UNSTRUCTURED SYSTEMATIC PROGRAMMING
by
M.H. van Emden
Research Report CS-76-09
Department of Computer Science

University of Waterloe
Waterloo, Ontario, Canada

February, 1976

UNSTRUCTURED SYSTEMATIC PROGRAMMING

by

M.H. van Emden *)

Abstract

Verification conditions (in the sense of Floyd's proof method)
are shown to be identical with flowgraphs, a generalization of conventional
flowcharts, The semantics of flowgraphs is defined, methods for proving
partial and total correctness of flowgraphs are shown, and a translation
of certain flowgraphs to FORTRAN is described.

The intended application of flowgraphs is as a systematic
method for progressing from specifications to code (for example in FORTRAN).
An example of this process is given, foilowed by a discussion of the
implications for programming methody in particular for the choice of

sequencing primitives.

Key Words and Phrases

programming method, structured programming, sequencing

primitives, program correctness, assertions, verification conditions

CR categories 4.0, 5.24

£
) Department of Computer Science

University of Waterloo

Waterloo, Ontario, Canada

N2L 3Gl

1. Introduction

Systematic programming may be taken to mean a method according
to which the code of a program is obtained as the final stage of an
orderly progression from an initially given specification of input-—output
behaviour. It is to Edsger W. Dijkstra that we owe to a large extent the
knowledge that such a method is a worthwhile and feasible objective in
programming.

To Dijkstra we also owe a method [2] designed to facilitate
systematic programming. He emphasized that human intellectual limitations
necessitate great care in the choice of primitives for sequence control.
He concluded that in order to keep sequence control intellectually
manageable it is wise to abstain from the use of goto statements and to
rely instead on sequencing primitives which cause a program to become
"well-structured".

For a proper understanding of the present paper it is important
to distinguish between the objective of systematic programming and
"structured programming', the method advocated by Dijkstra to achieve it.
This particular method is only useful insofar as it is necessary to
have intellectually manageable sequence control, and this is not always
the case. For instance, when programming in a functional language like
pure LISP, sequence control is of no concern to the programmer.

In this paper I describe the use of verification conditions
(in the sense of Floyd's method of proof) as an aid to an orderly
progression from specification to a program in "flowgraph" form. Veri-
fication conditions have in common with pure LISP that meaning is
independent of any explicit sequence control. The advantage of certain
sets of verification conditdons is that they give rise to an equivalent
FORTRAN program by a translation process which is in principle automatic
and so simple that actual automation seems far from urgent. It is only
in the translation process that sequence control becomes explicit, but
at this point it has become so straightforward that to fear a problem
one must take a very pessimistic view indeed of human intellectual

limitations.

This use of verification conditions is an application of yet
another method originating with Dijkstra [1], Arguing that it is
necessary to prove programs correct, he suggested that the greatest
difficulties encountered in attempts at correctness proofs are caused
by the particular approach where a program is completed first and a
proof is attempted afterwards. Dijkstra showed that it is possible
to develop a program and its proof in parallel; in this way the
necessity to provide a proof does not need to be an additional burden
on the programmer, but can actually facilitate the task of program
construction. TIn his more recent work [3] Dijkstra carries the approach
further, so that, in a sense, the proof comes before the program. In
this paper I also follow this approach: the verification conditions
of the proof are used as programs ("flowgraphs)'.

In section 2 flowgraphs are introduced by a description of
their form and meaning. Section 3 reviews Floyd's method of pwoof
and shows the identity of flowgraphs and the verification conditions
proving their partial correctness. I describe a method for proving
termination which I believe to be useful in practice. Section 4 gives
a worked miniature example of systematic programming with verification
conditions. To convey the flavour of this as a problem-solving method,
I wanted to give in some detail a '"stream-of-thought'" description of
the development process. This takes up so much space that only a small
example will be treated. A more realistic example of programming with
verification conditions 1s the subject of a sequel andcompanion [47
to the present paper.

Section 5 gives the translation of flowgraphs to FORTRAN.
Section 6 discusses the issue of program structure in greater detail.
Sections 7 and 8 show that the generality of flowgraphs (admitting
expression of "incomplete' and indeterminate algorithms) is useful
because it enables the step~by-step approach to be followed in more

directions than hitherto possible.

2. Flowgraphs

A 4Lowgraph is a labelled directed graph having exactly one
node (the start node 8) without incoming arc and exactly one node (the
halt node H) without outgoing arc. Each arc is labelled with a command.
A command is a binary relation over a set of states or, equivalently, a
set of pairs of states. The first element of such a pair is the {nput
sZate; the second element is the output state. If c, and ©, are

1 2

commands their product c is also a command: a pair (x,z) of states

13%2

belongs to if and only if there exists a state y such that

¢, 3c
1’72
(x,y) € cq and (y,z) € Cye The precise nature of the Afates need only

be revealed in a definition of the commands of a flowgraph.

Example 2.1

In the set notation for the states and commands in this
example, the variables u,v,w,u’',v’', and w' range over the set of

rational numbers. The set of states is { (u,v,w)}

mathematical notation for command programming notation for command
a) { ((u,vew), (u,v',w')) :v' =v-1 & w' = u x wt v,wi= v=1l,u X W
b) { ((u,v,w), (',v',w): u' =uxué&v' =v/2} u,vi=ux u, v/2
c) {((u,0,w), €u,0,w))} | v =0
) { ((u,v,w), €u,v,w)) :v =0} vz0
e) { ((u,v,w), (u',v',w)) teven (v) & u' =uxu&v' =v/2} even (v); u,vi=u x u, v/2

Box 2.1 Some commands

The commands are of the kinds used by Dijkstra [3]: a) and b) are
parallel assignations, c¢) and d) are guards, and e) is a guarded
command. Only the guard may need some additional explanation. A
guard is a command, hence a set of pairs of states. In particular,

a guard is a command where the input state is the same as the output
state, It contains only those pai#s of equal states where the guard,
regarded as a condition, is true. The use of such commands to achieve

the effect of a test will become clear after the definition of a

computation.

. evm(v); |
W,vizUxu,v/f2

Flowgraph 2.1: An example illustrating the use of

"some of the commands in Box 2.1.

The purpose of a flowgraph is to characterize a set of

computations. A computation is a sequence of (node, state)-pairs
(NO’XO)’ s 0y (Ni,xi), v

where No is S(the start node)and where each pair after the first is a
successor of the pair before it in the sequence: for 1 = 1, a pair

(Ni’xi) is a successon of (Niﬂl’xi—l) if and only if (Xi—l’xi) e C,

the command labelling an arc from Ni-l to Ni.

The state x = is called the sAont state. In a finite
computation the last pair may be such that no successor for it exists.
If the node in the last pair of a finite computation is the halt node
H then such a computation is a fterminatéd computation, otherwise it
is a blocked computation.

See Box 2.2 for example computations of Flowgraph.2.l, All
three computations shown have the start state (2,10,w), and yet they
are different. A flowgraph, like this one, is called {ndeteruminate

whenever a (node,state)-pair can have two or more successors.

computation 1 computation 2 computation 3

i o TETTETTE T TR
O Nioloxy Niooooxg

0 S (2,10,w) S (2,10,w) S (2,10,w)
1 P 2,10,1) P (2,10,1) P (2,10,1)
2 P “4,5,1) P (4,5,1) P (4,5,1)
3 P (4,4,4) P (4,4,4) P (4,4,4)
4 P (16,2,4) P (16,2,4) P (16,2,4)
5 P (256,1,4) P (16,1,64) P (16,1,64)
6 P | (256,0,1024) P | (16,0,1024) P (16,0,1024)
7 H (256,0,1024) H (16,0,1024) P (16,"1,214)
8 P (16,-2,21%
9 : ‘

Box 2.2: Three computations of Flowgraph 2.1,

The terminated computations are useful for defining a flowgraph
as a command: a pair (x,y) of states is in the command if and only if
there exists a terminated computation with (S8,x) as first and (H,y) as
last (node, state) pair. Such a command may be said to represent the

input-output behaviour of the flowgraph.

The definition of a computation makes clear how guards behave
like tests in restricting the possibilities for a computation to proceed.
If all commands were defined for all input states, all paths would be
computations. The guards, like tests in conventional flowcharts, select
some paths as computations.

In order to illustrate the relationship between guards and

tests, Box 2.3 shows a conventional flowchart equivalent to Flowgraph 4.7.

2
H

F _L_\T N

v s
“ ‘\
A Vwisv-r,uxw u,viz=UxU,V/a |- i
]
.\.
V4
UVv:i= UxU,v/2 : ' A H

Box 2.3: A conventional flowchart equivalent with

Flowgraph 4.7.

3. Correctness of flowgraphs

The purpose of the method of Floyd [4] is to prove a property
of the behaviour of a program written as a flow diagram. The method
applies to flowgraphs as well, as will now be explained.

By an assertion I will mean a set of states. According to
the method of Floyd there is associated with each node an assertion
which I will denote by the same symbol as the associated node; it will
be clear from the context which is meant. The assertions are said to

verify the flowgraph if for each arc the verification condition

Ll;c < C;Lz

holds, where C 1is the command labelling the arc from node L, to node L,.

The use of the product symbol ";" in this context ieeds some
further explanation. Until now it was only defined as an operation on
commands (binary relations) and here it is used as an operation on a
command and an assertion. Ll;C is a binary relation over states. A
patr of stateg(x,y) ¢ Ll;C if and only if x € L. and (x,y) € C.

1
Similarly, (x,y) € C;L2 if andonly if (x,y) € C and vy ¢ L2. Thus,

. the verification condition above states the property of C that, whenever the

input x to € 1s in L., an output vy, if one exists, is in L

1 2°

Theorem: If, for a verified flowgraph, a (node, state) pair (L,x) occurs
in a computation with start state x € S, then ‘xe¢ L, where this time

L is the assertion associated with node L,

P?oof: Let (Li—l’xi—l)’ (Li’xi) be two successive pairs in the

computation. By the definition of a computation, (Xi—l’xi) € Ci’ where
Ci is the command labelling an arc from Li—l
the supposition that the assertions verify the flowgraph, L

to Li in the flowgraph. By
i_l;Ci = Ci;Li'
41 € Li_l; then X, € Li‘ Apparently, if in a
computation of a verified flowgraph x ¢ L, then the same holds for all

Suppose now that x

subsequent pairs. It was assumed that X € S.

Note that the theorem concludes something about all pairs in
all computations with initial state in S, no matter whether a computation
be terminated, blocked, or infinite. A common application of the
theorem is restricted to just the initial and final pairs in the termi-
nated computations only: a verified flowgraph has the property that
whenever the initial state x, € S, the final state of a terminated
computation (when such a one exists) must be in H. Such a property
is usually called "partial correctness with respect to S and H

For a verification condition

c C;L

L13C = GiL,

it is convenient, especially when C is not very short, to use the

féllowing variant of a notation due to C.A.R. Hoare:
{1} ciL,}

Example 3.1
The verification conditdons for Flowgraph 2.1 are:

{s} w:=1{p}
{P} v=0 {1}
{P} even(v); u,v := uxu, v/2{P}

{P} v, w:=v-1l, uxw{P}

The following assertions verify Flowgraph 2.1:

(u=u0 & v=vo)

I

v
(wxu = uOVO)

(w = uOVO)

Therefore, applying the theorem, it follows that partial correctness
holds with respect to S and H, that is, in the final state of a
terminated computation, with initial state in S, the value of the

. v
variable w is u, o.

End of example 3.1

10

Note that a verification condition specifies a labelled arc
of a flowgraph: it exhibits the command labelling the arc and it
specifies the initial and final node of the are. Thus, any set of
verification conditions uniquely determines a flowgraph (apart from
possibly present i%olated nodes, which can be omitted without affecting
the set of computations). The definition of a computation determines
the set of computations, hence the behaviour of a flowgraph. Thus a set
of verification conditions is itself a program, which is by definition
partially correct with respect to assertions satisfying them. As we
shall see in the next section, such a program may need some improvement,
which can be carried out in a systematic fashion within the formalism
of flowgraphs or verification donditions.

The question whether a fhowgraph has only terminated computa-
tions (with initial states in a given assertion), or perhaps also
blocked or infinite ones, concerns an aspect of correctness which is
quite different from the one discussed above. It is often possible to
design a flowgraph in such a way that it is easy to prove that the set
of computations, with initial state in a given assertion S, contains
terminated computétions only. I will discuss the situation where such
a pro6f can be given in two parts: one part proves the absence of
infinite computations and another proves the absence of blocked
computations,

For a proof of the absence of infinite computations the
following method is often useful. The main idea is to introduce a
function of the state, named the '"counter'". If we can show that the
counter can only assume nonnegative integral values, is never incremented,
and is decremented sufficiently ofteh, then the absence of infinite
computations follows. '"Sufficiently often'" is made more precise by
requiring that the counter be decremented whenever a path in a given
"cut set" of paths is traversed in a computation; a set T of paths
is a cut set if and only if each infinite path starting at the start

node has infinitely many occurrences of paths in T.

11

The requirement that the counter is always a nonnegative integer
must be proved. The verification conditions are useful here because
their truth proves something about every state in every computation
(starting from somewhere in S), no matter whether the computation is
terminated, blocked, or infinite. 1In particular, if every assertion is
included in the set of states where the counter is a nonnegative integer,
and if such assertions verify the flowgraph, then we can conclude that
for every state in every computation starting from S, the counter is
a nonnegative integer.

To summarize, the absence of an infinite computation starting

in S may be concluded from the following premisses:

1) each node is associated with an assertion included in the set of
states where the counter is a nonnegative integer
2) these assertions verify the flowgraph
3) no arc is labelled with a command that increments the counter
4) there is a cut set T such that every path in it decrements the
counter when executed; more precisely: counter(x) > counter (¥)
whenever the pair of states (x,y) ¢ Cl;...;Cn, where Cl,...,Cn
are the commands labelling the successive arcs of a path in T
and where =x is in the assertion labelling the initial node of
the path.

For suppose on the contrary that an infinite computation
(S,xo), cees (Ni,xi), ves

would exist and suppose Xo € S. Because of 1) and 2) X, € Ni and
counter(xi) is a nonnegative integer for i = 0,1, Because of
3) the sequence of counter(xi) is monotone nonincreasing. Because of
4) counter(xi+l) < counter(xi) for infinitely many i, which contra-
dicts the fact that counter(xi) is a nonnegative integer for all 1.
Obviously, a verified flowgraph cannot have a blocked
computation with a node N in its final pair if for every x e N
there exists a y and a eommand C labelling an outgoing arc from N
such that (xyy) ¢ C. Hence, if this fact holds for every node of a
flowgraph except the halt node, we may conclude the absence of blocked

computations starting from S.

12

Note that the condition can require termination of certain
atomic commands. Take for example the common situation of a flowgraph
having out of a node A only the two arcs with verification conditions

{a} g5 ¢ {3}
{ A} —g; C2 {Bz}

where g 1is a:guard and where commands Cl and C2 are not guards.
The condition for the absence of blocked computations mow requires
that for all x, Cl terminates if x ¢ g&A and 02 terminates if

x € (g)éA.

Total conrectness with respect to assertions ¢ and ¢ will
be taken to mean partial correctness with respect to ¢ and Y in
conjunction with the fact that no infinite or blocked>computations exist
with start state in ¢. The use of a counter to show the absence of
an infinite computation is due to Floyd [5] and Manna [8]. The only
possibly new contribution here is the use of assertions to prove that
the counter is a nonnegative integer. Dijkstra [3] has integrated
the use of a counter with Floyd's method of assertions for proving

partial correctness to obtain a method for proving total correctness.

4. Example of a systematic development of an algorithm

I have now explained enough about flowgraphs and their
correctness proofs to demonstrate a simple example of the systematic
development of an algorithm by means of flowgraphs. The method to
be followed will not just write the correctness proof in parallel
with the step-wise development of the program, but rather will try
to complete the proof as far as possible before beginning to work on
the program.

Starting from the specifications, I will collect assertions
" and verification conditions for commands which are expected to be useful
in the as yet unknown program. When a satisfactory set of verification
conditions has been found, there exists already a program in flowgraph
form which is proved partially correct by the verification conditions.

In this section I will show an example of development from specifications

13

to a flowgraph which is totally correct with respect to these specifications.
The next section discusses a correctness-preserving transformation from
a class of flowgraphs to FORTRAN code.

It may be necessary to emphasize here that the development is
not automatic, but systematic: the steps do not have to be necessary,
but merely plausible. In fact, I cannot even make all steps plausible
and I only claim that the development here is more systematic than in
typical programming practice. The central assertion will be, as it
were, conjured up like a white rabbit out of the magician's hat.

As the example I take the problem of raising a number u, to
the power of a nonnegative integer v I assume that states are triples
of values of wariables called u,v, and w. I require that initially u
and v have as their values the given numbers u, and v, (the input
specification) and that on completion w = uovo (the output specification).
Taking into account the specifications only we can already exhibit a

flowgraph which is partially correct with respect to them (see Flowgraph
4'1)1

S

Flowgraph 4.1

14

Partial correctness holds wacuously for Flowgraph 4.1: it
says something about terminated computations only, and this flowgraph
does not have any, But the partial correctness, even in this case, is
an important fact for the method T will follow, in which the final
flowgraph will be the end of a sequence of partially correct flowgraphs,
of which the empty flowgraph is the first and of which each successive
flowgraph is an improvement over the previous one.

Flowgraph 4.1 needs improvement because it has no terminated
computations. Inserting a nonempty command X such that { S} X{H},
may give an improvement, but I assume that no such command is available.
Therefore at least one node, say P, with associated assertion will have
to be introduced. 1In order to achieve at least one terminated computa-
tion, it is necessary that the assertion P should be such that at
least nonempty commands X and Y ean be found such that { S} X{P}
and {P} Y{H}. |

It will turn out that the invention of the right P is the
major nonsystematic step in the development of the program. It contains,
as it were, the "idea" of the ultimately obtained algorithm. I borrow
this idea from Dijkstra's proof [2] of an exponentiation algorithm to

get the verified Flowgraph 4.2,

S=(u=u &v=v)
. . o v . ©
OS’ - P=(wxu=uoo)
. v
= = o]
(w=u_ "°)

Flowgraph 4,2

15

Note that P, although the "rabbit" of this example, is
somewhat plausible: we will need a simple X and Y such that »
{s} x{P} and {P} Y{H}, which suggests that P should be in
some sense a common generalization of S and H. For X and Y

we find the commands shown in Flowgraph 4.3.

S

(u=u & v = VO)

{ P=(wxu=u0v°)
‘(F>» ‘

B {8} w:= P}

I
[=1

{P} v =01{u}

Flowgraph 4.3

The partially correct Flowgraph 4.3 has a terminated compu-
tation for some initial states (where v = 0) but not yet for any states
where a nontrivial computation is required. This deficiency suggests
the addition of at léast one loop to the flowgraph with the purpose of
decreasing a positive v to 0. Hence v should be tried as the
"counter" of section 3; that is, the value of v 1in state x is
counter (x). TFor a proof of the absence 6f infinite computations it is
required that all assertions are included in the assertion which I
shall call "nni (v)" and which is the set of states where v is a
nonnegative integer. I change the assertions §S,P, and H to achieve
this and check that the verification conditions hold with the new
assertions.

An arc from P to P must be labelled with a command X
that satisfies {'P} X{ P}, in order to preserve partial correctness.
For a simple proof of termination I will try to use a cut set of
single-arc paths, which must then include as a path the arc labelled
with X. So X must decrement the counter. These requirements suggest
the use of the identity w x W swxuxu to try to prove that

X = (v,w:= v-1, u x w) is a satisfactory command. However P implies

16

that v 1s a nonnegative integer; this must also hold after the command.
The straightforward way of making sure of this is to put X = (vywi= v-1,
uxw; v z0)., But commands with a guard following an assignation

will give trouble in translating to FORTRAN or Algol. So it is better
to use the equivalent (that is, being the same set of pairs of states)

command
X=(v>0; v,wi=v=-1, u x w)
Because P implies nni(v) we might as well take for X
vz0 vywizv-l, uxw

See Flowgraph 4.4. This way of arriving at a guarded command with the
purpose of ensuring termination may be regarded as an application of

Dijkstra's method for the design of "property terminating constructs" £31.
] g pPTo] g

(W]
1t

(u=u &v = v, & nni (v))

(6]
= (wx u'= uo"o & nni(v))
H= (w= uOVO)
{ s} wie= 1{ P}
{P} v=0{8}
’1‘ {P} v 2 0y vywi= v-1, ux w{P}

V#o;
V,Ww:s=s V-I,UXW

Flowgraph 4.4

It is easily ascertained that Flowgraph 4.4 1is partially correct
with respect to S and H, and that it has no blocked or infinite
computations starting from S. But the efficiency leaves a lot to be
desired. Fortunately the method of flowgraphs allows improvements to be
easily made. One is found by using another identity useful for decreasing
viu = (u x u)v 2. This éuggests that another arc from P to P be
in troduced, labelled by the éommand u,v:=u x u, v/2. The requirement

that v remain integral is taken into account by refining the command to

17

u,v:i=u x u, v/2; integer (v)

The desirability of having guards before assignations is the reason for

using instead the equivalent command
even(v); u,vi= u x u, v/2

The requirement that the new arc be included in a cut set, as a path~
of length 1 and that v must therefore be decremented by the command

labelling it, forbids that v = 0. Hence the new arc must be labelled

with

v 2 0; even(v); u,vi=u x u, v/2

= (u = u & v = v, & nni (v))
‘ P=(wxu = uoVO & nni (v))
Vito y even(v); TR
Uyvi=uxo,v/fa.
 {stwi=1{p}
. é {pP} v=0{H}
j {P} v # 0; v,w:= v-1, u x w{ P}
z 03 even(v); u,vi= u x u,v/2 { P}

P{Prv

Flowgraph 4.5

Note that the resulting Flowgraph 4.5 is indeterminate: efficient
computations have been added to the set of computations of Flowgraph 4.4,
but they have not replaced them. In order to exclude the inefficient
computations it must beAénfofpedbthat the usually more effective reduction
in the counter is performed whenever possible. To achieve this the guard

seven(v) is inserted into the command

18

vz0

<
=

=v-l, u x w
to give
v 2 0; meven(v); vy,wi=v-1l, u x w

Two minor flaws remain: one is the fact that we have two
commands beginning with the same guard v 2 0 and starting from the
same node P. It is easily seen how the improved, equivalent

Flowgraph 4.6 is obtained from Flowgraph 4.5.

S= (u-= u &v=v & nni(v)) {8} wi=1{p}
P=(wxu = uoVo & nni(v)) {P} v=0{H}
Q=(®&v=z0) {P}v=0{Q}
H= (w= roO) {Q} -even(v); v,wi= v-1, u x w{ P}

{Q} even(v); u,vi= u x uy v/2 {q}
Flowgraph 4.6

The other flaw, which persists in Flowgraph 4.6, is that

whenever in a computation
(Q’Xi), (P’Xi“l"].)’ (Q’Xi+2)’ (Q’Xi+3)

are successive (node, state) pairs, v 1is even in state XN and

therefore v 1is also even in x, = x, But then the guard even(v)

i+2 i+1°
is superfluous. This situation is caused by the fact that

{Q} reven(v); v,wi= v-1, u x w{ P}
can be replaced by the stronger verification condition

{Q} even(v); v,w:= v=1, u x w{R}

19

where R = P & even(v). Because we have {P} v = 0 {H}, we certainly
have {R} v = 0{H}. Because we have {P} v # 0{Q} we certainly

have {R} v # 0 {Q}, but we even have {R} v # 0; u,vi= u x u, v/2{Q}.
It is only by including this last verification condition that we avoid
the superfluous test, These changes give Flowgraph 4.7 as the end

result of the example in systematic program development.

Wiz v/, uxw

S=(u=uo&v=vo&nni(v)) {8} w:=1{p}
P = (quv=u0v°&nni(v)) {P} v=o0{u}
Q=(wxuv=uovo&nni(v)&v¢0) {P}v=z0{q}
R= (wx u = uovo & nni(v) & ewen(v)) {Q} even(v); u,vi= u x u, v/2{Q}
H= (w=u_'0) {Q} 7even(v); v,wi= v=1, u x w{R}

o
{R} v 20; u,vi=uxu, v/2{Q}

{R} v=0{8}

Flowgraph 4.7

20

5. From Flowgraph to FORTRAN program

In order to be useful it is not necessary for a language to be
implemented. There is a widely-known principle of good programming
technique, which has been succinctly expressed by Kernighan and

Plauger [6] in one of their 62 maxims:

"Write first in an easy-to-understand pseudo language;

then translate to whatever code you have to use."

Here flowgraphs play the réle of '"easy-to-understand pseudo language".
Let us now assume, by way of example, that FORTRAN*) is the code we
have to use.

Flowgraphs in many respects generalize conventional program
languages. TFor instance, a flowgraph may be indeterminate, it may give
rise to blocked computations, and it may contain commands of the form a;g,
where a 1s an assignation and where g is a guard. It is vain to look
for a useful translation to FORTRAN of flowgraphs with any such features;
for the translation process to be described below I suppose they are
absent, as in Flowgraph 4.7.

Both the description of the translation process and of its
meaning will be rather sketchy. Just as flowgraphs, as described here,
cannot be more than fragments of programs because no provision has
been made for data deé¢larations, so also will the translations in
FORTRAN be fragments excluding declarations. I assume that there is a
generally agreed semantics for FORTRAN according to which such a fragment
corresponds to an input-output relation between states on entry to the
fragment and states on exit from the fragment. I further assume that
the data types and operators used in expressions in a flowgraph are
defined with the same meaning in FORTRAN. The FORTRAN translation to be
described below is intended to have the same input-—output behaviour

as the original flowgraph, given these two assumptions.

*
) in this paper FORTIRAN will mean ANSI standard FORTRAN.

21

Let the flowgraph to be translated be given as a sequence of
verification conditdons. Because their order is irrelevant for the
flowgraph, we may assume the contiguity of all verification conditions
with the same initial assertion. Let us call such a subsequence a
segment and let us assume that the sequence of verification conditions
begins with the segment of those having S as initial assertion.

The translation of the sequence of segments is the sequence

of FORTRAN tmanslations of the segments, followed by
h CONTINUE

In the description of the translation process, I use lower-case letters-
for items still to be translated to FORTRAN,
A segment

{pr} cl{ql}

{pr} Ck{Qk}

is translated to the FORTRAN text

]
P Sk
Py, CONTINUE

Here the p; are labels, distinct from each other and from those obtained
by translating other segments.

Now

. 8,
pl 1

itself stands for a sequence of FORTRAN statements. If the i~th

verification condition in the segment is

{p} g‘fQi} with g a guard

22

then

p; s; 1s piIF (g) GOTO d51

where qil is the first label translating an occurrence of Qi as

initial assertion. If the di-th wverification condition in the segment
is

{P} a {Qi} with a an assignation,

then

GOTO q

where ays -..5 @ are FORTRAN assignations (each to one variable at a

time) jointly equivalent to a. If the i-th verification condition is

{r} g;a'fQi} with g a guard and a an assignation,

then

p., S, is piIFb(.NOT.g) GOTO Pyt

GOTO 91

Example 5.1 The verification conditions of Flowgraph 4.7 translate to:

vt
GOTO El.
8, CONTINUE

Py IF (v = 0) GOTO h

P, IF (v # 0) GOTO El

p, CONTINUE

U
v

It

IF (.NOT. even(¥)) GOTO 4,

U*U
v/2

GOTO 4

v
W

GOTO r

ial

ll—'ﬂ I(.»J

U
\

IF (.NOT. v # 0) GOTO

1

a4, IF (.NOT. ~even(v)) GOTO dq

V-1
Uu+*w

1

CONTINUE

2

U*0U
v/2

GOTO 4

Hlﬁ
W N

™|

The underlined expressions still have to be translated.

this, and performing some obvious optimization, I obtain:

IF (v_= 0) GOTO h

CONTINUE

CONTINUE

C ASSERTION S

10

W=1

C ASSERTION P

C ASSERTION Q

20

30

IF (V.EQ.0) GOTO 40

IF (MOD(V,2).NE.O) GOTO 30
U=U*717

V= V/2
GOTO 20
V=V -i1
W=U=*y

C ASSERTION R

IF (V.EQ.0) GOTO 40

U=0*0U
V =1V/2
GOTO 20

C ASSERTION H

40

CONTINUE

After doing

23

24

The convention regarding the comments in the above program is that the
assertion mentioned holds true just before executing the statement

on the next line.

End of example 5.1

It seems to me that if is too much to ask for programs which
are both understandable ("'self-documenting') and efficiently executable
in some generally available language. It also seems quite unnecessary
to do so. By itself, the optimized FORTRAN program is probably hopelessly
cryptic, but then it is not intended for human readers. TIts documentation
is the set of verification conditions of Flowgraph 4.7 together with the
unoptimized FORTRAN program. Such documentation provides not only
understanding, but even a proof of correctness.

In some situations the translation process as described here
is unnecessarily cumbersome. Practiaal experience readily suggests
shortcuts of which the value may be a matter of taste. For instance,
in other examples I frequently encountered verification conditions

like
{p} g;a{PB}
fPl} g {Pz}

{Pz}

which I would change to
1
{p} g P}
T,
{P;}g'a{p,}

{Pz}

According to the rules given above, these translate to

1
P11 IF (g') GOTO Pyl

IF (.NOT. 2g') GOTO py,

P12
%1
a
“n
GOTO P31
CONTINUE

P13

25

but I would remember to write immediately.

p;; IF (g') GOTO Pyy
A1
an
GOTO Py

6. Goto statements not necessarily harmful

Verification conditions have an easy translation to Algol @0,
Let the verification conditions again be ordered in such a way that
those with the same initial assertion are contiguous (and call the
resulting subsequence again a segment). The translation of a set of
verification conditions is a sequence starting with the translation of
the segment with S as initial assertion, followed by the translations
of any other segments, and ending with a dummy statement labklled H,
the label translating the assertion H.

A segment of verification conditioms
{p}c {q}

{pr} ck{Qk}

translates to
P: crl;

dk;
goto Pj

The presence of the fimal goto statement ensures that flow-
graphs with blocked computations can also be translated. 'The transilation
is correct only for terminated and for infinite computations; a blocked
computation of the flowgraph becomes an infinite computation in the

Algod’iprogram, .

26

If C is a guard y then 0‘i is
if vy then goto Qi

If C is an asstgnation o then (Ii is
osgoto Qi

If C is a guarded assignation <Y ; o, then gy is

if y then begin ajgoto Qi end

For example, the verification conditions for flowgraph 4.7

translate to the following fragment of an Algol-60%) program:

S: wi=l; goto P;
goto S;

P: if v = 0 ‘then goto H;
if v =0 then goto Q;

goto P;

:Viﬁ_égga<§)

then begin wu:= uxu; vi= vi2; goto Q
end;

if -even(v)

then begin v:

end;

1

v — 1; wi= uxwj goto R

goto Q;
R: if =(v = 0)

then begin ui= uxu; vi= vi2; goto Q

end ;.

goto Rj

if v = 0 then goto H;
oto

%

in actual fact "even'" is not a standard function of Algol 60;
assume it is available as a library procedure

I

27

After some obvious optimizations the above program is reduced to:
S: w:=l;
if v = 0 then goto H;
Q: if even(v)

then begin u:= ux u; vi= vi2, goto Q
end}

vi= v - 1; wi= uxw;

if = (v = 0)

then begin u:= uxu; vi= vi2; goto Q

end;
H:

Note that, apart from compound statements, the statement
formats endorsed by structured programming [2,7] are of no use in the
method described here. Goto statements are harmful only when the
programmer has to explicitly manage the sequence control in his program.
When relying on the goto statement for sequence control, it is notoriously
difficult to avoid getting tangled up. Only then is structured
programming useful because one has to make sequence control intellectually
manageable.

In flowgraph programming it is not necessary to have sequencing
intellectually manageable because there is no need for the programmer
to manage it explicitly. TIn the verification conditions there is no
sequencing. Only in the translation to a FORTRAN of Algol 60 program
does sequence control appear: automatically, guaranteed correct, and,

I have to add, almost entirely in the form of goto's. The fhowgraph
programmer is only involved in explicit sequence control for the trivial
optimizations of the translated flowgraph.

The translation process guarantees that just before executing
a goto a certain assertion holds; the goto then transfers to the label
associated with that assertion: there is no harm in a goto if you

know where you are going tos

28

7. Accretion as a principle of program construction complementary to

refinement

For a problem too difficult to be solved in one step it is
often useful to have a step-wise method that constructs successive
approximations to the final solution. The "top-down" method described
by Dijkstra [2], which was later to be called stepwise refinement by
Wirth [9], is based on a process of abstraction where the solution to
the original problem is conceived as a simple algorithm using, possibly
very powerful, commands of a virtual machine. These commands are
usually not implemented on the available machine: hence the implementation
of each of them represents a programming problem in itself. In a
successful application of the method, however, it is a self-contained
problem of a considerably lower degree of complexity. This cycle
represents the construction of one of the several layers in the ultimate,
hierarchically structured, program, where the bottom layer is the one
where the commands are finally implemented on the available machine.

The method of stepwise refinement attacks the problem of
complexity by attempting a hierarchical decomposition of it: the total
amount of complexity can be regarded as being somehow additively
distributed over the layers, so that at each stage in the design process
one only has to tackle a simple task, i.e. one has to handle only a
small part of the total amount of complexity. These advantages have to
be paid for both by the programmer and by the machine. The programmer
has to design the interfaces between the virtual machines and the machine
has to work the streams of information through the interfaces when
executing the program. This means that one should try to keep the number
of layers small.

The greater the chunk of complexity one can handle within a
layer, the better. While recognizing the importance of stepwise refine-
ment, I draw attention to the necessity of a complementary principle
that helps to handle as much as possible of the complexity within a single
layer, that is, without taking recourse to refinement. Flowgraphs are
distinguished by the ease with which one can add nodes (with their
assertions) and arcs (with their commands and required verification

conditions) under preservation of partial correctness. The final

29

flowgraph can be regarded as having developed by a process of sfepuise
acernetion, which is the name I propose for the required complement to
stepwise refinement. A flowgraph is a part of one layer in a hierarchi-
cally structured program. If all its commands are available on the
actual machine, that layer is the bottom layer. If not, it is a
separate task to program such a command as a flowgraph.

Accretion and refinement are complementary in the sense that
one has to find a balance which avoids the introduction by refinement
of too many layers but which also avoids unwieldy flowgraphs that have
grown too large by carrying the accretion process too far. It is
difficult to suggest an optimum size of flowgraph. The one derived
in this paper is definitely bélow the optimum, whereas the flowgraph

developed in the sequel [4] to this paper is probably much nearer.

8. The utility of stepwise accretion

In prégramming (and elsewhere) donfusion results when one
tries to do more than onething at the same time, as happens, for
instance, when one werries about efficiency before the design of the
basic algorithm is completed. It helps to do as much as possible one
thing at a time: '"get it right before you make it faster'", as Kernighan
and Plauger [6] put it in another of their 62 maxims. And ''getting it
right" can itself be decomposed, with similar advantages,

There is much to be said for getting the program right even
before one makes it determinate: see Flowgraph 4.5, which is correct,
but not determinate. And T would even suggest to get the program right
before making it do anything at all: the partially correct Flowgraph 4.1,
4.2, and 4.3 have no useful terminated computations, yet they are worth
their place in the sequence of successive approximations.

The example treated in section 4 suggests the following design
stages:

a) get the algorithm compfete: add nodes or arcsuntil for
each x € S the flowgraph has at least one terminated
computatidn

b) get the algorithm deferuminate (if required): an indeter-
minate flowgraph can be made determinate by inserting

suitable guards

30

c) get the algorithm efflcient

All through these stages partial correctness is preserved: one
must not only gef it right befose making it faster, but of course also
keep it right whife making it faster. Each of the above design stages may

occur more than once, and not necessarily in the order given.

9. Acknowledgements

I have gratefully incorporated into this paper a large number
of suggestions by J.D. Alanen of the University of Utrecht in the
Netherlands. The work described in this paper is a spin-off from my
research, supported (for another purpose) by the U.K. Science Research
Council, which was done in the University of Edinburgh, initially in

the Department of Machine Intelligence and later in the Department of
Artificial Intelligence.

10.

9.

References

E.W.

E.W.

E.W.

R.W.

Dijkstra:

Dijkstra:

Dijkstra:

van Emden:

Floyd:

31

Concern for correctness as a guiding principle for
program composition.

In: The Fourth Generation, J.S.J. Hugo (ed.),
Infotech, 1971.

Notes on structured programming.
In: Q.J. Dahl, E.W. Dijkstra, C.A.R. Hoare:
Structured Programming, Academic Press, 1972,

A Discipline of Programming.
Prentice-Hall, 1976,

A worked example in unstructured systematic programming.
Research report CS-76-27, Dept. of Computer Science,
University of Waterloo.

Assigning meanings to programs. Proc. Symp. Appl.
Math. Vol, XIX, 19-32. J.T. Schwartz (ed.). Am.
Math, Soc., Providence, 1967.

Kernighan and P.J. Plauger: The Elements of Programming Style.

D.E. Knuth:
Z. Manna:
N. Wirth:

McGraw Hill, 1974,

Structured programming with goto statements.
Computing Surveys 6 (1974), 261-302.

Termination of algorithms. Ph.D. thesis, Dept. of
Computer Science, Carnegie-Mellon University, 1968,

Program development by stepwise refinement.
Comm. ACM 14 (1971), 221-227.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

