members (except for some of the initial ones) will correspond
to nodes lying on a side of an element in some mesh Mk’ 0 <k <N. Itis
clear that the order in which these nodes are numbered is irrelevant as
far as fill or operation counts are concerned, and their relative order is
not specified by the minimum degree algorithm. Thus, we are free to choose
the ordering within the partitions to reduce the number of individual
blocks of L we must store.

How do we achieve this? Consider the schematic drawing in
Figure 4.1, indicating a'subsequence of meshes taken from the sequence Mk’

k= 0,1,...,N,
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Figure 4.1 A subsequence of meshes from the sequence

Mk’ k=0,1,...,N
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From what we have established about the behavior of the minimum

| degree algorithm through Theorems 3.3 and 3.5, it is clear that the mesh
Tine segments (element sides) denoted by (:)‘through (:) correspond to
dense diagonal blocks of L. Now consider‘the block column of L corres-
ponding to (1). Obviously, block (1) is connected to part of block (7),
but in general the connection will not be reflected as a dense off-diagonal

block of L, unless the nodes of (E) which are connected to (:) are numbered

consecutively. Similarly, the connections of block (:) to block (:) will

correspond to a dense block of L only if nodes of (:) which are connected to
(2 are numbered consecutively.

This motivates our reordering algorithm for each partition Pi'
We reorder the nodes of each Pi in a way which corresponds to numbering nodes

on an element side consecutively, beginning at one end. Figure 4.2 shows the

structure of L+L' corresponding to the reordering obtained by applying

our reordering scheme to the problem which produced the Figures 311 and 3.2,
The reduction in the number of off-diadonal blocks is apparent, but it is
not particularly impressive because the problem is quite small. For 1arger
problems, however, the reduction is usually very substantial.

Now that wé have established what we want done, how do we achieve
it? Obviously, if lPi] < 2, there is nothing to do. For |P1| > 2, the nodes
in Pi will typically all lie on an element side in some mesh Mk’ 0 <k <N,
such as indicated in Figure 4.3. (For Pp, the last partition, the situation
is somewhat more complicated, since often three element sides are involved,

as in MgysFigure 3.1-b. We consider this problem Tlater.)
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Figure 4.2 The structure of L+LT corresponding to the reordering
of the problem which generated the matrix of Figure 3.2
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M | MI:+|P].I
Figure 4.3 An’example of a typical P, 1 s 1 <p.

Let G = (X,E) be the unlabeled graph corresponding to A, and let
G = (X,E) be the subgraph of G obtained by interpreting the mesh M as a
graph. Let G, be the section graph G(Pi) (see section 2).
i

Now the element mode1 makes it abundantly clear that in'genera1 GP1

consists of a single node, or a simple chain, usually the latter., The

graph GPp is-a special case, typically consisting of three chains connected
by virtue of a small shared clique or two chains connected by a cycle,

Our reordering algorithm is straightforward, and although we do
not know if it is optimal, we do not know how it can be improved. It
essential]y involves the generation of two rooted spanning trees of Gpi, the
first.of which is generated in such a way that the distance from any node x

to the root r in the tree is the same as the distance from x to r in Gp . This
' ‘ i
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can easily be done by génerating the tree in a breadth;first manner, rather
than in a depth—firét manner [8].

Our'reorderihg algorithm consists of two general stages, which
we now informally describe. Here ry,ro,.. ’rlP | are the consecut1ve integers

assigned to the members of P by the minimum degree algor1thm

Stage 1:

Choose any node x in GP and generate a breadth-first spanning
tree T] for GP , rooted at x. Any node y at the last 1evel of the tree is
1
chosen as a starting node for stage 2.

Stage 2:
In this stage R is a stack which is originally empty, and is only

utilized if GP is not a chain.
.i

1) Label the node y provided by stage 1 as ry.
2) For each i = 2’3""’|Pi| do the following:
a) If x the last labelled node, has only one unlabelled node

r.-1’
i
y adjacent to it, then label it rye
b) If AdJ(X ]) has more than one unlabelled node, of those not already

in R, 1abe] one r, and place the remainder on the stack R.

~If all nodes in Adj(xr_1) are also in R, choose one of those and
label it ri.
c) If the members of Adj(xr.-l) are all numbered, pop the stack R

j
until an unlabelled node y is popped, and label it r-
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Figure 4.4 illustrates the reordering algorithm. Phase 1 generates
the tree T.I rooted at x, and chooées the node y as the starting node for
phase 2, Step a) of phase 2 is executed until node g {s labelled. At the
next step node h is placed in R and ¢ is labeled. At the next step, the
unlabeled nodes of Adj(c) are {h,x}, but since h is already in the stack,
node x is labelled, and then step a) of phase 2 operates until node a is
labeled. Since Adj(a) is all 1abe11ed, node h is obtained from R and labelled,

followed by nodes i,j and k via steps a) and c} of phase 2.

Mesh nodes

Starting node for Phase 2 Relabelled Gp
;

Figure 4.4 Relabelling of Gp
j
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§5 Remarks on Implementation and Some Numerical Experiments

We saw in section 2 how cliques naturally arise during symmetric
Gaussian elimination. In matrix problems associated with the use of the
finite element method, cliques of size larger than one exist in GA, and
peksist for some time during the elimination, typica1]y growing in size by
merging with other cliques before finally disappearing through elimination.
Moreover, Theorem 3.5 operates for a considerable proportion of the total
- node numberings.

. These observations make it natural to represent the elimination
graph sequence through its clique structure, since elimination of variables
typically leads to merging of two or more cliques into a new clique. Our
approach then, is as follows. The graph G; = (Xi’Ei) is represented by the

set of its cliques Cj = {C)} along with a cligque membership 1ist for each

node. An example appears in Figure 5.1,

Now our actual implementation does not represent the entire
sequence of graphs Gi’ i=0,1,2,...,N-1, during its execution. Only those
graphs which would be obtained after each P; is determined are actually
created. That is, we repeatedly apply Theorems 3.3 and 3.5. The general
step of our algorithm, described below, is executed p times, where p = |P|

and P = {P],Pz,...,Pp}.

General Step r, r = 1,2,...,p

1) Find an unnumbered node x of minimum degree. If all nodes are

numbered, stop.

2) Let Q. = {&]x ¢ CE"]}, and determine the set of nodes P in
" r-1
C.= UG,

which are connected only to nodes in C..
r P
ReQr
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Graph GO

Clique
Node ‘Membership Clique Set Co
1 1
2 2,8 ¢3:11,7,6}
3 2,6 €0:42,3,4)
4 2,4 €3:15,8,9,10)
5 3,5,7 ¢0:14,10)
6 1,6,7 ¢2:42,5)
7 1,8 ¢2:(3,6)
8 3,8 ¢9:(5,6)
9 3 c3:{7,8}
10 3,4

Figur> 5.1 The graph GO represented by its clique
set Cy and clique membership 1ist
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- r-1 N
3) Set C, (cr_]\gu {c,7'h) v (CAP).
eQr

4) Update the degrees of the nodes in EP\Pr (the new clique), and
their clique membership lists.

5) Increment r and go to step 1).

Our code consists of two phases, the first is simply the minimum
degree algorithm, modified to exploit what we know about the behavior
of the algorithm, as described by Theorem§ 3.3 and 3.5. The second phase
performs the reordering of each partition member P, as described in section 4.
Although this splitting into two phases is not necessary (since each Pi
could be reordered as it is generated), it was done to keep the code modular,
and to ease maintenance and subsequent possible enhancements.

Our code accepts as initial input a collection of node sets
corresponding to the elements (cliques) of the finite element mesh. This
mesh changes as the algorithm proceeds, so its representation must be such
that merging cliques (elements) is reasonably efficiént and convenient.

The data structure we used to represent the graphs is depicted in Figure 5.2,
At any stage of the algorithm, the nodes of each ¢lique along with some
storage management information are stored in consecutive locations in a
storage pool (POOL). A pointer array HDR of length < NCLQS (the initial
number of elements) is used to point to the locations of the elements in
POOL, Finally, a rectangular array C is used to store the clique membership
lists; row i of C contains pointers into HDR corresponding to cliques which

have node i as a member.



MESH 3
POOL
5
1
C HDR
] ] n‘_“——”"—”’J’/’,r”’-a
112|3 6 -
1]3|4 n .
2|5 16 .
2|3{a 5|67 21| .
4{7 26
4 .
5(6(8 31
6/7/8 136
8

Figure 5.2 Example showing the basic data
structure for storing cliques
of a finite element mesh
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Step 3) of the algorithm above obviously implies an updating
operation of the arrays C, HDR and POOL to reflect the new clique structure
of the graph which has seen some of its cliques coalesce into a singie new
one, along with the removal of some nodes. In general, the node-sets
and none of them may occupy enough space so that the new clique to be created
could overwrite them. To avoid excessive shuffling of data, we simply
allocate space for the new clique from the last-used position in POOL ,
and mark the space occubied by the coalesced cliques as free. When space for
a new element can no longer be found in POOL, a storage compaction is
performed. See [8, pp.435-451] for a description of these standard storage
management techniques.

Our first objective is to study the behavior of our ordering
algorithm. We ran our code on N by N finite element matrig problems
arising from nxn right-triangular meshes of the form shown in Figure 5.3.

We ran our code for n = 5(5)35 to study the behavior of various quantities

" as a function of N = (n+1)2.

Figure 5.3 A 5by 5 right-triangular'mesh
yielding N = 36
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The results of our runs are summarized in Tables 5.1-5.3.

The “"overhead" column in Table 5.1 refers to the number of pointers etc.
used by our data structure for L. In our imp]ementation on an IBM 360/75,
we used a 32 bit word for both pointers and data. On many machines

with a larger wordlength, it would make sense to pack two or perhaps more
pointers per word. Thus, in other implementations the overhead for our
data structure compared to the storage required for the actual components
of L would be much less that appears in Table 5.1,

The overhead and primary column entries in Table 5.1 do not
quite add up to the corresponding entry in the total column because we
included various other auxiliary vectors and space for the right side b in
the total storage count.

The following observations are apparent from the data in Tables
5.1-5.3. |

1) The overhead storage appears to grow linearly with N, and the
total storage requirement for all data associated with solving the matrix
problem grows as N log N. This has two important practical implications.
First, it implies that (overhead storage)/(total storage) -~ 0 as N » o,
in contrast to most sparse matrix solvers for which this ratio is some
constant o, usually with a > 1. The second implication is perhaps even
Amore important. It is well known that for this problem, the use of bandmatrix
methods (i.e., a banded ordering) implies that total storage requirements
grow as N3/2. Iadeed, the best ordering known to the authors (the so-called
diagonal dissection ordering [3]) would imply a storage requirement of

O(N log N).
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TABLE 5.1

Storage statistics for the ordering produced by

the minimum degree algorithm followed by the
improvement described in section 4

N Overhead Primary Total Overhead Overhead Total

Total N N Tog N

5 36 316 185 537 .59 8.78 4.16
10 121 1174 1039 2334 .50 9.70 4.02
15 256 2457 2899 5612 .44  9.60 3.95
20 441 4195 5959 10595 .40 9.51 3.95
25 676 6501 10092 17269 .38 9.62 3.92
30 967 9153 17190 27304 .34 9.52 4.14
35 1296 12425 24252 37973 .33 9.59 4.09
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Statistics on P as a function of N for the
ordering produced by the algorithm described
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TABLE 5,3

in Sectjons 3 and 4

| No. of off- off-diagonal blocks  |P]

n N diagonal blocks |P| 7] N

5 36 59 28 2.1 | J77
10 121 242 82 3.0 .678
15 256 510 ‘156 3.3 .609 -
20 441 871 256 3.4 .580
25 676 1362 384 3.5 .568
30 961 1912 531 3.6 .553
35 1296 2608 710 3.7 .548
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2) The entries in Table 5.2 suggest rather strongly that the
execution time of our ordering code for this problem grows no faster
than N log N. Similar experiments with other mesh problems demonstrate
the same behavior.
3) Table 5.3 contains some interesting statistics about P,
the partitioning induced by the repeated application of Theorems 3.3
and 3.5 in our ordering algorithm. It appears that |P| is approaching
a "1imit" near N/2, and that the number of off-diagonal blocks in each
"block column" is approaching about 4. Again, similar experiments
with other mesh problems indicate that this behavior is not unique to
our test probiem.
We now turn td a comparison of our ordering algorithm with
an alternative. For comparison, we used the recently developed
ordering algorithm due to Gibbs et al. [5], along with a solver which
exploits the yariation in the bandwidth of the matrix, as suggested by
Jennings [7]. In our tables, we denote results for this ordering-
solver combination by BAND, as opposed to the results of our ordering algorithm/
Tinear equation so]ver»package, which we denote by BMD (block-minimum-degree).
From Table 5.4 the total storage for the solution of the
test problem, using the band ordering, appears to grow as O(N /N),
as expected for‘thése meshes. The storage overhead is only =N. However,
in contrast, the total storage used for the solver which uses the EMD
ordering appears to grow only as O(N &n N), despite the larger overhead.
Extrapolating the results of the tables suggests that the storage for the
BMD ordering will be less than band storage for N 22000, with the saving

reaching 50 percent by the time N is around 15000.
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TABLE 5.4

Storage Statistics for Band Ordering

Overhead Overhead Total

N Overhead Primary Total Total N - NN
5 36 39 | 197 267 .15 1.08 1.236
10 121 124 1056 1302 .10 1.02 .978}
15 256 259 309 3612 .07 1.01 882
20 4m 444 6811 7697 .06 1.01 .831
25 676 679 12701 14057 .05 1.00 .800
30 961 964 21266 23192 .04 1.00 778
3B 1296 1299 33006 35602 .04 1.00 .763
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It should be noted here that the BMD ordering algorithm is
implemented in ~30N storage (i.e., linear in N). This is important because
for N > 1000 the ordering can be done in the space used later for the

factorization.

The entries in Table 5.5 suggest that the band ordering time
is O(N°), for p ~ 1.05, and the solution time is O(N?). A look at the
operations for the factorization time for the BMD and band orderings in Tables
5.2 and 5.5 confirm that the apparent differences in factorization times are
indeed due to differences in operation counts and not to program complexity.
Least squares approximations to the total execution times were
found for the BMD and band algorithms using as basis functions the orders
suggested in Tables 5.2 and 5.5. The results suggest that the BMD
algorithm will execute faster than the band algorithm for N > 20,000. For
N =~ 60,000 the resu1ts imply that the BMD algorithm is twice as fast.
Thus, our ordering/solution package is unlikely to be attractive as a one
shot scheme.
However, in many situations involving mildly nonlinear anq/br
time dependent problems, many matrix problems having the same structure,
or even the same coefficient matrix, must be solved. In these situations
it makes sense to ignore ordering time and compare the methods with respect
to factorization time or solution time. If we do this we see that the
cross-over point for factorization time is when N = 1500, and for solution

time the cross-over point is about N x 2200,
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TABLE 5.6

Ratio of BMD/BAND for Various Quantfties

n N Total time Total Store Fact. time Soln. time
5 36 10.33 2.01 2.00 3.00

10 121 8.52 1.79 2.44 3.00

15 256 7.34 1.55 -2.10 3.33

20 441 5.98 1.38 1.73 2.62

25 676 5.22 1.23 1.59 2.45

30 961 4.66 1.18 1.60 2.03

35 1296 3.98 1.07 1.32

1.96




- 43 -

Conciuding Remarks

In terms of execution time, our numerical experiments suggest
that our ordering algorith/solution package is attractive for "one-of"
problems only if N is extremely large. However, in terms of storage
requirements, and if only factorization and so1ution time is considered,
our scheme looks attractive compared to band oriented schemes if N is larger
than a few thousand.

Our experiments suggest that for our class of finite element
problems, the ordering code executes in O(N log N) time, and the ordering
produced for this problem yields storage and operation counts of O(N Tog N)
and O(NB/Z) respectively. For the square mesh problem, these counts are
known to be optimal, in the order of magnitude sense [4]. It is interesting
to observe that the partitioning produced by the minimum degree algorithm

prescribes dissecting sets similar in flavor to those for dissection

orderings [3,4]. This leads us to speculate whether the minimum degree
algorithm generates asymptotically optimal orderings for general finite

element matrix problems. Further research in this area seems appropriate.
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