LISP/66 Users Manual
Version 2.3

David G. Conroy

Department of Computer Science
University of Waterloo

Report CS-76-12

March 1976

- Chapter 1
Introduction

LISP/66 is an interactive LISP interpreter design-
ed to run under TSS/GCOS on Honeywell/66
series computers (LISP/66 requires a release E or
later GCOS system. It will run under older releases
but does all its disc file input/output in media 6
ASCII, which the old ASCASC sybsystem does
not understand). In addition to providing most of
the standard functions of other LISP systems,
LISP/66 offers improved character handling
facilities and a file oriented input/output system.

This manual is intended to outline the behaviour of
the LISP/66 system to programmers already
familiar with the LISP language. Readers wishing
to learn LISP chould first read one of the introduc-
tory texts.

1.1 Getting Online

LISP/66 is invoked by typing the LISP command
at system level. LISP will respond by prompting
for user input with a question mark (in the follow-
ing and all other examples, system output is
capitalized).

SYSTEM 17 lisp

0

LISP/66 is now in a listen loop - reading two s-
expressions, passing them to EVALQUOTE, and
printing the returned value.

Pcar({a b ¢))

A

?cdr({a,b,c))

(BO

Icons

?7(a

?7b

7)

(A.B)

Note that all user input is mapped into upper case,
and that tabs and carriage returns may be used to
delimit atomic symbols (as well as the usual blanks
and commas).

1f LISP /66 gets hung up (due to the loop in a func-
tion, for example)} the break key may be used to
return control to the EVALQUOTE listen loop.

Typing done to the listen loop will terminate LISP
and return the user to system level. A function call-
ed done will be impossible to call from top level,
and removing the atom done from the object list
will make it impossible to exit in a normal manner.

1.2 Command Line Options

The preceeding TSS dialog causes LISP/66 to
allocate default quantities of storage. Currently
these are set to 4K words free space (which can
dynamically grow) and no binary program space
(which cannot grow). In order to specify initial
storage allocations command line options must be
specified.
SYSTEM?Y lisp [-bv] [c=n] [b=n] [I=n]

-b change the default prompt (question mark)
to an ASCII Escape. This option is useful to
supress the printing of the control Q on LSI
ADM series terminals.

-v display the system version number on entry.

c=n specifies the initial size of free storage in un-
its. of 1024 words. "n” is a decimal integer.

b=n specifies the initial size of the binary
program space in units of 1024 words. “n” is
a decimal integer.

I=n specifies the initial output line length. "n" is a
decimal integer. The default line length is 80

characters.
1.3 System Messages

PDS OVERFLOW - The internal stack has
overflown. Functions recursing without end or
deeper than about 2000 levels will cause this
nessage.

COLLECTING - This message is generated
whenever the garbage collector is invoked to create
a new free storage list.

9+nnK CORE - This message is generated when
LISP /66 expands its free storage region; nn is the
new size in K words. Both this and the above
message are controlled by the verbose toggle
function (sce Section 2.10)

SYNTAX ERROR - An s-expression given to the
LISP reader has faulty syntax.

BAD CHARACTER IN NUMBER - A non-
numeric character was encountered while building
a numeric atom. This message is also generated if
an § or-a 9 is found in an octal number.

SYMBOL TOO LONG - The printname of an
atomic symbol may not be longer than 80
characters.

OVERFLO FAULT - An arithmetic operation has
overflowed; it could be fixed point arithmetic
overflow or an exponent over (under) flow.

FIXED OVERFLOW (TIMES) - This message is
generated when a fixed point multiplication
produces a product which will not fit in 36 bits. The
product is truncated,

DIVIDE CHECK - This message is generated
when division by zero is attempted.

1.4 Runtime Error Messages

Whenever a runtitae error occurs in a LISP/66
program an error message of the following form is
printed:

error message

FIRST 2 ARGS

s-expression 1

s-expression 2

TRACE BACK

trace back of stack

Most error messages are self-explanatory; however,

.. some of them (such as CAN'T OPEN FILE)

represent a large variety of errors. Appendix Bisa
listing of the error messages, their meaning and the
significance of s-expressions 1 and 2.

Chapter 2
Built In Functions

- 2.1 Elementary Functions

car(x) SUBR

The function car returns the left half of its com-
posite argument. Passing an atomic argument to
car is usually an error (see caratom).

caratom(x) SUBR - toggle
Some LISP programs (notably the LISP Com-
piler) need to be able to car through atomic sym-
bols. Executing caratom with a non-NIL argument
modifies car so that it returns a special atom if it is
passed an atomic argument. This special atom
prints as *FROG?, but it is not on the object list so
it cannot be eg to anything except itself.

cdr(x) SUBR

The function edr returns the right half of its com-
posite argument. The edr of an atomic symbol is
the atom’s property list.

caaar(x) to cdddr(x) SUBRS
All composite functions of car and edr with up to
three a's and d's are provided.

cons(x,y) SUBR

The function cons obtains a new word from free
storage and builds a dotted pair of its two
arguments. If the free list is exhausted, cons calls
the garbage collector.

atom(x) SUBR predicate
atom returns T if its argument is an atomic symbol
and NIL otherwise.

eq(x,y) SUBR predicate
eq returns T if its two arguments are identical list
structures. eq should not be used to compare
numbers or lists.

equal(x,y) SUBR nredicate
The predicate equal returns T if its two arguments
are the same s-expression. They do not have to have
identical list structures. Fixed point and octal
numbers are compared for equality, and floating
point numbers are compared with a tolerance of
3.0X10**(-6). Fixed and floating point numbers
may be compared with equal; the fixed point
number is first converted to floating point.

list(x1,x2,...,xn) FSUBR
The value of /list is a list of its arguments.

null(x) , SUBR predicate
The predicate nuff returns T if its argument is NIL.

rplaca(x,y) SUBR pseudo function
rplaca replaces the left (car) pointer of its first
argument with its second argument. The value of
rplaca is x, but x has a different value than it did
before the function was executed.

rplacd(x,y)- SUBR pseudo function
rplacd is like rplaca, except that it alters the right
(cdr) pointer of its first argument.

2.2 Logical Connectives

and(x1,x2,...,xn) FSUBR predicate
The arguments of and are evaluated in sequence
from left to right, until one is found that is false, or
the end of the list is reached. The value of and is
NIL or T, respectively.

or(x1,x2,...,xn) FSUBR predicate
The arguments of or are evaluated in sequence
from left to right, until one is found which is true,
or the end of the list is reached. The return value of
or is either T or NIL, respectfully.

not(x) SUBR predicate
The value of nor is T if its argument is NIL, and
NIL otherwise. It is the same function as null.

2.3 Interpreter Functions

apply(x,y,z) SUBR functional
The interpreter function apply evaluates the
function x with arguments y using association list z.

eval(x,y) SUBR functional
The interpreter function eval evaluates the form x
using association list y.

evlis(x,y) SUBR
The interpreter function evlis evaluates the
clements of the list x using association list y.

eveon(x,y) SUBR

The interpreter function evcon evaluates the form
(COND ...) The first argument is the form to be
evaluated and the second argument is the
association list,

function(x) FSUBR 4
The function function is used 1o pass functional
arguments. The form (QUOTE ...) can be used in-
stecad of function if there are no free variables
present.

2.4 Property List Functions

define(x) SUBR pseudo function
The argument of define is a list of pairs of the form:
({nt 11)(n2 12) ...(nn In))
where each n is the name of a function and each lis
the lambda expression for the function. For each
pair, define attaches | to the property list of n using
an EXPR indicator. The value of define is a list of
the n’s.

deflist(x,y) SUBR pseudo function
deflist is a more general defining function. Its first
argument is a list of pairs identical to that used by
define; its second argument is the indicator used to
attach the lambda expression to the function name.
define(x) is the same as deffist(x expr).

attrib(x,y) SUBR pseudo function
attrib concatenates its two arguments by changing
the last element of the first argument to point to the
second argument. It is uscful for attaching
something to the end of a property list. The value of
attrib is the second argument.

get(x,y) SUBR

The function get searches the list x for an element
which is eq to y. The value of get is the car of the
rest of the list if the element is found, and NIL
otherwise.

cset(x,y) SUBR pscudo function
cset is used to create a constant by attaching y to
the property list of x using an APVAL indicator.

csetq(x,y) SUBR pseudo function
csetq is the cser except that it quotes its first
argument instead of evaluating it.

put(x,y,z) SUBR pseudo function
The pseudo function put attaches z to the property
list of x using the indicator y. put returns NIL.

remprop(x,y) SUBR pscudo function
remprop searches the list x, looking for ail oc-
currences of the indicator y. When such an in-

. newname(x,y)

dicator is found, both it and the following property
are removed. remprop returns NIL.

SUBR pseudo function
newname moves the properiy list of x to y, replaces
the property list of x with NIL, and returns y.

flag(x,y) SUBR pseudo function
flag adds the flag y to the property list of every
atom in the list x. Flags are never duplicated. The
value of flag is NIL. In LISP/66, a flag is a non-
NIL property; flag uses the value T.

remflag(x,y) ‘SUBR pseudo function
The pseudo function remflag removes all oc-
currences of the indicator y from the projierty lists
of all the atomic symbols in the list x. remflag
returns NIL.

flagp(x,y) SUBR predicate
Sfagp returns T if x has a non-NIL property with
the indicator y; otherwise it returns NIL.

2.5 Table Building Functions

pair(x,y) SUBR

pair builds a list of pairs of corresponding elements
of the lists x any y. The arguments should not be
atomic symbols and must be the same length. The
value of pair is the list of dotted pairs.

sassoc(X,y,z) SUBR functional
sassoc searches y (a list of dotted pairs) for a pair
whose car is eq to x. If such a pair is found, sassoc
returns this pair. Otherwise the value of sassoc is
the value of function z of no arguments.

subst(x,y,z) SUBR
subst replaces all occurrences of s-expression y in s-
expression z with s-expression x.

2.6 List Handling Functions

append(x,y) SUBR
append concatenates its two arguments by copying
the top level of the first argument and linking the
second argument to the end of this copy. The value
of append is the resultling list.

append1(x.y) SUBR
The function append! is the same as
APPEND(X (CONS Y NILY)).

ncone(x,y) SUBR pseudo function
nconc concatenates its two arguments without
copying the first one. The action is identical to that
of attrib except that the value returned is the entire
list (rather than the second argument).

reverse(x) SUBR
The function reverse reverses the top level of the list
X,

length(x) SUBR

The value of length is the number of top level
elements in the list x. Atomic symbols and () have
length zero.

member(x,y) SUBR predicate
member returns T if s-expression x is equal to any

top level element in the list y; otherwisc it returns
NIL.

memg(x,y) SUBR predicate
memq is like member except that it uses eq rather
then equal.

2.7 Functionals

maplist(x,y) SUBR functional
maplist is a mapping of the list x onto a new list
y(x). 1t is defined in LISP as:
(maplist (lambda (x y)
(cond
((null x) nit)
(t (cons (y x) .
(maplist (cdr x) ¥)))))

map(x,y) SUBR functional
map is like maplist except that the value of map is
NIL; map does not perform a cons of the evaluated
functions. It is used when only the action of per-
forming y is important.

mapcar(x,y) SUBR functional
mapcar is like maplist except that it evaluates (Y
{(CAR X)) instead of (Y X). '

2.8 Variable Specification Functions
These pseudo functions are used to declare

variables for the LISP compiler and LAP. They all
return their argument.

“special(x)

SUBR pseudo function
The list x contains the names of variables which are
to be declared special. The value in the special cell
is set to NIL.

unspecial(x) SUBR pseudo function
The list x contains the names of variables which are
no longer to be considered special.

common(x) SUBR pseudo function
The list x contains the names of variables which are
to be declared common.

uncommon(x) SUBR pseudo function
The list x contains the names of variables which are
no longer to be considered common,

2.9 Compiler/LAP Support Functions

bpload(x,y) SUBR pseudo function
The pseudo function bpload is used to store code
into the binary program space, to link new SUBRs
and FSUBRs into the system and to make absolute
patches. The second argument of bpload is a list of
the data to be loaded; the first argument determincs
how this data is to be loaded. If it is a numeric atom
then its lower 18 bits are used as the base address of
an absolute patch; if it is NIL then the data is
stored into the binary program space.

The first argument may also be a three element list
of the form (NAME IND COUNT). In this case,
the data is loaded into binary program space and a
standard SUBR/FSUBR link word is constructed
in frec space. This link word is attached to the
property list of atom NAME using the indicator
IND. The argument count field of the link word is
set to COUNT. It is possible to memory fault the
LISP system when performing absolute patches as
no address checking is done.

gts(x) SUBR

The function gis gets the value of special variable x.
It is an error to gfs a variable not previously
declared special.

pts(x,y) SUBR pscudo function
pis sets the value of special variable x to y and
returns y. If the variable was not previously
declared special then pts performs the declaration.

2.10 System Control and Debugging Functions

error(x) SUBR

Executing error generates a CALL TO ERROR
error message and a trace back. Control is then
returned to the evalquote listen loop.

backup() SUBR
backup is similar to error except that no error
message or trace back is printed.

errorset(x,y) SUBR

If an error occurs during the evaluation of x,
errorset returns NIL. The error message is printed
only if y is non-NIL. If no error occurs, errorset
returns LIST(EVAL X ALIST).

trace(x) SUBR pseudo function
The pseudo function trace attaches a TRACND
flag to all of the function names in the list x.
Whenever a function with a TRACND flag is
evaluated, the system prints:

** TRACING

function-name arguments
When the function returns, the system prints:

** TRACE VALUE

function-name return-value
Tracing only works for EXPRs and FEXPRs; it
also can produce great volumes of worthless output
so it should be used with discretion.

untrace(x) SUBR pseudo function
untrace removes the TRACND flags from all of the
atoms in the list x.

verbose(x) SUBR toggle
The verbose pseudo function controls the printing
of system messages from the garbage collector. Ex-
ecuting verbose with a non-N1L argument enables
the printing of the messages; executing it with a
NIL argument disables the printing.

listing(x) SUBR toggle
The listing pseudo function enables and disables the
printing of the value returned by evalquote in the
listen loop. LISTING(NIL) is useful for supressing
the printing of the value of define when reading a
large number of functions from a disc file.

2.11 Miscellaneous Functions

save(x) SUBR pseudo function
The pseudo function save writes the current LISP
interpreter, free storage and binary program space

onto file x. This is in standard H* format, and may

‘be system edited into timesharing or loaded with

the command loader. The function then rcturns T.

When the H* is executed control is returned to the

LISP function which executed SAVE; at this point
the function returns NIL.

prog2(x,y) SUBR
The value of prog? is y. It is used to perform two
pseudo functions.

call(x) SUBR pseudo function
The printname of x is passed out to TSS via
PSEUDO and CALLSS. It is necessary to use the
$$ construct if the command line contains blanks
(for example, CALL($$"LIST FILE44")).

gensym() SUBR ‘
gensym creates a new atomic symbol of the form
GRO0000, GR000! to GR9999. Atomic symbols
created by gensym are not on the object list and
are, therefore, unique.

genset(x) SUBR pseudo function
Executing genset causes the next symbol generated
by gensym to be GRx. The argument of genset
must be between 0 and 9999 (inclusive).

reclaim() SUBR pseudo function
reclaim causes a garbage collection and returns
NIL.

peek(x) SUBR

The function peek is used to snap core storage. If x
is a number then its lower 18 bits are used as the
address to snap. If x is an alphabetic atom or a list

peek returns a pointer to the argument in the upper
half.

peek cannot memory fault the LISP system.

time() ' SUBR
time returns the current time of day as a two
element list in hours and minutes.

proc() SUBR
proc returns the current accumulated processor -
time in seconds.

orderp(x,y) SUBR predicate
The function orderp is used to establish a canonical
order among atoms, It returns T if x is ordered
ahead of, or is equal to y; NIL otherwise.

2.12 System Constants

The following constants are provided in the LISP/66 system:

NAME PROPERTY VALUE
OBLIST ‘ APVAL Object List
ALIST : APVAL Current Association List
BPSIZE APVAL Number of free words of binary program space
BPSORG APVAL Base address of free binary program space
LLENGTH* APVAL Output line length
SPECIAL Output line length
DATE* APVAL Date when LISP was invoked
SPECIAL Date when LISP was invoked

Chapter 3
Arithmetic

LISP/66 has provisions for manipulating floating
point, fixed point and octal numbers.

A number is an atomic symbol and may appear in
an s-expression anywhere an alphabetic symbol is
legal, However, numbers are stored uniquely only
on input (this is done to improve storage
utilization) so they may not work properly if used
as variables or function names.

3.1 Reading and Printing Numbers

Floating point numbers are distinguished by their .

decimal point. This decimal point cannot be the
first character of the number (the reader would
parse this as a LISP dot followed by a fixed point
number) but it may be the last. A plus or minus sign
may preceed the number, and the number may be
followed by an exponent, which consists of an 'E’
followed by a (signed) integer.

Spaces may be used to avoid ambiguity between a
decimal point and a LISP dot; spaces are not re-
quired where no ambiguity exists.

Floating point numbers are printed in the general
form sn.nnnnnnBsnn. Positive signs are never
printed and the exponent is not printed if it is zero.

Fixed point numbers appear in both input and out-
put as integers with an optional sign and exponent.

Octal numbers consist of an optional sign, up to
twelve octal digits, a ‘Q" and an optional octal ex-
ponent. LISP/66 handles negative octal numbers in
the same manner as GMAP; the sign bit is or-ed
on.

Octal numbers always print with twelve digits even
though only a few digits may be significant.
3.2 Arithmetic Functions

Arithmetic functions must be given numbers as

arguments; otherwise a BAD NUMBER error is -

generated.

Mixed mode is always permitted. Arithmetic func-
tions will return floating point unless ail of the

arguments are fixed point or octal, when they
return fixed point.

plus(x1,x2,...,xn) FSUBR
The value of plus is the sum of its arguments.

difference{x,y) SUBR
difference returns x-y.
minus(x) SUBR

The value of minus is -X.

times(x1,x2,....xn) FSUBR
The value of times is the product of its arguments.
The value of times() is 1.

quotient(x,y) SUBR
quotient returns x/y. If a divide check occurs the
return value is meaningless.

remainder(x,y) SUBR

remainder computes the theoretic remainder for
fixed point numbers and the floating point residue
for floating point numbers. The return value is
meaningless if a divide check occurs.

recip(x) SUBR
The value of recip is 1/x. The reciprocal of any
fixed point number is zero.

add1(x) SUBR
add] returns x+1. The value is fixed or floating
point, depending on the argument.

subl(x) SUBR
subl returns x-1. The value is fixed or floating
point, depending on the argument.

fix(x) SUBR
fix converts its argument to a fixed point number.

expt(x,y) SUBR

The function expt evaluates x**y. If y is fixed point
then repetitive multiplication is used; it if is floating
point then the computation is done using
logarithms and x cannot be negative.

exp(x) SUBR
The value of exp is e**x.

log(x) SUBR
log computes the natural logarithm of x. The
argument must be positive or an error is generated.

3.3 Arithmetic Predicates

All arithmetic predicates return T or NIL.

lessp(x,y) SUBR predicate
lessp returns T if x is less than y.
greaterp(x,y) SUBR predicate

greaterp returns T if x is greater than vy,

zerop(x) SUBR
zerop returns T is x is zero (fixed point or octal
argument) or if x < 3.0X10**(-6) (floating point
argument).

minusp(x) SUBR predicate
minusp returns T is x is negative.
numberp(x) 'SUBR predicate

numberp returns T if X is any type of numeric atom.

fixp(x) SUBR predicate
Jixp returns T if x is a fixed point number.

floatp(x) SUBR predicate
Sloatp returns T if x is a floating poirt number.

evenp(x) SUBR
evenp returns T if 2 divides into x with no
remainder or residue (2.0 is considered even, 2.2 is
not).

3.4 Logical Operators

The logical operators perform bitwise operations
on numeric atoms. They always return octal
numbers.

logor(x1,x2,...,xn) FSUBR
The value of Jogor is the bitwise inclusive or of its
. arguments. logor() returns 000000000000Q.

logxor(x1,x2,...,xn) FSUBR
logxor computes the bitwise exclusive or of its
arguments. logxor() returns 000000000000Q.

logand(x1,x2,...,xn) FSUBR
logand returns the bitwise logical and of its
arguments. logand() returns 777777777777Q.

leftshift(x,y) SUBR
The first argument of leftshift is shifted by y bits. If
y is positive then the shift is to the left; if it is

predicate

predicate

negative the shift is to the right. All shifts are
logical (zeros are shifted into unused bit positions).

3.5 Arrays

LISP programs often require the ability to
manipulate indexable blocks of s-expressions. This
is provided in LISP/66 by arrays.

Array pointers and array access polynomials are
stored in binary program space. This space must be
allocated when the LISP system is invoked (sce
Section 1.2).

array(x) SUBR pseudo function
array is a function of one argument, which is a list
of arrays to be allocated. For example, to allocate
an array A of size 7 and another array BUN of size
60 by 50, execute:

ARRAY(((A (7)) (BUN (60 50))))

ARRAY presets all of the elements of a new array
to NIL. Indices range from 0 to size-1.

setel(x,y) SUBR pseudo function
The pseudo function seref stores s-expressions into
the elements of arrays. The first argument is a sub-
script list of the form (array-name index1 index2 ...
indexn). The second argument is the new value for
the array element.

An error occurs if the specified element is beyond
the limits of the array. However, no checks are
made as to the number of subscripts. The last sub-
script of an array varies most rapidly in core. The
value of serel is the second argument.

getel(x) SUBR

The function getel gets the values of array
elements. The same subscripting rules given for
setel hold for getel,

Chapter 4
LISP Programs

The LISP /66 program feature allows the writing of
FORTRAN like programs containing LISP
statements.

The PROG form has the following structure:
(PROG list-of-program-variables
program-statements ...)

The first list after the PROG is a list of program
variables. This should be written as NIL or () if
there are no program variables. Variables are
preset to NIL when the PROG is executed.

Program variables are set by the functions SET and
SETQ. To set the program variable CRAY to 6600
execute cither (SET (QUOTE CRAY) 6600) or
(SETQ CRAY 6600). SETQ is usually more con-
venient than SET. Both SET and SETQ can also
change the value of variables bound on the
association list by higher level functions.

Program statements are normally executed in se-
quence by evaluating cach one with the current
association list and discarding the value. However,
the function GO may be used to transfer control.
Executing (GO LAB) transfers contro! to the label
LAB (program labels are simply atomic symbols in
the program body). GO can only be used inside the
top level of a PROG or immediately inside a
COND which is at the top level of a PROG.

Conditional expressions executed as program
statements are permitted to have no true
propositions. Instead of generating an error,
program flow continues with the next statement.

The function return(x) is used to terminate a
PROG. The value of the PROG is the value of x. A
PROG that runs out of statements returns NIL.

Example:
rev(x) reverses a list and all of its sublists
(REV (LAMBDA (X)
(PROG (Y 2)
A (COND (NULL X)}RETURN YY)
(SETQ Z (CAR X))
(COND ((ATOM Z)GO B))
(SETQ Z (REV 2))
B (SETQ Y (CONDS ZY))
(SETQ X (CDR X))
(GO A)))

10

Chapter 5
Input Qutput

All input output in LISP/66 is done to logical
channels. There are nine disc channels (numbered 1

to 9) and one channel to the user terminal (called
NIL).

5.1 Initializing Channels

The NIL channel is always initialized to the ter-
minal. Disc channels must be initialized by the user
program; this is done using the functions openr and
openw.

openr(x,y) SUBR pseudo function
openr initializes channel x for input and attaches
file y to it. The channel is closed if it was previously
open.

If the pathname contains a slash or a dollar sign
any file in the AFT with the same name is first
deaccessed.

openw(x,y) SUBR pseudo function
openw initializes channel x for output and attaches
file y to it. The channel is closed if it was previously
open.

If the file does not exist it is created. A temporary
file is created unless the pathname contains a slash
or a dollar sign, when a permanent file with general
read permission is created.

If the pathname contains a slash or a dollar sign
any file in the AFT with the same name is first
deaccessed.

close(x) SUBR pseudo function
close writes out end of file marks (output files only),
rteleases the logical channel and deaccesses the file
(if permanent and if it was brought into the AFT
with openr or openw).

It is legal to close an inactive channel; close per-
forms no action in this case.

An implicit -close is performed on all logical
channels when the user returns to the system level.

i1

5.2 Selecting Input Output Channels

The functions rds (read select) and wrs (write
select) are used to select logical channels for input
and output. Both functions rcturn the channel
which was open before the input/output stream was
redirected.

rds(x) SUBR pseudo function
rds causes all input to be taken from logical channel
x until another rds is executed, or an end-of-file is
encountered on the channel (when an implicit
rds(NIL) is performed, switching input back to the
terminal).

wrs(x) SUBR pseudo function
The pseudo functio wrs causes all output to be
directed to logical channel x until another wrs is
performed.

Disc files are automatically grown. If a request to
grow is refused (input output status 17) and end-of-
file is inscrted into the last good block before the
error message is generated.

LISP programs may be loaded from disc files by
opening the file for input and selecting it:

? openr(l /a/lisp/program)
1

? rds(1)
1

... program loads ...
)

LISP/66 switches both input and output to the ter-
minal on errors (programs which do disc file input
output under an errorset may be affected by this).

5.3 Input Output Functions

read() SUBR pseudo function
Executing read causes one s-expression to be read
from the current input channel. This expression will
always be read from a new line. The value or read is
the s-expression read.

print(x) SUBR pseudo function
print writes s-expression x onto the current output
unit and returns x.

prinl(x) SUBR pseudo function
prinl writes an atomic symbol onto the current out-
put channel without terminating the current output
line. Passing a non-atomic argument to prinl is an

error. The value of prinl is x.

terpri() SUBR pscudo function
The current output line is terminated by terpri.

xtah(x) SUBR pseudo function
The pseudo function xtab writes x blanks onto the
current output channel and terminates the output
line if necessary. xtab returns x.

ttab(x) SUBR pseudo function
ttab writes enough blanks to the current output
channel to make the next character print in column
X. ftab does nothing if the output line is already past
column x, and generates an error if X is greater than
the current line length. ttab returns x.

otll(x) SUBR pseudo function
The current line length is set to x by otll, which
returns its argument. The new line length must be
between 40 and 120 inclusive.

prompt(x) SUBR pseudo function
The function prompt changes the terminal input
prompt to the printname of x. The new prompt
must be four characters or less in length.

If x is NIL then the prompt is turned off completely
(changing the prompt to NIL is impossible).

12

.Chapter 6
Character Manipulation

Characters in LISP/66 are ordinary atomic sym-
bols with single character printnames; the
alphabetic atom A and the character A are iden-
tical.

Since characters are on the object list they may be
compared using eq. However, for compatibility
with other LISP systems, using eg is not
recommended; using equal (LISP 1.6) or cclass
(LISP/360) is a better practice.

6.1 Character Input OQutput

princ SUBR pseudo function
princ writes the character x onto the current output
channel and returns x. princ is the same function as
prini. ‘

readch() SUBR pseudo function
The function readch reads and returns the next
character from the current input channel. Lower
case characters are mapped into upper case.

endread() SUBR pseudo function
The execution of endread forces the next readch to
a new line. It is commonly used to skip over the
remainder of an input line when an error is
detected.

passcr(x) SUBR pseudo function
Executing passcr with a non-NIL argument causes
readch to begin passing carriage returns to the user
program. This mode is disabled by passcr(NIL).
passcr(NIL) is the default.

6.2 Character Functions

explode(x) SUBR

explode takes its argument (which must be an
atomic symbol) and returns a list of its constitutent
characters. explode works for all types of atoms, in-
cluding floating point.

compress(x) SUBR
compress takes a list of characters and compressed
them into an atomic symbol.

In order to decide what type of atom to construct,
compress skips over leading plus and minus signs

13

and examines the next character. If this character is
a digit then compress builds a number; otherwise it
builds an alphabetic atom. It is impossible to build
an alphabetic atom with a printname like 8888 us-
ing compress.

6.3 Character Predicates

liter(x) SUBR predicate
liter returns T if its argument is a letter (between A
and Z).

ditgit(x) SUBR predicate
digit returns T if its argument is a digit (between 0
and 9).

cclass(x,y) SUBR predicate
cclass is a general character predicate. It returns T
if the character x is in the printname of y.

Chapter 7
Internal Formats

This chapter is for general (why did my strange
function memory fault and blow me to system
level?) information only; more detailed descriptions
of LISP/66 internal formats may be found in the
LISP/66 SYSTEM MAINTENANCE
MANUAL (whenever it is written).

7.1 LISP Cells

A LISP cell occupies one 36 bit machine word in
the following format:

Must be zero

Bit 0

Bits 1-17 Car pointer

Bit 18 Usually zero. Used by
garbage collector

Bits 19-35 Cdr pointer

Since 17 bit addresses are used LISP/66 can only
handie 128K of free storage. This should cause no
problems as TSS EXEC aborts programs larger
than 80K when it attempts to swap them.

7.2 Atomic Symbols and Property Lists

An atomhead is a LISP cell with bit 0" equal to 1.
The car pointer of the atomhead contains the
atom’s type; O for alphabetic atoms, 1 for octal
numbers, 2 for fixed point numbers and 3 for
floating point numbers.

The cdr pointer points to a word which has a
pointer to the atom’s printname in bits 0-17 and a
pointer to the property list in bits 18-35.

Printnames are stored as forward linked lists with
two characters in the upper half and a link pointer
or NIL in the lower half. Short printnames are
padded with nulls.

The value of a numeric atom is stored in two halves

(like an alphabetic printname) to simplify garbage

collection; the first word in the list contains bits 0-
17 of the number.

Property lists have the same structure as those in
LISP.1.5.

14

7.3 SUBRs and FSUBRs

The SUBR and FSUBR link word is attached to
the property list of the function name using a
SUBR or FSUBR indicator. The link word has the
number of arguments in the upper half (FSUBRs
have zeros in the upper half) and the pointer to the
routine in the lower half.

SUBRs and FSUBRs are called by a TSX1 and
return with a TRA 0,1.

7.4 Sample Atom

* The atom BPSIZE
VFD 018/400000,18/*+1
ZERO *+1,*+4
VFD 018/102120,18/*+1
VFD 018/123111,18/*+1
VFD 018/132105,18/NIL
ZERO = APVAL *+1
ZERO *+1,NIL
ZERO *+1,NIL
VFD O18/400001,18/*+1
ZERO. *+1,NIL
ZERO 0,*+1

BPSIZE ZERO O,NIL

Appendix A
Known Problems

RETURN and GO do not work as arguments of a
PROG2 (this is destined to stay around for a long
time).

The constructs eval(x,y) and apply(x,y,z), where x
is not bound on the property list and y is a non-NIL
atom, cause the system to memory fault.

15

Appendix B
Error Messages

TOO FEW ARGS (SUBR)

TOO MANY ARGS (SUBR)

The wrong number of arguments have been passed
to a LISP function.

S-expression 1 is the function,

S-expression 2 is the list of arguments,

UNDEFINED FUNCTION (APPLY)
UNDEFINED FUNCTION (EVAL)

An atom has been used as a function but has never
been defined.

S-expression 1 is the function.

S-expression 2 is the association list.

UNBOUND VARIABLE

The variable is not defined as a function argument
on the association list and does not have an assign-
ed value.

S-expression 1 is the unbound variable
S-expression 2 is the association list,

TOO MANY AGRS

LISP/66 cannot pass more than 20 arguments to a
function.

S-expression 1 is the list of arguments.
S-expression 2 is not valid information.

UNSATISFIED COND
No true propositions were found in a COND.
S-expressions 1 and 2 are the arguments to evcon.

CAR OF ATOM
An atomic symbol has been passed to car.
S-expressions 1 and 2 are the argument of car.

BAD ADDRESS

peek has been passed a list or an address beyond
LISP/66's address limits.

S-expression 1 is the argument of peek.
S-expression 2 is not valid information.

BAD ARGUMENT

A LISP function has been passed an argument
which is not compatible with the function.
S-expression 1 is the bad argument.

S-expression 2 is not valid information.

BAD NUMBER
An arithmetic function has been passed a non-
numeric argument.

16

S-expression 1 is the argument.
S-expression 2 is not valid information.

SET VAR UNDEF

The function set or setq has been given an undefin-
ed program variable. ‘

S-expression 1 is the program variable.
S-expression 2 is the association list.

NON ATOMIC ARG (PRIN1)
The argument of prinl is a list.
S-expression 1 is the argument.
S-expression 2 is not valid information.

GO LABEL UNDEF

The label given as the argument of go has never
been defined.

S-expression 1 is the undefined label.
S-expression 2 is the golist (list of all labels).

TOO MANY ARGS (EXPR)

TOO FEW ARGS (EXPR)

The wrong number of arguments have been passed
to a defined function.

S-expression 1 is a list of the function variables.

S-expression 2 is the list of supplied arguments.

BAD CHARACTER

The argument passed to a character function or
predicate is not a valid character atom.
S-expression 1 is the character argument.
S-expression 2 is not valid information.

BAD COMPRESS

The list of characters passed to compress could not
be made into a legal atom. ‘
S-expressions 1 and 2 are not valid information.

BAD SAVE

The LISP core image could not be written out
successfully.

S-expression 1 is the file name.

S-expression 2 is not valid information

OUT OF BINARY PROGRAM SPACE

There is not enough binary program space left to
execute a function. This message is generated by
bpload and array.

S-expressions | and 2 are not valid information.

NO MORE CORE

TSS has refused a request to obtain more free
space.

S-expressions 1 and 2 are not valid information.

CALL TO ERROR

The function error has been called.
S-expression 1 is the argument of error.
S-expression 2 is not valid information.

BAD MEDIA ON INPUT

The currently selected input file is not media 6
ASCIIL.

S-expressions 1 and 2 are not valid information.

WRS ON INPUT FILE

The logical channel sclected for output has been
opened for input.

S-expression 1 is the logical channel number.
S-expression 2 is not valid information.

FILE AT EOF

The selected input channel is positioned at end-of-
file.

S-expression 1 is the logical channel number.
S-expression 2 is not valid information.

RDS ON OUTPUT FILE

The logical channel selected for input has been
opened for output.

S-expression 1 is the logical channel number.
S-expression 2 is not valid information.

FILE NOT OPEN

The logical channel given as an argument to rds or
wrs has never been opened.

S-expression 1 is the logical channel number
S-expression 2 is not valid information,

BAD CALL ((LN).

The logarithm routine has been passed a negative
argument. This message is generated by /og and ex-
pl.

S-expression 1 is the argument.

S-expression 2 is not valid information.

BAD CALL (.EXP)

The exponentiation routine has been passed an
argument greater than 88.5. This message is
generated by exp and expi.

S-expression 1 is the argument.

S-expression 2 is not valid information.

GTS VAR UNDEF

The argument of grs was never declared special.
S-expression 1 is the argument of gts.
S-expression 2 is not valid information.

17

' FATAL ERROR: PDS OVERFLOW IN GCL

The pushdown stack has overflown during garbage
collection. LISP/66 has terminated.

SUBSCRIPT ERROR

The subscript list specifies an array element beyond
the limits of the array. This message is generated by
setel and getel. '

S-expression | is the subscript list.

S-expression 2 is the new value (setel)
S-expression 2 is not valid information (gerel)

CAN'T OPEN FILE

This message is generated for any openr/openw file
system error, such as syntax error in the pathname,
permissions denied, file does not exist (openr) or
AFT full.

S-expressions | and 2 are the arguments of the
openr or openw.

CAN'T CLOSE FILE

A disc file will not close properly (usually an 10S
status 17 on the last block).

S-expression 1 is the logical channel number.
S-expression 2 is not valid information.

STATUS 17, CHANNEL x
The disc file on channel x will not grow. .
S-expressions 1 and 2 are not valid information.

Appendix C
Glossary

association list

atom
atom symbol

bound variable

free-storage list

free variable

functional

functional argument

garbage collector

GMAP

indicator

interpreter

predicate

program variable

A list of pairs of terms which is equivalent to a table with two columns. It is
used to pair bound variables with their values.

A synonym for atomic symbol.
The basic constituent of an S-expression,

A variable included in the list of bound variables after a LAMBDA is
bound within the scope of the LAMBDA. This means that its value is the

argument corresponding in position to the occurrence of the variable in the
LAMBDA list.

The list of free words in the computer memory. Each time a cons is per-
formed the first word of the free-storage list is removed. When the free-
storage list is exhausted, a new one is built by the garbage collector.

A variable that is neither a program variable or a bound variable.

A function that can have functions as arguments. apply, eval, sassoc and the
mapping functions are functionals in LISP/66.

A function that is an argument for a functional. In LISP, a functional
argunient is quoted by using the special form (FUNCTION fn).

The routine in LISP/66 which identifies all active list structure by tracing it
from fixed base cells and marking it, and then collects all unneeded cells
(garbage) into a new free-storage list,

General Macro Assembly Program the assembler for the HIS 6000.

An atomic symbol occurring on a property list that specifies that the next
item on the list is a certain property. EXPR, SUBR, FEXPR, FSUBR and
APVAL are examples of indicators.

An interpreter executes a source language program by examining the source
language and performing the specified algorithms. This is in contrast to a
compiler which translates a source language program into machine
language for subsequent execution. LISP/66 is an interpreter.

A function whose value is true or false. In LISP/66 false is represented by
NIL and true by anything that is non NIL.

A variable that is declared in the list of variables following the word PROG.

Program variables have initially the value NIL, but can be assigned other
values by set and setq.

18

property An expression associated with an atomic symbol.

property list The list of an atom's properties; the CDR of an atom is the atom's property

list.
pseudo function A function which has effects other than delivering a value. For example,

read or rplaca.

recursion The technique of defining a function in terms of itself.

19

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

