A PRACTICALLY LINEAR UNIFICATION ALGORITHM
by
Lewis Denver Baxter
Research Report CS-76-13
Department of Computer Science
University of Waterloo

Waterloo, Ontario, Canada

February, 1976

ABSTRACT

An algorithm which unifies first-order expressions is presented.
The algorithm is proved correct and also the time taken is shown to be
0(nG(n)) where G is practically constant; This is an improvement over

previous algorithms which required exponential or quadratic time.

KEYWORDS AND PHRASES

computational logic, unification, analysis of algorithms, theorem-proving,

topological sorting

1. INTRODUCTION

The unification problem is to determine, when given two expressions
containing variables, whether or not there exists a substitution of expressions
for those variables which applied to the two eXpressions makes them equivalent.

We consider only first-order expressions.

Unification, under the name “L.C.M." (in analogy to the arithmetic
property of least common mu]tiple); was mentioned as early as 1921 by the
logician, Post [7]. He was interested in the matching problems associated
with generalizations of classical axiomatizations of propositional calculus.
Again in 1955 a computer program called the "Logic Theorist" [6], which
attempted to prove theorems of propositional calculus by heuristic methods,
used a matching process very similar to unification. However it was not
until the Tandmark paper of Robinson in 1965 [8] that unification gained

an official title and was presented as an algorithm.

Any computation which makes inferences from logical expressions must
inevitably incorporate a unification a1gorithm; This is the case in theorem-
proving systems, whether they be resolution-oriented or of the natural-deduction
type, and in programs which apply theorem-proving techniques such as in
program analysis/synthesis, deductive question-answering systems and robot
technology. Unification also provides the méchanism involved in pattern-
directed invocation of subroutines which are featured in some programming
languages of artificial intelligence, such as PROLOG [11]. Hence we see

the need to develop very efficient unification algorithms.

Robinson's original abstract algorithm requires exponential time.

An improved version which uses a tree-like data structure to represent

-2-

expressions was presented in [9]. However a paradoxical situation arose:
expressions which require linear space to store in the form of a tree with
shared subexpressions may now require exponential time for the simple
operation of determining if a variable occurs in the expression. This over-
sight was remedied by Venturini Zil11i [12] whose algorithm also maintained
a list of variables which an expression contained; It was proved that this

algorithm requires quadratic time.

A partial breakthrough was achieved in [2] where the operation of
determining if a variable occurs in an expression is delayed until the end.
The first of two stages in the algorithm transforms sets of expressions into
simpler sets which is now an easy instance of the unification problem. This
easy case can be solved in linear time during the second sorting stage by

determining if an associated directed graph contains a circuit.

In this paper the algorithm in [2] is improved upon by speeding up
the transformational stage. The basic operations in this stage manipulate
sets of eXpressions: two sets are merged and the set containing an expression
is found. Using well-known techniques for these operations, in which sets
are represented as balanced trees, an upper bound for the time is found to be
of the order of nG(n) where G is "practically" constant. For eXamp]e, when-

65536

ever n is less than 2 » G(n) is at most 5.

In section 2 of this paper we define our notation. In section 3 we
describe two strategies of designing unification algorithms and eXp]ain why
one of these, of which our algorithm is an example, is superior than the other.

We also describe our algorithm abstractly and then describe the data structures

-3-

used to obtain an efficient implementation. Section 4 contains a flow-
chart describing our abstract algorithm and a collection of structured pro-
grams which implements it. In Section 5 we prove that both the transfor-
mational and sorting stages of our algorithm are correct. In Section 6

we perform an analysis of the time required by the algorithm.

2. PRELIMINARIES

Here we introduce our notation and conventions.

The reader should refer to [8] for a formal presentation of expressions
and substitutions. Briefly an ekpression is either a variable or an n-ary
(constant) function-symbol followed by n ekpressions. We define a term as an

expression which is not a variable.

A substitution is a finite set of ordered pairs'{<v1,e1>,...,<vn,en>}

in which the vi’s are distinct variables and the e,'s are expressions. We

i
write such a substitution as'{v1 © 8ys. .V, en}. A substitution can be
considered to be a function which maps variables into ekpressions; this function
can then be extended to ekpressions. We will use the lower-case Greek letters
0, oand Tt to denote substitutions: Prefix notation is consistently used

when writing substitutions.

In this paper all substitutions are represented as the implicit
product of component substitutions. If this product is to be "multiplied"
out then the unification problem will be inherently inefficient, as explained

in [2]. Hence the meaning of the product of substitutions:
{vn < en} ... {v] < e]}
is to first app1y'{v1 < e]} by substituting every occurrence of the variable

vy by the expression ey then appiy‘{v2 “ en},..., and finally apply
{vn < en}.
The unification problem is to decide, given two expressions ey and €55

if there exists a substitution o such that c(e]) = c(ez). If such a unifying

substitution exists we would like to find the most general such unifier.

-5-

We now define some concepts.

The substitution o unifies the set of expressions,‘{e1,...,en}

if and only if (iff) 0(e1) = ,,, = o(en).

o unifies the set S containing sets of expressions iff

TeS > o unifies T.

In the next two definitions X is either a set of expressions or a

collection of sets of expressions.

o is a mgu (most general unifier) of X iff o unifies X
and vplo unifies X » gt(p = t0)].

X is unifiable iff 3Jo(o unifies X).

The time taken during an algorithm is relative to the Tength of, or
number of symbols in, expressions. In computing this length only variables
(denoted by lower-case letters) and function-symbols (denoted by upper-case

letters) are counted. Formally:

n
length [f(e],...,e 11 =1+ 1length [e.]

where either f is a variable and n=0 or f is a function-symbol and I ERPRPLS

are its n > 0 arguments.

In the analysis of algorithms the O-notation will be used. An
algorithm requires 0(f(n)) time relative to the length of the input, n, if
there exists a constant ¢ such that at most c.f(n) steps are taken by the

standard model of a computing device: the Random Access Machine [1].

3. DESCRIPTION OF THE ALGORITHM

So far, all unification algorithms which have been presented can be

characterized by two overall strategies: STRATEGY, and STRATEGY We

1 2°
will explain why STRATEGY] requires at Teast quadratic time and will justify

our choice of STRATEGYZ.

In STRATEGY, whenever a pair {v,e} is to be unified it is determined
if the variable v occurs in the expression e; if so unification fails else
the substitution {v « e} is applied. Robinson's original abstract algorithm
used this strategy and was inefficient since the substitution was explicitly
applied in a character-string representation of expressions. This strategy

also characterizes the algorithms presented in [9,12].

STRATEGY2 consists of two stages: a transformational stage

in which sets of expressions are simplified, followed by a sorting stage
in which, effectively, a directed graph is examined for the presence of a
circuit. If one exists unification fails otherwise the graph is sorted to
find the unifying substitution. The algorithm in [2] and in this paper

use this strategy.

The graphical perspective is important since the analysis of graphical
algorithms justifies why STRATEGY2 is superior. Furthermore STRATEGY2 requires
only Tinear time for the special case of unification in which all variables
belong to exactly one set of expressions. Here the transformational stage
is quickly applied and the sorting stage, which always requires only Tinear
time, is performed. We will construct such an easy case of unification from
a directed graph and by comparing STRATEGY] with the analogous graphical
method we will show why STRATEGY] is inefficient.

-7-

Given a directed graph we can construct sets of expressions such
that the graph has a circuit iff the set is not unifiable. This construction
is done by associating with each vertex v of the graph a distinct variable
v, Ifv T Vise..sV >V are all the edges emanating from v then we construct
the pair of expressions:'{v',Fn(v{;...,vA)} where F_ is an n-ary function-
symbol. AT171 such pairs constructed from all vertices comprise the collection

of sets of expressions.

This constructed set is a special case mentioned earlier, hence takes
linear time using STRATEGYZ. For this case we are convinced that STRATEGY1
will take quadratic time for the following reasons. If the constructed set
is processed using STRATEGY] then effectively an algorithm belonging to this
class operates "on-line", that is,referring to the graphical analogy, the
graph is constructed edge by edge. After each edge is added to the graph
it is determined whether there is a circuit due to the addition of that edge.
(This corresponds to the checking of a variable occurring in an expression).
The next edge is added, etc., so that the checking for circuits occurs
continually. It is conjectured that no algorithm which continually checks
for circuits in the manner of STRATEGY] can operate in linear time, even for
this special case. If such an algorithm existed we would have a circuit-
detecting algorithm which operates in "real-time", that is, the amount of
time spent between adding each successive edge is constant. No such real-
time algorithm is known and its non-existence is supported by results on
the transitive-closure algorithm [5]. Such a real-time algorithm must
effectively update the transitive-closure graph {which is induced by the
relation: “"path between") in constant time. If this were possible we would

have a transitive-closure algorithm more efficient than the known best.

-8-

This would also be the case if STRATEGY] was better than quadratic.
Having justified why STRATEGY2 is probably superior, we will now present
a new algorithm of that class which retains much of the flavour of [2].
Since the sorting stage has a well-known Tinear algorithm [4] we will

concentrate on the transformational stage.

Transformational Stage

This stage inputs a set of pairs of expressions to be unified,
SI’ and transforms them into a collection of sets of expressions, FO'
Here unification may fail due only to the attempted unification of a pair
of terms with different function-symbols. The two main sets used in the
transformational stage are S, a set of pairs of expressions and F, a
collection of sets of expressions. F always has two special properties:
all the terms (if any) in each set of F begin with the same function-symbol
and each subexpression of the input set, SI, belongs to eXactly one set
of F. Initially S is SI and F consists of all the subexpressions in SI’
each in a set of its own. Finally S is empty and F is the output set, FO.
The relationship between S and F is given by the following invariant

property:
3 0 (o unifies S and o unifies F).

Intuitively consider that we are unifying S subject to the constraints

given by F.

We now give an outline of our method. This will be expanded in

more detail later in the form of a flowchart and programs.

repeat until S is empty:
begin delete any pair'{e],ez} from S;
let ey € T1 and e, ¢ T2 where T],T2 e Fs
if T, contains some term f'(egs....e,) and
T, contains some term f"(e;,...,eﬁ)
then if f' # f"
then UNIFICATION FAILS

. . I 1 . i "y,
else add to S the pairs {e],e1},...,{en,en},

mer ge T] and T2, that is replace T] and T2 by T1 U T2;

end.

The justification for the merging is, where ey € T] and e, € T2:

o} unifies'{e],ez} & o unifies Ty iff o unifies To u T

1 2°

Also o unifies'{f'(ei,...,eﬁ),f"(e{,...,e&)}

iff f'=f" &m=n & o unifies'{{ei,e{ ,...;{eﬁ,eg}}.

Note that the two special properties of F are maintained. Each
subexpression of SI belongs to exactly one set of F since initially this is
trivially true and merging preserves this property. Also the test f'=f"

ensures that all terms belonging to a set of F begin with the same function-

symbol.

The important operations of this transformational stage are:

FIND which set of F an expression belongs to and MERGE two sets of
expressions.

To efficiently perform these basic operations we represent F as a

forest of balanced trees. Each set of F is represented as a tree, each

-10-

vertex of which refers to an expression. Since we must know if a set contains
a term, the root of a tree points to some arbitrary term within that tree.
The root of a tree is effectively the name of the set which is represented

by the tree. Figure 3.1 illustrates a forest.

To find which set an expression belongs to we traverse a path from
the vertex of the tree corresponding to the expression towards the root.
We then collapse this path directly onto the root, that is, each vertex
of this path now points directly to the root. Figure 3.2 illustrates such

an example.

To merge two sets we balance the representing sets by making the
"Tighter" tree a subtree of the "heavier" tree, where the comparatives
refer to the number of vertices in the trees. In the case when the "heavy"
subtree contains only variables and the "light" subtree contains some term
we have to ensure that the new root points to some term. If both sets
contain terms then we must put the appropriate arguments into S by examining
the terms pointed to by the roots. Figure 3.3 gives an example of merging.
Initially F is the collection FI’ of all subexpressions in the input set SI’
hence is represented by a "newly sown forest" in which each tree of the

forest contains only one vertex.

The set of pairs of expressions, S, is represented as a stack; to
choose a pair from S we simply "pop" off this stack the top two elements

which refer to expressions.

The expreSsions themselves are represented by trees in which all
common variables are shared. That is, different occurrences of the same

variable are represented by different pointers to the same vertex of the

Figure 3.1: -11-

S

The forest which represents the collection of sets:
{ {x,y,v}, {G(p)}, {G(F(u,y)),t}, { F(z,x),u,w,F(s,G(t)).,r}, {q} }

Figure 3.2:

)
Before After
Both trees represent-{e 5€0se s .7} before and after FINDING the set which contains
the expression, e 6ert1ce e1c> €115 &g and e; on the path from e, to the
root are collapsed d1rect1y onto the §oot

Figure 3.3:

This tree is obtained after MERGing the first and fourth trees of Figure 3.1. It
represents the set { X,y,v,F(z,x),u,w,F(s,G(t)),r}

-12-

tree. Figure 3.4 illustrates both the representation of expressions and
of S as a stack. Each expression is in fact a pointer to a 1ist of its
attributes: SYMBOL, VARIABLE, ARGLIST; PARENT, TERM and COUNT. The first
three represent the expression and hence never change and the last three

attributes are used in the representation of F as a forest of trees.

SYMBOL is the first character of an expression, VARIABLE indicates
whether the expression is a variable or a term and if it is a term, ARGLIST
points to a 1ist of its arguments. In the forest representation of sets
of expressions PARENT indicates the next vertex towards the root of a tree.
If PARENT is null then the expression is at the root in which case TERM
indicates if the particular set also contains a term. Also COUNT tells
us the number of vertices in the tree and is used to balance trees during
a merge operation. Initially for all subexpressions PARENT is null, COUNT
is 1 and for terms, TERM points to itself otherwise for variables TERM

is null.

Sorting Stage

In this stage we construct from the output set F0 of the transform-
ational stage a directed graph whose size is linear relative to the length
of SI. We attempt to topologically sort this graph, that is embed the
vertices in a linear order. If we cannot do this then the graph contains
a circuit and F0 is therefore not unifiable. If we can then the sorted
graph indicates the most general unifier of FO.
In theory, each vertex of the directed graph corresponds to each

set in FQ. Given a set T of FO’ we choose, if possible, only one term

from it. Let Visee sV be all the variables which occur in the term where

. ~-13-
Figure 3.4:

STACK + l1]1lly

STACK represents S, the set of pairs of expressions:
{ {w,F(x,G(yN}, {G(F(F(y,x),z)), G(w)} }

Figure 3 5:

{u, v, G(F(g,x) , G(=) } H{ g.5.t1) !
({x,, F(“)UJ }#——({ Y, =, Flg,x), 'F:('ns.)})

The directed graph associated with the collection:
{ {u,v,6(F(q,x)),6(2)}s {a,s,t}, {x,r,F(u,u)}, {y,z,F(q,x), F(r.s)} }.

The underlined terms denote particular representatives of the sets, from which the
directed graph is constructed. :

-14-

variable i belongs to the set Ti of FO‘ We then construct directed edges:
T~ Ti from the vertex corresponding to T toward the vertex corresponding

to Ti’ Figure 3.5 illustrates this construction.

In practice, however, we must construct a similar directed graph
directly from the forest representation of FO‘ Each vertex 1in this
directed graph corresponds to a variable occurring in F0 or to a root of
a tree 1in FO' If in the tree representation of a set T belonging to FO’
vertex v, corresponding to a variable, has root r then we construct the
directed edge: v - r. If the root of a tree T is r and if a term belongs
to T which contains variables Vise-esVp then we construct the edges: r » Vi-
The directed graph is constructed by examining each such tree in FO‘ The
number of vertices and edges in this graph is linear relative to the length
of SI. A detailed algorithm is given in the next section to construct from
F0 the directed graph which is then input to the topological sorting

algorithm.

If the topological sorting algorithm detects a circuit in the
directed graph then we exit with unification failing. Otherwise a linear
sort of the vertices will be output, from which we can easily construct
the most general unifier. See Figures 3.6 to 3.9 for examples illustrating

these constructions.

Figure 3.6: -15~

o
.
o
.
*

Arrows

- : 1inks vertices in the
trees.

—{> :indicates the arguments
of a term.

=4> :points to a particular
term in a tree.

/

The forest representation of the collection of Figure 3.5.

Figure 3.7:

A
5

The directed graph associated with the collection of Figure 3.5, constructed from the
forest representation of Figure 3.6.

-16-

Figure 3.8:

The directed graph in Figure 3.7 contains one circuit@ - ® - O ~@ .
If we replace the edge @ - Q by @ - @ then the new graph can be
topologically sorted as indicated here.
Figure 3.9:
The most general unifier for the collection:

{{u,v,6(F(qst)), G(2)}, {a,s.t},{x,rsFlu,u)},{y,z,F(a,t),F(r,s)}}
induced by the topological sort in Figure 3.8 is Og O7 -+« O
where oy = {x+ F(u,u)?}

o, = ly « F(a,t)}

oy = {v < u}

oy = {z < F(gq,t)}

o = {r < F(u,u)}

g = {u « G(F(q,t))}

o5 = {q « s}

g = {t « s}.

-17-

4, ALGORITHMS

In this section we present the flowchart for the transformational
stage of our algorithm for unifying a set SI of pairs of expressions.
Since the flowchart is abstract, in that we do not specify the data
structures used nor do we describe how the operations are performed, we
also give a structured program, TRANSFORM. This uses several subroutines:
DECOMPOSE, which unifies two terms by extracting their arguments, FIND which
determines the set an expression belongs to and MERGE which constructs the

union of two sets.

We will not present a topological sorting algorithm since this is
readily obtained from the literature [4], however we give programs to
communicate with it. CONSTRUCT DIRECTED GRAPH constructs from the final
forest FO’ output by the transformational stage, a directed graph which
is then used as input by the sorting algorithm. The output sorted graph
is then used to obtain the most general unifier by OUTPUT UNIFIER: if
Vise--sVy is the output of the topological sorting algorithm then OUTPUT
UNIFIER (v]),...,OUTPUT UNIFIER (vn) gives the required unifier.

An example using the transformational stage is given in Figure 4.1

where reference is made to the flowchart.

Inlhaliie

Se 5t
Fe Fr

PATH ¢
PATHy
Lebe[=Pleh-vse,))
EL=flels <ly)
PATH,

MERGE PATH,,
1 ThandTy B =

¢

Flowchart for the transformational stage of the algorithms.

Example illustrating the transformational stage of the algorithm for

Sy ='{{E];e2}} where

el

I

and €2

The following tables indicate the status of S and F for each cycle

of the algorithm.

~-19~

P(x,G(F(x,w)),v,F(F(u,u),t),x)
P(F(G(y),6(z)),u,G(F(r,s)),y.Flu,v)).

C D F C D F cC D P S
0 1 {el} 1 {el,e2} 0 1 4 {el,e2}
0 2 {x} 2 6 {x,FGyGz} 1 2 3 {x,FGyGz}
0 3 {GRw} | 3 7 {GFxw,u} 1 3 3 {GFxw,u}
0 9 {Fxw} 4 8 {v,GFrs} 1 4 3 {v,GFrs}
0 12 {w} 5 9 {FFuut,y} 1 5 3 {FFuut,y}
0 4 {v} 6 11 {x,FGyGz,Fuv} 1T 6 4 {x,Fuv}
0 5 {FFuut}{ 7 14 {GFxw,u,Gy} 6 7 4 {Gy,u}
0 11 {Fuu} 8 14 {v,GFrs,Gz} 6 8 4 {Gz,v}
o 3 {u 9 15 "{FFuut,y,Fxw} 79 4 {Fxwy}
0 12 {t} 10 15 {Frs,z} 8 10 3 {Frs,z}
0 1 {e2} 11 16 {Fuu,x,FGyGz,Fuv} 9 11 4 {Fuu,x}
0 2 {FGyGz}| 12 17 {t,w} 9 12 3 {t,w}
0 7 {6y} 14 {GFxw,u,Gy,v,GFrs,Gz} 1 13 2 {u,6y}
0 5 {y} 15 “{FFuut,y,Fxw,Frs,z} 11 14 4 {u,6z}
0 8 {6z} 16 {Fuu,x,FGyGz,Fuv,r} 14 15 4 {Fxw,Frs}
0 10 {z 17 {t,w,s} 15 16 3 {Fuu,r}
| 0 4 {GFrs} C=0 gives F = F; 15 17 3 {t,s}
0 10 {Frs} D=""gives F = F, 18 0
.0 16 {r} 0 gives S = S;
1 o 17 {s} 0 gives § =
| 0 6 {Fuv}

“C" jndicates at what cycle a set was created;

a set was deleted.
taken during a cycle.
of F.

The Teft table gives Fy, the middle table gives the rest of F during the

"p" pefers to the part1cu1ar path in the flowchart

algor1thm and the right table indicates S.

" Figure 4.1

"D" indicates at what cycle

Underlined expressions are the specified terms in sets

-20-

TRANSFORM:
begin
INITIALIZE STACK and FOREST;
repeat until STACK is empty:
begin
POP a pair of expressions'{e1,e2} off STACK;

if ey # & (by virtue of different pointers)
then begin
root, < FIND(e]); root, +‘FIND(e2);
if root; # root,
then begin
if TERM [root]] # null and
TERM [rootz] # null
then DECOMPOSE (TERM [root]], TERM [rootz]);

MERGE (root1,root2);
end;

end;

end.

DECOMPOSE (expry, expr,):

bégin
if SYMBOL [expr;] # SYMBOL [expr,]
then EXIT with FAILURE

else for each argument pair argy, arg,

found from ARGLIST [expr]], ARGLIST [exprzj'ggl
PUSH arg, and arg, onto STACK;

end.

-21-

FIND (vertex):
begin
comment. use the top of STACK as a temporary LIST,

v < vertex;

repeat until PARENT [v] = null:

begin
add v to LIST;
v < PARENT [v];
end;
return (v) since it is now the root;
comment collapse the path directly onto the root;
for each w on LIST do PARENT [w] < v;

end.

MERGE (root1, rootz):
begin
assume that COUNT [root1] < COUNT[rooth
otherwise swap root1 and root2 in :
begin
light <« root]; heavy < rootz;
PARENT [1ight] < heavys
COUNT [heavy] < COUNT [heavy] + COUNT [1ight];
comment if necessary, update the term attached to the new root;
if TERM [1ight] # null
then TERM [heavy] < TERM [1ight];
end;

end.

-22-

CONSTRUCT DIRECTED GRAPH:
begin
for all variables, v in Fo do
if PARENT [v] # null, that is, v is not a root
root <+ FIND(v);
add the edge: v -+ root;
end;
for a1l roots, r in Fo do
if TERM[r] # null

then RECORD(r, TERM[r]);

RECORD (expr, expr!):
begin
comment for each variable var' occurring in eXpr!
add the edge: expr - var';
if VARIABLE [expr']
then add the edge : expr - expr'
else for each argument of expr'do
RECORD (expr, argument);‘

end.

-23-

OUTPUT UNIFIER (variable):

begin
if VARIABLE [variable]
then comment CONSTRUCT DIRECTED GRAPH has already

made all variables point directly to the root;

if PARENT [variable] # null
then OUTPUT the substitution, {variable < PARENT [variablel}

else if TERM [variable] # null

then OUTPUT the substitution, {variable <« TERM [variablel};

-24-

5. CORRECTNESS PROOF

We will prove that if our algorithm comprising the transformational
stage and the sorting stage halts it does so correctly. That is, if failure
of unification is reported then indeed the input set SI is not unifiable
and if a substitution is output then indeed this is a most general unifier
(mgu) for St That our algorithm halts will be evident from the timing

analysis of the next section.

We will prove that if failure is reported during the transformational
stage then SI is not unifiable. If this stage exists successfully we will
prove that any mgu for FO is also a mgu for SI' During fhe sorting stage,
if a circuit is detected in the associated directed graph then we will
prove that F0 is not unifiable and hence SI is not unifiable. If a
substitution is output we will prove that it is a mgu for FO’ and hence

also for SI.

In the transformational stage we will show:

vo (o is a mgu of S; > ¢ is a mgu of FO) . (1)
This is a consequence of the easier condition:

Yo (o unifies S; <> o0 unifies FO) . (2)
To prove this we consider the following invariant property of the
transformational flowchart:

Yo (o unifies S; <> o0 unifies S & o unifies F) ... (3)

Initially (3) is true since S equals SI and since each set of F is
initially a singleton. If we can prove that (3) remains invariant then
if the exit is successful with S empty and F equal to F0 then (3) becomes
(2).

-25-

To prove that (3) remains invariant, we prove that if (3) holds
at the point of the flowchart labelled "*" then the next time this point
is reached (3) remains true. It suffices to prove:

Vo (o unifies S' & o unifies F' <> ¢ unifies S" & o unifies F") ... (4)

where S' and F' are the old values of S and F at "*" and S" and F" are

the new values of S and F when "*" is next reached. Simple properties of
sets, expressions and substitutions are used in the proof which has already
been informally justified in section 3. We must examine each possible

path in the flowchart which starts and finishes at "*".

If any path ends in failure then SI is not unifiabTle because:
' # " > o does not unify {f'(ej,....el), f'(e],....e0)}

and X is not unifiable & X c Y > Y is not unifiable.

Consider PATH1 of the flowchart. Here S' = S" +'{e],e2}
(that is, S u'{{e],ez}}) and F' = F". (4) is tfivia11y true since any
o unifies'{e1,e2} when e = e,.

Consider PATHZ. Here S' = §" +'{e1,e2}. Also where e € T1
and ey, € Tps Ty =T, ¢ F' = F" hence (4) is true since:

o} unifies‘{ea,ez} & o unifies Ty iff o unifies Tq-

For Pl-\TH3 St =g" +’{e1,e2}. Let F' = Fu {T1,T2} then F" =
Fu {T1 U Tz}. (4) holds since:

o unifies'{e1,e2} & o unifies T] & o unifies T2 iff o unifies
T-l U T.Z.

Finally we consider PATH4. Let S' =S +'{e1,e2} then S" =
S u‘{{ei,e?},...,{eﬁ,ea}} where e, = f'(ei,...,eﬁ) and e, = f“(e?,...,e&).

Let F' = F y {T,,T,} then F'= Fu {Tyu Té}. (4) is valid since:

-26-

o] unifies'{e],ez} & o unifies T1 & o unifies T2

iff o unifies {{ei,ey},.-.;{eﬁ,e;}} & o unifies T1 u Tz.

We can also formally verify that the special properties of the
sets of F are invariant: all the terms in each set of F begin with the same
function-symbol and each subeXpression of SI belongs to exactly one set of
F. These properties are initially true; the first property is ensured due
to the fact that on PATH4, f' = f" and the second property is preserved
after each merge. These facts are important when we consider the sorting

stage.

We must now show that the sorting stage is correct. We will first
show that if a circuit exists in the associated directed graph then F0
is not unifiable. By the construction of this graph, a circuit implies a
sequence of trees in the forest FO: TO’Tl""’Tn’ a sequence of roots of these
trees: rostys«oly, and a sequence of vertices: VosVys--esVy, with the

following properties:

Vs is a vertex (possibly the root) in tree Ti'
The set corresponding to Ti contains a term e, in which the variable

associated with vertex V4 occurs. (Addition is modulo n).

Denote these terms by ei[vi+1] where we identify vertices with
variables. Then if there is a unifying substitution, o we must have:
o unifies FO
+ o unifies each tree in FO
+ in particular, o unifies TO’T1""’Tn
-~ 0 (vi) = c(ri) = q(ei[v1+]]) for i = 0,1;...;n
Tength [d(e5{v1+]])]
Tength [d(v1+1)]
> Tlength [o(vy)] > ... > Tength [o(v,)] > Tength [o(vy)].

+ Jlength [d(vi)]

\'4

-27-

The contradiction implies that F0 is not unifiable.

We now prove that the output of the sorting stage is a mgu of FO'
We do this by constructing a set 82 containing two expressions from F0
and applying Robinson's original unification algorithm. We show that
any mgu of 52 is also a mgu of FO’ and that the substitution % given
by the sorting stage is indeed a mgu of S2 since it is output by Robinson's

algorithm which he proved correct. Therefore 9 is also a mgu of FO‘

The constructed set S, is'{P(v},...,vn),P(e],...,en)} where P is

a new n-ary function-symbol and % ='{vn « en}...'{v-I < e} is the

substitution induced by the sorting stage. To show that:
Vo (o is amgu of FO <> ¢ is a mgu of Sz)

we need only prove:
¥ o (o unifies FO «> ¢ unifies 52)'

Now the sorting stage outputs all vertices of the forest corresponding
to variables and by the construction of 9 the last statement is true; this

would be the case for any permutation of the variables.

It remains to prove that the most general unifier output by‘Robinson's
algorithm when applied to 52 is exactly g Let Vise-es¥y be Robinson's
"Texical ordering”" of the variables then when we scan 52 in parallel and come
to a disagreement set'{vi,ei} if Vi is a variable and e; a term, then
F does not occur in e; otherwise a circuit would have been detected. We
apply the substitution'{vi < ei}, however this does not effect any expressions
to the right since all the vi's are distinct and have been topologically

ordered. If ey is a variable then Vs must precede e, in lexical order and

-728-

hence the substitution to be applied is still {v. < e;}. By repeating

this scanning process we see that the mgu obtained is identical with -

-29-

6. TIMING ANALYSIS

In this section we will show that the total amount of time taken
by the transformational stage is bounded above by 0(nG(n)) and similarly
for the time to construct the directed graph. The time taken during the
sorting stage is 0(n). Consequently the total time has an upper bound

of 0(nG(n)).

Throughout this section n is the length of the input set, SI’
where we extend the measure, length, to sets of pairs of expressions. We
allow our sets in S tocontainrepetitions.

Tength[S] = % llength[e]] +]ength[ezj.
{ey,e,} € S
1°72
We now define the function G and show that it is "practically"

constant. First we introduce an extremely fast growing function, H, by

the following definitions.
2

22" where there are i = 1 two's.

H(1)
H(0)

n

1

For example H(4) = 65536 and H(5) = 209936,

G is the "inverse" of H, that is, G(n) is defined as the Teast
integer k for which H(k) = n. G grows extremely slowly: G(n) < 5

for all "practical" values of n, that is, for all n < 265536.

We will first analyze the transformational stage. By neglecting

the cost of FIND and MERGE instructions we will show that the number of

steps required is linear relative to the Tength of the input, n. Consequent-

-30-

ly there can only be a Tinear number of FIND and MERGE instructions. The
following theorem from [1] tells us the total cost of these instructions,
in which the cost of a MERGE is constant and the cost of FIND(v) is
proportional to the number of vertices on the path from the vertex

labelled v to the root of the tree containing this vertex.

Theorem Let c be any constant. Then there exists another constant
c' depending on c such that the algorithm, which uses balancing and collapsing
heuristics, will execute a sequence of c-n MERGE and FIND finstructions

on n elements in at most c¢'nG(n) steps.

Hence the total number of steps taken during the transformational
stage to transform S;, of Tength n, into F0 is at most 0(n-G(n)). Further,

the length of F0 is no greater than that of SI'

We will now examine the operations in our algorithm, referrring to
the flowchart of section 4. From examining the detailed data structures
and programs given, if we ignore the cost of FIND and MERGE instructions,
each basic operation of the flowchart, except one, requires only a constant
amount of time. For example, to determine if a set contains a term requires
merely the inspection of the TERM field of the root of the tree which
represents the set. The exceptional case is "add to S all the pairs of arqu-
ments" since there are as many pairs as there are arguments of the term.
However we can easily "absorb" this additional cost by effectively counting

the edges rather than the vertices in the tree representation of an expression.

Proceeding formally, let TIME[S;F] be the additional time taken to
process the sets S and F when the algorithm reaches the point labelled "*"

in the flowchart. We now set up a system of recursive equations involving

-31-

TIME, by considering all possible paths.
If the exit is taken after finding S empty we have:
TIME[¢;F0] =0

where cq is the constant time taken to determine if S is empty.
If PATH] is taken then
TIME[S +'{e],ez};F] = TIME[S;F] + Cye
If PATH, is taken, we have similarly

TIME[S + {e;.e,}5F] = TIME[S;F] + c4

where we initially neglect the cost of a FIND.

If PATH. is taken then

3
TIME[S +'{e1,e2}; F u'{T],Tz}] = TIME[S;F u {T1 u TZ}] tCy

where the cost of a MERGE is ignored.

If PATH4 is taken then

TIME[S u'{{ei,ef ,...,{e&,eﬁ}}; F u'{T] u TZ}] *cgh + g
= if f' o= f
c; if f' # f"

where cgm is the time taken to add to S the m pairs of arguments and'c6

is some constant time, just as is Cy3CosCq and Cyr

To simplify these equations we absorb the cgh term into the TIME

measure by the transformation:

TIME'[S;F] = TIME[S;F] + c5.pairs[S]

-32-

where pairs[S] is the number of pairs in the set S. Also we will replace
each equality by "<" and each C; by the maximum, Cnax® of all such Cils'

Finally the transformation:

T[S;F] = TIME'[S;F]/cmax

transforms each C; into unity. Without loss of generality we can assume

that cq = c7 = 0, Since we have

TIME < TIME'® = Cmax'T

once we show that T is linear, it follows that TIME is also.

We now prove that T[S;F] is Tlinear relative to the lengths of S

and F. In fact we will prove that
T[S;F1 < pairs[S] + arity[F]

where the measure, arity, is the sum of all "arities" of each set in F.
We will formally define arity for expressions.

arity[f(e1,...,em)] = m,
that is, if f is a function-symbol then m = 0 gives the number of arguments,
otherwise when f is a variable then its arity is zero. Extending arity to
sets of expressions in which all terms, if any, begin with the same function-
symbol we have:

arity[T] = (arity[e] if T contains a term, e
0 if T contains only variables.

Finally we extend arity to collections of such sets:

arity[F] = = arity[T].

€

We now prove our time estimate by induction on pairs[S] + arity[F].

-33-

Our set of recursive equations is, after the transformations:

PATHO: T{¢;F0] =0
PATH1’2:T{S + {e;,e,15F] < TIS;F] +1
PATH,: T[S +‘{e1,e2}; F u'{T],Tz}]- < T[S;F u‘{T1 u Tz}] + 1

PATH,: T[S + {e;,e,}; F u'{Ti,TZ}]

IA

T[S U- {{e-ll,e!il}’.'..’{el;]’e[;"l}}; F U. {T-] U Tz}] + 1
if ' = f"

)}

0 if £ #

For each equation we will now apply our induction.
PATH, : T[¢;F0] = 0 < pairs[¢] + arity[FO]

is trivially true for our basis of induction.

IA

PATH1,2:T[S +'{e],e2};F] T[S;F] + 1

A

pairs[S] + arity[F] + 1
(by induction hypothesis)
= pairs[S +'{e1,e2}] + arity[F]

PATH,: T[S + {e.e,}s F u {T),T,}]
< TIS;F u Ty u T3] + 1

IA

pairs[S] + arity[F] + arity[T1 u T2] + 1

(by induction hypothesis)

pairs[S +’{e1,e2}] + arity[F] + arity[T]] + arity[TZ]

pairs[S +'{e1,e2}] + arity[F u'{T1,T2}]
Here arity [T] u T2] = arity[T1] + arity[Tz]

since one of T1, T2 contains no terms.

-34-

PATH4: The result is trivial when f' # f", otherwise
T[S + {e-l sez}; Fu {T-‘st}]
T[S u'{{ei,ey},...;{eﬁ,eg}}; F u'{T] u T2}] + 1

IA

A

pairs[S] + m + arity[F] + m + 1

(by induction hypothesis)

pairs[S +'{e],e2}] + arity[F u'{T],Tz}]
(since arity[T]] = arity[Tz] =m).

Hence, in particular

T[SI;FI] < pairs[SI] + arity[FI].
This quantity is clearly proportional to the length of SI' Therefore,
ignoring FIND and MERGE instructions, the time taken during the trans-
formational stage of our algorithm, TIME[SI;FI] is Tinear relative to
n, the length of SI.

The number of elements in the forest, F is always the total number
of subexpressions in SI’ which is also proportional to the length of SI'

Hence the additional time required to execute a sequence of c-n FIND and

MERGE instructions on the expressions in F is bounded above by 0(nG(n)).

During the construction of the directed graph associated with F0

we also execute FIND instructions; the total time is similarly at most
0(nG(n)).

The topological sorting stage requires time O(V+E) where V is the
number of vertices and E is the number of edges in the directed graph.
This is proved in [4]. Here, V is at most the number of subexpressions
in FI and E is proportional to the length of SI; both are 1inear relative

to n, the length of SI.

-35-

Finally, the total time taken by our algorithm, which includes
the transformational stage, construction of a directed graph and the

topological sorting stage is at most O(nG(n)).

-36-

7. CONCLUSION

From a computational complexity viewpoint the unificatidn algorithm
presented is the best known, being bounded above by 0(nG(n)) time. Since
it uses the set manipulation algorithms of [1] the algorithm is not linear,
as proved in that book. It has recently been proved [10] that G may be
replaced by the "inverse" of Ackermann's notorious function (which generalizes:
successor, addition, multiplication, ekponentiation,;..). The existence of
a linear algorithm is possible and this could perhaps be achieved by choosing,
during the transformational stage, a pair of expressions from S according
to some heuristic, rather than processing them fon-]ine”. Such an algorithm
may eliminate an irritating feature of our algorithm: the simplest case of
unification, in which only variables appear; requires more than linear time.

(Of course, we could recognize this as a special case).

Practically, it would be difficult to choose between a hypothetical
Tinear algorithm and our "practically" Tinear one or even with some earlier
character manipulation algorithms in view of special hardware features of
some computers. Theoretically we can find pathological examples which
exhaust our algorithms and it would be interesting to examine the source

of such curiosities.

It is easy to show that the space requirements are linear relative
to the input length, however it would be interesting to see how Tittle
space is required. In particular, the additional space required by the
topological sorting stage could perhaps be supplied by the PARENT, COUNT

and TERM fields of the eXpressions;

-37-

In a future paper the comp1ekity of first-order subsumption
and second-order instantiation will be examined. A different direction
of research would be to examine the contexts in which unification
algorithms appear. For example, the failure of unification in one case

may tell us immediately if some related case also fails.

-38-

REFERENCES

(1]

[21

[3]

[4]

[5]

[6]

7]

[81]

£91

(101

(111

[12]

Aho A.V., Hopcroft J.E. and Ullman J.D. (1974)
The Design and Analysis of Computer Algorithms,
Addison-Wesley.

Baxter L.D. (1973)
An efficient unification algorithm, Research Report
CS-73-23, Department of Computer Science,
University of Waterloo.

Fischer M.J. (1972)
Efficiency of equivalence algorithms, in Complexity
of Computer Computations, R.E. Miller and J.W. Thatcher
(editors), Plenum Press.

Knuth D.E. (1968)
The Art of Computer Programming, Vol. I,
Fundamental Algorithms, Addison-Wesley.

Munro I. (1971)
Efficient determination of the transitive closure
of a directed graph, Information Processing Letters,
1, No. 2.

Newell A., Shaw C. and Simon H. (1955)
The Logic Theory Machine: a complex information

processing system, IRE Transactions on Information
Theory IT-2 (1956), 61-79.

Post E., (1940)
Absolutely unsolvable problems and relatively
undecidable propositions, in The Undecidable

Robinson J.A. (1965)
A machine-oriented logic based on the resolution
principle, JACM 12 23-41,

Robinson J.A. (1970)
Computational logic: the unification computation,
Machine Intelligence 6 63-72.

Tarjan R.E. (1975)
Efficiency of a good but not Tinear set union
algorithm, JACM 22 (1975) 215-225.

Van Emden M.H. (1975)
Programming with resolution logic, Research Report
CS-75-30, Department of Computer Science,
University of Waterloo.

Venturini Zi11i M. (1975)
Complexity of the unification algorithm for first-order
expressions, to appear in Calcolo.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

