Photon ROFF Text Formatter
(PROFF)

Richard J. Beach

Department of Computer Science
University of Waterloo

Research Report CS-76-08

April 1976

Photon Roff Text Formatter
(PROFF)

Richard J. Beach
Department of Computer Science
University of Waterloo

Abstract

PROFF is a text formatting program for preparing phototypeset output of English text and
computer programs. It was developed as a transition tool between the line printer output of
ROFF, and the phototypeset material from a yet to be implemented photo-composition
system. The formatting command structure of PROFF is taken from ROFF, to allow for the
convenient typesetting of existing documents, to preserve experience with ROFF, and to
enable the use of ROFF as a proofing tool. Additional commands have been defined to es-
tablish those formatting parameters unique to a phototypesetter. However, since all for-
matting algorithms are implemented in the Photon Econosetter, any feature which relies on
pagination or line breakage cannot be supported. Such features as footnotes and running
heads and feet will not be possible until the photo-composition system is ready.

PROFF interfaces with the typesetter by either paper tape or a communications line.
Timesharing commands are available for converting a PROFF unformatted text file into a file
of typesetting codes. This converted file may then be punched on paper tape or passed to the
Photon by another timesharing command.

This report is a sample of the output quality of PROFF. -

Introduction

PROFF is a program for producing phototypeset master copies of documents prepared and
edited on the Math Faculty’s Timesharing system. This document was produced by PROFF
as a demonstration of its capabilitics. PROFF output is typeset on a Photon 737 Econosetter
[2] onto photographic paper, which is then developed and cut into pages. These pages may
then be used as masters in a reproduction system, such as photo-offset, resulting in many high
quality copies.

PROFF was designed with 2 goals in mind:
I, to provide an easy transition from the popular ROFF text formatter [1],
2. to provide a tool for the early production of typeset quality documents.

ROFF was used as a base, since there existed several documents using ROFF formatting com-
mands, which could then be easily typeset. Therefore, the PROFF format command structure
is taken from ROFF. Furthermore, considerable experience with ROFF may now be‘utilized
in typesetting documents. Also important is the ability to use ROFF as a proof reading tool
for typeset documents. By the definition of an appropriate ROFF Macro file, any PROFF file
may be printed at a terminal or the line printer for proof reading, hence avoiding the wasted
time and supplies on phototypesetting proof copy.

In order to produce typeset documents early in our research project, it was necessary to utilize
the Photon-supplied formatting software. This software provides justification, hyphenation,
multiple column output, etc. and was deemed a reasonable initial subset of the photo-
composition system. However, since all the formatting algorithms run in the Photon, no
feature which relies on the occurrence of line breaks or page breaks can be implemented. Thus
page numbers, footnotes, running heads and feet, and sophisticated mathematical text, will
have to be delayed until the development of our photo-composition system. With these
limitations, PROFF is best suited for the printing of English text, and computer programs.

PROFF provides the following formatting features:

- paragraphs, with lines filled with words moved into the output line to
eliminate white space ’

- justification, the even distribution of spacing to achieve smooth right and left
margins

- hyphenation, word breakage to partially fill the output line to further
eliminate white space

- centred, flushed right, or flushed left headings

- indentation, both left and right margins

- hanging indents for point form

- multiple column output

- four typefaces: Roman, Boldface, Italics, and Math

- four typesizes: 6, 10, 14, 18 point (this is 10 point)

- variable line spacing, in units of 1/144 of an inch

However, as mentioned previously PROFF will not support:
- running heads or feet, or page numbers
- footnotes
- widow elimination (short lines at the end of paragraphs placed on the next
page or column)
- leaving «vhite space for figures (at least, not reliably, due to page breaks)
- automatic indices or table of contents.

This report covers the use of PROFF, and assumes some familiarity with the commands sup-
ported by ROFF [1]. Topics are discussed in a tutorial style, but with sufficient detail to ex-
haustively define the actions of each command. Several problem areas are described and some
guidelines and solutions are offered. The TSS commands which are used to produce a PROFF
document are explained, and techniques for using ROFF as a proofing tool for PROFF are
outlined.

CSRR-76-08

1

PROFF Formatting Commands

PROFF requires formatting commands to be imbedded in the text file. Commands are dis-
tinguished in that they must begin a new line, and the first character must be a dot ”.”. (If
necessary you may define this character to be any one you desire. See the .cc command.)

Commands take effect immediately upon recognition, and therefore must be placed in the text
wherever the required effect is desired. Each command is recognized by 2 characters im-
mediately following the dot, e.g. .ce is the centre command. Some commands accept
arguments to set a parameter Usually these are numbers, and often may be increments or
decrements. Thus the margin may be indented 5 characters by the .in§ command, or moved
over 5 characters by .In+5. The former is absolute, the latter is relative.

Arguments which specify sizes, such as for indenting or line length, may optionally be assigned
a unit, The units accepted are

h - half points (1/144 of an inch)

p - points (1/72 of an inch)

¢ - characters (1/10 of an inch)

i - inches (only integers, no decimal points)
1 - lines (point-size + 2 points)

Some arguments are used to set a formatting mode parameter on or off, and thus the keywords
on or off will be accepted. Most commands have a reasonable default argument value and unit
size. The summary in Appendix B lists all commands, their default argument value, and
default units.

Character Fonts and Sizes

Our Photon typesetter can print text in four fonts: Times Roman, Times Italic, Times Bold-
face, and a special Mathematics font, which contains the Greek alphabet and many Math sym-
bols. Appendix A displays the complete character set for each font. Text may be printed in
four sizes: 6, 10, 14 and 18 points. These range from 1/12 to 1/4 inch in height (72 points = 1
inch). The body of this manual is printed in Times Roman at the 10 point size. The section
headings are printed in Times Boldface at 14 points, and the chapter headings are Boldface at
18 points.

PROFF commands exist to change both the font and point size. Specifying a non-existent
point size results in the next larger size or the maximum size of 18. Fonts may be freely mixed
within text, but changing point size within a line can create undesirable output, as tall letters
may overprint the descending letters of the previous lines. Some specific ways of mixing point
sizes are given under the topic "Mixing Point Sizes” in the Problems section.

The standard character font for printed text is established by the .ft font command. It accepts
the font name or position as its argument, and will cause all text input from that point
onwards, to be printed in the named font. If no font was given, then the previous font is
recalled.

The easiest way to mix character fonts is when text is being formatted in fill mode, when words
from the input line are moved into the output line until it is full, in order to eliminate white
space. Changing the font for one or more input lines will result in these words being output
together with the regular font words.

CSRR-76-08 2

For example,
ft roman

These lines are set in roman text, with

some words set in the

.bf

boldface font
and

Jdt

italics font

on the same output line.

will result in the output

These lines are set in roman text, "vith some words set in the
boldface font and italics font on the same output line.

Notice that the boldface and italics commands affected only the one input line following, and
that subsequent input lines were printed using the standard font, Times Roman.

Using the Mathematics font will require close attention to the character equivalences given in
Appendix A. Future work will provide more convenient means of typesetting mathematical

formulae and equations.

Initial Default Cause
Command Value Value Break Description

Pt N 10 10 no Point size. Legal sizes are 6, 10, 14 and
18. If an invalid size is given, then the
next larger or maximum size is used.

.rm Non|off - - no Roman font. Default character font at
start of PROFF.

it N |on|off - - no Italics font.

.bf Non|off - - no Boldface font.

.ma Nlonjoff - - no Mathematics font.

ft N|C roman prev no Font. Sets fonts according font name
or position: Roman=1, Italics=2,
Boldface=3, Math=4. User may give
cither the name or number. If no
argument given, then the previous font
will be used. Invalid fonts or numbers
are ignored.

CSRR-76-08

Text Format Specifications

PROFF provides several formats for the output printed text: paragraphs with smooth margins
such us the body of this report, lines flushed left for headings or point form, centred lines for
titles, or lines flushed to the right margin for special effects. Paragraphs are typeset in fill
mode, in which words from the input text are moved into the output line to eliminate white
space. This mode may be turned off when each line should be typeset as input, such as lists of
keywords., The smooth right margins are achieved by justifying the text in the output line.
Justification involves adjusting the spacing between words and letters so that the first character
in the line is at the left margin, the last character is at the right margin, and all characters in
between are proportionally spaced to give a pleasing effect.

Words like mother-in-law, which contain hyphens, may be split across lines of text to help fill
the output line. PROFF provides an automatic 4 ypienation mode in which words are split un-
der program control to more completely fill the output line. Words are split according to a
built-in dictionary of prefixes, and a set of hyphenation rules. This mode may be turned off if
necessary. Discretionary hyphens may be used in the automatic hyphenation mode and are
placed at designated hyphenation points in foreign or technical words, so that the automatic
hyphenation rules are abandoned for that word. If the word will not fit in the output line, it
will be split at a discretionary hyphen, otherwise if the word is not to be hyphenated, the dis-
cretionary hyphen is dropped, and will not appear in the printed text. Discretionary hyphens
are typed as two hyphens within a word, e.g. photo--type--setting. Sorty, but it was a horrible
trick to print two hypens together. The best way for you to do it, is to turn off hyphenation so
that discretionary hyphens are ignored, or to use longer dash characters.

When in fill mode, the break command is used to start a new line, for example at the end of a
paragraph. Any input words not yet printed will be output flush with the left margin, with no
justification attempted. Many PROFF commands force a break condition since they involve a
change in format, for example leaving blank space, indenting or centring. However, when
necessary, the break command forces a new line.

The special formats for centring and printing lines flush with the right margin do not use the fill
mode of output. The subsequent input lines of text are centred or flushed right as given, The
following example indicates the three ways single lines may be printed.

.ce
centred text
fr

flushed right
.nf

flushed left

produces
centred text
flushed right
flushed left

Note that nofill mode was used to flush left.

CSRR-76-08 4

Initial Default Cause

Command Value Value Break Description
fi on|off on on yes Fili mode. Subsequent input words are
made to fill the output line.
.nf - - yes Nofill mode. Subsequent input lines are
printed us is, flush with left margin.
Ju on|off on on no Justify mode. Subsequent output lines

will be adjusted to obtain smooth left
and right margins,

Aj - - no No justify mode. Output lines will have -
a ragged right margin,
.hy on|off on on no Hyphenate mode. Words which overfill

output line will be automatically split,
if possible. Discretionary hyphens are
honoured. To be compatible with
ROFF, a non-zero number will be
treated as on, zero will be off,

.nh - - no No hyphenate mode. Discretionary
hyphens are still honoured, if present.

.br - - yes Break. Forces output line to be printed,
and begins a new output line

.ce Nlon|off = - 1 yes Centre. Centre the next N lines. On is
equivalent to infinity, off or N=0 stops
centring.

fr N{on|off - 1 yes Flush right. The next N lines are

printed flush with the right margin.

Indenting

Indenting affects the margins of the printed text, without changing the line length. The left,
right, or both margins may be indented. The margins may be moved either in or out, but may
never be set to exceed the line length. Margins may be established at either fixed points on the
line, or relative to the current margin. Thus a margin could be established at a point §
characters from the left edge of the line by issuing the command .in 5. Similarily, the margin
may be moved over 3 characters from the current margin by the command .in+3. After this
command, the margin may be returned to its previous position by the command .in-3. Recall
that you may not exceed the line length, so PROFF considers any request to move a margin
beyond the ends of the line as setting no indent. The following examples demonstrate various
indented formats.

This text will be printed without any indents

to show you where the ends of the line are.

b +5

Tndenting both margins is useful for setting up quotations,
point form lists, or displayed text.

.ib-5

ir §

The indent right command us useful to set the right margin
while varying the left margin.

CSRR-76-08

.in+3

Moving the margin over 3 characters from the current margin
setting is accomplished with the +N form of the command.
.in-3

Resetting the margin to the previous setting is accomplished by
using the -N form of the command.

ib 0

This indent both margins to zero command always
clears both left and right margins.

will produce the output

A temporary indent command is provided which affects only the first line following the com-
mand. The temporary indents affect only the left margin, and may be fixed or relative, similar
to the above discussion. Moving the margin in, will leave the first line indented and rest of the
paragraph printed at the margin, like the paragraphs of this report, which are set using the
command: .ti+3. Moving the margin out may be used to associate a label with a paragraph.
The number of characters that the margin is moved are taken from the next input line as the
label. The remainder of the characters are set at the current margin, as are all following lines of

This text will be printed without any indents to show you
where the ends of the line are.
Indenting both margins is useful for setting
up quotations, point form lists, or dis-
played text.
The indent right command us useful to set the right
margin while varying the left margin.
Moving the margin over 3 characters from the
current margin setting is accomplished with
the +N form of the command.
Resetting the margin to the previous setting is ac-
complished by using the -N form of the command.
This indent both margins to zero command always clears
both left and right margins.

text. The following examples shows how to set point form labels on justified text:

CSRR-76-08

Ai+5

These lines will serve to establish the ends of the lines
for the following examples.

.in+5

ti-3

I) the margin must first be established indented from the
left margin by using an indent command.

-3

M) a negative offset on the .ti command

indicates the number of characters in the label.

[i-3

P) using this technique aligns the paragraphs,
regardless of the variable width characters.

.in-5

which produces this output
These lines will serve to establish the ends of the lines

for the following examples.

1) the margin must first be established indented from
the left margin by using an indent command.

M) a negative offset on the .ti command indicates the
number of characters in the label.

P) using this technique aligns the paragraphs,
regardless of the variable width characters,

Another indented format is the hanging indent. This format indents all but the first line of a
‘paragraph, unlike the temporary indent which indents only the first line, The offser command
specifies where the margin should be set on second and subsequent output lines. At the next
break in formatting, this indent will be cancelled, and the previous margin reinstated. An ex-
ample of hanging indents follows:

These lines will serve to establish where the ends of

the output lines are located.
of +5

Justification is the means of adjusting the -

output text to fit the left and
right margins,
of +5

Hanging indents are used to fill the first line of a paragraph
which is indented after the first line.

produces

These lines will serve to establish where the ends of the out-

put lines are located.

Justification is the means of adjusting the output text to fit
the left and right margins.

Hanging indents are used to fill the first line of a paragraph
which is indented after the first line.

Initial Default Cause
Command Value. Value = Break Description

.in £N¢ 0 0 yes Indent. Adjusts the left margin

il £N¢ 0 0 yes Indent left,

.ir £Nc 0 0 yes Indent right.

.ib £Nc¢ 0 0 - yes Indent both. Both left and right
margins are idented.

ti £Nc 0 0 yes Temporary indent. First line is in-
dented, and subsequent lines printed at

‘current margins. Negative indents treat
characters as a label and print them
separately.

.of £Nc¢ 0 0 yes Offset. Second and subsequent lines are
indented. Indent is cancelled at the next
break.

CSRR-76-08

Page Control

The output page is defined by the following parameters:

Initial Maximum

Parameter Command Value Value
page length .p! 9i 22i -
line length Al 6i 7.5
number of columns <l 1 9
space between columns .gu none -

(gutter space)

These defaults produce output for an 82X 11 inch page with 1 inch margins at the right, top
and bottom, and a 1'4” left margin. The Photon inserts page breaks (about %" of white space)
whenever the page length is exceeded. Since PROFF has no control over where these page
breaks occur, you may either accept where they are placed, or force your own by inserting
begin page commands where appropriate, or else print the page as a continuous strip (set page
length to zero). Inserting your own page breaks requires several PROFF runs, and may waste
supplies, while printing one continuous strip requires cutting and pasting pieces to make up

pages.

Producing multiple column output requires defining the line length for each column, the
number of columns per page and the gutter space between the adjacent columns across the
page. Text is automatically printed in columns, moving from the bottom of one column to the
top of next, resetting the left margin after providing the gutter space. When beginning a new
page, the text is printed at the top of the leftmost column. To begin a new column, the begin
column command advances to the top of the next adjacent column to the right, if there are any
left on this page, or else begins a new page.

Initial Default Cause
Command Value Value Break Description

.pl £NI 9i 9i yes Page length. If no units are given, then
the value N is in lines. N=0 suppresses
page breaks and prints text as con-
tinuous strip.

A £Nc 6i 6i no Line length. Default units are
characters,

< N 1 1 no - Columns. Set number of columns per
page to N. ‘

.gu Nc - 0 no Gutter. Set white space left between ad-
jacent columns of text.

.bp .- - yes Begin page. Start new page, at leftmost
column if more than one.

.be - - yes Begin column. Start next column to
right, if any left on this page, otherwise
begin page.

CSRR-76-08 8

Line Spa'ciné

The control of vertical line spacing is provided in two forms: automatic spacing between output
lines, and extra spacing. The automatic spacing is controlled either in units of lines, or in units
of points (1/72 of an inch). The line spacing, single space, and double space commands set the
spacing in multiples of the current vertical spacing (leading). The amount of vertical spacing is
specified by the leading command, to either close up lines of text or expand them,.as in titles.

Extra space may be inserted between lines with the space command. It adds extra space for
figures, or spacing between headings and paragraphs.

Initlal Default Cause

Command Value Value Break Description

.88 - - yes Single space. Equivalent to .Is 1.

.ds - - yes Double space. Equivalent to .Is 2.

Is N 1 1 yes Line spacing. Set the space between
lines to N times the current vertical
spacing. '

.d Np 12 (ps+2) yes Leading. Set vertical space between

lines. If no size is given, then the ver-
tical spacing is set to
.sp NI - 1 yes Space. Insert N lines of white Space.

Command Control

PROFF takes as formatting commands, lines of input text which contain a command
character in the first position. Whenever it is necessary to print lines which begin with this
special character, such as the examples in this manual, there are two methods of avoiding
PROFF interpreting them as command lines. The /iteral command takes the specified number
of lines as text and prevents PROFF from checking for command lines. However, if there are
many occasions when input lines should be taken literally, the change command character
command allows the substitution of some other command character. From that point on in the
file, PROFF commands must have this new command character as the first character in the
line, including the next change command character command, otherwise they will be treated as
lines of input text.

Initial Default Cause

Command Value Value Break Description
di N - 1 no Literal. Takes the next N input lines
without looking for commands.
.cc C . . no Change command character. All subse-

quent commands, including next
change command character command
must begin with the character C, in-
stead of a dot.

CSRR-76-08 9

Ligatures

Ligatures are the special print characters formed by overlapping letters, usually sequences
beginning with f or t. Our typesetter is equipped with three ligatures fi, fl, ff on each of our
three text fonts: Roman, Italics and Boldface. PROFF has an automatic mode in which lower
case sequences of f followed by i, 1, or f, are detected and converted to the special ligature

characters.

Initial Default Cause
Command Value Value Break Description

Ig on|off on on no Ligature. When on, and type font is
roman, italics or boldface, ligatures are
inserted whenever appropriate.

File Control

It is often the case that large documents are kept in separate, smaller files, in order to make
editing more convenient. The PROFF switch source files command allows the user to specify
the insertion of the lines in a file at this point. Lines of text are read from this new file until the
end of file, then lines are read from the original file, continuing from where the switch file com-
mand was located. Up to five levels of file switching are permitted. Any number of switch com-
mands may be contained in any one file. PROFF commands will be interpreted both between
switch file commands and within the named files. A typical use of this command is as follows

50 /title

bp
.50 /intro

.bp
.80 /report

which formats a three part report with title, introduction and body edited in three files.

Initial Default Cause
Command Value Value Break Description

.50 file - - no . Switch source file. PROFF begins
reading the file filename. Lines of text
and formatting commands are
recognized until end of file, when the
previous file is continued from the line
after the .so command.

CSRR-76-08 ' 10

Typesetting Programs

Computer programs are normally printed on computer terminals or line printers, which have
fixed width characters (all widths are the same). On a phototypesetter, the characters were
designed to look best with variable spacing, and hence, printing them as fixed width characters
would make them look awkward. Furthermore, attempts to format programs by filling lines
and justifying text would result in chaos. Therefore we have tried to compromise, and approx-
imate fixed width character printing for computer programs, while avoiding this awkwardness.

PROFF has a program setting mode, which establishes various formatting mode settings
automatically:

Fill mode: off
Justify mode: off
Hyphenation: off
Ligatures: off

In addition, program mode converts all spaces to fixed width spaces which are equal to the
width of a digit. Fortunately, all digits have the same widths in our three text fonts, Roman,
Italics, and Boldface. This allows columns of numbers to align properly, such as line numbers
or statement numbers on programs. The following is a FORTRAN program typeset in the

program mode.

C.....TEST FMIN
FUNCTION F(X)
DOUBLE PRECISION F,X
F = X*X*X - 2) - 5.
RETURN
END
EXTERNAL F
DOUBLE PRECISION A,B,Z,TOL,FMIN
A =0
B =1l
TOL = 1.0E-5
Z = FMIN(A,B,F,TOL)
WRITE(,1) Z
| FORMAT(3H Z=,F12.5)
STOP
END

IS0

Initial Default Cause

Command Value Value Break Description

.pm on|oft off on yes Program mode. Adjust formatting
parameters to print computer
programs.

CSRR-76-08 11

Typesetting with TTS codes

PROFF generally will format documents without the user resorting to the low level typsetter
codes (TTS codes). However, some special effects, which are possible through the Photon
typesetting software, have not been made available in PROFF as PROFF commands. For
users that wish to make use of these TTS codes, PROFF provides two escape mechanisms: a
typeset literally command .tl and a TTS escape mechanism (the at-sign, @). (Normal PROFF
users should skip the remainder of this section.)

The at-sign escape mechanism allows the insertion of TTS codes within a line of text.
Characters are normally treated as ASCII text. and are translated into TTS equivalents,
complete with case shifts, and formatting codes. However, when an at-sign is detected, the
following characters up until the next at-sign will be considered as TTS codes directly, and no
conversion will be attempted. For example, the registered trademark symbol is accessed by the
TTS code /i and the PROFF text to generate this after some name, would be
PHOTON ECONOSETTER@/i@ Typesetter
which would print as
PHOTON ECONOSETTER® Typesetter

If many TTS codes are to be generated, the ypeset literally command will take several input
lines as TTS code directly, until a line beginning with the PROFF command character is
detected. Thus the following input will pass on the TTS codes between the .tl and .en
commands:

Al
<p10<t01<13000

.n
(which sets point size 10, typeface 1, and line length of 30 pica or 5 inches).

These PROFF features are made available for debugging and special effects, as a convenient
way of controlling the typesetter directly by TTS codes. No attempt to use these codes should
be made without careful study of the Photon applications book, and the TTS codes summary
in Appendix C.

Initial Default Cause

Command Value Value Break Description
Al - - no Typeset literally. Takes the following
lines (until a .en command) as TTS
codes. o
.en - - no End. Terminates typeset literal input.
CSRR-76-08

12

Tab Stops and Tables

PROFF can print text aligned to fixed postions within an output line, these points being called
tab stops. On input, the text to be printed at a tab stop is delimited by a tab character, which is
normally the ASCII TAB character (octal 011), but may be set to any character chosen by the
user. Text is normally printed left aligned at the tab stop, but may also be right aligned or
centred on the tab stop.

Tables of columnar information may easily be printed by establishing the appropriate
positions and alignment for each column. Note that you only specify where the column is to be
placed, and not how wide it will be. Since each tab character in the input text causes the follow-
ing text (until the next tab character), to be aligned at the next tab position, any text which
precedes the first tab character in the line will be printed at the left edge of the line, in a default
column zero. The following example shows the use of column zero, as well as the various
alignments supported.

.ta 101 30c 40r

de #

Date#April 1#small#81.00

Time#12:00 noonFmedium#$10.00
Purpose#April Fool'sfgiant economy#$100.00

will produce

Date April 1 small $1.00
Time 12:00 noon medium $10.00
Purpose April Fool's giant economy $100.00

A useful feature of tabs in PROFF exists when tables are set in fill mode. In this case, each
table line (one containing a tab character) will always start a new print line. But subsequent in-
put lines without tab characters will be filled and justified in the last column in the table. This
permits the last column to contain a paragraph such as the command descriptions in this
document. The last tab stop will remain in effect until the next break, caused either by a table
line containing a tab character, or a formatting command that causes a break.

As an illustration of how tables are defined and printed, here are the complete set of PROFF
commands required to print the command description table for this section. Note that for this
example, the tab character was changed to a # character, so that it could be both printed in the
example and act as a tab character to cause table formatting.

CSRR-76-08 13

AC #

sp 2

.rule

ta 21 15¢ 21c 27¢ 321

it 2

##Initial#Default#Cause
#Command#Value#Value#Break#Description

ta 31 15¢ 21c 27¢ 321

rule

8p

#.ta Nt Nt .. . #-#-#nogTab stop.

Sets tab stops at character postions specified.

An alignment t may optionally be coded: 1=left justify,
c=centre on tab stop, r=right justify to tab stop.
If no alignment is given, left justify is assumed.
#.tc CTAB#TAB#no#Tab character.

Sets tab character to character C.

User set tab character is in addition to the
ASCII TAB character (octal 011), which is always effective
in causing table formatting.

.rule

Command

Initial Default Cause ‘
Value Value Break Description

ta Nt Nt ...

tc C

- - no Tab stop. Sets tab stops at character

postions specified. An alignment t may
optionally be coded: l=left justify,
c=centre on tab stop, r=right justify to
tab stop. If no alignment is given, left

justify is assumed.

TAB TAB no Tab character. Sets tab character to
character C. User set tab character is
always in addition to the ASCII TAB
character (octal 011), which is always

effective in causing table formatting.

CSRR-76-08

14

Text Registers

PROFF provides a means for holding frequently used text, so that it may be inserted repeated-
ly into the printed output without retyping. A text register is a named storage area within
PROFF. The text register name is usually made up of letters and digits, and enclosed in
parentheses. Thus (uw) could be the name of a text register containing the string "University of
Waterloo”. If the name is only a single character, then the enclosing parentheses can be
omitted.

Text is entered into a text register by surrounding the input lines by assign text and end com-
mands. For example,

.at (uw)

University of Waterloo

.en (uw)
would establish the text register (uw) with the string "University of Waterloo”.

Text registers are used by inserting them into your printed output. To do this, you must define
an insertion character; there is no default character provided.
.at (uw)
University of Waterloo
.en (uw)
ict
This line, written at f(uw), will contain
several references to the string "Huw)”.
will print as
This line, written at University of Waterloo, will contain
several references to the string "University of Waterloo”.

Notice that inserting a text register is identical to typing its contents at that point; no extra
characters (blanks) are added. Furthermore, in order to have the current insertion character
print, and not act as indicating a text register, you must type two insertion characters, using
the first to neutralize the second. Thus typing "M” would print as "}".

Text registers that contain more than a single input line may produce unpleasant results when
inserted into the middle of a line. (They work just fine if they are at the beginning of an input
line.) The new line characters between lines in a text register are preserved, thus inserting it
causes the line to be split into several lines. Therefore you cannot use the following text register
to make a phrase print in boldface:

.at (boldly)

.bf

phrase

.en {boldly)

Jic ?

The phrase, f(boldly), will not be handled

as might be expected.
which generates

The phrase, .bf phrase, will not be handled as might be expected.

The first line of the text register, ".bf”, was appended to the line containing the insertion
reference, and began a new input line with the text "phrase”. The ”.bf” string was not at the
beginning of a new line after the insertion was complete, therefore PROFF did not notice it as
a boldface command. ‘

CSRR-76-08 15

Combining text registers and TTS codes is a convenient way to print special characters. For
example, the copyright symbol is printed by the TTS codes, /j. Thus a text register named

(cpr) could be defined and used as follows:
.at (cpr)
@/j@
.en (cpr)
dct

.Ce

Ncpr)University of Waterloo, 1976

which produces

©University of Waterloo, 1976

More complicated TTS code sequences allow us to build up special characters which do not ex-
ist on the Photon disk. For example, the fol'cwing text register defines a 10 point umlaut

accent,
.at (umlaut)

@/w011<0<m9.<m2.<alll@

.en (umlaut)

Bjof(umlaut)rck contains an umlaut over the ‘o’.

which prints as

Bjdrck contains an umlaut over the 'o’.

Initial Default Cause

Description

Assign text. Subsequent input lines will
be accumulated into the register named
reg, until a matching .en command with
the same register name is encountered.
Any previous contents of reg are lost.
Reg is a name composed of letters and
digits enclosed in parentheses, unless
the name is only one character, when
the parentheses can be omitted.

End register. Terminates a matching
assign text command.

Insertion character. Define the
character C as the insertion character
for text registers. When encountered,
PROFF expects a register name to
follow (either a single character name,
or a name in parentheses).

Undefine register. The register named
reg is emptied, space made available,
and the name reg removed from the list
of text registers.

Command Value Value Break
.at reg - - no
.en reg - - no
ic C - - no
.un reg -~ - no
CSRR-76-08

16

Number Registers

An analagous feature to text registers is provided by PROFF for the handling of numbers. A
number register is identified by a name, enclosed in parentheses unless it only one character
long, and contains an integer value. The assign number command is used to initially set the
value of the text register, and can compute an expression formed by constants, inserted number
registers, and the operators for add, subtract, multiply and divide. If the expression on the
assign number command begins with an operator, such as add, then it is assumed to operate on
the current value of the number register.

The assign format command indicates the output representation of the number register,
whenever it is inserted into the printed text, The default format for all number registers is as a
simple decimal number, without leading blanks or zeros. Optionally, Roman Numerals (i, i,
iii, iv,...) or Theatre Numerals (a, b, c, ..., z, aa, bb,...) can be selected. Either upper or lower
case numerals can be selected. A minimum width for decimal numbers can be established to
force leading zeros to print when the number inserted is smaller than the field width selected.
The following example shows the use of number registers, the operations on them, their output
formats, and the use of single character register names.

.nf

.anp0

afpa

Jdc 4

This point form table will show the

use of theatre numerals:

.anp +1

4p. First line.

anp +1

$p. Second line.

.an p +1

*p. Third line.

.an p +1

$p. Fourth Line.

.af p 001

There were 1p lines in this example.

.an (year) 1976

.af (year) 1

The date in roman numerals is f(year).
will produce ,

This point form table will show the

use of theatre numerals:

a. First line,

b. Second line.

¢. Third line.

d. Fourth Line.

There were 004 lines in this example.

The date in roman numerals is MCMLXXVI.

CSRR-76-08

Command

Initial
Value

Default
Value

Cause
Break

Description

.an reg expr

af reg f

“ no

ne

Assign number. The expression expr is
evaluated and the result assigned to the
number register reg. Operators can be
+, -, /, * If expr starts with an
operator, then it is assumed to operate
on the current value of the register.
Assign format. The number register reg
will print with format f when inserted.
F can beior I for roman numerals, a or
A for theatre numerals, and 01, 001,
0001,... for decimal numbers with
leading zeros to fill the specified width.
Default format is decimal numbers
with no leading zeros.

CSRR-76-08

18

Macros

Text registers can be used to define macro commands, which allow the user to extend the com-
mand set of PROFF. A macro is defined by the .at and .en commands enclosing the operations
to be performed by the macro. The text register naume is then used as the macro name, and the
macro is invoked by issuing the command: .reg where reg was the name of the register. Note
that if the command character is redefined, then the macros must also use this new command
character.

Macros may be supplied with up to 9 parameters. Within the macro definition, the user must
code parameter references using a parameter character, and the parameter number, e.g. $1, $2,
vy 89 if the parameter character was a dollar sign. Parameters to a macro are typed on the
same line as the macro command, separated by blanks. Parameter $1 will be replaced by the
text typed as the first parameter, $2 the second, and so on. Missing parameters will be replaced
by empty strings. If a parameter must contain a blank, then it must be enclosed in quote
characters, the default for which is the double quote (”).

Macros have been used throughout this manual to simplify the inputting of text, and to stan-
dardize the output format. Macros were defined for chapter headings, section headings,
starting paragraphs and for tables. Appendix E contains a description of the macros defined
for Computer Science Research Reports.

The following illustration defines a macro to automatically format sequence-numbered
paragraphs. The paragraph heading will be sequentially numbered, and printed in boldface

type.
ict

.pc$
.an (para#) 0
.at (newpara)

Sp
.an (paraf) +1
bf

M(parag). $1
.en (newpara)
.newpara "First Paragraph.”
Note that only the paragraph heading is set in boldface type,
the remainder of the paragraph is in roman,
.newpara "Second Paragraph.”
Each paragraph is easily formatted by the macro command,
which leaves space between paragraphs, increments the
paragraph number register, (parag), sets the heading in
boldface type, and constructs the heading from the
number register (para#), and the first parameter.

which produces this output

1. First Paragraph. Note that only the paragraph heading is
set in boldface type, the remainder of the paragraph is in
roman.

2. Second Paragraph. Each paragraph is easily formatted by
the macro command, which leaves space between
paragraphs, increments the paragraph number register,
(para#), sets the heading in boldface type, and constructs the
heading from the number register (para#), and the first
parameter. ‘

CSRR-76-08 | 19

Note that the macro required the insertion of the paragraph number register, (para#), to be
typed with two insertion characters. This was to avoid having PROFF insert the current value
of the text register (just assigned to zero) when the macro was created, but instead to insert the
value when the macro is used.

The use of parameters may also be utilized with text registers when inserted from within a text
line. Parameters are typed within the parentheses surrounding the name, and are separated by
blanks. Note that this requires that the parentheses be used, even if the text register has a single
character name. However, the user is again cautioned about the unpleasant effects which may
result from invoking a multiple line text register from the middle of text lines. This example
shows the use of TTS codes to implement superscripts and subscripts.

ic 4

pc $

.at (sup)

@/w006@5%1@<a006@

.en (sup)

.at (sub)

@<a006@$1@/wi06@

.en (sub)

This line contains superf(sup scripts) and subf(sub scripts).

Math could be typed as Xf(sup 2) and Af(sub i).
which would print as)

This line contains superSCrIPts and S“bscripts-

Math could be typed as X2 and A;.

Note that each text register contains only a single line, and that the parameter, $1, was sub-
stituted outside of the area treated as TTS codes (most importantly to avoid iltegal TTS codes
and to permit upper/lower case shifts.).

Conditional execution of commands within a PROFF macro is possible through the use of the
if and ignore commands. These commands specify a register name, and skip lines within the
macro until a matching .en command is encountered. The register name is not used to store
any text, but only to match a subsequent end command. The ignore command unconditionally
skips lines; in effect it is a goto command. The if command tests an expression and does not
skip lines if the expression evaluates to a non-zero value. Thus you might consider the if com-
mand and its matching end command as the brackets around statements which will be ex-
ecuted only when the expression is non-zero.

The following example shows a macro for handling chapter headings. The if command is used
to skip to the top of a new page, only if it is not the first chapter.

.an (chap#) 0

.at (chap)

if (notfirst) }(chap#)

.bp

.en (notfirst)

.an {chap#) +1

.bf

*Nchapg). $1

.en (chap)

Initially, the number register (chap#) will be zero. Thus the .chap macro will test this by the if
command, and since the expression is zero, lines will be skipped until a matching .en (notfirst)
command is encountered, thereby avoiding the begin page command. Since the chapter
number is incremented within this macro, the next, and all subsequent calls will evaluate the if

CSRR-76-08 20

expression non-zero, thus executing the begin page command. Note the use of two insertion
characters to delay the insertion of the number registers until the macro was invoked, rather
than when it was created.

Another example will demonstrate the use of the if and ignore commands together. The macro
will be used to generate entries in a table. Each entry is separated from the previous one by a
blank line, and every fifth entry is separated by several dashes to improve readability. The
macro will count the number of times it has been called, and if it is the fifth time, it will print a
line of hyphens, otherwise, it will space one line.

.an (#entries) 0

.an (fifth) §

.at (entry)

Af (notfifth) 5-M(fifth)

8p

.ig (endif)

.en (notfifth)

.en (endif)

.an (fentries) +1

.an (fifth) +1

... remainder of macro would generate table entry
.en (entry)

The number register (#entries) counts the total number of calls to the .entry macro, and the
(fifth) register counts the number of calls since the last time dashes were output. The if ex-
pression tests whether (fifth) has reached 5 yet. Initially, (fifth) is 5, and the if expression will be
zero, thus the statements until the .en (notfifth) will be skipped, since the first call is considered
a fifth call. The dashes are printed, and the .en (endif) command passed over, since no con-
dition (endif) was in effect. The value of (fifth) is reset to 0 to count to the next fifth entry.
Upon the next entry, the expression will be non-zero, since (fifth) is not yet 5, therefore the .sp
and .ig (endif) commands are executed, not skipped. The ignore command forces the macro to
skip the dashes and thereby producing the desired output for a non-fifth table entry.

Initial Default Cause
Command Value Value Break Description

pc C - - no Parameter character. Macro
parameters within text registers will be
recognized as Cl, C2,..., C9. When the
macro is called, parameters on the
command line separated by blanks will
replace occurences of these references.

qc C " v no Quote character. Parameters to macros
that must contain a blank can be sur-
rounded by the quote character.

.reg pl ... p9 - - ? Macro invocation. The text register reg
will be executed with parameters
pl,...,p9. The parameters are separated
by blanks, and if they are to contain
any blanks, they must be enclosed in
quote characters.

CSRR-76-08 21

PROFF TSS Commands

All TSS commands for PROFF are stored under userid PHOTON, which has general read
permission on the command files. There are three major commands: ‘
PROFF Format text file and convert to TTS codes
PASS Transfer TTS file to typesetter via communications line.
L List TTS codes (mainly for debugging PROFF itself, and typeset
literally commands).

The command syntax for the PROFF command is
PHOTON/PROFF input-file proff-file

If either filename is missing, then it will be requested from the user at the terminal. The input
file contains the formatting commands and text; the output file will contain the TTS codes
needed by the phototypsetter. Illegal commands th-t are not recognized by PROFF will be
listed on your timesharing terminal. '

For users who are working at the TTS level, or who are debugging PROFF, there are options

which are recognized (normal users should skip this paragraph):
PHOTON/PROFF [-DUIPT] [input-file] [profi-file]

where the input and output files are now optional, and the options are

.D Debug mode. Output ASCII form of TTS codes, identical to the PHOTON/L
output

.U Uppercase terminal. Output terminal is upper case only; lower case TTS letters
are displayed as letters, and upper case TTS codes are displayed with a leading %
sign, eg. R is the lower case letter r, but %R is a TTS return code.

-I Input from upper case terminal. The % escapes are honoured for upper case only
terminals.

-P Paginate output for CRT. After 20 lines of output the user must press carriage
return to continue. This stops the scrolling action of CRTs at convenient times.

.T Terminal mode. Missing filenames on the command line are assumed to be the
terminal. This allows for the convenient input of PROFF commands from the
terminal, or output of TTS codes at the terminal for debugging.

When the formatted text is to be typeset, the PROFF output file, containing the TTS codes,
must be transferred to the phototypesetter. With the communications interface the following

command is required:
PHOTON/PASS proff-file

where the proff-file is the same one generated by PROFF. Prior to transferring any TTS codes,
this message will appear on the TSS terminal attached to the phototypesetter:
Press Reset and Restart

This indicates that the phototypesetter must have these switches pressed, in that order, to begin
typesetting. TTS codes will then be transmitted to the typesetter without any apparent activity
on the terminal. This is because the phototypesetter's communication interface does not send
the TTS codes 0. to the terminal, to avoid any strange behaviour by the terminal acting on the
TTS codes. In normal operation, the phototypesetter will stop (the STOP light will go on), and
the terminal will respond, at about the same time. If not, the BREAK (or INT or ATTN) key
on the terminal will clear the interface, stop the typesetter, and allow the terminal to be used
with TSS again. If the typesetter stops prematurely, then the BREAK key will reactivate the
terminal, and action described in the typesetter operation instructions should be followed
(usually, "call for help!”). :

CSRR-76-08 29

If you are curious, or if you are working at the typesetting code level, then the L command will
display the TTS codes generated by PROFF on your timesharing terminal:
PHOTON/L proff-file

These TTS codes are summarized in Appendix C. If you desire the output to be directed to a
file, use the standard redirection of terminal output:

PHOTON/L proff-file >output-file
which will place the ASCII interpretation of the TTS codes into output-file.

Using ROFF for Proofreading

Since PROFF accepts many of the commands used by ROFF, and since ROFF has macro
facilities to define new commands, it is possible to format PROFF documents using ROFF,
and quickly obtain line printer or terminal output for proofreading. The special features of the
phototypesetter have been handled by commands which are different from ROFF commands,
e.g. .pt, .bf, etc, which have no meaning in ROFF. Hence, ROFF macros for these commands
have been built, and are stored in the file PHOTON/ROFF. The variable line spacing, and
different character fonts are not possible to duplicate, but the general format of paragraphs,
headings, and tables are. Thus the following ROFF file will format your PROFF document:

.50 PHOTON/ROFF
.50 your-PROFF-file

The first file will define the macros to handle the PROFF unique commands, and the second
file is your PROFF unformatted input file.

CSRR-76-08
23

Photon Character Set

Appendix A

Mathematics

Boldface

Roman Italics

TTS Char

T e x g g + ~
DT oS (Rl o T RUEHOR |8 RADHA| AABVARTCNT I T —
QA LS AVER S 35320k Fab e “3 ¥ vrxazt =3 ydu |~ -~
~~
E = 4 X | o] @ 0 3 < I ~
ODILIR 1| | | «RUVARKOI= "X AT ZOAOXENEHDEZ XN T 4~ == —
OO TN O-WVOO .80 UT O WA~ " — EF O T NS> 2 ¢ mNBH ™ =1 - snmps |-
~
WO X | &] CRCNG © H ~
DONERR I ! [T TR0QARBOGTOMNEZO0OAQXKDEDARRNNT T 40w s —
A~MNMT N ONX©TAD TD U U e ™™™ R0 MmN R3RRANS TS S e -
S~
EEmEe X | &0 ® © @® © 4 il ~
PRI R I ' | TR OARHLOIT Y- Z000xXNFDEZ2 X NT =" 4§ "% 3 —
A~ N TN O-0AO 80 0T VS WO "™ c 8O0 QT H® 3 >3 X >2N| ~— ~ 0 - e P
1234567890adeefgh.l..Jk.lmnOpqutUVWXV.Z$(\!,. A e~~~
v

24

CSRR-76-08

Appendix B

PROFF Command Summary

Initial Default Cause
Command Value Value Break Description
.af reg f - - no Assign format.
.an reg expr - - no Assign number.
.at reg - - no Assign text.
.be - - yes Begin column.
.bf N|on|off - - no Boldface font.
.bp - - yes Begin page.
br - - - yes Break.
cc C : . no Change command character.
.ce N|on|off - 1 yes Centre.
.l N 1 no Columns.
ds - - yes Double space.
.en - - no End.
.en reg - - no End register.
fi on|off on on yes Fill mode.
fr N|on|off - 1 yes Flush right.
ft N|C roman prev no Font.
.gu Nc - 0 no Gutter.
.hy on]off on on no Hyphenate mode.
.ib £Nc 0 0 yes Indent both.
ic C - - no Insertion character.
il £Ne 0 0 yes Indent left.
.in £Nc 0 0 yes Indent.
Air £Nc 0 0 yes Indent right.
it N{on{off - - no Italics font.
ju on|off on on no Justify mode.
1d Np 12 (ps+2) yes Leading.
1g on|off on on no Ligature.
N - 1 no Literal.
1l £Nc 6i 6i no Line length.
As N 1 1 yes Line spacing.
.ma N{on]off - - no Mathematics font.
af - - yes Nofill mode.
.nh - - no No hyphenate mode.
nj - - no No justify mode.
.of £Nc 0 0 yes Offset.
pcC - - no Parameter character.
.pl NI 9i 9i yes Page length.
.pm on|off off on yes Program mode.
pt N 10 10 no Point size.
qc C " " no Quote character.
reg pl ... p9 - - ? Macro invocation.
.rm Non'off - - no Roman font.
5o file - - no Switch source file.
.sp NI - yes Space.
.S§ - - yes Single space.
ta Nt Nt ... - - no Tab stop.
tc C TAB TAB no Tab character.
ti £Nc 0 0 yes Temporary indent.
Al - - no Typeset literally.
.un reg - - no Undefine register.
CSRR-76-08

25

Appendix C
Photon TTS Formatting Codes

CSRR-76-08

Function Argument Description

- <a00n halfpoints Add Lead
<b No Flash next char
<O 00 -39 Call Format
<dd leader char Define Leader
<edO line count or 00 End Runaround
<f Kill Word
<gO format Get Stored Line
<h Set Hyphenation Mode
<i Insert Leader
<3 rule char Set Vertical Rule
<k Kill Line (normal mode)

Kill Word (hyph mode)

<0004 pica/points Line Length
<m0O halfunits Mortice
<n Set Normal Mode (unjustified)
<o} format Store Line
<p0d points Point Size
<q Quad Right
<r8a line count Start Runaround
<sOa format Store Format
<t0OOd typeface Typeface
<u Allow Flash
<v[043 halfpoints Leading
<wdd halfunits Leader Width
<x Cancel Indents
<y Reverse Amount of Leading Count
<z Tab
<0 Zero Width
<8 Set Lens Table 1
<9 Set Lens Table 2
<- Zero Lead
<. Cancel Flash
<F Stop Code
< 04 halfunits Change Set
<, Divide Leader
</ Reverse Slant \
/a Force Carriage Return (force justify)
/b0000 pica/points Indent Both :
/c Quad Centre
/e00000 pica/points Indent Left
/2000 pica/points Indent Right
/g Indent Text
/h Set Hyphenless Mode
/i Registered Trademark ®
/i Copyright ©
Jk At-sign @
/1 Quad Left

26

Function Argument Description
/m Em Space
/n En Space
Jo Cents ¢
/P Dagger 1
/q0 count Set Number of Columns
/r Quad Right
/s0000 pica/points Set Gutter Space
/t Thin Space
Ju Unit Space
/v3a0a Select Variable Flash
/wdoo halfpoints Reverse Lead Immediate
/x Reset Leading Counter
/y0a0oa halfpoints Set Column Depth
/z Lead to End of Column
/1 fi Ligature
/2 fl Ligature
/3 ff Ligature
/4 Degree Symbol °
/5 Divide Symbol +
/6 Multiply Symbol X
/7 Minus Symbol —
/8 Paragraph Mark §
/9 Section Mark §
/0 Bullet or Box O
/- Baseline Rule |
// Fraction Bar /
/F Stop Code
/s Equal Sign =
CSRR-76-08

27

Appendix D
ASCII-TTS Code Conversion Table

The following table is used by PROFF for generating the actual TTS codes placed in the out-
put file. Normally, all ASCII characters are converted to equivalent Photon characters, shown
in Appendix A. Thus PROFF prints ASCII braces by changing typefonts to the Mathematics
font, and back again for regular text.

When the user is using TTS Codes, via .tl or @, PROFF uses this table to generate the binary
codes. ASCII codes which are not in the table cause error messages.

Octal ASCIHI TTS Code Octal ASCII TTS Code
Code Code Code Code
00 F Tape Feed 40 t Letter t
0l T Thin Space 4] 5 Digit 5
02 € Letter ¢ 42 z Letter z
03 3 Digit 3 43 (Parenthesis
04 / Fraction Bar 44 1 Letter 1
05 [Lower Matrix 45 - Vertical Rule
06 a Letter a 46 w Letter w
07 $ Dollar Sign 47 2 Digit 2
10 Space Band 50 h Letter h
11 A Add Thin Space 51 > ‘Em Leader
12 8 Letter s 52 y Letter y
13 M Em Space 53 6 Digit 6
14 i Letter i 54 p Letter p
15 8 Digit 8 55 0 Digit 0
16 u Letter u 56 q Letter q
17 7 Digit 7 57) En Leader
20 R Return 60 0 Letter o
21 ! Apostrophe 61 9 Digit 9
22 d Letter d 62 b Letter b
23 . Hyphen 63 4 Upper Rail
24 r Letter r 64 g Letter g
25 4 Digit 4 65 ; Semicolon
26 j Letter j 66 U Upshift
27 < Bell Code 67 = Lower Rail
30 n Letter n 70 m Letter m
31 , Comma 71 . Period
‘32 f Letter f 72 X Letter x
33 L Quad Left 73 1 Digit 1
34 c Letter ¢ 74 v Letter v
35 N En Space 75 C Quad Center
36 k Letter k - 76 D Downshift
37 1 Upper Matrix 77 ? Ignore

CSRR-76-08 28

Appendix E
Computer Science Research Report Macro File

PHOTON/CSRR

.cc. (comment line, since change command character to dot
.cc. if a no-operation command)

.cc.

.cc. Follow .title macro with the name of the report.
.cc. Each line of title is printed boldface, 14 point

.cc. and centred.

.cc.

.at (title)

A1 35

.pt 14

d 16p

ft bold

.ce on

.en (title)

.cc.

.cc. Follow .author macro with the author(s) name(s).
.cc. Each author is printed in italics, 10 point, centred.
.cC,

.at {author)

pt 10

dd 12p

.Sp

ft italics

.en (author)

.cc. Provide report number as parameter, e.g. .report 76-08

.cc. The department, university, and report lines are generated.

.CC.

.at (report)

pc’

8p

ft roman

Department of Computer Science
University of Waterloo

.Sp

Research Report CS-$1

.en (report)

.cc.

.cC. This macro is the last for the title page.

.cc. Follow it by the date of the report, e.g. April 1976
.cc.

.at (date)

.Sp
.en {date)

CSRR-76-08

29

.CC.
.CC. 2 column layout for 8 1/2 by 11 inch page
.cc.
.at (layout2)

.ce off

cl2

gu 4

130

.pl 90¢

.en (layout2)

.cC.

.cc. Single column layout for 8 1/2 by 11 inch page
.CC.

.at (layoutl)

.ce off

Al 55

.pl 90c¢

.en (layoutl)

.cc.
..cc. Perpetual column, for cutting and pasting pages
.CC.

.at (layout0)

.ce off

155

pl 0

.en (layout0)

.cC,

.cc. Follow .chapter with chapter names. Each line is
.cc. printed boldface, 14 point, flush left.

.CC.

.at (chapter)

.af

in 0

ft bold

pt 14

Ad 16p

.en (chapter)

.cc.

.cc. Follow .section with section name. Each line is
.cc. printed boldface, 10 point, flush left.

.cc.

.at (section)

.nf

in 0

.pt 10

Ad 12p

.sp 2

.bf

.en (section)

CSRR-76-08 30

.CC.

.cC. You must specify .body after a .chapter or

.cc. section and before you start text printing.

.cc. Prints text 10 point, roman, filled and justified.
.cC.

.at (body)

fi

.pt 10

Jd 12p

Sp

ft roman

.en (body)

.cc.

.cC. Separate paragraphs with .para. Paragraphs are
.cc. not indented but are spaced 1 line apart.

.cC. The first paragraph after a .body doesnt need a .para.
.cc.

.at (para)

.Sp

.en (para)

.CC.

.ccC. These 3 registers are for changing typefont within lines.
.cc. Specify fr, or 1b, or 4i where font change should occur.
.CC. to roman, boldface, italics respectively.

.CC.

atr

@<t0l@

enr

at i

@<t02@

.en i

.atb

@<t03@

.enb

CSRR-76-08

31

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

