The Real-Time/Minicomputer
Laboratory

Michael A. Malcolm
Gary R. Sager

Department of Computer Science
University of Waterloo

Research Report CS-76-11

February 1976

ABSTRACT

The Real-time/Minicomputer Laboratory at the
University of Waterloo has several interesting pro-
jects underway which pertain to the educational
and research uses of minicomputers.

cross software

Several pieces of cross software have been
developed at the University of Waterloo to aid in
the development of software for minicomputers in
the Lab. These include an assembler, relocating
linking loader and a library file editor; all are
written in Fortran and are used on our Honeywell
6060 to develop software for Data General NOVA
minicomputers. We are currently working on more
extensive portable cross software to support other
minis in the Lab,

real time systems course

The major use of the Lab to date has been for
teaching an undergraduate course in real time com-
puting. Students receive "hands on” experience with
computer control applications using Laboratory
equipment. This involves the use of a computer-
controlled model train and slot car race track.
Students develop programs on the Honeywell using
the cross software, then transfer them to the
NOVA via a high-speed communication link for
execution and debugging. The cross software allows
a class of 30 to 40 students to share one minicom-
puter for assignments.

"Hub” system for minicomputer support

In order to support a large number of diverse and
possibly minimally configured minicomputers, we
are developing a star network of minicomputers.
The central node, calted the Hub, will serve to:
a) handle communications protocols for file
transfers to and from large computer systems
b) communicate files to and from other minis us-
ing simple protocols
¢) provide peripheral sharing among the Lab's
minicomputers.

The Hub will greatly increase the value of the

Laboratory for education and research hy:

a) encouraging extensive use of cross software
for program development, thereby reducing
the "hands on” time required by every user of
the Lab

b) providing access to data and devices of many
machines

¢) significantly reducing the investment required
to add machines to the Laboratory,

portable systems software

The Laboratory currently supports research being
conducted by several graduate students and faculty
members. This research has concentrated on the
development of a portable high-level language call-
ed "Eh” and a real-time operating system written in
Eh which will eventually execute on all machines in
the Lab. This will enhance the exchange of software
within the Lab, and will provide greater flexibility
in the use of the machines.

1. Introduction

The Real-Time/Minicomputer Laboratory in
the University of Waterloo’s Computer Science
Department serves a purpose similar to that of a
chemistry or physics laboratory by giving access to
a diverse array of minicomputers and peripherals.
it is used primarily as a teaching facility for in-
troducing undergraduate students to some prac-
tical aspects of computer science. Students are ex-
posed to "hands-on experience” using inexpensive
minicomputer equipment to solve various systems
programming and real-time applications problems.

During the past year, students of a course titled
real-time applications of minicomputers have made
extensive use of the lab. The lab has also been used
for the research of graduate students and faculty
members. Hopefully, in another year, facilities of
this laboratory can be extended to serve other
courses in computer science, such as computer
architecture.

The lab has been in use since Winter 1974, We
started with a borrowed Honeywell 316 which has
since been returned to Honeywell. In May 1974 we
took delivery of a Data General NOVA/2 having
8K words of core and a cassette unit. By January
1975 the NOVA cross software was working
sufficiently well to support a class of 20 students.
Since then, we have greatly increased the NOVA
software support; this is discussed in Section 2. In
May 1975 we acquired a Microdata 1600/30; since
then we have developed cross software which sup-
ports a high-level language for it. this work is part
of the portable software project discussed in
Section 5.

Perhaps the most interesting addition to the lab
came last summer when an electric train was inter-
faced to the NOVA. It is used as a source of real-
time control problems for students of the real-time
applications course. Recently a slot car track has
also been added to the lab for the same purpose.
These unusual computer peripherals will be discuss-
ed in Section 3.

2. Cross software

Both the NOVA and Microdata come with
vendor-supplied software such as assemblers,
editors, operating systems. etc. This software
provides tools for further software development;
however, most of it assumes a single-user hands-on
environment during editing, assembling, loading
and debugging. Thus. it is difficult to support more
than 5 or 6 students developing non-trivial

programs using only vendor-supplied software, not
to mention the inconvenience of using paper tapes
and cassettes for storing files and loading
programs. We have been able to support over 30
students per term on one machine (the NOVA) us-
ing cross software running on the Honeywell 6060
timesharing system (TSS).

Most of the cross software is written in portable
Fortran, including the assembler, relocatable
loader, library file editor and emulator for the
NOVA, and a micro-assembler and micro-
processor simulator for the Microdata. The loader,
library file editor and emulator for the NOVA were
written locally. The assemblers and the micro-
processor simulator were supplied by the vendors;
however, the NOVA assembler was debugged and
substantially extended locally. We have also
developed a NOVA program called the
NOVA/TSS Communication System (NTCS)
which allows a NOVA user to sign onto TSS and
transfer files between the two computers. Nor-
mally, this is used to transfer a core-image file to a
NOVA cassette for subsequent execution.

The basic idea of the cross software is to take
advantage of the strong points of the machines in-
volved. We are taking advantage of the interactive
multiprogramming system of the Honeywell to
allow many students to be simultaneously active
editing, assembling and loading programs as well
as using the emulator to run some preliminary
debugging tests. The Honeywell provides a flexible
file system with good protection and backup, there-
by obviating the necessity of this level of support on
the NOVA itself. The offline support of program
storage and development has been useful for
systems work, such as maintaining NTCS, as well
as student assignments. The Honeywell also
provides a high speed line printer for assembly
listings, load maps, and core dumps, plus extensive
performance reports from the emulator. In a sense,
the Honeywell 6060 serves as a sophisticated
peripheral of the NOVA.

The NOVA, on the other hand, is used mainly
for students to gain hands-on experience with com-
puters, especially in the areas of machine-level
debugging and real-time applications. In these en-
vironments, the multiuser and file system
capabilities would be difficult to provide (especially
at any level approaching the quality of the
Honeywell). With the cross software, it is possible
to support up to 30 to 40 advanced students while
still providing each student with ample time as sole
user of the NOVA,

An additional advantage is gained by the
relocatable loader; it is possible to load programs
on the Honeywell using the cross loader, which can-
not be loaded on the NOVA due to the core re-

quired for the loader to run on the NOVA; 721
words are used by the second pass of the NOVA
relocatable loader.

The connection between the Honeywell and
NOVA is through a synchronous communication
line running at 19,200 bits per second. This bidirec-
tional file transfer capability proved useful for
detecting and isolating bugs in the cross software as
well as assuring its compatibility with the Data
General NOVA versions. We have also made use of
the ability to take a core dump on the NOVA and
transfer it to the Honeywell for a post mortem
dump analysis. written in a high-level language to
run on the Honeywell.

3. real time systems course

A course in Real-Time Applications of
Minicomputers has been developed at the Univer-
sity of Waterloo during the past year by one of the
authors (Malcolm). The course is given at the
fourth-year undergraduate and first-year graduate
level. A major motivation for developing such a
course is to expose students to hands-on minicom-
puter experience. It also provides a computing en-
vironment and a class of problems which few of the
students have experienced.

The course is partially hardware oriented, but
the main emphasis is software and system design.
The students learn in detail how a particular
minicomputer works, especially the 1/0 interface
hardware. Most of the programming is done at the
machine language and assembly level. Students
write a stand-alone program for a real-time
application which requires interrupt handling, They
also get experience using a modern real-time
operating system.

An important part of the course is learning how
to structure a complicated program as a set of
cooperating sequential processes, or tasks.
Students must write and debug such a program
utilizing a real-time operating system. A rich
source of problems for this exercise is provided by
an electric train which was interfaced to our NOVA
in Spring of 1975.

Many of the problems encountered when
writing a4 program to control the train are the
classical problems of operating systems. For ex-
ample, since there are two independently controlled
trains using the same track, some sort of track
allocation algorithm is usally devised to keep them
from running into each other. This, of course, in-
volves critical sections, not unlike those of core
allocation algorithms. Many students have found
that their programming is simplified and the

rJ

reliability of their programs is enhanced by using a
finite automaton to control the train; the problem is
then reduced to that of writing the the state-
transition tables. Also, there are a number of
deadlock situations which can occur. A
sophisticated program can avoid some of the
deadlocks, and recover from others, by the same
methods used in operating systems.

We also study the organization of simple real-
time operating systems themselves. Students read
parts of the system they are using, and we discuss
how to construct one from scratch.

In short, the Laboratory provides an en-
vironment for teaching which could not be provided
on a large multi-programmed machine. The electric
train is a fun and interesting source of programm-
ing problems. The problems of critical sections and
deadlock are easy to visualize when they occur on a
train track, and the importance of their proper
solution becomes obvious. For most students, it is
the first time in their programming career that no
large mysteries are going on inside the computer.
They have a detailed understanding of the
operating system and the hardware on which their
programs run.

Hands-on use of the machine also adds an
element of realism which comes as a small shock to
some of the students. Students must turn the
machine on and off themselves. Sometimes the
proper cable isn't plugged in or a terminal is set to
the the wrong baud rate. Or an interface isn’t func-
tioning properly, etc. Students learn to become
somewhat skeptical of the hardware when debugg-
ing a program; and they learn to account for possi-
ble (likely?) malfunctions of sensors and control
circuits,

Recently we have added a slot car set to the lab.,
It uses two channels of analog input to control the
speeds of the two cars, and provides encoded sensor
numbers and interrupts whenever one of the 64
phototransistor sensors is crossed. The sensor data
is provided in such a way that two minicomputers
can race each other. No programs have been
written for the slot cars yet, but we expect them to
provide more severe real-time constraints than the
train.

4. "Hub” system for minicomputer
support

In Section | we mentioned that cross software
{which executes on the Honeywell 6060) had been
developed for the Microdata minicomputer. This
implies that programs must be transmitted to the
Microdata, Since NOVA software already existed

for moving files from the Honeywell, and the
Microdata requires a TWX teletype for loading
programs (which we didn't have at the time, and
didn't wish to purchase), we decided to use the
NOVA as a host machine for moving software
from the Honeywell to the Microdata. To do the
communication from the NOVA to the Microdata,
we developed a program which makes the NOVA
emulate a teletype. The emulated teletype paper
tape reader and punch are in actuality the NOVA
cassettes. The Microdata teletype interface line
speed was increased to 4800 bits per second; thus
program loading is considerably faster than with a
real teletype. The disadvantage of this technique is
that it ties up the NOVA whenever someone wishes
to use the Microdata. This arrangement has been
adaquate for the software development phase in
which only 1 or 2 hours of debugging time was re-
quired per day. However, now that the compiler for
the Microdata is working and the machine is gain-
ing users, a more economic means of loading
programs (i.e., simulating a teletype) must be
found.

As a result of the experience with the
Microdata, and our anticipation of similar ex-
periences in the future, we are currently developing
a Hub computer which will serve as a "file transfer
machine”. The Hub will be connected to the
Honeywell 6060, the Math Faculty's PDP-11/45
UNIX timesharing system, and to each of the other
minicomputers in the Lab. A Texas Instruments
990/10 with a small disc will be used for the Hub. It
will primarily be used for moving files between the
two time sharing systems (Honeywell TSS and
UNIX) and the attached minicomputers. It will
also provide an ability to share minicomputer
peripherals between the machines in the Lab.

There are several advantages to the central file
system, including a major savings in the reduced
duplication of peripheral equipment, and reduced
duplication of communications software. Another
important advantage of designing a minicomputer
laboratory around a Hub machine is that having
fewer peripheral devices per minicomputer results
in less maintenance per minicomputer; this is a ma-
jor consideration for the person in charge of the
Lab. The intentionally simple protocols of the Hub
will allow it to serve as a bootstrap (initial program
loading) device for attached mini and microcom-
puters. Hence, it will be possible to add minimally
configured computers to the lab in the future. This
will be expecially valuable if we decide to add
minicomputers for undergraduate students to use in
computer architecture courses. Thus, for example,
first or second year students could edit and assem-
ble PDP-11 programs using UNIX or TSS, and
later transmit them (using the Hub) to a stripped

PDP-11 (costing under $5000 each) for a stand-
alone debugging session. Experience with the
NOVA indicates that this arrangement can yield an
order of magnitude increase in the hands-on service
rendered by a minicomputer.

Obviously the Hub, being the central node in a
star network, must be extremely reliable. The
minimally-configured machines attached to the
Hub will be essentially useless during Hub down
times. We hope to attain high reliability of the Hub
hardware through redundancy of hardware com-
ponents: Another project in the Faculty of
Mathematics will require a number of Texas
Instruments 990 machines; hence we can justify a
stock of spare parts.

One of the machines which will be attached to
the Hub is the PHOTON phototypesetter which
produced this document. (It is controlled by
another Microdata minicomputer.)

5. Portable systems software

The Hub network described in the previous
section will provide an excellent environment for
research into portable minicomputer software. We
are currently engaged in the design of portable
systems software for minicomputers. This project
involves implementing a portable set of systems
software and porting it to each of the machines in
the Lab as well as to the Honeywell and UNIX.
The universal availability of the systems software
will not only reduce the amount of software Lab
users will need to become familiar with, it will also
allow them to use the software as cross-software on
any of the machines.

As the first stage of the project, we have design-
ed a high-level implementation language (called
Eh) which will be common to all machines. While a
high-level language does not guarantee portability,
the design of the language can discourage or
prevent portable programming; therefore, the
prime design criterion for Eh has been to insure
that it will permit and encourage portable program-
ming. To a large extent, this simply requires that
the semantics of the language be well defined. Thus,
detailed documentation of the language is
necessary [2]. In addition, we are developing a set
of certification programs which are designed to
detect incorrect implementation of the semantics of
Eh; once the certification programs are successfully
executed, the portable systems software should ex-
ecute correctly.

The Eh compiler consists of two phases: the first
phase does the syntax analysis and outputs in-
termediate language. The intermediate language

resembles the order code for a stack oriented
machine. During the second phase of compilation,
the intermediate language is translated to the target
machine language.

Porting Eh to a new machine involves a rewrite
of the second phase of the compiler. In this respect,
the portability of the Eh compiler is much like that
of many other portable compilers. However, there
is one important difference: Many compilers output
assembler code, then rely on an existing assembler
and linking/relocating loader for the final transfor-
mation into an executable program. Other com-
pilers generate output suitable for input to the
linking/relocating loader. In either case, the por-
tability of the compiler depends upon the
capabilities of the loaders found on various
machines. Were we to assume a "least common
denominator” of assemblers and/or loaders
available on minicomputers, we would be forced to
assume so little that we could not implement
software of reasonable complexity. Reliance on ex-
isting assemblers and/or loaders has been a weak
point for many portable systems.

Our approach has been to implement a
machine-independent loader in Eh. This "universal
loader”, called UL D, accepts a machine description
along with relocatable load modules output by the
Eh compiler to create executable programs. Thus,
ULD will execute on and load for all machines in
the Lab (as well as the Honeywell and UNIX).

We must also implement an assembler for each
machine to interface machine dependent code with
programs written in Eh. Although this may appear
to be more work than can be justified, some obser-
vations should be made: Since we do not rely heavi-
ly on the assembler, it need not be efficient or
powerful. We have designed and implemented a
table-driven portable assembler called 724 which
can be easily modified to assemble code for a

different machine [7]. Converting TLA to generate.

code for a new machine consists of creating a table
of opcodes and rewriting six small subroutines
(around 200 lines of Eh) which specify the seman-
tics of the opcode classes. TLA has already been
converted to assemble code for the Microdata
1600/30, the Data General NOVA 2, and the TI
990/4. Many other machines were studied while
TLA was being designed; in all cases, TLA can
match the vendor's assembler syntax closely, the
major departure being the pseudo-ops, which have
been standardized across all versions of TLA. The
output of the assembler is load code for ULD.
Since the second phase of the compiler outputs
load code for ULD as well, it is able to link to TLA
assembly code. We have tested ULD by loading
programs for the Honeywell 6060, Data General
NOVA 2 and Microdata 1600/30. ULD has ex-

ecuted on the Honeywell 6060 and Microdata
1600/30; load code for the Honeywell was
generated by hand, that for the NOVA was
generated by TLA, while load code for the
Microdata was generated by compilations of Eh
and TLA programs.

The internal structure of the three machines we
have loaded for shows a great deal of variation:

(1) Honeywell 6060: 36 bit word, word
addressing, 18 bit address, the address may
appear in the left or right half of the word

(2) NOVA: 16 bit word, word addressing, 8 or
15 bit address

(3) Microdata: 16 bit word, byte addressing, 8
or 15 bit address, variable-length instruc-
tions

ULD is designed to search libraries of load
code. This requires tools to build and maintain
libraries. To this end, we have designed and im-
plemented a Library Editor which will maintain
libraries of ULD input on any machine for any
machine [3]. It is written in Eh, and can be ported
with the other components of the system with vir-
tually no change.

Finally, to provide an environment for writing
real-time applications programs, we have designed
and implemented a small real-time executive in Eh,
called Thoth [6]. Thoth provides multitasking
capabilities such as dynamic scheduling, task
creation and deletion, inter-task communication
and synchronization of tasks. It has been designed
to provide a very small yet effective set of
primitives. A minimally configured version of
Thoth involves about 600 lines of Eh (including
comments) and around 100 lines of TL.A assembler
code, depending on the machine. On a 16-bit
minicomputer, such a configuration of Thoth
should require between 2K and 3K words of
storage, based on experience with the Microdata.
This compact system will be a useful tool for im-
plementing Lab support software. In addition, it
will serve as a vehicle for teaching basic concepts
for such courses as real-time applications and
operating systems.

6. Reflections

The motivation for setting up the Real-
Time/Minicomputer Lab has been to provide a
diversity of minicomputers and peripherals and the
appropriate cross software and communication
links to make them useful for teaching reasonable
numbers of students and conducting a modest
amount of research. We hope eventually to have
around 6 different mainframes in the Lab. In this
sense we have only begun to achieve our original
objectives.

Having a variety of machines has distinct
pedagogical advantages, and it provides
stimulation for certain kinds of research (par-
ticularly software portability research). However,
we wish to warn prospective builders of such
laboratories that the multi-vendor objective has
some disadvantages. For example, in order to ac-
quire such a variety of machines, one must deal
with a variety of computer salesmen. The variety of
different machines leads to a variety of different
manuals, diagnostic programs, operating systems,
programming languages, etc. Each machine re-
quires a different preventive maintenance program.
One generally has to deal with a different
organization for each different machine when it
needs repair. And it usually isn’t practical to stock
spare parts for one-of-a-kind minicomputers or to
invest in training local repair personnel in the in-
tricacies of each different machine. Custom-built
equipment, such as our model train and slot car in-
terfaces, can add to the maintenance difficulties.
Qur design of the Hub system discussed in Section
4 was partially motivated by the potential savings
in hardware maintenance.

The diversity of vendor-supplied software
presents a far more severe problem than that of
hardware maintence. The number of manuals,
listings, paper tapes, and bugs to keep track of can
be overwhelming in itself. This often frightens away
potential users of the Lab. This is compounded by
the fact that many of the more interesting
minicomputers are intended for the OEM market
or are very new and have little or no software sup-
port. We also find that we sometimes wish to run
the same applications program on more than one
machine; but portability of vendor-supplied
software is practically impossible. Our portability
project has been inspired by the variety (as well as
the low quality of some) of the vendor-supplied
software. Certainly, in this case, necessity has been
the mother of invention. We hope that our portable
systems software project will provide solutions to
many of these problems.

In spite of the difficulties, we believe that it is
highly desirable to have a variety of machines in the

Lab. It is the diverse array of equipment which is
continually combined in new and interesting ways
that provides a rich and stimulating environment.

7. Acknowledgements

We are pleased to acknowledge the help of
several students, faculty and staff members in the
creation and development of the real-
time/minicomputer laboratory. We especially wish
to thank Gord Agnew, Rick Beach, Reinaldo
Braga, Randy Bruce, Ernic Chang, Nancy Kemp,
Rick Madter, Eric Manning, Lawrie Melen, Jim
Morris, Laurie Rogers, Gerhardt Roth, Gary
Stafford, and Fred Young. In addition, many of the
students who have taken Math 479a have helped in
debugging and designing the cross software.

We gratefully acknowledge the National
Research Council of Canada, and the Waterloo
Research Institute, for their support, in part, of the
research discussed in this paper.

8. References

[1] Braga, R.,, M. A. Malcolm and G. R.
Sager, "A design for a portable programm-
ing system”, Department of Computer
Science, University of Waterloo, Research
Report CS-75-29, November 1975.

[2] Braga, R., "Description of the programm-
ing language Eh”, unpublished manuscript,
1976.

[3] Bruce, R. D., "Library editor reference
manual”, unpublished manuscript, 1976.

(4] Lennon, William J., "A minicomputer
network for support of real-time research”,
ACM 1974 Annual Conference, San
Diego, California, November 1974,

[5] Malcolm, M. A. and G. R. Sager, "Report
on real-time/minicomputer laboratory”,
Department of Computer Science, Univer-
sity of Waterloo, Research Report CS-75-
23, September 1975.

[6] Melen, L., "A portable real-time ex-
ecutive”, unpublished manuscript, 1976.

[6] Sager, G. R., "Emulation for "system
measurement /debugging”, in J. R. Bell

and C. G. Bell, Minicomputer Software,
North-Holland, to appear 1976.

Stafford, G. J., "The Last Assembler
reference manual”, unpublished
manuscript, 1976.

	
	
	
	
	
	
	
	

