On the Structure of Zero Finders.

Gaston H Gonnet*

Department of Computer Science
University of Waterloo

Research Report CS-76-15

March 1976



Abstract.

Zero finders written in FORTRAN usually impose a false and inconvenient
structure on the program. Desirable software and numerical features of a zero finder
are discussed. A zero finder with a new structure is presented together with a number
of examples that illustrate its flexibility. A similar routine, that uses an extended
secant sheme, for systems of nonlinear equations is presented and discussed.

Key words and phrases: nonlinear equations, zero finding, structure in FORTRAN,
systems of nonlinear equations, secant method.

- CR Categories: 5.15.

(*) This work was supported by the Department of Communications, National
Research Council and Defense Research Board of the government of Canada and by
the University of Waterloo.

1. Introduction.

One of the basic tools in the art of programming is the ability to isolate
problems and solve them in an efficient and reliable way. Using these reliable bricks,
the software architect can build more complex structures. This is the case with
elementary functions such as: sqrt, exp, arctan, etc. However for several well known
reasons, this is not the case for zero finders. Most of the currently used zero finders
present the same structure, namely: the zero finder accepts as a parameter, among
others, an external function; upon exit, it returns a “root” of the function. This scheme
has several drawbacks, the most important being: the function has to be written in a
separate subprogram generating an extra leve! of code which has to share variables
with the calling sequence; stopping criteria, range control, etc., are fixed and often do
not fit the user’s needs. After many years of fruitful numerical analysis and structured
programming, we should be able to devise a more flexible and general routine.

Section 2 contains a list of desired features; section 3 presents ROOTI, an
algorithm with some of the desired properties; and section 4 presents ROOT, an ex-
tension of ROOTI to systems of equations.



2. Desired Properties.

In this section we discuss a number of desired or undesired features that we want
to include or avoid in a zero finder. Most of them are obvious, while others may be
controversial. Our main interest is focused on the software properties rather than the
numerical ones, which are extensively discussed in the current literature (Dahlquist
[5], Ralston [9]).

2.1 - Structure

The most common structure of zero finders forces the code to be divided into a
calling program and a subroutine, thus requiring three levels:

program calls zero-finder (..params..,function)
zero-finder calls function
function

In languages like FORTRAN, where the subprograms cannot easily share global
variables and/or be defined in-line, this division becomes inconvenient. Since the
function belongs logically to the calting program, its parameters must be transferred
via common statements, and one must suffer the usual nuisances.

Some related problems arise when we try: A) to find a zero of a function that,
for its evaluation, requires the zero of another function; B) to solve several different
equations in parallel, (for example one iteration per function or like cooperating
processes); C) to find a zero of a function with certain accuracy and, later on, wish to
increase the accuracy without losing the previous information. Note that, with the
usual structure, A will require two different copies of the zero finder, and B and C
are not possible to satisfy.

Most of the problems regarding structure and control of the variables are
related to the fact that the zero finder retains control throughout the whole process.

2.2 - Self starting

The most reliable algorithms are based on mixed strategies that start with two
points, whose function values are opposite in sign, and can guarantee some kind of
convergence (Brent [2], Bus [4]). Sometimes we are faced with a problem for which we
know there exists a solution near a certain point, but providing an interval with a
change in sign is a very difficult task, equivalent to finding the zero. This will usually
imply function evaluations whose numerical information is lost. In an extreme case we



may be faced with solving a hidden f(x)2=0 ; here we can't provide such an interval,
although the solution is well defined. Our goal will be achieved with a subprogram that
either starts with two points opposite in sign and, consequently, has good reliability
properties, or starts with a single point, performs its best, and upon a change in sign
enters the reliable mode.

2.3 - Accuracy

It is generally agreed that five parameters may be needed to control accuracy (or
running time of the zero finder). These are: tolerances (absolute and/or relative) in the
argument and in the function value, and number of iterations. A logical "OR" of these
conditions is used to halt the execution. This is clearly rigid since we may want to test
for other conditions or for a different logical expression of the conditions (e.g.}f(x)| <
epsf .and. |x-root| < epsx).

2.4 - Evaluation savings

In some cases we know the function value at certain points (poles, singularities,
limits, etc.), that we would like to feed into the zero finder as initial information to im-
prove the first estimates. This may imply function evaluation savings and avoid
function evaluations at points where numerical difficulties exist.

2.5 - Derivatives

Derivatives of the function may come almost free with the evaluation of the
function, may be as hard to compute as the function, or may be impossible to
calculate. For example, comparing Newton's iteration with a direct parabolic inter-
polation, the evaluation of the derivative in Newton's method should take no more
than 13.7% of the function evaluation time (see appendix IV). Consequently, to obtain
the desired generality, our method should not request the derivatives of the function.

2.6 - Numerical reliability.

This means that if the algorithm converges, it does so to the root of the function.
This implies that if the algorithm provides an answer, it is correct. It is not surprising
to find, even nowadays, published algorithms that contain numerical bugs. One exam-
ple that illustrates this point is the bisection algorithm, that usually uses: xmed =
(a+b)/2. In a floating point number system, it is not always true that a < (a+b)/2 <b.



2.7 - Software reliability.

The algorithm should prevent and handle most of the exception conditions.
Typical exceptions are caused by: division by zero, exponent overflows and un-
derflows, destruction of storage, infinite loops, etc. No matter which data are fed into
the subprogram, the zero finder should always provide an answer (raising an exception
indicator is considered a valid answer, too) (Goodenough [6]).

2.8 - Efficiency

By efficiency we mean that the algorithm should perform as few function
evaluations as possible. In the author’s opinion, the set of functions that are fast to
compute, yet do not allow direct solution, is rather "small”. Hence, it is reasonable to
assume that the function evaluation will require more time to compute than the inter-
nal processing of the zero finder. Naturally we should improve the efficiency of the
zero finder itself; but in case of a trade off between internal efficiency and number of
function evaluations we should minimize the latter.

2.9 - Range control

We should have the possibility of controlling the range, or ranges, of acceptable
values of the unknown variable.

2.10 - Portability

The subprogram should be written in a portable subset of FORTRAN (Ryder
{10]). Machine dependent constants should be avoided or automatically generated.

2.11 - Calling sequence

Usual strategies to solve most of the points mentioned so far require adding
parameters and switches to the calling sequence. Certainly, long calling statements are
disgusting. This also deteriorates the efficiency, because the subprogram uses all those
parameters even though we may not be concerned about the corresponding cases.



3. The structure of ROOT]I.

The main new feature of this subprogram is its structure. To understand this
structure, note that the zero finder at each call returns a suggested estimate of the
root.

A simple typical calling sequence is:

W) =0
XNEW = initial-guess
I X = XNEW
FX = function-evaluation
XNEW = ROOTI(X,FX,FERR,XERR,W)
IF(not-satisfied)GO TO 1

where X is the argument, FX contains the function value, FERR and XERR are
output variables containing the function and argument error, and W is an auxiliary
vector used by ROOT] to store its information to make it reusable. ROOT1 returns
the new guess of the root of the function.

The method used is a combined strategy of direct parabolic interpolation
(Muller [8]), secant method and bisection, each of them applied when possible and in
that priority. Direct parabolic interpolation was preferred over inverse (Brent [2]),
although the direct method requires more computation, because the inverse is
deteriorated by big second or third derivatives of the function, while the direct is
independent of the second derivative. The order of convergence in both cases is
1.839.... The order of convergence of the direct parabolic interpolation near a double
zero, when it is possible to apply, is 1.2337... which compares favourably to the order
of the inverse which is 1.

The first time ROOT] is called, it records the value and returns a solution as if
f(x) = -x+a . The second time it applies the secant method and then uses direct
parabolic interpolation, secant or bisection. If bisection is possible it is always forced
after 30 iterations. After 80 iterations the algorithm raises an exception condition to
stop.

All the status and numerical information about the function we are solving is
contained in the vector W (dimensioned 9). There is no side effect in any call to
ROOTI besides the output variables. The initialization or reinitialization of the vector
W to solve a new function is commanded by setting W(1)=0.

The output parameter FERR contains |FX|. XERR contains the shortest
distance between arguments that contain a change in sign, or 1.e32 if no change in sign
has appeared. In case of any type of error, FERR and XERR are set to zero. Testing
for FERR and XERR alone, provides a graceful exit in the calling program in case of
any type of error (including excessive number of iterations).



Now we will analyze some of the problems described earlier and how they may
be solved with this scheme.

3.1 - Known starting values.

At most three (or four with a change in sign) pairs of argument and
corresponding function values will be kept by ROOT1, so more points will be useless.

[==]

w(l) =
XNEW

ROOTI(X1,FX1,FERR,XERR,W)
XNEW ROOTI(X2,FX2,FERR,XERR,W)
XNEW ROOTI(X3,FX3,FERR,XERR,W)

1 X = XNEW
FX = function-evaluation
XNEW = ROOTI(X,FX,FERR,XERR,W)
IF(not-satisfied)GO TO 1

Here we feed three pairs of function values that are known to the programmer;
the suggested values in the first two calls are merely discarded.

3.2 - Control of accuracy.

Since this is done outside the subprogram with the aid of the variables FERR
and XERR, any sophistication is possible without adding any extra overhead to
ROOTI.

3.3 - Nested calls.

This is a different scheme to solve a 2X2 system of nonlinear equations.



WX(1) =0
X = initial-guess-for-x
10 WY(1) = 0

Y = initial-guess-for-y
20 Y = ROOTI(Y,G(X,Y),FERR,XERR,WY)
IF(not-satisfied)GO TO 20

X = ROOTHX,F(X,Y),FERR,XERR,WX)
IF(not-satisfied)GO TO 10

3.4 - Range Control

1 X = XNEW
XNEW = ROOTI(X,F(X),FERR,XERR,W)
IF(XNEW is-out-of-range) correction-on-XNEW
IF(not-satisfied)GO TO 1

Since the returned value is only a suggested value, we are free to change it in any
way before we feed it to ROOT1. When we have a single range, a simple and useful
correction is:

XNEW = A*X 4 (I-AP*XNEW  with 0<A<1

This may be needed in case we do not provide an initial interval with a change in
sign. When bisection is possible, the suggested values are guaranteed to fall inside the
interval with the change in sign.

Appendix I shows the code for ROOT]1. Because of the use of the auxiliary
vector W, the routine becomes rather difficult to understand. Help in understanding it
may be provided by performing the change in names mentioned in the comments.

This subroutine was extensively debugged over a large sample of functions
where it performed extremely well.



3.5 - Performance.

Table I compares results obtained with ROOT1 against the values obtained for
similar routines by Bus and Dekker [4].

Algorithms A, M and R are described by Bus and Dekker [4]; B was published
by Brent [2] and C by Anderson and Bjorck [1].

Table 1

Total number of function evaluations to solve all the functions in each group.

Function Group 1 11 I v A%
Algorithm

functions in group 14 12 6 1 5
A 136 171 3118 >5000

M 137 199 959 27

R 123 163 1036 23

B 124 223 808 18

C 126 185 2720 969

ROOT1 (+) 98 118 240 36 62
ROOT!1 (++) 117 131 305 36 65

Group 1 consists of various instances of functions with a simple zero in the interval
considered.

Group II is composed of functions with a high order inflection point near the zero.
Group 111 are powers of x (3,5,7,9,19,25)

Group IV is a function for which all derivatives vanish at its root.

Group V consists of the function xXlog(nXx) + 1/(4n) that has two separate zeros
close together and near a region where the function is not defined (x<0). This is the
case where it is very difficult to provide an interval with a change in sign. It was tested
for n=50,100,150,200 and 250 with a single starting value, x=1.



Notes:

a) ROOT!1 was run with function value tolerance of 1.E-14 (+) and with argument
tolerance of (1+ |X|)X1.E-14 (++).

b) ROOT1 was designed to work on the function value rather than on the argument
interval. This explains in part the difference between the two rows of results.
c¢) For ROOT1, except for group IV, the value at one end of the interval was fed into
the zero finder without calculation. This accounts for one function evaluation per
function.

d) Group I in Bus and Dekker [4] included three polynomials of degree 2. These are
solved exactly by ROOT]1 with only three function evaluations. To make a more fair
comparison these functions were excluded from group 1.

e) All the computations were done in a Honeywell 6060 with 63 bits accuracy in
floating point. Due to the short range in exponent of the H6060 floating point system,
some real zeros appeared, which were caused by exponent underflow while evaluating
x1 for n>7.

It is clear from the results that the algorithm presented behaves somewhat better
than the other algorithms referenced for a large variety of functions, even without
regard to its structural advantages.

4. The Structure of ROOT, a system solver.

This subprogram has the same structure as ROOT! with the corresponding
changes for systems of equations.

The method applied is a secant scheme extended to systems of equations. In this
case there are no known extensions of the bisection and parabolic interpolation
schemes, and algorithms that achieve comparable reliability characteristics and
convergence are not known.

However, when convergence occurs, the algorithm is very efficient. Note that in
each iteration, only n (dimension) function evaluations are performed against n
function and nXn derivative evaluations in Newton's scheme or n and nX{n+1)/2
respectively in the method described by Brown [3]. Moreover no derivatives are
required, unlike Brown [3] that suggests the use of two function evaluations to
estimate each derivative. Appendix II shows the code of ROOT and Appendix III
shows the calculation procedure.



-10-

4.1 - Example of use.

DO 10 1=1,IA
10 W(I,1) = 0.0

XNEW(1)

XNEW(2)

initial-guess
initial-guess

20 DO 30 I=1,N

30 X(I) = XNEW(I)
FX(1) = FI(X(1),X(2)....)
FX(2) = F2(X(1),X(2)....)

CALL ROOT(N,X,FX,ERR,XNEW,W,IA)
IF(not-satisfied)GO TO 20

N is the number of functions in the system. X and FX ar¢ ihe input vectors con-
taining the argument and function values. ERR is an output variable that contains the
sum of {FX(i)|. XNEW is an output vector that contains the suggested zero of the
system. W (dimensioned IA X IB) is a work matrix where ROOT stores its
information. The input variable IA should be at least 2N+2, and IB (the other
dimension of W) should be at least N+2.

The initialization or reinitialization of the vector W to solve a new system of
equations is commanded by setting the first column of W to 0.

There is no parameter similar to XERR in this case for obvious reasons. Besides
this all the rest of the remarks made about ROOTI apply to ROOT.

4.2 - Performance.

Table Il compares ROOT with the Newton method extended to systems of
nonlinear equations and with the algorithm described by Brown [3]. The systems of
equations tested are described in Brown [3].



-11-

Table II

Number of function and derivative evaluations needed to solve a system of
nonlinear equations.

Function 1 Il I11
System dimension 2 3 2
Algorithm [3] 8/12 18/36 6/9
Newton [3] 8/16 21/63 8/16
ROOT 18/0 60/0 12/0

A) nn/mm denotes nn function evaluations and mm derivative evaluations,
without making distinction in which function or which partial derivative is evaluated.
B) ROOT was run until ERR (the sum of |FX(i)|) was smaller than 1.E-9, which
gives more accuracy than the results presented in {3]. Actually the estimates produced
in the last iteration would yield ERR<1.E-14 .

5. Conclusions.

These routines were developed for a computer network simulator in which they
are used. Efficiency and reliability were the primary goals, since the routines were
repeatedly used and buried several levels deep within the simulation program. The
simplicity of their design, gaining generality, is the key to their efficiency and
reliability. Avoiding the artificial splitting between main line and function evaluation,
has resulted in simpler, clearer and more structured programs.

The general scheme presented for zero finders has been similarly applied to the
solution of ordinary differential equations (Krogh [7]). It can also be used for
minimization, quadrature, etc., that present the same structure and, to some extent,
the same difficulties.



-12-

6. Acknowlegments.

For their patience, encouragement and precise suggestions, the author would
like to thank Prof. D.E. Morgan and Prof. M.A. Malcolm.

7. References.

1] Anderson N., and Bjorck A. A new high order method of reguta falsi for
computing a root of an equation. BIT 13, (1973). pp. 253-264.

[2] Brent R.B. An algorithm with guaranteed convergence for finding a zero
of a function, Computer Journal, Vol 14-4, (Apr. 1971). pp. 422-425.
or: Minimization Without Derivatives. Prentice-Hall, Englewood
Cliffs, 1973.

[3] Brown K.M., and Conte S.D. The Solution of Simultaneous Nonlinear
Equations. Proceedings A.C.M. National Conference (1967). pp.
11i-114,

[4] Bus J.C.P., and Dekker T.J. Two Efficient Algorithms with guaranteed
convergence for finding a zero of a function. TOMS Vol 1-4 (Dec
1975). pp. 330-345.

[5] Dahlquist G., and Bjorck A. Numerical Methods. Prentice-Hall,
Englewood Cliffs, 1974. Ch. 6.

[6} Goodenough J.B. Exception handling issues and a proposed notation.
CACM Vol 18-12, (Dec 1975). pp. 683-696

[7] Krogh F.T. An integrator design. JPL Technical Memorandum 33-479.
Pasadena. (May 1971).

[8] Muller D.E. A Method of Solving Algebraic Equations Using an
Automatic Computer. Mathematical Tables and Other Aids to
Computation, Vol 10, (1956). pp. 208-215.

[9] Ralston A. A First Course in Numerical Analysis. Mc Graw-Hill, New
York, 1965. Ch. 8.

[10] Ryder B.G., and Hall A.D. The PFORT Verifier User’'s Guide. Bell
Labs, Murray Hill, NJ.



-13-

8. Appendix I

C SOLVES F(X)=0 BY REPETITIVE CALLS
DOUBLE PRECISION FUNCTION ROOTI(X, FX, FERR, XERR, Q)
DOUBLE PRECISION X,FX,FERR,XERR,Q(9),D,DABS,DECR,DSIGN,
1 EPS,P,R,V,U,W,Z

X IS THE ARGUMENT

FX IS THE VALUE OF THE FUNCTION AT X

FERR IS THE FUNCTION ERROR OF THE LATEST ARGUMENT

XERR IS THE WIDTH OF THE ARGUMENT INTERVAL WHEN BISECTION
IS POSSIBLE; OTHERWISE 1S 1.E32.

Q IS AN AUXILIARY VECTOR OF SIZE 9
(Q(1)=0 PROVIDES INITIALIZATION)

TO OBTAIN AN UNDERSTANDABLE PROGRAM, SUBSTITUTE:

Q(1,2,3,4,5,6,7,8,9)->FXA ,XA,FXB,XB,FXC,XC,FXO,XO,ITER.

oNoNoNoNoNoNoRoRORo RO X!

IF (REAL-ZERO) (NOTHING-TO-DO)
IF(FX .EQ. 0.0)GO TO 810
FERR = DABS(FX)
IF(FIRST-TIME) THEN (INITIALIZE; ESTIMATE-FIRST-ROOT; EXIT)
IF(Q(1) .NE. 0.0GO TO 20
DO 10 1=3.9
10 Q) = 00
Q(ly = FX
Q2 = X
ROOTI = X+FX
XERR = 1.E32
RETURN
20 Q) = Q(9)+1.0
C IF (TOO-MANY-ITERATIONS) THEN (ERROR)
IF(Q(9) .GT. 80.)GO TO 800
C IF (REPEATED X) THEN (ERROR)
IF((Q(9) .GE. 2.0 .AND. X .EQ. Q(4)) .OR. X .EQ. Q(2))GO TO 800
C (PUSH X->A->B->QC)
DO 30 1=1,4
J = 54
30 QUJ+2) = Q)
Q) = FX
Q2) = X
C IF(CHANGE-IN-SIGN) THEN (STORE-OPPOSITE-VALUE)
IF(Q(1)*DSIGN(1.D0,Q(3)) .GE. 0.0)GO TO 40
QM = Q(3)
Q(8) = Q&)

o

[



-14-

C  CALCULATE XERR
40 XERR = 1.E32

IF(Q(7) .NE. 0.0)XERR = DABS(Q(8)-Q(2))

C  IF(30<ITERATIONS AND POSSIBLE) THEN (BISECT)
IF(Q() .GT. 30. .AND. Q(7) .NE. 0.0)GO TO 70
V= (Q(3)-Q(1)) / (QH-Q(2))

C  IF(3-OR-MORE-POINTS) THEN (TRY-MULLER)
IF(Q(5) .EQ. 0.0)GO TO 50

U = (Q(5)-Q(3)) / (Q(6)-Q4))

W = Q(4)-Q(2)
Z = (Q(6XQ(2) / W
R = (Z+1.0)*V-U

IF(R .EQ. 0.0)GO TO 50
P = 2.0*Z*Q(1)/R
D = 2.0%P/(W*R)*(V-U)
IF(D .LT. -1.0)GO TO 50
ROOT1 = Q(2) - P/(1.0+DSQRT(1.0+D))
IF(Q(7) .EQ. 0.0 .OR. (Q(2) .LT. ROOT! .AND.
1 ROOT! .LT. Q(8)) .OR. (Q(8) .LT. ROOTI
2 AND. ROOTI1 .LT. Q(2)))RETURN
C (APPLY-SECANT-ITERATION)
50 IF(Q(1) .EQ. Q(3) .AND. Q(7) .NE. 0.0)GO TO 70
IFQ(1) .EQ. Q(3))GO TO 800
DECR = Q(1)/V ,
C IF(RELATIVE DECREMENT < EPSILON) PRODUCE EPSILON*$ STEP
IF(DABS(DECR)*4.6D18 .LT. DABS(Q(2)))DECR =
1 DSIGN(1.74D-18*Q(2),DECR)
ROOT! = Q(2)-DECR
C IF(OUT-OF-RANGE) THEN (APPLY-BISECTION)
1F(Q(7) .EQ. 0.0 .OR. (Q(2) .LT. ROOT1 .AND.
i ROOTI .LT. Q(8)) .OR. (Q(8) .LT. ROOTI
2 .AND. ROOT! .LT. Q(2)))RETURN
C APPLY BISECTION
70 ROOTI = Q(2) + (Q(8)-Q(2))/2.0
RETURN
800 PRINT,”ERROR IN ROOTI!"
810 FERR = 0.0
XERR = 0.0
RETURN
END



-~]15-

9. Appendix II

Oo0000O0O00O0000

o000 o000n

20

SUBROUTINE ROOT(N,X,FX,ERR,XNEW,Q,IA)

N IS THE NUMBER OF FUNCTIONS

X IS THE ARGUMENT VECTOR

FX IS THE FUNCTION VALUES VECTOR

ERR IS AN ESTIMATE OF THE ERROR

XNEW IS THE SUGGESTED SOLUTION VECTOR

Q(IA,IB) IS A WORK AND STORAGE AREA OF ROOT

THE FIRST COLUMN OF Q SHOULD BE 0 FOR INITIALIZATION
IA 1S THE FIRST DIMENSION OF Q AND SHOULD BE
GREATER OR EQUAL THAN 2*N+2, IB (THE SECOND DIMENSION)
SHOULD BE AT LEAST N+2

DOUBLE PRECISION X(1),FX(1),ERR,XNEW(1),Q(IA,1),AUX,DABS,
1 DAMP,SUMP

Q(1::N,1::NP1) CONTAINS FX VECTORS COLUMNWISE;

Q(NP1::N2,1:NP1) CONTAINS X VECTORS COLUMNWISE;

Q(NORM,1:NP1}) CONTAINS SUM OF DABS(FX(I));

Q(NTIM,1::NP1) CONTAINS NUMBER OF TIMES USED IN COMPUTATIONS.
Q(1:N,NP2) IS USED AS A WORK VECTOR A

NPl = N+1
NP2 = N+2
N2 = 2*N

NTIM = N2+2

NORM = N2+1

NAGE = (N+3)/2

[F(N .LT. 1 .OR. NTIM .GT. IA)GO TO 800
ERR = 0.0

DO 5 I=1,N

ERR = ERR + DABS(FX(I))

IF(ERR .EQ. 0.0)RETURN

IF(Q(NORM,1) .NE. 0.0)GO TO 100

DO 10 I=1N
IN = I+N

DO 20 J=1,NPI
QUN,J) = 0.0
QL = 00
Q(IN,I) = 1.0
Q(L.I) = 100.0

QINTIM,I) = N
Q(NORM.I) = 1.E32



~16-

Q(IN,NP1) = X(I)

10  Q(,NP1) = FX(I)
Q(NORM,NP1) = ERR
Q(NTIM,NP1) = 0
DAMP = 0.99
GO TO 150

C

100 JSUS = 1
DO 110 I=2,NP1
IF(Q(NTIM,I) .GE. N2)Q(NORM,I) = 1.E32
IF(Q(NTIM,JSUS) .LT. NAGE)JSUS = 1
IF(Q(NTIM,]) .GE. NAGE .AND. Q(NORM,I) .GT. Q(NORM,JSUS))
1 JSUS = 1

110 CONTINUE

C

DO 120 1=1,N
IN = I4+N
Q(IN,JSUS) = X(I)

120 Q(I,JSUS) = FX(I)
Q(NORM,JSUS) = ERR
Q(NTIM,JSUS) = 0
JSMA = 1
DAMP = 0.0
DO 130 J=1,NPI
IE(Q(NORM,J) .GT. 1.E31)DAMP = 0.99
IF(Q(NORM,J) .LT. Q(NORM,JSMA))JSMA = J

130 CONTINUE
IFUSMA .EQ. NP1)GO TO 150

DO 140 1=1,NTIM
AUX = Q(I,JSMA)
Q(LJSMA) = Q(I,NPI)

140 Q(I,NP1) = AUX

150 DO 160 1=1,N
160 Q(I,NP2) = Q(I,NPI)
C LINEAR EQUATION SOLVER (SHOULD NOT DESTROY Q)

CALL LEQS(Q,N,IA,Q(1,NP2))
SUMP = 0.0
DO 170 1=1,N

170 SUMP = SUMP + Q(I,NP2)
IF(DABS(1.0-SUMP) .LT. 1.D-10)GO TO 800
DO 200 I=1,N
IN = I+N
XNEW(I) = Q(IN,NPI)



-17-

DO 210 J=1,N
210 XNEW(I) = XNEW(I) - Q(IN,Jy*Q(J,NP2)
C IF(SYSTEM-NOT-COMPLETE) DAMP-SOLUTION
200 XNEW(I) = XNEW(I)/(1.0-SUMP)*(1.0-DAMP) + Q(IN,NP1)*DAMP
DO 230 J=1,NP1
230 Q(NTIM,J) = Q(NTIM,J)+1.0
RETURN
800 PRINT,"ERROR IN ROOT”
ERR = 0.0
RETURN
END

The subroutine LEQS solves a system of linear equations. Its use should be:

CALL LEQS(A,N,IA,B)

to solve the system (N X N} A.X=B. A is dimensioned IA X IA. The resulting
solution appears in B.

10. Appendix 111

Secant iteration extended to system of equations.

At each step of the iteration we calculate a new argument vector, Xg, possible
solution of the system, based on n+1 previous points.

Let yj and xj be corresponding function and argument column vectors; let 'Y
and X be the matrices (y1,y2,...,¥n} and {x],x2,....xn). Let C be a constant column
vector and W=(1,1,...,1) a row vector of dimension n. Let A be an nxy matrix. We
have then:



-18-

yi=Axj+C
Y =AX + CW
p = n+l
C=yP AXP

(Y-y W) = A(X-xp.W)
(Y-yp W).(X-xp. Wyl
Let Xg- be the searched solution, then

A.Xg +C=0
Xg = -A~ l.c
= -ALogAxp
A' yp

- (X- Xp- -W). (Y'Yp W) 1
Let V (Y-yp.W) 1 .yp and ]et [Z| denote W.Z (the sum of its elements)
Xg = Xp. (1+|V|) XV
Let P be the solution of Y.P = yp
then:
= P / (1-|P|) and
Xg = (xp - X.Py/(1-|P])

The evaluation of xg requires, at each step, the solution of a system of linear
equations of order n , a matrix-vector product and other O(n) operations. When a
new point is evaluated and control is returned to ROOT, we select the n+1 vectors
whose ||y|| is smallest, provided that they are used at least (n+3)/2 times, and not
more than 2n . We order them so ||ypi| is the smallest of the norms.

11. Appendix IV.

The orders of convergence of Newton's method and direct parabolic
interpolation are 2 and 1.83928675... respectively. To obtain the same accuracy at the
same cost, the relation between the costs per iteration should be:

In(2)/1n(1.839...) = 1.1374...

since both methods require the function evaluation, the derivative evaluation in
Newton’s method should cost no more than 13.7%.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

