A METHOD FOR AUTOMATIC GENERATION OF
HEURISTICS FOR STATE-SPACE PROBLEMS
Larry Rendell
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
CS-76-10

February 1976

A METHOD FOR AUTOMATIC GENERATION OF
HEURISTICS FOR STATE-SPACE PROBLEMS

by

Larry Rendell

ABSTRACT

A method is described for automatic generation of a dynamic
evaluation function for a given state-space problem class. The
evaluation function is a nonlinear composition of more elementary
functions (features) which directly utilizes statistics of previously
encountered problems and which incorporates clustering to reduce
stored information. The method includes continuing revision of the
initiatory evaluation function and also allows subsequent consideration

of added features.

2o N

CONTENTS

INTRODUCTION : ¢t tvtiet ittt ettt asenerenanneneasanannnn 1
FEATURES AND CLUSTER FUNCTIONS....cviiuiienierrrnneenenss 6
CLUSTERING ¢t it i ittt ittt einevssennnneroenenennaanannn 13
EXTENDING THE FEATURE SPACE.. ... ciiivieiiineniinennenan, 16
REVISING UTILITY FUNCTIONS ..cviiiiiii ittt iaiineanas 19

SOME REMARKS 4 vii ittt iieiiiiieeineeanaeaeneannanan 21

1. INTRODUCTION

There is a large class of problems which can be analysed as state-
space problems. A state-space problem is one whose solution can be given
as a sequence of distinct states. Usually, each state has more than one
successor each of which can be considered to be generated by some
operator. Thus, a state can be represented as a node on a tree whose
arcs correspond to operators, a state tree. A solution sequence is given

by a path through the tree from a starting node or state to a goal.

A common example is the 8-puzzle, consisting of eight numbered
squares in a 3x3 configuration with one position empty. Here, a represent-
ation for the state of the problem might be a 3x3 array, each element
representing a square. An operator creates a successor state by a "move"

of an adjacent square into the empty position:

PART of the STATE TREE for an 8-puzzle problem

1 2 3
4 6 STARTING NODE
7 5 8
operation

1 3 1T 2 1T 2 3 T 2 3
4 2 6 4 6 4 6 4 5 6
7 5 8 7 5 8 7 5 8 7 8
1 2 3
GOAL NODE 4 5 6

-2-

A more complex example of a state-space problem is the following
theorem proving formulation. Suppose we have a set of akioms, along with
a negated theorem, all in clause form. The clauses form a basis set of
nodes, and new nodes are created by resolution [Nilsson (1971)] of pairs

of clause nodes. The complete (often infinite) result would be an exhaustive

deduction graph. Any subgraph which includes the same basis set of nodes,

we can call a deduction graph. A deduction graph which has exactly one

null clause is a final deduction graph (corresponding to a proof).

In this problem class, a state is not a clause node, but rather
a deduction graph. And the operators 1linking states are resolution along

with some clause pair selector.

In this report, we shall be concerned with any arbitrarily chosen
state-space problem class, and with some graph (or tree) which is contin-
ually being extended as a solution is attempted. We shall call this

graph a (state) description graph {or tree). For the 8-puzzle, a description

tree is the current state tree. For the resolution example, one description
graph is the current deduction graph. In general, the state description graph
can be the state tree, but it can also be something else, as long as its
structure and nodes somehow reflect the current state of the problem, and as
long as the continuing solution attempt results in constant addition of

description nodes, one for each operator application.

The state description graph which corresponds to a solution, we shall

call a final (description) graph (or tree).

Ongapproach to the efficient solution of state-space problems is to

consider the state tree, and to try to develop heuristic search procedures

which generally result in the creation of few "useless" nodes, and Tead

-3-

more directly to the goal. And one kind of search procedure incorporates

an evaluation function [Doran and Michie (1966), Doran (1967)1 to rank

description nodes. The value of this function is supposed to reflect the
1ikelihood that the node will participate in a solution to the problem,
so higher ranking nodes are expanded first. The system described in this paper

utilizes such a function, the "utility estimate".

An evaluation function can be statically defined by the programmer,
but a more sophisticated approach is to develop a system which composes its
own, from a set of "features" {(more fundamental functions defined over the
nodes). Implicit in this approach is the hypothesis that each feature is
an abstraction which generally correlates with node usefulness. The
feature set-utility estimate correlation for one set of problems (in a
given domain) is used to induce utility estimates for nodes generated in

solution attempts of (other) problems which are in the same domain.

There is an obstacle, however: It is difficult to unite the features
properly to create this utility estimate or evaluation function. Multiple
Tinear regression has been tried, successfully [Slagle and Bursky (1968),
Slagie and Farrell (1971)]; another (this one a nonlinear) method is given
in Samuel (1959, 1967). A system which has the capability of forming a
utility estimate as a general (noniinear) functional composition of individual
features has the obvious advantage of potentially greater accuracy. But
such a system also can employ more primitive, lower level features, with
the machinery taking care of any relationships. For example, if the problem
domain is the 8-puzzle, the feature set might simply be the nine functions
which indicate which numbered square is in what position. Or, for resolution

theorem proving, the computer could be "told" how to count and aiso be

-4-

informed that the things to count in a clause (count all, also count discrete)
are symbols; further that symbols are predicate, functional, comnective,

constant, or variables; predicate symbols are "=", "<",; etc.

This paper presents an approach to this problem of automatic compo-
sition of features. Rather than using a presupposed functional relationship
between the utility estimate and the features, the system works directly
with discrete numerical values derived from the statistics. An overview of

the method follows.

Features have values which are constrained to be integer, only. Each
feature which is active, or "current", becomes a dimension in a "feature
space". Within a region, R, in the "current" feature space--R may or may
not be a point--a "utility estimate" is defined, which is the ratio of the
number of "good" nodes (nodes that have participated in a solution), which
map into R; to the total number of nodes generated, again which map into R.
Now for a high dimensional space, the number of regions, if they were point
regions, would become prohibitively large. This situation is precluded
by allowing adjoining regions to coalesce. This clustering also smooths
out random statistical variations. To decrease further the storage infor-
mation required, the regions are constrained to be rectangular. In the
section which follows this one, rectangular regions and specific "cluster
functions" are detailed, and the third section specifies the clustering

algorithm.

The system also allows the addition of new features (feature space
extension) after a utility estimate has already been created for a current
feature .space. Section four describes the algorithm which extends the old

clusters into the proposed space extension, and which checks whether the

-5-

new features will help to "discriminate" good nodes. Finally, section

five relates a procedure for adding the statistical results for successive
problem solutions, in order to form a cumulative utility estimate. This
continual revision sometimes necessitates "splitting" of the clusters as the

estimates become more refined.

2. FEATURES AND CLUSTER FUNCTIONS

Suppose that we are considering a given state-space problem, and a

particular description graph representation. A feature (of a description node)

for this representation is any function which maps the set of nodes into
the set of natural numbers, II . For example, if our problem is resolution
theorem proving and the description graph is the deduction graph, then one
feature of a clause node might be the total number of symbols in the clause.
Another feature could be the depth of the node in the deduction graph
(distance from the basis clause level). This second ekample involves the
deduction graph as well as the clause per se , while the first involves

only the clause node.

IfS ='{f],f2,...,fn} is an ordered set of features and 7w is a node,
then (f](w), fz(w),...,fn(w)) can be thought of as a point in an n dimensional

feature space, F.

Suppose that we have such a feature space, F. Consider a rectangular

region or cluster in F which is aligned with the axes. Any such cluster of

points may be completely specified by just two extreme corner points,

A= (al,az,...,an), B = (bl’bZ""’bn) (ai < bi’ 1 <1 <n, or, abbreviated,
A <B). A point, X = (x],xz,...,xn) 1ies within the rectangle if
a; < X; <bss 1 <1 <, i.e. if A< X <B.

Now imagine that we have a finite portion of F which is partitioned
into m such rectangular clusters, given by the m corner point pairs,
(3) = (,(3) ,(3) (3) (3) _ ¢ (3) (3) (3) .
_E\- "(a-l ’az 3-.-,an) andg - (b] ,bz ,o--gbn)3] SJSm.
Notice that, to define the set of m clusters, just 2mn integers are

required.

-7-

Later on, we shall see how these clusters are formed. For now,
we shall define a class of functions; which we can call "elementary
utility functions", over a set of c]usters; These functions not only will
be used to construct evaluation functions, but will also participate in
the clustering process. Both of these aspects will become clear by the

end of the next section.

Before we discuss these functions, we need to define two

auxiliary counting functions, T and y. Suppose we have the following:

(1) A state-space representation of a problem, and a final state
description graph, ., which corresponds to a solution of
this probiem.

(2) A feature space, F, defined by the ordered set of features
{f],fz,...,fn}.

(3) A partition, # , of a portion of F, into m rectangular
clusters, {R1,R1,...,Rm} whose lower and upper extreme corner
points are given by:

(3)

A9 < (@@ o o (@) o

5(3)

(b1(j), bz(j),...,bn(j)), respectively, for 1 < j < m.

Then, the total counting function, TC&f,F,Rj) =

the total number of nodes, m, in ZJ, such that
ai(J) < fi (m) < bi(J), 1 <4 <n.
(I.e. the number of nodes, m, 1n;47, such that the feature space

map of w falls in cluster Rj).

-8-

And the "good" node counting function,

v(&,F.Rs) =

the number of nodes w, in &, such that

(1 ai(j) < fi(ﬂ) < bi(j), 1 <1<n, and
(2) = participates in the solution.

If a particular & and F are understood, we can abbreviate the counting

functions to T(Rj) and y(Rj).

What we want to do now is to use these statistics for & to estimate
the probability that nodes of description graphs for other problems might
be used in a solution. We shall hypothesize that, in general, if the feature
space map of a node falls in Rj, then the probability that the node is
"good" relates to T(Rj) and A(Rj).

Suppose that we have a feature space, rectangular partition, and
counting functions, all denoted as above. Suppose, also, that 7 is a node
of a description graph for another problem, both the problem and the graph

being of the same type that F, etc. apply to.

Assume that ai(j) < fi(ﬂ) < bi(j), 1<1i<n, for some j <m. If
we denote (f](w), fz(n),...,fn(w)) by F(m), then this statement 1is
equivalent to F(m) ¢ Rj. Let G represent the event that w participates
in a solution, and w5 be the event F(m) eARj. Then the probability of G,
given Wy
P(e/wg) = PLER 050
P(wj)

This is, we hypothesize, estimated by

Y(Jfst,Rj)/T(.’éf,F,Rj); i.e.

WLFR) T(Ry)

To repeat, we have hypothesized that the statistics for one problem

solution can be generalized to another.

We now define the elementary utility function for o, F, 2 to be

UsF,o (Ry) - UR;) F&F
(R & w(R,))
= (0 ()

For any utility function, U = (Y,f), we define an associated

function, the utility estimate,

u (Ry) g/ v(Ry)/(Ry)
, if T(Rj) 0.
This is the estimator of P(G/wj); i.e. if F(n) e Rj’ then the estimate
of the probability that m might participate in a solution is u(Rj). A

later section will describe a method for constant revision of U (and thus u),

using statistics from successive problem solutions.

Consider two clusters, R; and Rj’ and suppose that u(Ri) < u(Rj).

We shall say that Ri is similar ;g_Rj (under.U4ﬁ,F’i,) if T(Ri) 0 or

T(Rj) =0 or

YR+ ATR) Ry - ATRD)

T(Ry) - /a(RY) w(R;) + Va(R;)

-10-

The reasoning behind this is as follows. Let us imagine that
we have a large number of problems which all have the same representation
schema as the one above; Consider the entire set, S, of description nodes
for all these problems and the mappings of all these nodes into F. We
have already hypothesized that P(G/w;) = Y(Rj)/'f(Rj) (i <m) for any
problem will apply to ther prob1ems; What we want now is a measure of
the "reliability" of this ratio. To find a rough estimate, Tet us make
the gross assumption that the nodes which counted in T(Rj) and y(Rj), as
calculated forzé/, actually were chosen randomly from S, rather than by
the selection mechanism for the particular problem solution attempt.
Then, for the total counting function, the variance estimate for this

hypergeometric (equivalent to binomial) distribution is

ﬂ(R-) t(R;) (- TRy)) whe
J NTﬁET NTRET re

N(Rj) is the number of nodes of S whose F maps fall in Rj. If N(Rj)

is Targe compared with T(Rj), the expression becomes approximately
/?ﬁi}) . Similarly, the variance estimate for the "good" counting
function is V?(ﬁg) . Thus, our definition for similarity of two regions
is equivalent to the statement that two regions are similar if their
utility estimates overlap when the component counting functions are

altered by up to one variance estimate.

-11-

3. CLUSTERING

Let us recursively define a utility function to be either an

elementary utility function (of the preceding section) or else the
result of operating on a utility function by any of the algorithms

in the remainder of this report.

This section describes the process of clustering the regions
of a feature space. The process is similar to some well known algorithms
[Hartigan (1975), Duda and Hart (1973)7; joining, or agglomeration,
of "most similar" neighbours is used. However, our algorithm is different
from many others, in some respects. One is that the distance, or simi-
larity funcfion is a property of "experience" of the model, not just of the
feature space, namely through utility functions. Another significant
feature of our algorithm is that the final number of clusters is not
fixed a priori, but rather is determined by the data. The precise meaning

of these comments will soon become clearer.

Suppose we are given the following:
(1) A feature space, F {for some state space representation),

defined by the ordered feature set'{fl,fzs...,fn}.

(2) A partition, #, of a portion of F, into m clusters {Rl’Rz""’Rm}’

assumed to be rectangular.
(3) A utility function, U= (y,t), over #

We shall now define a non-metric distance function, d, for (F,ZU),

which maps the cartesian product of the cluster set with itself into [0,«]:

Consider two clusters, Ri’Rj (i, <m).

~12-

//- © , if Ry, Rj are not similar

(see previous section)

d(Ri’Rj)

Q.
5l
—h

max (u(Ri)/u(Rj),
u(Rj)/u(Ri) -1,

k_ if Ri’Rj are similar.

Now the clustering algorithm can be stated:
CLUSTERING ALGORITHM

For each of the m clusters, Ri (i <m), call another cluster, Rj, an

amalgamation candidate if:

There are two points, X = (XT’XZ""’Xn) e Ry, and Y = (y],yz,...,yn) € R
such that
(i) X=Y+cb,
where ¢ ¢ X and bk is one of the n (k < n) unit coordinate basis
vectors
and
(i1) Rj borders Ri’ or else there is a subset of the clusters,
{Z]’ZZ"°"Zp}’ with Ri bordering Zys 24 bordering zz,...,etc.,
and z_ bordering Rj, such that a Tine joining X and Y passes

p
through all the z;, and such that U(zk) = (0,0) for all k < p.

(1) For each cluster, Rs> calculate the distance function, d(Ri,Rj) for

each of its amalgamation candidates, Rj. Choose Rk and R1 such that

-13-

d(Rk’Rt) is a minimum of all these distances (choose one pair if there is

a tie). If d(Rk’Rx) = o , stop. Otherwise, there are two cases. Rq

is an amalgamation candidate for R, of the above type (i) or of type (ii).

If the former (Rk and R] directly adjacent), then replace Rk and R1 with

Rk1 = Rk U R], and decrement m by one. If the cluster set‘{z1,22,...,zp}

lies between R, and Ry then replace all of these p+2 clusters by

RkI = Rk u R] u Z} u Z2 U ... uZ and decrement m by ptl. In each case,

P

set
U(Re,) = U(R) + U(R))

Go to (1).
This is the basic clustering algorithm, but there are two
modifications we shall make. The first is to restrict the process of

clustering to just some dimensions of F, which are specified by a set of

input clustering dimensions; these form a clustering subspace. Because

of the way in which the algorithm will be used, this restriction is not

severe. This fact will be appreciated later on.

The other modification we shall make to the clustering algorithm
is an addition. As it stands, the algorithm cutputs clusters which are
not rectangular in general. But for storage reasons, it is important,
sometimes essential to minimize the information required to specify a
feature space region. And, as we saw in the previous section, rectangular
regions, aligned with the axes, require 1ittle information to specify.

The following addendum rectangularizes the clusters.

CLUSTERING ALGORITHM ADDENDUM
Let the original regions which were input to the clustering algorithm

be denoted by f% = {r],rz,...,rm} and let the utility function for

-14-

#% be UO. Suppose that the algorithm has output the cluster set
F= {RT’RZ""’Rm}’ having operated in the ¢ < n dimensional clustering

subspace FC < F.

Consider the rectangular surfaces, 8, in F which have the following
properties:

(1) They are n-1 dimensional, and defined by xi = k, where x, is the

j
ith coordinate of F, and k « Ki; a set defined as follows:

Let (yl,...,y.

1,...,yn) bhe a point within any of the clusters, R..

J
Then y; € Ky if there is no other point, (y1,...,yi_1,zi,yi+],...,yn) € Rj

such that z; < Y- Also, y.

i € Ki if there is no other such point

such that z; > Ys-

(2) Each surface does not intersect any of the original clusters, rj,

except at a boundary only.

Generate a new, rectangular, partition, fﬂ = {R](]), R2(1),...,Rm(])},
so that:
(1) For Rj e ¥, there is a possibly different Rj(1) € %?.
(2) The boundaries of Rj(]) are selected from the just-defined set of

surfaces, 4, consistant with the fact that %ﬁ is a partition.

Repeat this rectangular partitioning, using Zand _{ , to create as
many distinct sets #ﬁ, f%,... as possible. Say there are p such partitions,

with the regions for #% represented by Rl(i), R2(1),...,Rm(i) (i <p). We

shall select the partition which is the "best", as follows.

For each fﬁ, calculate an "error" or "total distance" function, using

the "unrectangular" partition, #, as well as fﬁ:

' J

-15-
and sum these over all regions of f?:

D, = :E: D (Rj(‘)) .

J=m

Now, choose the partition, fi, for which Dk is a minimum. # 1is the final

k
rectangular partition output by the clustering algorithm, and its utility

function,

K . > U (R)
uR, (K = W, (0

In order that the rectangularizing section of the algorithm be

reasonably fast, either the original set f% or else the number of clustering

dimensions must be fairly small.

The following is an example from resolution theorem proving.

n=1

fI = depth of clause node in deduction graph

F = {f]}

Clustering subspace: FC = F.
f]]
0 7,7
1 1,2 i v
2 1.6 0-1 8,9
3 1,20 T 2-3 2,26
4 1,66 4-6 2,390
5 1,181
6 1,143

-16-
4. EXTENDING THE FEATURE SPACE

Suppose we have a feature space, F, defined by’{f],fz,...,fn}; a
partition, 4, of a part of F, into m cTusters’{R],RZ,...,Rm}; and a -
utility function, U, over £ Let {f ;> fo_ps-+-sTqg} be an ordered
set of distinct new features, and define an extension, F', of F which
has dimensions given by'{f],fz,...,fn+£}. Next, for each n-dimensional
cluster, Rj (j <m), form a set of clusters, such that each new n+%
dimensional region, Rj(k) projects into Rj, in F; but into a point,

in F'-F.

Let us suppose that we also have a final state description
graph, 4. We are now in a position to define the
DISCRIMINATION ALGORITHM

Calculate the counting functions, vy and T for &, F', and extended
clusters Rj(k). Apply the clustering algorithm to these extended
clusters, using the elementary utility function defined by vy and .
Cluster only in the 2 dimensions of F'-F. Let the resulting partition of
F' be represented by #', with m' clusters; # = {RI(]) cen Rl(k1),
Rz(]), cees Rz(kz),...,...,Rm(”,...,Rm(km)}, where the regions of
like subscripts project into the corresponding original regions in F,
i.e., {Rj(1)’ RZ(Z),...,Rj(kj)} = f? is a "cylinder" for Rj’ (and
= %ﬁ Llf% U ... u#%ﬂ. Also, let the utility function over #'

which the algorithm outputs be denoted by U'.

Consider f. (n < § < n+e). If, for some f% (i <m), the fi -
projection of all the clusters of ﬁ% forms more than just one line segment,

then we can say that fi discriminates among state description nodes

(of %, over F, and for #). Any fi (n < i < n+t) which does not

discriminate is removed from the ordered set of features, and from the

-17-

feature space, F'.

Suppose we begin with F the null space, and successively select new
feature sets, and apply the discrimination algorithm. Any feature which

discriminates is retained in F, and such a feature we shall call a current

feature. The ordered set of current features defines the current feature

space, F. Furthermore, there is a current utility function, U, associated

with F.

Let us consider an example of feature space extension and discrimination
algorithm application. As the current feature space, we choose the one
dimensional one of the previous section. The associated current region
function is the three region one produced in that example.

Current feature space is defined by {fl}’

i

f] depth of clause in deduction graph

f2 number of symbols in clause
Extended feature space'{fT,fz}

Clustering subspace 15‘{f2}

“ f
~n |
fzj\ 0-1 2-3 4-6
1
2
3 1,2
4
5 2,2 1,8 1,4
6 2,2 1,3
7 1,1 0,24
8 0,4 1,39
9 1,1 0,8 0,6
10 0,1 0,48
11 0,99
12 0,2 0,40
13 0,17
14 0,55
15
16 0,18
17

-18-

The result of extension and clustering is:

f1 f2 U u
0 -1 3-9 7,7 1.0
2 -3 5 - 12 2,26 .077
4 -6 5 -9 2,73 .027
4 -6 10 - 16 0,277 L0071

o 5 h, e
L - ‘ i i
2,
3
| 4
5
: b o ‘ :
| . |V oy |
b : U T : _____;_,A _
R 3 L L
K & ‘
13 :
AH
PR
3
oot |
‘ UtiTity Estimate
values, u, within regions

The new feature, f2’ was found to discriminate among description nodes, so
the current feature space is now given by {f},fz}. The new current utility
function does not retain any values from the old one, but the projection

of its regions into the old feature space,'{f}} gives exactly the regions

of the former utility function.

-19-

5. REVISING UTILITY FUNCTIONS

Suppose we have a current utility function, U = (y,t), over a current
feature space, F, given by'{f1,f2,...,fn}. Suppose, also, that the clusters
associated with U are denoted by #’=‘{R1,R2,...,Rm}. Now, imagine that

a problem solution has just been reached, whose final description graph is &.

Use Z to calculate the elementary utility function, U

oF P =U =.

(v,>Ty). Now we shall use Uy, to update U.
ADDITION PROCEDURE

Consider U and U, region by region. If Rj under U, is similar to Rj

under U (refer to section 2) then U and U, are consistant within Rj'

In this case, add Uy, to U:

U(R;) := U(Ry) + Uy (Ry) .
If, however, U and Uy are not consistant within Rj, then attempt to
split Rj into two (rectangular) clusters, Rj(I) and Rj(z), in such a
way that <, (R;(1)) # 07 <, (R;'?)) and R, under U is similar to
Rj(]) under Uy, but not to Rj(z) under Uy . If this attempt is success-
ful, then remove Rj from # replacing it with Rj(1) and Rj(z) (and

incrementing m by one), and set

NS (1)
UR,) o= u(Ry) + Uy (R,

U(Rj(z)) SINCAL

If no such splitting can be found, then this procedure fails.
This failure conceivably might be used to signal an attempt to find a

discriminating new feature (section 4).

If the procedure succeeds to this point, it is not yet complete,

-20-

because it can happen that some of the nodes of % fall outside of #
in F. Let 4 = {Rm+1’Rm+2""’Rm+p} be the set of point clusters
external to £ With the clustering subspace all of F, apply the
clustering algorithm to Au J .

The current region function is now U as altered by this addition

procedure.

-21-

6. SOME REMARKS

The system has some interesting properties. Early on in its
experience, there tend to be few clusters, since similarity depends on the
square root of the number of nodes encountered. Later on, as experience is
gained, the discrimination becomes more refined; clusters are subdivided

as inconsistancies arise (section 5).

Wherever discriminatory power becomes greater through feature space
extension, however, there is greater uncertainty, until the system gains
familiarity with the new feature(s), since probability values for the

predecessor space are discarded (section 4).

Our approach to automatic heuristic generation can be thought of in
terms of concept and hypothesis formation [Hunt (1962)]. For the example
in section 3, the clauses on levels 0 and 1 are "early", those on levels
2, 3 are "middle", and those on levels 4, 5, 6 are "late". The hypothesis
includes that early clauses have 1ikelihood 8/9 of being useful, while

late clauses have a chance of only 2/390.

Referring to the example in section 4, the "Tate" clauses are sub-
divided into "short" (4-9 symbols) and "long" (10-16 symbols). The rec-
tangular regions correspond to concepts linked by conjunction (c.f. Brunner

(1956)).

-22.
BIBLIOGRAPHY

Bruner, J.S., Goodnow, J.J., and Austin, G.A.: A Study of Thinking,
Wiley, 1956.

Doran, J.: "An Approach to Automatic Problem SoTlving", in N. Collins

American Elsevier, 1967.

Doran, J. and Michie, D.: "Experiments with the Graph Traverser Program",
Proc. Roy. Soc., A, vol. 294, pp. 235-259, 1966.

Duda, R.0. and Hart, P.E.: Pattern Classification and Scene Analysis,
Wiley, 1975.

Hartigan, J.A.: Clustering Algorithms, Wiley, 1975.

Hunt, E.B.: Concept Learning, an Information Processing Problem, Wiley,
1962.

Nilsson, N.J.: Problem Solving Methods in Artificial Intelligence,
McGraw-Hi11, 1971.

Samuel, A. (71959): "Some Studies in Machine Learning Using the Game of
Checkers", IBM J. Res. Develop, vol. 3, pp. 211-229, 1959. Re-
printed in E. Feigenbaum and J. Feldman (eds.), Computer and
Thought, pp. 71-105, McGraw-Hi11, 1963.

Samuel, A. (1967): "Some Studies in Machine Learning Using the Game of
Checkers II. Recent Progress", IBM J. Res. and Develop., vol. 11,
no. 6, pp. 601-617, 1967.

Slagle, J. and Bursky, P.: "Experiments with a Multipurpose, Theorem
Proving Heuristic Program", J. ACM, vol. 15, no. 1, pp. 85-99,
1968.

Slagle, J. and Farrell, C.D.: "Experiments in Automatic Learning for a
Multipurpose Heuristic Program", C. ACM, vol. 14, no. 2, pp. 91-99.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

