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Abstract

This thesis examines the envelope or profile method for
solving symmetric, positive definite, sparae linear systemse.
This method is ‘a variation of the popular band mefhod, where
only zeros outside a particular region in the matrix are
exploited..lt is known to be an effective scheme with SIMple

data structures and convenlient programming.

In our study, d graph~theoretic approach is used to
investigate the reordering problem fof profile reduction of
various classes of gfaphs. The minimum and minimal envelope
ordérings‘are defineds An O(N logaN) algorithm 1is presented,
whlch always generates a mlni@al envelope ordering for trees

of N nodess

Profile ordering algorithms for general graphs are
largely heuristlé. Existing éffective algorithms are analysed,
éompared ‘and testeds Generally, the reverse Cuthill-McKee
algorlthm is foﬁnd to be the most consistentl& effective

methode.

Finite element gréphs arise in the application of finite
elementA methods for the solution of partial differential
equatiéns. They have special structures that can be exploited
in profile minimizations The idea of element annihilation,
which originates with the work of Irons, is used to develop a
new 6tder1ng schemes It is shown to be a practical alternative

for certain classes of finite element graphs.
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General Introduction

Chapter 1 ‘Geperal Introduction

1.1 Statement of Eroblem.

In this thesis, we are concerned with the dlirect
numerical soldtion of an N by N linear algebraic system:

A X = b, (1e1)
where the matrix A 1s sparse, symmetric and positive
definlte.‘ Such systems arise frequently 1In applications,
notably in the solution of elllpflc boundary vatue problems
by finite difference and finite element methods ([ Vargab2 ],

[Zienkiewicz70]).

In general, an N by N matrix A 1is gparse If it has
relatively few nonzero componentse. It is customary to
measure the dengity of fhe,matrix ﬂ by the quantit&
([ Pooch73], { Wang73], [Birkhof£73]):

4(A) = YCAI/NZ,
where Y(A) is‘ the number of nonzerds in Ae Typically, the
matrix density 4(A) < O(N"!). The gparsity of A can then be

measured by 1 - d(A)e.

Most direct solution methods for a‘ positive defini te
symmetric system are haéed on the Cholesky factorization
A =1L1L1T, where L is a lower trlhngular matrlx,‘ or or the
related factorization A = LDLY, where L is unit lower tri-
angular and D is a positive diagonal matrixe. For symmetric

positive definite matrices, such decomposition algorithms.
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are known to be numerically stable [Wilkinson65], g0 that
no row or célumn interchange 1Is necessarys The difference
between the effectiveness of +the twa factorizations |is
insignificante. "There is marginally more work with the
Cholesky decomposition but it is marginally simpler from
the polnt of view of the organization involved."
[Martin65]. For our study, we shall use the Cholesky LLT,

but our analysis also applies to the variant form IBLT.

To solve the system (1.1), the complete process con-
sists of two major steps: the symmetric factorization (or
decomposition) of the matrix A and the back substitution
for the solution vector xe With the matrix A decomposed
into the product:

A = L LY, (1.2)
the solution x can be obtained by performing the forward
and backward substitution:

Ly=5b, LY x=y. (1.

In numerical linear algebra, this method of solution for
dense linear systems ls standarde. Besides being numerically
stabley, the method 1s very economical in terms of the
number of arithmetic o#erations. If N is the order of the
dense system, the factorization requires

£N3 + §Nz - 13N multiplicative operations
and (1.4)

EN3 + iN2 - 3N ‘additions.

The bpck—solving step (1.3) raqgires

N2 multiplicative operations
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and | | | . (1.5)
N2 - N additions.

The set of procedures in ALGOL 60 by Martin, Peters and
wtlklnéon [Martin65] is tailored for solving systems (1l.1)
with dense cogtficient matrices. In théir lmpleméntatiqn,
symmetry in the matrix |is exploited by storing only its
lower triangle row by roew in a linear arraye. The storage
requirement is reduced to

3 N(N+1) locationse ' (1.6)

When the coefficilent matrix is large and sparse, the
number of arithmetic operations in (1+4) and (1.5)y, and the
améunt of storage‘ in (16) may be prohibitively llarge.
These requirements can be drastically réduced if sufficient
care is takéﬁ to avoid storing and operating on some or all

zero components in the matrixe. By exploiting the sparseness

structure, it has become qgquite common to solve linear .

.systems with several thousand unknowns by direct methodse.

* Nowy it is well known thdt when symmetric Gaussian

elimination is applied to a sparse matrix A, it usually

suffers some fill; that is, the lower +triangular factor L
has néuzero components Iin positions which are zero in the
original matrixe. This phenomenon of f£ill-in, which is
usually ignored in solving dense systenms, plays an
important role yin sparse elimination. It not only affects
‘the'computation and storage requirements, but also the Qata

structure and hence the coding of the algorithme
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in general, we do not kKnow a priori the exact
locations and the exact number of fills unless a simulation
of the fectorization process (often called axm&nli; factop-
ization) is performed beforehand. Thus, =a flexible packed
stbragg scheme for the sparse matrix A is essential for the
successful lmplementation‘of the algorithme The storage
me thod should be able to handle fill~in terms with relative
ease. Furthermcore, the storage and indexing overhead should
be small so that it does not offset the reduction in

arithmetic and primary storage.

Reordering is another important issue in the study‘of
sparse techniquess For a fixed compact storage scheme, the
ordering of the equations iIn a given sparse matrix problem
can greatly affect the amount of arithmetic and stcorage
reﬁuired for its direct solutions. More specifically,y, if P
is a permutation matr;x. the mutrices‘ A and PAPY nay
reguire different amount of computation for their
respectlve‘ factorizations. Moreovef, fheir triangular
factors generally ‘huve different numbers of fills. Since
the_pernuted linear system

(PAPT) (Px) = Pb, (1.7)
remalins sparse, symmetric and posi tive definite, papT
always possesses a triangular factorlization which can be
detérmined in a numerically stable manner. Thus, it may be
more aanntageous in terms of computational and storage

cost to solve (1.7) instead of (le1)e It should be noted
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that the best choice of P depends greatly on the storage

method usede.

The significance of reordering before solving linear
systems has been well recognised. Most solvers include it
as a major stepe Figure 1.1 is a flow-chart for a general

purpose solution package for sparse systems (lel)e

In this thesis, we give a detailed analysis of the

envelope method, a sparse storeage method that exploits

zeros outside a particular region in the matrix A. This

reglon is known to contain the set of matrix positions at

which fill occurs during factorization. Our main concern is

on the reordering problem; we investigate ways to permute
the rows and columns of a matrix so that the envelope

method can be ahplied most effectively.

The next section is a brief summary of the currently
used direct sparse techniques. It is intended to bring out
the significance of the envelope method and 1ts similar-

1t1es t¢o and differences from the other methodse.
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1.2 Survey of Direct Sparse Iechunigues

Sparse matrix technology 1is a fast expanding field
with a wide spectrum of applicatioqs- The survey articles
[Christian73], [George73b] and [Willoughby72] review the
state-of~the—-art of this technologye In this section, we
present a rudimentary survey on direct sparse methods as

related to the enveloupe sScheme.

Direct sparse methods based on triangulanr factor-
ization fall into three fundamental classes: general sparse
methods, pabtitionlng/block methods, and band or envelope
‘methods. The basic difference between these methods lies in
the care taken to avold the operations and storage for zero
components. But in practice, this leads to differences in
many aspects: data representation, data management,
adaptation té memory-~hierarchy environment, reordering

algorithms and implementation complexity.

Geperal sparse m@Ihgna exploit all the zefos in the
matrix A and its triangular factor L. To this effecty a
packed matrix storage schenme is required so that only
nonzero entries are stored. Besides primary storage for the
matrix terms, additional indexing information has to bhe
kept to identify the terms and to facilitate their
addressings In [Churchill71], [Jennings68], [Larcombe71]
and many 6thers, linked lists are usedy which prove to be
very flexible in accomodating fill-in terms &uring the

factorizatione A discussion of the basic techniques
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anDlvéd is given 1in {Gustavson72]. Bit map is ancther
common form of representation, especially in symbolic
factorization [Gustavson70]e The arc-graph siructiure 1is a
conceptually different representation, recently developed
by Rheinboldt and Mesztenyi [Rheinboldt73]s 1Its potential
advantage ié that the scﬁeme is independent of row/column

permutatione.

In [Gustavson70], Gustavson, Liniger, and Willoughby
have developed a novel approaéh, which is quite different
from conventional implgmentatlons. They have a symbolic
preprocessing codey, which generates a string of nonlooping
machinebinstructloﬁs from the sparse structure of a given
matrixe The generated machine codey, when invoked, performs
the actual numerical factorization and solutijione. So,
repeated solution of a set of lingar egqua tions having a
fiied struc ture but variable coefficlients can be computed
very afflciently. The implementations of [ Chang69], [Lee69]

and [ Symposium75,Millar] utilize the same idea.

For the class of general sparse methods, the number of
fills plays a crucial role; it affects both the storage and
computation requifements. A graph-theoretic study of the
£ill phenomenon is given in [Parter6l1] and [Rose72a]. For
‘Judlcloﬁsly chosen matrix permutations, the number of fills
can be significantly reducedes The mipnimum degree and
aipimun ggﬁ;gigngx‘ordering algorithms have been proposed;
for descriptions of the  algorithms, see ‘[Rose72a] or

[ Ogbuobiri70]s Indeed, the minimum degree algorithm is the
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most widely used scheme for reducing fills on genaral

graphse

In minimizing fills, George's nested dissection orderx-

ing is important. For linear systems assoclated with an n
by n regular grid (n? equations), it has been shown that
this ordering creates at most 0({n?logan) number of fills
and ‘ reguires o(n3) operations for factorization
[George73n], which are opflmal in the o;der of magni tude
sense [HOffman73]. This ordering strategy has a profound
impact on the cdrrent research in general sparse methods

[ symposium75]e

In general, numbering matrices to achieve near minimum

£i11 often leads to triangular factors thch have their
nonzero components scattered throughout the matrixe Data
management problems arise when sSuch systems dre to be
solved on o two-level store. As Tinney remarks [TinneyﬁQ],
the class of general Spqrse technigues "does not lend

jtself to overlay".

In contrast, one‘ of the motivations for partition/
block metheods is +to facilitate the use of periphera§
storage when the matrix problem is too large for the main
mMemoryes The pfoblem is segmented S0 that the matrix
subproblems can bé solved successively in core. There are
other good reasbns for doing partitioning, such as better
project management, reduced storage, and reduced operations

[ George73b].
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Partition methods exploit sparsity by storing and
processing the matrix by blockse Zero supmatrices are never
storedy, but non-null blocks eare usuvally treated as full.
Although some4zero entries are stored and processed, block
methods have the advantages of better data management and

reduced bookkeeping overhead than general methods.

The bypermatrlx method [Fuchs72] is a storage manage-
ment scheme for block methods. Besides storing the non-zero
blocks, the scheme maintains an address matrix to identify
the locations of the blocks in the storage‘poolo A zero
entry in the address matrix denotes a zero submatrixe
Another storage sScheme for partitioned  matrices lls
described in [George75a ]}y, and it is specialiy tailored for

the nested dissection ordering on grid problemse.

In [George74], George glves an interesting discussion
on the different ways block factofization can be carried
outs In this connection, Bunch and Rose [Bunch74] observe
that operations and storage can sometimes be sgved by
having the off-diagonal blocks of the triangular factor L
only implicitly. In effect, this implicit sitorage scheme
stores the diagonal blocks of L‘and thé off-diagonal blocks
of;the original matrix A. When required, the off-diagonal
submatrices of L are generated through their definitionse
In [George75c ]y George and Liu extend this idea to “tree"
partitiohings, and demonstrate substantial storage saving

in practical problems.

-10=-
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In many applications, for example in structural
analyslis, partitioning ;s usually obtained as imposed by
the physical natu:e of the probleme Automatic partitioning
is rarely discussed in the litergture. Notable exceptions
are fhe one~-way dissection [George75§] and the "quotient
tree" partitioning scheme [George?Sc ]Je The design of
automatic partitioning schemes is a promising area for

resoarche.

Unlike the previous methods,‘ papd and Dbangdg-like
methods take advantage of the zero structure of the matrix
by storing only those entrlqs within particular regions of
the matrixe These regldné are chosen so that all the
nonzero entries in the matrix aﬁd the fills due to
factorization lie within theme The me thods generally store
and operate on more zeros in exchange for much simpler data

management and programminge.

The band method is well=-known and en joys great
popularity in solving wpartial differential egquations. It
has simple data structures and is extremely well adapted to

overlay proceduress. The diagonal storaze schemg for banded

matrices [Martin65] is standarde

The crucial parameter in bana schemes 1s the bandwidih
(=ee section 2.1)s It becomes important to have algorithms
for generating orderings with narrow bandwidthse Algorithms
suggested include those of [Alway65 ], [ Arany71],

[ Cheng73a ], [collins73], {Cuthiuw Ts [{GivbsT4a ],

-11~
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[ Rosen68], and [Wang73}. A comparative study of them can be
found in [Cuthill72] and [Gibbs74b]e The recent algorithm
by Gibbs, Poole and Stockmeyer is +the currently best

bandw;dth reduction schemes.

The envelope meihod takes adyantage of wvariations in
the row bandwidths of the matrices. In the literature, it
also goes under the names of the Qngiilg. frontal, and
wavafront schemes ([George71], [Irons70]y ([Jenningsé66],
[ Melosh69])e The method requires no more storage and
compufatlonf than the bpand method, and in most cases
significantly lesss. For problems o£ pract1ca1 interest,
over 50% of storage saving has been reported [George7l ].
Yet, the method rétains the advantages of band schemes:
slmple and compact da ta structure, efficient data
management and convenient codinge. It is a method of.

practical importances

Though the method arises primarily as a refinement to
the band scheme, the reordering strategies are based on
different ériterlon functlons;‘ An analysis of the
reordering problem for profile reduction is'thé main theme

of the present thesis.

+ Many implementations of the band method perform routine
checking of zero multipliers, so that for ‘"the game
ordering, they reguire the same amount of computation as
the envelope method. [ Wilson74]
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1.3 Qutline of Thesis

The purpose of this thesis is to study the envelope or
pr#flle method for sSparse, positivé dgtinite} symmetric
systemse. As indicated earlier, the méthod enjoys simple
data meanagement and convenilent programming, while still

retains practical efficlency. In chapter 2, we examine the

implementational aspects of the methods. An analysis of the

storage and computation regquirement is presented.

Chapter 3 is devoted to a study of the profile method
using a graph-theoretic appréach. Ve introdﬁce envelope
structures for graphs, so that the minimum ‘envelope and
“minimal enveiope problems can be formulated. Minimum
envélope orderings are ideal to have, while minimal
orderings are important from a graphathepretic point of
‘vlew. Sqme prﬁpertlés of these and their related orderings

are esteblished in sections 3e3-3.5

Trees form a class of simple graphss In chapter 4, we

consider the reordering problem‘ on tree structures for

small profiles. The familiar postorder traversal scheme is
used recursively to yield an O(N logpN) algorithm which
ulwayé generates a ﬁinimal envalope ordering for trees of N
node#. Some expefiments.wlth the algofithm are reported in
‘section 4,5 Readers not 1nterested‘ in the theoretical
problém of'determining minimal orderings can skip sections

3.___3"3-4 and chapter 4e

-l13-
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The obJéctive of chapter 5 is to examine the reduction

problem for general graphs (and hence general symmetric

&ntrices). Existipg profile ordering algorithms for general
graphs are heuristic; their perto:mqnces are data-
dependente. Sévqral popular protlle reductlon‘ schemes are
analysad and comparede. Included in the study are ‘the
Cuthill-McKeej, reverse Cﬁthlil-McKee.' King and Levy
algorithms. We use a graph-theoretic.approach to show that
the reverse VCuthili*McKee algorithm can never be inferior
to the Cuthill-McKee algorithm in envelope stcfage and
computational reguirementse. A matrix proof of this result

has been given by Liu and Sherman [Liu75].

No such theoretlcﬁl comparisons can be aestablished for
‘the other‘algorithms; Insteady the comparisons are based on
experimental testings. The racent algorithm by Gibbs, Podle
and Stockmeyer is also- lncludéd in the experimentsf
Gererally ‘speaking, the reverse Cuthill-McKee algorithm

performs most conslstently and quite affectively.

Chapter 6 discusses the ﬁrofife prohleﬁ for finite
element graphs, a prdctical class of graphs arising from
the: application  of thé finite element method to two
dimensional problemse. We observe that the‘ geomatry of the

graph problem can be exploited for this purposes. The idea

of element annihilationy which originated with the work of

[Irens70], ‘ié‘ shown to be an " alternative approach for

-1 4-
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studying profile minimizatione. Based on this, a new profile
scheme is proposed. Through extensive testingy 1t is shown
to be a viable alternative for certain clasgses of finite

element graphs.

-In the thesis, algorlthms are described in an
ALGOL-like language. FORTRAN implementations of them can be

found in the appendixe.

-15-
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1.4 Review of Symmetric Factorization

In this section, we review the process of gsymmetric
factorization and we make some observations on the solution

of trlangular systemse

The step by step triangular factorization of a given N

by N matrix A into LLT may be described by the following

outer-product formulation [ Westlake69],

dy Vf
A = Apg = Bg =
vy By
- - r - - ’l‘ -5
Jdg 0 1 0 Vdi v/ dy
= vy Vivy
| —— 1 0O By~ n I
. N~-1 1 N~-1
Vd, d1
L A L i} L ]
1 0
= L LT
0 B,

Ly Ay LT,
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-17 -
1 0 1 0
A= = da V}-
0 Hl 0 Vo ﬁz
1 0 W 1 0 1 1
ﬁz 0 1 0 JEZ V{/‘fag
V2 vzv}'
0 — I, 0 0 Bpa=- 70 I
N-2 2 2
JSd2 , d2 ’
L E L 4 L d
= Lz Az L2T,
. s . (1.8&)

ANy—1 ~ LN lN LNTo

Here, tfor 1%i%N, d, is a positive scalar, vi is a
vector of length N—-1i, and Bi is an N=-i by N-i positive

deflnife symmetric matrixe

After N steps of the algorithm, we have A = LLT’ where
L = LiLzesslys Note that the triangular factor L is also

given by:

(N'l) IN' (1e9)

™
H
Mz
o
[
-
i



General Introduction

which implies that the i-th column of L is precisely the

i-th column of Lje

Fach tactorization step involves the modification of
the submatrix WBj by the outer product (Vlvir)/dl' to give
Bjy which becomes the submatrix remaining to he t;ctored.
As a result, the submatrix By may have nonzeros in
locations which are zero in El' Thus, the matrix A
generally ‘fllls-ln, and with the assumption thet exact
numerical cancellation does not occur during the factor-

ization, the matrix sum L+LY is usually fuller than A

Besides giving a better underétanding of why and how a
matrix fillsy, the outer-product formulation provldeg a
direct way of determining the exact arithmetic costs Let
7(®) denote the number of nonzero components in %, where =
‘may be a matrix or a vectors The followinzg lemma is by Rose

[ Rose72a ].

Lemma 1.1 Provided we avoid operating on and storing all
zeros, the number of multiplicative operations required to
pertorm the Cholesky factorization LLY of A is given by

N-1

8(A) = 3 2 ¥(vy) {¥(v,)+3}, | (1.10)
. i=1 :

and the number of nonzero components in L is?

N-1 , -
Y(L) = 2 7(vy) + N. (1.11)
Ci=1
=4

-18-
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If we use Lyj to denote the i-th column of L, then we

have ?(L*l) = 7(Y1)+1. Thusy (110) can be rewritten as:
N-1 ' .
e(a) = % 2 [T(L*1)~l} {T(L*‘)+2}.
i=1

An alternative formulation of the symmetric factor-—

zation process uses jipner-products. It is some times known

as the bordering methods Suppose the symmetric positive

definite N by N matrix A is partitioned asi

M u
A = ’ ) (1e.12)

uY s
where the symmetric factorization LyLyT of the N-1 by N-1

matrix M has already been obtained. Herey, u is a vector of

length N-1 and s is a scalars Then, the factorlzatién of A

is given by:

by O LyY 1
A = ’ (1.13)
1T ¢ 0 t :
where ‘ Ly 1 = uy _ (1.14)
and 12 = s - 1T, , (1.15)

Note that, in practice, the factorization LuLuT cf the
principal submatrix M is also obtained by the bordering
technique. Thus; the entire process of factoring A into

triangular factors consists of N bordering steps, each

-19-
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involving the solution of a lower triangular system (1.14)

and the computation of an inner product (1.15).

The oufer—product and inner-product approaches require
the same amount of arithmetic; they only differ in the
order of operationse The former can be considered as
factorization b& columns énd the latter by rowg. Figure 1.2

shows the two formulations in a pictorial manner.

Outer-product Inner—product

Figure 1.2: Two Formulations of Factorization

Conceptuaily, the outer-product formulation gives
better ingight into the elimination process. It is often
used in symbolic factorizatiéns {or factorizations that
exﬁloit all zeros)e But in practice, the bordering method
is usuelly preferred ([Martin65], [Tinney69])y primarily

because it is more adapted to row-wise storage schemes.

-20~-
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Solutions to triangular systeﬁs are required in the
back substitution phase  {(1.3) and in the bordering
formulation (1.14) of the factorization phases. We shall
establish some observations on solving such sSystems.
Consider the N by N linear system:

T x = b, (1.16)
where T is triangular and nonsingulare. For definiteness, we
assume that‘T is lower triangular; similar results can be
established when T is upper triaengular. The following

results are by George [GeorgeT74].

Lepma l1ls2°: With the no cancellation assumption, if the

component b1 is nonzero, sSo is X; .

Proof: Let TLJ be the (l,J)—th ccmponent'of Te Since T
is nonsinguler, T11$0'for 1<iSNe The result then follows

from the no cancellation assumption and the relation:

i.=2,..,N
: i-1 .
xi’:{b1 - 2 TiJ xJ}/Tll‘ o
J=1
Lemma 1:3: If the sparsity of the right hand vector b is

not exploited@ the number of multiplicative operations
required to solve (1.16) is given by 7(T), the number of

nonzero components in T.
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Preof: It follows from the result of lemma 1.2 and the
ocbservation that the number of multiplicative operations is

equal to the number required to multiply T by the vector xe.

o

The converse of lemma 1.2 does not hold in general; we

only have

Lemma ls4: Let x be the solution to Tx=be. 1§ 4 bi=0 for

1<i<k, then x;=0 for 1%2iZk. : a

The above lemma, though trivial, is useful in showing
that fill is confined to some particular region of a matrix

(section 2+2).

- 2=
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Chapter 2 On ihe Envelope Method

in this chapter, we will give a detailed study of the
envelope method in the direct solution of sparse symmetric,
posli tive definite linear systemse The emphasis 1is on
implementation aspects of the methods We consider a compact
envelope storage scheme which is well suited for both the
factorization and substitution processes. An analysis of

the computational and storage requirements is also givene

2.1 Matrix Netations

In this section, we present some matrix notations and
definitions that are relevant in the study of the envelope
me thod. Let A be an N by N symmetric matrix with nonzero
diagonal components. Ve denote the (i,j)-th entry of A by

AiJ. For the i-th row of A, i'—"l'-oopN, we let

H

£,(8) = min {32 A, # O}, B (2.1)

]

31(A) i - tI(A). ' (2.2)
The gquantity fl(A) is the column subscript of the first

nonzero component of the i-th row of A.

Following Cuthill and McKee [Cuthillé69], we define the
bandwidth of A by
3(&) = max {}i-jl: AiJ £ 0} V (2.3)
Note thaf B8(A) can be expressed in terms of Bi(A) as:?
B(A) = max {31(A)= iSlSN},

so that B,(A) is called the i-th bandwidth of_A. We can



Envelope Method

thén define the ppnd of A as:

Band(A) = { (i,j}: 0 < i-j < 8(A) }, (2.4)
which is the region within B(A) Iocatipné from the main
diagonale. Unordered pairs (i, j}] are used 1in (2.4) instead

of ordered (isj)y because the matrix A is symmetrice.

"Taking adventage of the variation in the band, we
introduce the envelope structure of a matrix. The envelope
of A is defined aé:
Env(A) = { {i,4}: 0 < i-j € 8, (&) }. (2.5)
In terms of the column subscripts f (A), we note that
Env(A) = { (1,4} £,0A) = § L B (2.6)
In [ Segethova70], rows of the envelope are called pipege.
The qdantlty |Env(A)] t is usually referred to as the
envelope size or the profile of A. It is clear that

Bl(A)' (2e7)
1

|Env(A)| =
i

Mz

where 8;(A)=0.

Assume that the matrix A has thé Cholesky factor-
ization LLT. It is well known that the lower triangular
fector L may have nonzeros in locﬁtlons that’are zZero in
the ofiglnal matrix As. (See section 1.2.) The set of such
entriés.fofms pdrt of the prlmary‘ storage of any sparse
storage scheme for L. It is then natural tb define the £jil1l
of A td be:

FILL(A) = [ {1,4}3 A; =0, (L+LT), 20 Jo (2.8)

This is the set of locations where fill may occur.
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Consider the matrix example in figure 2.1. It has a

bandwidth of 3 and an envelope size of 11.

i fl(A) BI(A)
[ W
X X x 1 1 0
X x 2 1 1
x X x 3 3 0
A = X X X 4 1 3
X X X x 5 3 2
X X X 6 3 3
L X X X 7 53 2
- q - 1 r
x x X X X x X X 0o X
X X ] X x [ X X O m ©
x X x X 0 X X 0O 0O X 0 X X
' X X X - O X X o X @ 0 X X 0 O
X X X ® X X X X m X 0O X X X ®m X
X - X x X O & X X X o ® X X
L x x x | L X X X o X X X
4 ; L
Fill(A) Env( A) ‘ Band(A)
Figure 2.1: A 7 by 7 symmetric matrix.

The band and envelope structures are important hecause
zeros outside these regions‘can be explolted conveniently
in the symmetric factorlzatioﬁ cof the matrixe In the next
section, we shail see how the envelope structure can be

exploited wusing an appropriate storage schemes Ve now

-2 5=
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relate structures (2.4)y (2.5)y and (2-8) together as

followse

"Lemma 2al: Env(A) = Env(L*+LY), where L LT 1is the

symmetric factorization of A.

Proof: We prove by induction on the dimension N. The
result is clearly true when N is 1. Assume that the result
holds for N—1 by N-1 matrices. Let A be an N by N symmefric

matrix partitioned as:

where s is a scalary, u a vector of length N-1, and M an N-1
by N~1 nonsingular matrix factored as LNLHT’ By the
inductive assumption, we have Env(M) = Env(LN+LMT). The

triangular factor L can be partitioned as:

where t is a scalar, and 1 is a vector of length N-1. It is
then sufficient to show that f,(A) = f£( L+LY ).
From (1s14), the vectors u and 1 are related by:
Lu 1 = We
But'u1=0 for 151<1N(A) and the entry Ug CA) is nonzero. By
lemma 1le4, we have 1l=0 for 1$i<tN(A) .and by lemma 1.2,
11N(A, # O Hpnce fy(A) = fN(L+LT), so that

Env(A) = Env(L+LT). . o
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Iheorem 2213 Fill(A)  Env(A) (C Band(A).

Proof: The first inclusion follows from lemma 2.1 and

the second from definition. . a]
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2.2 Envelope Stiorage Scheme

The most commonly used storage scheme for the envelope

method is the one proposed by Jennings {[Jennings66]e. For

each row in the matrix, all the entries from . the first

nonzeroc component to the diagonal are stored. These rows
are saved In contiguous locations in an one-dimensional
array Se. An auxiliary vector O of length N is used to
locate the positions of the diagopnal components in the

primary storage Se

The scheme requires Iénv(A)I*N primary locations and N
extra pointerse. Th§ example in tigure "2e2 illustrates
Jennings® storage schemee In view of theorem 2.1, the
storage séheme is attractive in the context of symmetric
factorization. The factorization can be done jin place: each
row ofbtheAmntrlx in the primary storagg

A .!?“'A s A
ipfy (A) Pei-1  i,d

can be replaced by the‘ corrgsponding row of the triangular
factor |
L s » » o g L ¢ L .
1,£,CA) ‘ iyi~1 i,1
By keeping the auxiliary array Oy we have a mapping
function that allows us to access any nonzero component
efficientlye. The one—to-one mépplng from Env(A) to
{1, 2, .;., IEnv(A)I} is given by:

{1'-’} l-"") 51 - (1i=3).

-28=
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: - 1
Ay S
Az1 A2z ‘ . S2 Ss3
Ajs . _— Ss
Aer ~ Asa —>| S5 S¢ S7 Se
‘As3 Ass Ass Se  Sio S
Ae3 Aee S12 S13 Si1e Si1s
Ars Are A7 | Sis Si7 Sie |

S [Ar1|Az1 A22|A33]Aer O O Agaa|As3 Ase Ass|Ae3 0 0 Ase|A7rs Are Arr

‘Flgure 2.2: ‘Jennings' storage scheme

Thus, a component AiJ within the envelope region of A is

stbre¢ in S(Bié1+J) in the primary storage.

Furthermore; the data organization allows rapid row
operatlong'on the envelope of the matrixe. To access the
ij-th row of the 1lower triangle of the matrix, it is
‘sufficient to have quantities 5;-; and 5;. Indeed, it is
givén by;

Oy o o oy 0Oy 3(51_1"’1) y o o ey 5(51"1) y S(ﬁi)c‘
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For a compactly stored sparse matrix, it is important
to properly relate the order of storage and the order of
operations on the stored entriese. In the next sectlion, we

will see how the row operations in the factorization

process can be performed effectively using this storage

method.

~30=-
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2.3 Envelope Factorizatlion

Consider the symmetric factorization LLf of an N by N
symmetric positive definite matrix A. Assume the matrix is
storéd using the Jennings' envelope schemes Since the
storage scheme is row—oriented, it is more efficient to
implement the factorization in a row by row manners In this
way, zeros to the left of the first nonzerolin each row can

be explolited more conveniently in the factorization.

In the row by row determlnation, the process can be
defined by the following equations. For row i
(1:1,2'0001N)9

J=~1

L b {A - 2z L L },L A J=f cengi—-1
iJ i ik™ jk ' ’ M !
J k=max[1i,fJ} J JJ i

Llizz Ali - Z L 2. (29)
£

Note that (2.9)¢ is the inner—-product formulation of the
factorization process, where " zeros outside the envelope

region are exploited in computing the inner product

To measure the amount of arithmetic involved, we let
QE(A) represent the number of multiplicative operations

‘required to effect the symmetric envelope factorization of

the matrix A as given by (2.9)e If 8(A) is the operation

+ Vhen the matrix A is clear from the context, we use fl
and"ﬁ1 instead of fi(A) and Bi(A)-
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count when all zeros in the matrix are exploited, clearly

we have:s

Ve now establish a bound for OE(A) in terms of the varying

bandwidths.
. N ‘
Lemma 2023 OE(A) <3 2 B;(A) [31(!1}"'3}. (2.10)
i=1
Proof: Consider equation (2.9): To compute LIJ' we need

J—max{fi,fd}+l operations, which is no larger than J“fl+lo
Summing over j, we get

i-1

2 (J-ti+1) =‘i(i-fi) Ci-r,%1).

J=f1 )
On the other hand, the diagonal component Lii requires 1—fi
multiplications. Hence for the i-th row of L, the number of
arithmetic operations required is no larger than

CRCi-f,) (d=£ +1) 4 i~ = F(i-f) (i-f #3),

Recalling that ﬂ1=1~f1, we have the désired inequall ty

(2010). jul

It should be noted that for a general profile—oriénted
matrixy the upberhbunﬂ in »iemma 2.2 is often an over-
estimate. For a necessary and sufficient coﬁdition that
(2.10) is an exact count, we introduce monotone-profile
matricese. A symmetric matrix A is said to satisfy the
monotone profile property it

£ ,(A) S £,(A), for j<ie (2.11)

-32~-
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N
Thearem 222  85(A) = 3 2 g,(A) {8;(A)+3]}
i=1

if and only if the matrix A has the monotone profile

"propertye.
EEQQI: From the proof of lemma 2.2, we note that (2.10)
is an equullt& if and onlyAlf max{flng} = £; for Js1i,

which is equivalent to the monotone profile property of

(2.11). ‘ o

For an exact operation count for a general symmetric
mairlx, it is useful to introduce thevfrontwidth concepts.
For the i-th row of the matrix A, we let

w;(A) = |{k: x>i and Aklto for somé 1Si}‘o(2.12)
The number wi(A) is simply the number of "active" rows at
{heAi—th step of factorization; that is, the number of rows
in the envelope of A, which intersect column is The
qu#ntity

w(A) = max({w, (A): 1ZiSN}, (2+13)
is‘usually referred to as the wavefront or frontwidth of

the matrix A ([George73p], [Irons70], [ Melosh69]).

Consider the matrix in figure 2.1. Its i-th féontwldth

wi(A) is given in figure 2.4.

The fact that the frontwidth concept is relevant to
the analysis of the envelope method is justified by the

following observations.

-33-
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i w,(A) | B,(A)
X X x i 2 0
X X - 2 1 1
X 0o X X 3 a3 0
A = X 2 0 X X O 4 2 3
X X X W X 5 2 2
X o m x X 6 1 3
X X X 7 0 2
L 4
Figure 2.4: wavefront of an 7 by 7 matrixe.
N . ‘
Lemma 23% [Env(A)| = 2 wj(A)e o
i=1
N
z2

Lemma 2¢4: 6,(A) = %

, w, (A) {wi(A)*'i)}.

1

Proof: If we treat the envelope of A as fﬁll, the number

of nonzeros in L_ . is wi{A)*lo The result then follows from

i

lemma 1-‘10 a
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2.4 Envelope Substitution

Given the lower triangular factor L in envelope form,
it is straightforward to‘perform the forward and backward

substitution:

L ¥y = by (2.14)
er = Yo ' (2.15)

The forward solutioh can be defined by the equations: for

1=1,000'Ny

vy = by = 2 Ly oy 3oy (2.16)

The row by row envelope storage scheme‘13 well suited for
this computatione. The task of performing the backward
substitution (2.15) is equally simple. The defining

equations are: for f=NyN=1l,eee9l,

N

x, = {y, - 2 Ly X% }/L, . » , | (2.17)
i i Kk=1i+1 KlTk 1i

where the summation |is taken only over those k with
fk(A) < i. Due to the inherent nature of the data sequence,
it is more convenient to rearrange the 6rder in'whlch the

inner products 2 Lklxk are computeds It can be described as

followse.
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procedure BACKWARD_SOLVE(N, x, ¥ L)

for i:= 1 gstep 1 until N do

XJ== XJ - Ll‘jxl;
end:
ends
Lepma 225: The forward and - backward envelope

substitution can be done in 2(IEnv(A)I+N) multiplicative

operations.t

In the entire solution process, note that the diagonatl
cdmpoﬂents Lii are only used as divisors. Since on most
computers division is slower than multipllcation; it is
preferrable to store the reciprocal of the Lli; that is,y in
the storage séheme,S(Sl) will contain Lil-l'

-3 b=
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2.5 Effect of Reprdering

Consider the direct solution of en N by N sparse
symmetric positive definite system A X = bse The exact
storage aﬁd computational requirements for its envelope
solution are given in lemmas 23 and 2.4 reSpectiveI&.
These quantities depend upon the locations (2.1) of leading
nonzeros in the rows of A+ These locations cany however, be
altered by appropriately rearranging the equations and
renumbering the unknowns. It is sometimes possible to find
a permutation matrix P such that the envelope of the

permuted matrix PAPY is much smaller than that of A.

" " _ 7
x x
X x sym X sSym
A = X & X papPY = b4
X m® X x
X & m ® X X
L X & & = ® X X X X X X X
3 L. .
Figure 2.5: Ordering for a small envelope.

ans;der the:matrlx example in figure 2.5. It is the
matrix of the well-known gtar graphe. Let P be the
permutatioﬁ matrix thgt reverses the ordering in As It can
be readily verified that |BEnv(A)| = 15, 8.(A) = 50; and

JEnv( PAPT)] = 5, 8.(PAPYT) = 10. Generalizing the sparse
E
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structure to a matrix of \X nodes, we have

{Env(A) 3 N(N-1) N
4 : "',
| Env( PapPT)| N=-1 2

eE(A) 3 7 i(3+1) N2
= 7R
QE(PAPT) 32 4 3

This exemple shows some dramatic savingse For

practicael applications, the amount saved is often gulte

substantial so that it is usually worthwhile to preorder .

the system before the symmetric factorization of the matrix
is performed. In the next chapter, the reordering nroblem

will be studied from a combinatorial point of view.

~38~
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Chapter J Graph Ibeoretic Siudy of the Envelope Method

Graph theory is an elegant branch of modern mathe-
matics fhat has a wide variety of applications.llt provides
simple and yet powerful mathematicall tobls "for solving
problgmé having to do with discrete arrangements of
objects." ([Busack§r65])llndeed, it is a convenient vehicle
in the study of reordering problems for sparse matricess In
this chapter, we will examine the reordering problem with
Eespect to the envelope me thod using graph models. Graph
theoretic interpnetatlons of the relevant matrix
definitions in chapter 2 are givene. In these connection, we
define minimgl and wminimum ‘envelope orderingse. Some
preliminary results on these orderings are established for

future usee.

3.1 Notations frem Graph JIhgory

We begin this section with some standard graph

theorﬁ?ic terminologye.

A  granh G=(X,E) consists of a finite set of podes
together with a set E of unorderad‘éairs of nodes called
edges. A graph G=(%X,¥) 1s a gubgraph of G=(X,E) if X (T X
and £ (C E; G is then a super graph of . For a subset.
Y C X, the gection #raph determined by Y 1is the subgraph
(X'E'), where

E* = { {x,y} € E3 x4 vy € Y }.
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Sometimes, we use "the subgraph YY to refer to the section

graph determined by the node subset Y.

Two nodes x and y are sald to be ad.acent if

{x,¥} € Es. For a subset Y C Xy the adjacent set of Y is

defined as

AdJ(Y) = {; e x\Y: {xy,y} € E for some y € Y}.

| (3.1)
In case Y = {y}, we shall use AdJ(y} instead of the formal-
1y correct Adj( {¥})se The degree of a node x‘ is the number
of nodes aﬁjacent to X9 denoted by deg( x)e Soﬁetimes, we
refer to a node y € Adj{x) as a peighbor of xe A gligue is
a mailm@l subgraph}whose' nodes are pairwise ad jacente Whén

the graph is itself a clique, it ;s said to be completee.

An edge e € E ls salid to be incident at a node x if
x € e Fof a subset Y (C X, the jinclidepnce set of Y
([Mayeda72]s is
Inc(Y) = { [x,¥y} € E: y e f, xle X\Y }o (3.2)

Again, when Y = {v}» ﬁe shall write Incly)e.

in the graph of figure 3.1, Adj(xs5) = {x39 X4 X7}
Inc(xs) = { (xevxs}s (xarxsly {xsexz} }s If Y={x2, x3+ xs},
then AdG(Y) = {x3s Xer Xer X7}

and Inc(Y)

{ {xn1¥2lv {x3ixels [xasxs}s I{xsexz} }e

A path of length 1 is a sequence of 121 edges {xgsx1}
[xgex2} s cesy ,{xl-i'xl}, where all nodes on the path,
except possibly xg and xi, are distincte A cycle is a path,

which begins and ends at the same nodes. A  graph G is

-40-
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®

CI—(9

Figure 3.1 A graph with 7 nodes

connected if for each pair of distinct nodes, there is a
path connecting thems If G is not connected, it consisfs of

two or more maximal connected subgraphs called components.

Let G=(X,E) be a connected graphs The distance d(x,y)
between two nodes * an& ¥y in G is the iengtﬁ of a shortest
path connecting them. ?ollowing Berge [ BergeS8], we define
the ggggn;glgiix of & nodp x to be the quantity

1(x)

max {d{x,y): y € X}. ‘ (3.3)
The diameter of G 13 then defined as

B5(G)

max {l(x): x 6 X}; (3.4)
or equivalently,

R 5(G) = max {d(xy¥y): xsy 8 X}
A npde x € X is said to be a‘ peripvheral nggg it its
eccantricityll(x) is the diameter of the graph. Consider
the example in figure Je1s The diameter of the graph is 53

X2 and xe nre the only peripheral nodes.

-41-
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The concept of level structure‘was'ilrat introduced by

Arany et al [Arany71] in their study of bandwidth reduction

algorithms. Formally, a level a;nugiu:g of a graph G=(X,E)

is a partition
£ = {Logy Liy eoey LI}
of the node set X such that for 1i=1gees9l—-1,
AdJ(L;) (C Lj-y U Ljese (3.5)
1t then follows from (3.5) that for a level structure,
Adj(Lg) C Ly
AdJ(L,) (C Ly-g»
- The number 1 18 the‘lgnglh of the level structure i, while
the gquantity
| max (1L 13 0<i<1) (3.6)

is called the widih of L.

A particularly important class of level structures is
those that ere rooted. For a node x € X, the gggigg level
siructure at x is defined as the level structure:

t.(x) = {La(x), Ll(x), ens sy L‘ux,(x)}, (3.7)

where ‘ Lo({x) = {x},
i-1
LI(X) = AdJj( U'Lk(x)), 131,~oo§,1()_()o
: k=0 ‘ :

In [Tutteb67], (3.7) is also referred to as a
ggggﬁgignnl seguences It should be noted that the length of
the roofed level structure £(x) is exactly the eccentricity
1(x) of the node x+ The rooted level structure at ii of the
graph.in‘flgﬁre 3.1 is given in figure 3.2._‘Thé length of

£(x3) 18 4 and its width is 2.

-dR=
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Lo(xy)
Li({xy)
La(xy)
La(xi)

Lel(xy)

Figure 3.2 Rooted level structure at x,

For a graph G=(X,E) with N nodes, a labelling or
ordering of G is a bijective mappling az{1924000yN}===DXe We
will use G, and X, to denote the labelled graph and the

labelled node set reapectivelye.
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3.2 Graph Iheoretic Study of Envelope mxm

Let AV be an N by N symmetric matrix. To study fhe
envelope method graph-~theoretically, Qe associate an
undirected graph G(A) = (X(A)yE(A)) with the matrix A. Here
X(A) is the set of nodes |

{agy azy eeey GN}v
where a; corresponds to the i-th row of Ay, and E(A) is the
set of edges where {‘1"J} e E(A) 1if and only if the

component A is nonzero and i#j. Note that G(A) has an

iJ
implicit labelling defined by the matrix, which maps the
integer 1 to the node a. There is clearly a one—to-one

coerSpbndence between labelled graphs with N nodes and N

by N symmetric blpary matrices with unit dlugonal.‘

The undirected graph in tlguie 3.1 is associated with
the sSymmetric matrix in figure 2¢1s We present them

together in figure 3.3 for referenceQ

- X
X X x
X x
x X X
x X X
X X X x
x X X
X X X
L d

Figure J3.3: Matrix and its associated graph
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It is apprOpriate here to point out that each label-
ling avon G(A) identifies uniquely a permutation matrix P,
on A such thgt
G(A), = G(P AP, T).
“The iabelled gr;phs G{(A) and GfPaAREr) are lsomorphié, but
vthé,ﬁo&e label;~in the 1atte§ haQe been permuted according
to P_e. So, the féorderlng problem can be studied

a

convenlently‘uolng the underlying structure of G(A).

Since we are going to study our problan from a
combinatorial point of view, it is important to glve graph
theoretlic lnterpretatione of the various matrix definitions
introduced in sections 2.1 and 2.3. 1In this section, we
redefine these concepts for labelled graphs. Al though they
are.deflnedlin terms of the graph atructurg, thg relation~-

ships to their matrix counterparts gshould be obvious.

We first consider +the set Fill(A) (2.8) in fhe
symmetrid factorization of the mgtrlx As This set can be
descrihed conVenientiy in terms of‘the associated graphs:

G(A) = fX(A).E(A)),
and G(LHLT) = (X(L+LT),E(L+LY)),
where A = LLY. It shoul& be nnt9d>that
X(A) =AX(L+LT) = f{agy eeesr ayle

and that G(A) is a subgraph of G(L+LY).

Lemna 321 ([Pur(erél}): The unordered pair
{“i'?J} € E(L+LY) if and only 1if {aiggj} € E(A) or {ai,ak},

{aJ,ak} € E(L+LT) for some k < q}n{l.J}. S o
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ITheorem Jal: Let Jd < 1. The unordered pair
[ai,aJ} € E(L+¥LY) if and only if there is a path connecting
a, and QJ- in the section graph of G(A) determined by

(Dlv~°'ﬂd} UA{BI}-

Proof The 9if" part follows from lemma 3.1 and an
inductloq_on the length of the connecting path between a;
and a je On the other hand, an induction on the subscript j

with lemma 3.1 proves the "only if" parte.’ a]

Let Ga = (XagE)  be a graph with labelling
a:{1,2'...,N}——¥>X. For convenience, we denote a(i) by x;.
In‘oéder to introduce the £111 of Ga‘wlthout any matrix
notion, we ‘use the result ot_theorem Jel and deflne the
super—-graphsi

Gla] = (XE[a]), (3.9)
where {xi,xd} @ E (j<i) if and only if there is a path from
x; to X 1n3{£;,...,xJ}U{xi}. The fill of Gé can then be
defined to be

Fill(G,) = E[a] \ E. - (3.10)
‘In [ Rose70], Fiil(Gu) is called a tftrilanzulation set for G,
since these edges when added to E transform G into a
tfiangulatedf graph Gla ]+« Rose referé, to the graph G{a] as
the monotone trapnsitive extension of G, s This extensién
graph has the interesting propefty that

Flll(G[a]&) = Be

+ A graph is irlapngulated if every cycle in it has a chorde.
[BergeSS] o :
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The following properties of the function w1(0¢) can be

readily verified using lemmma 33,

Lemma J3e4: 1'1(0"’ S wisr(Gy) + 1, 1<i<N-1
and wy(G,) = 0.
Proof: It follows from the relation

AdJ((x;,---,xil) C AdJC {xgpeeesx;9exjas}) U {xg+1}s

where the union on the right hand alde is disjoint. O

Lepma J25° The graph G 1is connected, if and only it

wi(Ga) ¢ 0, for 151<N-1. a

Conslder the graph in figure 3;3. We have
AdJ( {23} ) = {a1s asly
AdJ( {ags a2} ) = {as},

{asy asg,y agly

it

AdJ( {agy a2y az})

0

Adj( [agy ooy aal) {asy a6l

Adj( {1y ooy as}) = (ngy 2z},
Adj( {agy ey ag}) = (azl},
and . AdJ( fasy ooy az}) = B

To complete the met of definitions, we let 8 (G,) to

‘denote the quantity

3 2 w(0,) [w;(6,)*3},

1

0oV

i
which corresponds to the number of factorization operations

wheh Ga = G(A) for some symmetric matrix A
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3.3 Minimial and Minisus Enxslope Orderings

In his analygié of the ol;ulnafion process [ Rose72al,
Rose uses the notion of a triangulation set (3.10) to
formulate th§ ' minimal and minimum tfiangulatlon (or £ill)
.prthcns- For a graph G = (X,E), the tornér requires the
finding of a labelling « such that for any other s,
Fill(Gy) (C Fill(Gy) ==> Fill(0,) = FilUQ )e (3.14)
The second prohl.ﬁ lnfolvos the finding of an a with a
minimum set of fills, that is, for any ¢,
IFIlL(G,)| S [FIlL(G ). | (3.15)
For efficient algorithms to determine minimal fill order-

ings, see [Ohtsuxki7?78), [Rose75].

To establish the equivalent problems bin envelope
methods, we introduce the set of potential fills. Let
G, = (X sE) Dbe a graph labelled by a« VWe define the
nn&an&inlAtlll.o! Gy as:

Pfitl(aa’ = Env(fﬂa) \ Ee. (3.16)

In terms of the matrix A, Pf£ill(G(A)) corresponds to
the set of locations of zero entries in the envelope of the

matrix Ae.

Let @ be an ordering on Ge Then a is a full envelope
ordering 1if PLilU(G ) = @. Ve call o« a minimal envelope
‘grdering if for any ordering ﬂ,‘

PLIlUGy) (C PLIlUG,) = PLill(Gy) = PLill(G,).

(3.17)
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The labelling o is a mipnimum envelope ordering if

IPEILL(G )] < [PRILU(GY) ]y (3.18)

rdr every ordering oe.

Clearly, any full envelope ordering gives a minimum

envelope; and any minimum envelope ordering is minimal.

The ordering in figure 3.4 generates a full envelope.
In figure 3.5, the ordering 1is a minimum envelope ordering
with {{543]} as the set of potential fill. Figure 3.6 1is a
minimal envelope orderinge Here the set of potential fill
is  {{6,3}, {6y4}}; however, we can find a different

ordering with {PfFill| = 1.

o
5
D

&

®

ST & e

Figure 3.4: A full envelope ordering
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Figure 3.5: A minimum envelope ordering

Figure J.6: A minimal envelope ordering
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For J=i*lyeesyky the relation on the adjacent sets:

AdJ({Y1v'001Y1—19Y1v-o-v¥J])

4

AdJ( {X1'.ongxl..l’xkgxlyoo.'xd-—g})

Ad j( {x;,o-.,xl_;,xI,...,xJ-ﬂ) \ {xk}
implies that
WJ(GE) = |Adj( [x;.-.-,xl'.o..xJ_;})\{xk}i
= "J—l(Ga) - 1.
Using lemma 3.4, we have

J
It then follows from our claim that
IEnv(GE)I < |EnviGy) |,

and OE(GE) < QE(Ga)o n

Theorem 3.2  provides some guidelines in the general
relabelling problem for profile minimization. Suppose the
first 1-1 nodes In some ordering have already been
numbered, say {x;,...,xi_;}. If, for some reasons, we want
to choose node x as the i-th one in our ordering, it is
never worge, in the context of minimum profile, to find
all those unnumbered y in

AdJl {xg9eeesxj—19X} )y
where Adj( {x319eesXj~32¥}) U [y} 1is properly contained

in Adj{ {x19ee9xj—19x}) U {x]} and number them before x.

The following corollaries are immediate from theorem

3e2

- -
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Corollary 3.6: Let @ and @ be as in theorem J.2. If

AdJ( {xgreopxg—n9x.} ) U (x.} CAdj( [xgpeerxz—~1} )y

. <

then 1Env(Ggz)| £ |Env(G )|,

and GE(G;) < OE(GG)' a
Corollary .73 If there is a node y such that

AdJC {xgpeerxj—12¥}IU{Y} C Adjl{xpseerxz—y9x;1I0{x;}
F 3

then no minimum envelope ordering for G can begin with the

numbering XppeoeesX;j—g19X;e Fe |

-S54~
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3.4 On Full Envelope Orderinga

Except in some rather special cases, a graph does not
possess full envelope orderings. Yet, it is still worth-
while to study them for two reasons. Firstly, if a is an
ordering on a graph G=(X,E)y, then & will be a full envelope
ordering on the super graph

(X, an(G“)).
Secondly, they do bear some significance in the study of
minimal envelope orderingse. If @ is a minimal envelope
ordering on Gy then for any nonempty subset H (_ Pfill(Ga),
the super graph

(X, Env(Ga)\H)

does not have any full envelope orderings

To begin, we give a atralightforward characterization

of full envelope orderings.

Lepma Ja8: Let « be a labelling for the graph G, and let
x; = a(i1)e The labelling a is a full envelope ordering 1f

and only if

AdJ( {.x;,o-.,xil) C Ad.i(xi), 1=1A'-00'No

Proof: From lemma 3.2, [xi,xj} € PLfill(G,) if and only
if X -] AdJ([x,,..,xi)) and {xlng} # E. Thus, PLill(G )=0

if and only 1f for 1%1%2N, AdJ({xl,...xi}) _ Adj(x;)e m
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Another characterization in terms of a sequence of

complete graphs is given in the following lemma.

Lemma Js:9° Let @« be a labelling for G, and x; = al i)
The labelling o« is a full envelope ordering if and only if

AdJ( {x3900e9x;3}) U {x;} is complete for every 151<N,.

Proof: "if part® By lemma 3.8, it is sgufficient to
show that AdJ({x;,-..,xl}) - Adj(x,;)s Consider any
y € Adjl {x1yesesxj—1} N{x;}e Since Adj( {x1seeerxj-1}IU{x;]}
is complete, ¥y also belongs to AdJ(xll.

Honly it part® We first show that for 1=1,ses9Ny
AdJ({xg.o..,xl]) is complete. Assume for contradiction, for
some iy AdJ( {X1svee9Xx3}) i8 note Then, there exist

X9 Xy € AdJ( {xgreerx;})
such that xJ and xk are not‘adJacent. For definiteness, let
d ? ke Then

x; e AdJ({x;.-o.Xlgo.yxk})
and yet x f AdJ(xk)o

To complete the proof, we show AdJ([x;,..,xll) U {x;}
is a complete graph. If 1t ia not, since AdJ({x,,..,xi})
is, we can always find an x in AdJ([x;,..,xl}) such that x

does not belong to AdJ(xi}- o

Lemmas J«8 and 3.9 are characterizations of full
envelope orderings on the ordered graph Ga' In the
remaining part of the sectiony we will study the unordered

structure of graphs with full envelope orderings.
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Let G=(X,E) be a connected graphe A geparator V of G
is a subset of nodes whose removal disconnects the graph. A
separator is gipnpimal 1f no subset of it is a separator. If
fx] is a separsator, then the node x is sald to be a
gnlnggg- Clearly, cutnodes are minimal separatorse In the

graph ot figure 3e.1, ([x39x7]} is a minimal separator, while

xg is a cutnode.

Conslder a minimal separator V of a connected graph
G=(XyE)s Let the removal of V define k components

Ci=(XI'E1), 1£i€ke The following two lemmas are immediate.

Lemma 32102 For 1%1f%k, if Y (C X,;» then AdJ(Y) C vu X,
Furthermore, if Y # X;y AdJHYIN X; # O. n

lemma Ja11; For 1%if%k, Xy MNAdj{(v) # @ for every v € V.
Proof For contradiction, let v € V where X; 1 Adj(Vv)=0,

Then the subset V' = V\[v}] of V s8till separates X; from

X\(X; U V')e This contradicts the minimality of V. O

A full envelope ordering resequences the nodes 1Iin G
according to some pattern with reapect to the components of

minimal separators. It is gliven in the following lemma.

Lemma Ja12: Let V be a minimal separator of G with k
components C1=(11,31). If @ ia a full envelope ordering on

G, then there exists a permutation ¢ on the components so

-5T -
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that a orders the nodes in the sequence:

Xgc1dr Xg(2)r evor Xgek-1)y V U Xgckr»

Proof: Let k=2. Because of lemma 3,11, the nodes in V

cénnot be numbered until there is only one or part of one
componant left unnumbered, say Cgc¢2)»

Let x1 © Xgc1)e If ng = |Xgerrlr we show that
x;,.-..xnl € Xpc1)» Assume that Xpeesepxj—) € Xgc1) where
i%n3. By lemma 3.9, x; has to be chosen so that
AdJ( {x19e09x3-2})U{x;} i8 complete. By lemma 3.10,

A AdJ( {xgoesosx;—1} )N Xgc1y # O
so x4 cannot be in Xegq¢2)+ Thus x,; € Xg¢1)+ This means «a
orders the two components in sSome sequence ¢
Xgc1rr V U Xgc2)-

The proof can then be completed by induction on k, the

number of components. A o
Iheorem 33 Let G be a graph that has full envelope
orderings. For every minimal separator V of G with

components C;=(X;,B; ), 1%i€k, the set V U {x} is complete

for every x € X,y for all except possibly two components.

Proof: Let &« be a full envelope orderinéAon Ge Lemma

.3.12 aésures that a orders the nodes in some component

sequence: Xg(1)r X@(2)y eeey Xagek-12r V U Xgek)s

Consider any x 8 Xgg2) U e¢ U Xgqek~1)+ Let al(j)=x € Xg(j)e
By lemma 3,11y Adj(Xggg) U see U Xgci-1)) = ¥V, so that

v C A&J({a(l),oooyaid~l)}). The reault of lemma 3.9

implies that YV U {x}] is complete. A fal
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We shall find theorem 33 useful in chapter 4 when a
profile algorithm .for trees is analyseds In the proof cof
theorem 343, 1t is important to realize that the components
Cgci)s 25i<k=-1, when considered as independent graphs, have
full envelope orderingss Thus, the result in theorem 3.3 is

also apﬁlicable to these componentse.

-5
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3.5 On Maximal Envelope Fill Orderings

Let G=(X,E) be a graph labelled by ae The labelled

graph G, is said to suffer paximal envelope f£ill if

Flll(GQ) = Pfill(G,)s In this section, we give simple suff—

icient conditions on G, so that it suffers maximal fill.

Theorem J24: Let G =(X,yE)}, with X ={x1,...,xN}- I1f the
subgraphs {xgseecerx;}y 151SN are connected, then G, suffers

maximal envelope fill.

Progf: Consider [xl,xJ} € Pfill(G )y with J < i. By
definitions (3.16), (3.11), [xi,xtl} @ E and £,(Gp) < e
Since {xl,-..,xJ} is connected, we can find a path from x,

to X Together with the edge {xl,xtl}, a path from x; to
x exists in the section graph (x;,....xJ}U{xi}. By

definition (3.10), [xlng} € Fill(G, ). o

The sufficient condition in theorem 3.4 hes an

interesting equivalent form.

Lemma D133 Let X ={x;...o,xN}. The section graphs
{X1900e9x,}5s 1515N, are connected if and only if £,(G_) < i
i 1" e

for 1<i<N.

Preoof: The "if" part follows by an induction on i, while

the "only if" part follows from definition of tltGa)- o
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Iheorem 333 If G, has the monotone erofile property (ct
(2.11)):
fJ(Ga’ < fi,(GG)' for Jﬁlp {3.19)

then the envelope fill in G, is maximale

Proof: Consider the case when G is connectede. We show
that £,(G ) < 1 for 1<iSN. Assume for some 1>1, f,(Gg) = is
The monotone profile property implies that fk(Ga) 2 i for
XK 2 le That is, {@(1)yseya(i=-1)} and fa(i)yeega(N)} are not
connected, which contradicts our assumptions By lemma 3.13
and theorem 3.4y G, suffers maximal envelope fill.

when G 1ls not connected, it follows from the monotone
profilé property that a orders the connected components of
G one after anothere The result in the connected case

applies to the components of G so that the envelope fill is

also maximel. I

Maximal envelope fill orderings have sSome important
implications. In the direct solution of the linear system
(1.1)y if the associated graph G(A) has maximal envelope
_fill. the Jennings' envelope storgge scheme (see section
7.2) 1s highly appropriate since we know a priori that only
nonzeros will be storede A matrix formulation of the above
results can be found in [George75b] by George and Liu. In
chapter 5, we will show that some popular profile orderings

exhibit this maximal f£ill property.
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hapter 43 On Reducing the Profile of Irees

In this chapter, we conslider the envelope problems for
tree structuress. The familiar postorder trﬁversal of rooted
trees turns out to be an effective algorithm for reducing
the profiles of treese. The postordering is modified to an
O(NliogaN) algorithm MET which always generates a minimal
envelope for trees of N nodes. The resulting profile is

shown to be bounded by N+NlogpN.

lel Irees

A 1iree 1s a connected graph with no cycles. The
following equivalent definitions for a tree are well known

[ BergeS8].

Thecorem 421° Let T=(X,E) be a graphe The following

statements are equivalentes
i~ T is a tree;
ii- T is connected and {XiI=|E|+1;
iii~‘ every pair of distinct nodes in T is connected by

exactly one pathe V ul

A rooted tree is an ordered pair (RyT)y where R is a

distinguished node in the tree T=(X,E). The node R is

called the rgois

Consider the path from the root R to & node Xe

According to (iii) of theorem 4.1, the path is necessarily
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uniques. If this path passes through a node yy then y is an
ancestor of x and x a degscandant of y. If, in addition,
{x,¥} € E, ¥y is called the father of x and # a sopn of Yy
Note that a node has only one father node and it can have
~any number of sonse A node together with all its

descendants are <called a guybiree of the rooted tree. We

remark that the ancestor-descendant and the father—son

relationships and the subtree concepts are not defined in

unrooted treese.
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»2 Pomtorder 9f Reoted Irees

Ordering of tree structures In the context of solving
symmetric linear systems was first studied by Parter

[Parter61]. He shows

Iheorem 422° Let T=(X,E) be a tree. Then there exists a

labelling @ on T such that Fill(T_ ) is emptys. a

Such labellings can be obtained by the following

observatione.

Theorem 423° Fill(Ty,) = @ if o l(x) < a1(y) whenever y

is the father of the node x in the rooted tree (a(N),T)e. O

However, not all trees have full envelope orderings.
As a matter of fact, only +those trees with a main "stem"
aﬁd "pranches™ of length one can be ordered with full
envelopese This can be readily proved ﬁy theorem J3+3¢ An

example pf such trees is glven in figure 4.2.

A thorough study of tree orderings has been giyen in
[ Knuth68] in the context of +tree traversals. The book by
Aho et al [Aho74] also contains a comﬁrehensive treatment
of the subjects In a complete traversal of a given tree,
each node is viseited exactly once so that it 1nduces a
linear errangement of the nodes. 1t is apparent that the
postorder traversal of rooted trees is most appropriate for

profile reductione.

-64-



Trees

®

Figure 4.2: A tree with full envelope orderings

Let us first review the ngﬁ;ggggg traversal of a

rooted tree (RyT)e Let the rooted subtrees under R be
(BI(R).Ti(R)i, for 1%ifme Here 8, (R), 1£imy oare the sons
of the root R arranged in some sapecific order, and the

value of m depends on the degree of the node R.

The postorder traversal of (R,T) la a systematic visit

to the nodes of T using the following algorithm:

recursive procedure POSTORDER(R,T);
begin

comment Let (si(R),Tl(R))' i=1yes+9ym be the rooted

-65=-
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subtrees under R in (R,T);
for i:= 1 step ! until m do
POSTORDER( 81( R )1'1'1( R));
Visit node R;

apnd.

If we number the nodes of the tree in the same order

as the sequence of node "visita", we obtain an ordering

which generally ylelds a small envelope. In figure 4.3

[Enuth68,p.363]y 1f we choose node I to be the root and the
arrangqments of the subtree as shown, the postordering a on
T will then be:

Jy Ny Ly Ky Ey Fy Ay By Dy Cy Gy My Hy Io
Here the set of potential f£ill is:

PLitU(T,) = [ {GyA}y {GyB}y» {GyD} };

and they are denoted by dotted lines in the figure.

"Evidently, the envelope size depends on the order of
the subtrees (81(2),T£(R))) 1€i%me To see how this arrange-
ment will affect the envelope alze, we proceed to
characterize PfilU T, ), where a« is the postorderlng on

(R,T) with a given subtree arrangement. The following lemma

follows directly from the ordering algorithm.

Lemma 421: Let u,v be nodes in the a—labelled rooted
tree (RyT)e Then a—2(u) < a~l(v) 1f and only if
either u e Tk(v) for some Kk,

or u € TJ(z) and v 6 Tl(z) where Jj<i for some node z. o
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Figure 4.,3: A postordering on a rooted tree

Lemma 4+2° Let aMw) < al(u)  a~l(v)e If w is a

descendant of v, S0 is the node u.

Proof: Assume for contradiction that u is not a
descendant of the node ve By lemma 4.1, a l(u) < a~i(v)
implies the existence of some node z such that u € TJ(z)
and v € Ti(z), where j<i. Since w is e descendant of v,
w e Tl(z). Yet, this would imply, again by lemma 4.1, that

a~t{u) < al(w). _ o

A node s is said to be a youpger son of x if 8 = SL(X)

for some 251%m.
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Theorem 424: Let a—1(u) €< a1(v)s Then {u,v} € P£ill(T,y)
if and only if u is a descendant of v's younger sons.
Proof: Hift part? Let Ti(v)y Talv)y <oy Tpl{Vv) be the
subtrees under ve. Consider
ueu {Ti(v)z 2€1<m} \ Adj(v).
Since Adj(Ty(v)) = {v} and a~l(u) < a—¥(v), we have
v @ Adj( {al 1)peeegu}l ) \ Adj(u)de.
Soy by definition, {u,v} € PL£ill(T, ).
"only if part® Assume thet f{u,v} 6 PL£ill(T,)s Now

that v & A&J({a(l),.c..u}) \ Adj(u), there exists some
k < a-1(u) so that v € AdJ(a(k))e Thus, a(k) is a son of v.
Together with the relation k < a-1i(u) < a~(v), we conclude
by lemma 4.2 that u € Ti(V). Finally, i1 cannct be one
because a(k) is numbered bétore u, and al{k) is a son of v.

a

For.a_rooted tree (Ry,T) with Tl(R)' 1£1iSm as subtrees
under Ry it follows from theorem 4.4 that the number of
potential fills due to the node R is given by:

m
P4 |T1(R}‘ -m + 1.
i=2

in the context of profile minimization, the best way
to arrange the subtrees becowmes immediate: always pick the
one with the greatest number of nodes as the first subtree.

This will ensure 'a minimal set of potential—-fill in using

the postorder algorilthme
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To make the selection possible, we have to know, for
node x in the rooted tree (R,T)y, the number D(x) of
descendants x has in (ﬁ,T)o Enuth [KEnuth68] introduces a
locally-datined function in a tree as & function of the
nodes such that the functional value at a node depends only
on the node and the functional values of its sonse It is
evident that D(x) is a locally-defined function:

x) =2 [D(sl): 1<ifm} + m,
where 8 3 i=lgseesym are the sons of x in T. Lbcally—defined
functions can be computed very easily, provided that the
data representation allows an efficient retrieval of
adjacent sets (eege adjacency structure [ Tarjan74]). 1f
there are N nodes in the rooted tree, D(x) can be

determined in O(N) edge inspectionse.

- The algorithm POSTORDER is only applicable to rooted
trees. Thus we are left with the problem of finding an
apprépriate root for a given tree to start the algorlthme.
An apparently good one is a peripheral ngdee This choice is
crucial in the new algorithm described in the next sectione.
To determine a peripheral node for trees requires at most
O(N) edge inspections and we will discuss this in more

detail in section 4.4,
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4.3 A Minimal Envelope Ordering for Irees

The postorder scheme in section 4.2 is. a simple,
efficient and yet quite effective algorithm for reducing
protllés of tree structures. Unfortunately, it does not
guarantee a minimal envelopes In figure 4.4, a is a
postordering, but we can find another ordering 2 such that

PEALU(TZ) (C PRILU(T,).
¢

In this section, we will modify the postorder scheme
to a new algorithm that will always generate a minimal
envelope orderinge Let us first study the above example
more carefully and relate it to the result of theorem 343
The node af(l12) is a cutnode in the tree and also In the
extension graph (X,Env(Tg))s There are three components

with respect to this separator {a(12)}:

Cp = {C(l)’d(2),0(3),“(4)'0(5)10(6)}y
Cz - {a(?).m(S),a(S)'a( 10)'(1(11)},
and Cz = {al13)yal(14),a(15)},

Theorem 33 says that we cannot remove any dottedAedges

{fa(12)yx}y where x @ C3y in the set of potential filis.

But if we consider the component Cp, 1t is clear that
C» has a full envelope ordering so that {a(12),2(9)} in
P£ilU(T,) <can be removedes This suggests that in the
postorder scheme for (RyT) with subtrees Ty(R)yeesyTu(R)
under R, we should treat Tg(k)'ooo'Tn(R) as general

subtrees rather than as rooted subtrees. In the following,
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A postordering o A better ordering «

Figure 4.4: Postordering a is not minimal

we describe our modlified algorithm MET (Miminal Envelope

ordering for JIrees) using two recursive procedures.

recursive nrocedure MET(T);
begin
comment MET ganerateé a minimal envelopé ordering

for a given tree T;
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recursive procedure PORDER(R,T);

comment PORDER numbers the tree T rooted at R in
e poatorder—iike sequences T, ;(R), 1$15m,
are the subtrees under the root R;
begin
if m > 0 thaen
begin

comment Let s;(R) be the first son of R;
PORDER(s;(R),Ty(R));
for i3= 2 gtep 1 uptil = do
MET(Ti(R))

ends

Number R

end PORDER;

R:= a peripheral node of T;

PORDER(R,T)

end.

For a given tree, there is a class of labellings that
can be produced by the algorithm MET, depending on the
starting node and the subtree arrangemen tse The better
labelling in figure 4.3 belongs to this classs. For our
discussion, we denote ¥ an ordering obtained by MET. We
prove through a sequence of lemmas that a Is a minimal

envelope ordering.
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Lemma 423° If R is a peripheral! node in a tree, then

deg(R) = 1. a

Consider the tree T=(X,E) rooted at R. Let R be the
jiigl descendant of R that has more than one son, and let
Tl(ﬁ) 15i<m be +the subtrees under R+ By the definition of
R, m22. Here the first subtree 1s assumed to have the
greatest number of nodes, l.es |[Ty(R)| 2 lTl(Rll for

i=1j)seeyme Note that f # R because of lemma 4.3.

Lenma M: 1f ﬁ e AdJ(R)' then iTl(ﬁ)l = 1 for 1-_-2'.0'“)0
Proof: If for some 1 2 2, ITl(ﬁ)l 2 2y, R cannot be a
peripheral node. o

Lemma 425: {x,R} e P£i11(TZ) 1f and only if x is a

descendant of R's younger sons.

Progf: The proof 1is the same as theorem 4.4, o

Lemma 426: R is a cutnode of the extension graph

{X,EBV( Ta)) of T

Broof: " It is clear that the removal of R disconnects the
extension graph into m+l components:

Ty(R)y T2(R)y eeey Tu(R)y Ancestor(R),
where Ancestor(R) is the set of ancestor of R in the rooted

tree (RyT), . ]
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Lemma 427° Let {R,y} € P£ill(Tz)e Then the graph

(X,Env(t;)\{ﬂ,y}) does not have full envelope orderings.

Proof: By lemma 4.5, y € Tl(ﬁ) \ Adj(R) for some i> 1.
Thﬂs ITltﬂ)l > 1, so that |T{{(R)] > 1 and by lemma 4.4,
R ¢ Adj(R).

This means that R is a cutnode of the exteﬁslon graph
with components T;(ﬁ),.o,T-{ﬁ)' Ancestor(R), where

T, (R) & AdJ(R) and Ancestor(R) (& Adj(R).

Hence, by theorem 33, the removal of some {R,y} from the
extension graph (X.Env(T;)) gives a graph with no full

envelope orderinge. a

Lemma 4288 Let a3(R) be the first son of Re If
{s,(R),¥} © Pflll(T;)g then (X,Env(T;)\{s;(ﬁ),y}) does not

have a full envelbpe orderinge.

Proof: The node s = s;(2) is also a cutnode of the
extension gt#ph (X,Env{TE) and the corresponding components
are: Ti(s)y seey Tyls)y X \ Ta(R).

The result then follows from the same argument as in lemma

407 o

Theorem 44583 > is a minimal envelope labelling.
Proonf: In view of the recursive use of the algorithm,

the theorem follows from a recurslive use of the results in

lemmas 4.7 and 4.8. o
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We point out here that in general a is not necessarily
a minimum envelope labelling. The tree in example 4.4 has a

better ordering as shown in figure 4.5.

Figure 4.5:3 A better ordering than a in figure
4.4

Although @ may not be a minimum ordering, the amount
of potential fill in x is reasonably small. A bound is

established in the following theorems
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Ihearem 416: IPfill(T;)l £ N logzNe.

Ezégi: Let p(N) be the maximum possible number of
potential fills on applying PORDER in the algorithm MET to
a rooted tree wlth N nodess Ve shall use induction to show
p(N) £ N logaN.

Clearly, p(2) £ 2. Assume the inequality holds for ali
#<N. Let (Ry,T) be a rooted tree with N nodes which sutfers
p(N) number of potential <tfillass. Let T (R)y T2(R)y ey
Tl R) be the sSubtrees under the root R where
fT‘(R)I 2 ITI(R)I. Using lemma 4.5 and the inductive

assumption, we have

: m
p(N) £ p(ITl(R)I) + 2 ITi(R)l - m + 1

1 1=2

Y M8

lTllkil logziTi(R)l +

| T, (R)]
1 i i

2

A
WMSB
W Ma

m
|Ti(R)| log2l|Ta(RI| + 2 ITL(R)I(IoggITi(R)I+1).
i=2

IA

But for 1=2sssemy |T1(R)| £ {(N-1)/2 so that

logzITx(Rll < logzaN = 1. Thus,

IA

n ,
| Ts(R)]| logalTs(RY| + 2 171(9)1 logaN
i=2

p{N)

1A

N 1082“0

The theorem then follows from l?fill(Ta)I € p(N):. 1
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4.4 Ipplementation and Time Complexitv of MET

A peripheral node of a tree or subtree 1is required
Vrecursively in the algorithm NMET. We first consider how
such nodeg can be determined efficlently using rooted level
structurese The following Lemma provides an almost trivial

way to determine a peripheral node of a tree.

Lemma 4.98: Let x be & node in a tree Ty, and its
corresponding rooted level structure be
E(x) = fLo(x)y Li{x)y eaey L}_(x)(x)}a

Then any ¥y in Ll(x)(x) is a peripheral node.

Proof: The lemma follows from the fact that any two

nodes in a tree are connected by exactly one pathe. 0O

After finding a peripheral node; say Ry we have to
compute the sizes of the subtrees, lis.e. the number of
descendante D(x) under each node x in the rooted tree
(RyT)e The guoantity D(x) can be daterulnéd quite simply by
running through the rooted level structure at R bottom-up

once:?

for x € X do

Dix):= 13

for i3= lU(x) step -1 until 1 do
hegin

for y € Li(g) do

begin
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for z € Adj(y)N Lj-1(R) dog .

D(z)e= D(z) + Bly);

It is evident that a peripheral node and the
corresponding tunctién D(x) can be determined in kN egdge
inspectionss Here k 1s a constant. We are now ready to
determine the asymptotic time complexity of the algorithm
MET. Define c(N) to be the maximum possible cost required

by MET to find a minimal envelope labelling for a tree of N

nodes. VWe measure the cost by the number of edge
inspectionse.
" Iheorem 421: c{N) £ kK N logaNe.

Proof: We shall uge 1Induction to show the inequallity.

Clearly c(2) $ 2ke Assume the result holds for all k<N. Let
T be & tree with N nodes that requirea c(N) number of edge
}nspecticns to find a minimal envelope labellinge.
LetVR be a peripheral node found by MET and T {(R),
Ta( R}, seey Tp(R) be the subtrees under R. From the
algorithm and our induction assumption, we have
m
c(N) £ kN + c¢(|T1(R)]) - kIT(R)]| + 2 c(lTi(R)i)
i=2
m

K(N=1T2(R)D + 2 kIT,(R)] logal T (R
1=1

IA

- R
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m
= k + k|T(R)| logzalTy(R) + 2 RITi(R)l(logalTilR)I*‘l)c
1i=2

Since 'Tl(R)' < (N—l)/Z' Tor 1=24seemy

A
»
+

m
c{N) x logaN 2 ITl(Rll

1=1

m
logaN( 1+ 2 ITi(R)l)
i=1

A
®

k N logzNe. |
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le5 Experimental Resulis

The algorlithm MET has been implemented in ALGOL W
[Bauer69) and run on an IBM 360/75. The program is applied
to a sequence of randomly generated trees of different

sizes in order to find the experimental running time.

The test trees are generated recursively as follows.

Let Ty—-1 be a random tree with N=~1 nodes. A node is

*i
selected at random from Ty-3;e« We then add the new node XN

and the edge [xN,xll to form Ty

The test results are tabulated in table 4.1+ For each
Ny the result is the average of twenty random treese. The
plots in figures 4.6 and 4,7 show that the cost is indeed
proportional to N logzN. By approximating the data with a
straight line (in the least square sensé). we obtain

c(N) 2 1.5 N logzN,

and time(N) =~ 0.0002 N logpN seconds.
We also note that the number of potential fills is bounded

by NlogsN; in most cases Pfill is much smaller.

-8 =



N N logzN IPflll(T;)l No of edge| Time in
inspection | seconds
100 664.4 T76.9 1220.6 0.14
200 1528.8 195,.,8 2621.5 0.28
300 2468.6 346.,0 4147.1 0.46
400 3457.5 50409 5710.3 D.62
500 4482.9 682.1 7336. 1 0.85
600 5537.3 838.2 8889.1 1.02
700 6615.9 1041.9 10627.6 1.22
800 7715.1 12037 12202.3 1.42
200 8832.4 1386.3 13863.7 1.68
1000 9965.8 1642.2 15801.2 1.91
1100 | 11113.6 1796.4 17344.7 2.13
1200 | 12274.6 2036.7 19227.5 2.39
1300 | 13447.6 2188.8 20769.1 2469
1400 | 14631.7 2438.9 22688.5 2.91
1500 | 15826.1 2595.0 24238.3 3.17

Table 4.1z

Average results
generated treese.

of MET on randomiy

Trees
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hapter S On Reducing the Profile of General Graphs

In this chapter, we will analyse, test and compare
several popular profile reduction schemes for general
grgphs. They Include the algorithms of Cuthill-McKee,
George {(reverse Cuthill-Mckee), King and Levye. These
algorithms are tested on the Cuthill and Eversastine's
collection o¢f sparse matrices derived from structural
engineering problems. The performance of the recent
algorithm by Gilibbs, Poole and Stockmeyer, which does an
excellent Jjob on bandwidth reduction, is also given for

comparisone.

iel Jptroduction

From the way sparslfy is exploited in profile méthods,
it is ideal to have minimum envelcope orderings (3.18).
However, such orderings seem to be difficult to obtaines An
efficient algorithm for finding a minimal envelope ordering
for ggneral graphs has not yet been found. In practice, it
is relatively unlmpqrtaht whether the minimum profile is
achieved or & minimal envelope is obtained. We are more
interested in finding reordering algorithms wh;ch produce a

profile regasopably cloge to minimum in an gcopomical amount

of time._

Reordering algorithms for reducing profiles mey Dbe
classified as direct or iterative. Direct schemes usually

begin with a starting node (or a set of starting nodes ) and
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construct the node ordering according to some strategy
based on the structure of . the graphe Usually, gne pass
through the graph structure is enoggh to complete the
labellings On the other hand, iterative schemes begin with
an initial ordering and attempt to improve it by making

appropriate node—label interchanges.

The existing iterative methods ([ Akyuz68], [Alway65])
have a common shortcoming: too expensive in terms of com~
puter time. They are typically O(N?) or O(N*) algorithms. A
comparison with the cperation count gN3+0(N2) in (1.4) for
full symmetric fgctorization shows that they can be of
1ittle practical values. For more discussions on lterative

ordering algorithms, see [Bolstad73] and [George71,pl06].

In this chapter, we study direct reordering schemes
for minimizing profiles. Two approaches can be identified
in the current effective direct algorithms: one makes use
of the equation

|Env(G)| = 2 wi(G)'
and the other works on the identity

|Env( G| = 2 8,(G).
These are lgcpl algorithms, in the sense that a local
quantity 8‘ or w, is minimized so as to reduce the value of
the global quantity |Env(G)|es The King [King70] and Levy
[Lev&71] algorithms belong to the former class; while the
Cuthill-McKee [Cuthili69] and reverse Cuthill-McKee schemes
fGeorge7l] to the lattere We shall analyse their perform—
ances and giVe some experimental comparisons of these

algorithms.
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ie2 pData Siructures for Graphs

It is well known that the performances of graph
algorithms are in general sensitive to the way the graphs
are represented. In this section, we consider the. data
struc tures for graphs in the éffectlve implementation of
graph ordering algorifhms. Since the basic operation in
most direct schemes 1s that of retrieving adjacent
relations between nocdesy we need a representation’  which
facilitates the retrieving operation and whiéh is

economical in storagee.

A survey of current representations of general sparse
matrices (and hence sSparse labelled graphs) is given by
Pooch and Nieder [Pooch73]e. It should be noted that graphs
are always represented as labelled ones. For our purpose,
the most appropriate data sScheme is a list structure
representations Let G=(X4E),. where | X{ =N« Following
[Tarjan72], we define an ad.iacency list for a node x € X to
be a list containing all +the nodes in Adj(x)e An‘ggigggngx
structure for G is the set of adjacency lists for all the
nodes in Ge Clearlyy, an adjacency structure uses an amount

of storage linear in |X| and |E]|e.

An adjacency structure can be implemented most

economically by4storing the adjacency 1lists in a linear
array sequentially {Eisenstat74]s The main storage is a
vector ALIST of length 2|E|l for the set of adjacency lists,

whlie an auxiliary array XLIST is kept to store t he
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ALIST 2 4 1 5 6 1 5 3 45 3 7 5 6

XLIST 1 3 4 6 8 i1 13 15

Figure 5.1 Adjacency seguential lists of a
labelled graph )

beginning addresses of the adjacency lists. The scheme is

illustrated in figure Sel.

Thertotal storage requirement is 2{E|+|X] locations.
It is often convenient fo 1et XLIST(N+*1) point to tﬁe next
. availabe storage location in the main array ALISTe The
neighbors for node i can then be retrieved as:

{ALIST( j): XLIST(1i) £ j < XLIST(i+1)}.

Ancther common form of adjacency struc ture represedt-

ation is the coppection table ([Crane?75], [Wang73])e The

table has N rows and m columns where
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m = max {[deg(x): x € X}.
The adjacency list for node i is stored 1in row i of the
connection teble. The table corresponding to the labelled

graph in figure 5.1 is given in figure S5.2.

[ 3
2 4 0
1 o O
5 6 0
1 5 0
3 4 7
3 7 0
S A6 0

L A

Figure 5.2 ‘Connection table for graph in figure

5.1

Any varient of the above schemes suffers one dis-
a&vantage. Unless the degrees of the nodes are known
beforehand, it is difficult to construct the storaée vgctor
when the graph 1s given as a list of edgese. In that case, a
link field is necessary, soc that 4|El+}{X| storage leocations
are requireds. Figure 5.3 is an exémple of a computer
implementation of adiacency linked lists [Rheinboldt73].
Three arrays HEAD(%), NBRS(%), and LINK(*) are used.

HEAD(1) étarts the adjacency list for node 1. NBRS contains

-B88~
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HEAD

13

14

11

12

Ad jacency
figure 5.1

[

10

11

12

13

14

General Graphs ~89 -

NBRS LINK
7 -6
6 -7
5 -4
4 -5
6 -3
a 1
4 -1
1 3
5 5
3 4
7 10
5 2
2 7
1 -2

linked lists for graph in
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the neighbor whilte LINK stores the pointer to the next
nelghbor of the node under consideratione. If the gquantity
of LINK is negative, in fact -i, we have come to the end of

the list for node 1.

In this setting where {NBRS(_j),NBRS( j+1)}] € E for odd
Jjy the graph may be represented without the array NBRS. Of
course, additional work has +to be performed in searching
through the links for the indices of neighbors. For

details, see [ gheinboldtva Je

The differenf implementations of the adjacency
structure require roughly the same amcunt of time in
retrieving the adjacent set of a nodes They differ in the
amount of storage and the degree of flexibility. We have
described them in fair detall, and in chapter 6 they will
be compgred with some different representation of & special

class of graphse.
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je3 Algorithms Mioimlzing the i-th Frontwidth

5e3e1 Levy Algorithm

The algorithm by Levy [Levy71] is designed to produce
an ordering that will yield a small envelopes. It may be

described as follows.

procedure LEVY(X, Ey a);
bezgin
comment (XyE) is the lnput graph and a is the

output Levy labelling;

1:= 03

while i < Ix| do

begin
x:= an unlabelled node;
for unlabelled y € X do

begla

~91-

u lAdJ( {Q(l)gno,&(l)'}’} H < 'Ad.j( {a{l),o-'a(i),x})i

lhen x:= ¥y

end;

iz= 1+1;

a(id)i= x
end
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The algorithm has N steps; at the i-th of which node x
is labelled i if it increases the frontwldth least among
the set of unlabelled nodes. Although a minimum w, results
at each stage of the lebelling, the algorithm may not
produce an ordering with a global minimum profile. This is

itlustrated by the example [Rose72a] in figure S5.4.

" 1 - ;
x x
x X X
X X sym X X X sym
X X X X X X X
X X X X X . X X
X @ N &2 & X X X
ox x x X
X X X X X X
X X X X X X X X
- e L .
Levy ordering ) ) : Minimum ordering

Figure 5.4 A Levy ordering which is not minimum
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The hain shortcoming of the Levy algorithm is its in-

effiglency. At step i, it performs a time—consuming search

among the set of (N-i+l) currently pnlabelled»nodes. It is

of O(N2) complexitye. The overall efficiency of the Levy

algorithm can be improved by using an observation in lemma

3.4:

WL(G) < wier(G) *+ 1.
Soy if |AdG({a(1)ges,alidyx})] = JAdJ( {a(1)yeeyal(id} )] = 1,
we Kknow that it is unnecessary' to test the remaining
unnumbered nodese. Experiments show that this additional

check quite often reduces the ordering time.

We include this algorithm in our comparative study
primarily because it differs from the rest In being self~
startinge The first node labelled is not crucial to fhe
entire ordering, though to some extent it does affect the

envelope size (see figure S.4).
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«3.2 King Alcorithm

At a step of the Levy algorithm, all the remaining

unlabelled nodes are examined. It is possible to improve

the efficiency by- iookiné at only those nodes adjacent to
the ones already numbered. This is the essential idea in
the King atgorithm [King70], which has become one of the
popular profile reduction schemess. The fclloﬁing is a
description of the King algorithm when applied to .a

connected graph with a given starting node s.

procedure KING(X, Ey sy a);

begin

comment (X,F) is the input graph, s the given starting

nodey and a is the output King labelling;
i:= 1;
al1):= s3
while 1 < (x| de
begin
x:= a node in Adj( {a@(1)yeeqa( i)} );
for v € AdJ([a(l),o.,a(i)})‘dg

begin

~-94-

u IAﬂJ( [a(l),.-'a(l),y})l < IA(IJ( {a(l’),c.,a(i).x})l

then x:= ¥

ends

f:1= 1+1;

a(i)== x
end
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In case there is more than one node in the i-th front
Adjl {@(1)yeeyal i)} ) with minimum frontwidth increase, it is
a common practice to break the tie by choosing.a node whose
first neighbor in f{a(l)yeeyali)} haé the smallest . sub-
écript. Modification of the #bove algorithm for
disconnected graphs 1is stralghtforward. In view of lemma
3¢5, & component of the disconnected graph can be detected

whenever Adj( {a(1)yessa(1)}) = © for some i<N.

Thé King algorithm uses the same  basic idea as the
Levy algorithm: 1t tries to minimize the sum
S | Adj( {a(l)-,..,a(l)} )|
on a local basise Note that the selection among the nodes
in the front can be implemented using the following

‘"squivalent conditione.

Lemma Sel: Let x be a node in the i=-th front
AdjC {a(1)yenga( i)} )e Among the nodes . in the froﬁt,
|AdJ{ {a(1)yeeyali)yx})]| is minimum if and only if x has the
1éast number of connections to unlabelled and non-frontal

nodess

Proof: The lemma follows from the relation

AdJ( [a( 1),.0(!(1)')(} ) U {X}

= AdJl {@( 1)geesa(id}) U Adj(x) N[ X\ATT( fa( 1)yeeya(id})],

where AdJ(Y) = Adj(Y) U Y for any subset Y of X. o
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Let us denote by Gk the graph labelled using a King
orderinge The following theorem provides an interesting

property of Gk.

Theorem Sel1: The labelled graph G, suffers maximal

envelope fill.

Proof: Assume that the graph Gk is connec ted. Since

a(i) 6 Adj( {a(1)yeeya(i~1)}), for 1>1, the section graphs
{a(1)yeeya(i)} are connecteds. By thecorem 3.4, Gk suffers

maximal fill. The proof can be extended +to disconnected

graphs, since the King algorithm orders component after

componentes ) 0
Theorem HDa2: Using  the adjacency structure represent-
ation, the King algorithm requlres O(IEnV(Gk)l)
comparisons.

Progf: From lemma 5.1, selection from the i-th front can

be performed by having for each nodey its current number of
unlabelled and nonfrontal neighbors. Then, if one sweep
through the adjacency structure requires 21E| operatlons,
the King algorithm can be implemented so that it requ;res

4|e| + lEnv(Gk)l comparisonse o m

Like most direct ordering schemes, the King algorithm
depends greatly on the starting node. We shall discuss this

problem in section 5.5.
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«4 Algorithms Mipimizing the i-th Bandwidtih

ed4e1 Cuthill-NcKee Algarithm

The Cuthill-McKee  algorithm [Cuthill69] is primarily
designed to reduce the bandwidth of a sparse graph A(qr
matrix)e. It is probably the most wlde}y used reduction
algorithme. We describe the algorithm for a connecteé graph

with a given starting node as follows.

procedure CM( X, E, s, a);
kegin
.gnmmgnx (X4E) is the input connected graph, 8 the
starting node, and « will be the Qutput

Cuthill-~McKee ordering;

for x € Adj(a(j)) \ {a(1)yeesali)}

in increasing order of degree do

QT -
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As remarked in [Cuthillé9], the Cuthill-McKkee number-
ing scheme éorresponds to the breadth-first generation of a
spanning treet of the connected graph G in a level=by~level
fashion. In case when G is disconnected, a component of G
can be identified whenever the pointer value of j is the
same as that of 1. The process can be continued by.
selecting a ﬁeu and unlabelled node to start the acheme for

a new componente

Let y be a labelled nodes Consider an unlabelled
neighbor x of ye To mlnlmiée thq bandwidth aasoélate& with
x (ie.e 31 if the node x is numbered 1), it is apparent that
x should be ordered after y as sooﬁ as possiblee. The
Cuthill-McKee algorithm makes use of this observation, and
thus_nay be regarded as a method that reduces the profile

of the graph via a local minimization of ﬂlo

Ve rnow analyze some properties of the Cuthill-McKee
orderinges Let G, be the graph lahelled by the schemee.
Lemma S5e2° The labelled graph G, satisfies the monotone
profile property (3.19).
Proof: Assume that IJ(Gc) < £13(G_)e When the unlabelled

nelghbors of a(!J(Gc)) are numbered, af j) is labelled, so

* A gpanping tree of a connected graph G is a subgraph of
Gy, which is a tree and which contains all the nodes in G.
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Theorem 5.3 ‘ The labelled graph Gc suffers meaximal

envelope fill.

Proof: It follows from lemma S5+2 and theofem 3.5 O
Iheorem D242 OE‘Gc) =4 2 31(Gc) {3i(Gc)+3}. a]

An exact complexity bound for the Cuthill-McKee scheme
is difficult, due to the problem in estimating the complex~

1ty in the sorting step. A rough bound is given below.

Theorem S25°3 If linear insertion is used for sorting,

the time complexity of the Cuthill-McKee algorithm  is

bounded by O(m|E|)y where m is the maximum degree of the

nodese

Proof: Assume that linear insertion on ¢t elgment95

requires $t? operations. Then the overall time spenf in
sorting is less than

2 2 {deg(x)2: x € x}

1A

4 m 2 {deg(x): x € X}

3 miEg]|.

]

If one sweep through the adjacency structure requires 2|E]|
cperations, then the scheme requires less than

2|E| * 3m|E| operaticnse o
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'e4e2 Reverse Cuthill-McKee Alzorithm

In his study of profile methods, George [George71]
discovered the reverse Cuthill-McKee ( RCM) algorithmy, which
renumbers the CM ordering in the reverse waye This simple
modi fication often turns out to be superior to the original
ordering in several aspects, although the bandwidth remains
unchanged. The general superior performance of the reverse
algorithm has been reported in the thesis of George
[Georze71] and the survey article by Cuthill [Cuthill72].
in this section, we show that in general the reverse scheme
ls>a1ways«nt least as good, as far as storage and operation
counts are concerned. The method used is graph-theoretic; a
procof using a matrix approach has been given by Liu and

Sherman [ Liu75].

The profile-reducing property of the RCM algorithm can
be attributed to the fact that it minimizes the quantity Bi

1oéally in this order

By By—11 ecen Bie

After the last node {(isee the first rnode in CM), we

YN

number all those neighbors of immediately so that the

N
value of BN will be minimume The same kind of strategy ——-—
the unlabelled neighbors of node yi are numbered to
minimize ﬁl w== 1g followed for the rest of +the ordering
schemes This may help +to éxplain the general good

performance of the RCM scheme in the context of profile

minimization.



General Graphs

Let X1y X2p eoey xN}
and {y;, Y29 eesy yN}
be the CM and the RCM orderings respectlively. Thus, LY and
YN—1+1 represent the same node In the underlying graph. Ve
atso &enote by G, and Gp thé graphs labelled by CM and RCM

algorithms respectively.

Lemma S.3: AdjC {x; reerxyl) C Ixfl’.--'xl—xlv
where f; = fi(Gc)‘
Proof: Assume for contradiction that there exists

x € AdJj( [xi..-,xN}) \ [xtigo.,xi-l}.
Let x € AdJ(xk) for some X ”? ie This would imply that

fk(Gc) < fi(Gc) contradicting the monotone profile property

of G, in lemma 52 ‘ o
Iheorem S:6: Env(G.) _ Env(G ).
Proof: Consider [yi,yJ} € Env(G.), where j < i. Thus

¥y € AdJU {yiressy }) = AdJC{xyseerxy-jer})

C: {xtN—jﬁl’ LI ’_xN'J}'

That is, Xy-141 € {er_J+1"”xN'J}’
so that fN—J‘.'l < N-i+1 < N"J"’lo
By definition (3.11),
{YlvyJ} = [xN—1+l’xN—Jf[} GAEnV(Gc). ]
Corollary S5e4: |Env(G )| £ |Env(G ). o

Theorem Se7: Fill(G,) C_ F1ll(G.).
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Proof: It follows from definition and theorem 5.3,
FI11(G.) CC Env(G,) \ E
C Env(G ) \ E
= PRILU(G.)

= FIill(G_). o

Lemma De5° For 1 <}

IA
Z
-

wN—l"‘(Gl‘) < BI(GC)‘

Progof: Note that

wyn—3¢1(G ) fAdIC {yrseoryy—1+21) |

lad j( {XN""’XI} Moy
and BI(GC’ = j =- fich)

=| {‘fl(Gc M xi-—l}l-

The result then follows from lemma S.3. o
Theorem S5a8: GE(GI‘, < GE( G.)e . - B
Theorem S»9° Env(G,) = Env(Gc) if and only if G, has the

mono tone proflle propertye.

Proof: ¥if part" If G, has the monontone  profile
property, the proof in lemma S.3 and theorem S.6 applies so

that Env(G.) (C Env(G_),

"only if part” If G, does not have the property, there

exist J < i such that £,(G,) < £,(G, ). Then

{Ytltcr)!yjl € Env(G ) \ Envi(G ) o
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5 Chelce of Starting Node --- Qn Pseudo-Peripheral Nodes

The effectiveness of most direct algorithms depends on
the proper cholice of fhe starting node. The treatment of
tree structures in chapter 4 shows that it is essential to
start with a petipheral node for minimal envelope ordering.
In the context of bpandwidth minimization, many researchers
advocate the use of perlpheralA nodes ([Cheng?3]
{Glbbs74a]). The choice is motivated from a bound on the
bandwidth of orderings associated with level structures;

see [Gibbs74a Je

Original versions of the CM (hence RCM) and the King
algorithms perform a time-consuming search for a reasonably
good starting nodes. Since these algorithms are simllar in
spirit to direct bandwidth reduction schemes.~ it is

appropriate to start them with a peripheral node.

However, no efficlent algorithm exists to determine
peripheral nodess. A novel approach proposed by Gibbs, Poole
and Stockmeyer is to determine a node x whose eccentricity
1(x) is close to the diameter of the graphs They introduce
the notion of pseudo~peripheral nodes. A g&gngg:gggigggggl
pode may be formally defined as a node x that satisfies the
condition: for y € X,

1f d{xy,y) = t(x)y then Uy) = L(x)e.
Cltearly, any peripheral node is also a pseudo-peripheral

node.
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Lemma Se7: ([GibbsT74a]) In a tree, pseudo~peripheral nodes

are peripheral. n

But lemma 567 may not be true for general connected
graphs. In the example of figure 5.5, node 1 is a pseudo-

peripheral node, but only node 6 and 9 are peripheral.

Figure S5.5¢ A pseudo—-peripheral node

Gibbs et al algo provide an efficient way of finding a
pseudo—peripberal "nodes Their method is based on the
observatlon that: if y is a node in the last level of the
leve} structure at xy then 1{x) £ U(y)e We now describe

thelr algorithm belowe.
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procedure PSEUDO_PERIPHERAL(X, E, a);
Regin
comment ( X,E) is the input connected graph and s

will be the returned pseudo-—
peripheral node;

g:= a node of minimun degree;
L(s) < {Lo(s)y Ly(s)y eeer Lycar(s)};
loop: for x € Lice)(s)
in increasing order of degree do
begin
f.(x) < {Lg(x)y esey Lycx){x)};
if WU(x) > 1(s) then
pegin
sSIT X,
goto loop

ead

In their actual implementation, the execution time is
significantly improved by rejecting "Ywide" rooted level
structures. In this way, many such structures E(x) In the
loop are discarded while partially formade. For details, see

[Crane75].

The incorporation of the idea of pseudo-peripheral
nodes to the RCM and +the King algorithms proves to be a
success. The experimental results in section 5.7 show the

effectiveness of such combinationse.

-105~



General Graphs =106~

56 Hypothetical Examples

All the ordering algorithms described are heuristice
In general, they do not produce minimal envelope orderings,
let alone minimume. A natural question then arises: as far
as the profile is concerned, how bad can these algorithms
ﬁe? In this section, we give examples where the algorithms
produce orderings such that the profile is arbitrarily

greater than the minimum profile.

To a certain extent, the Levy algorithm resembles the
minimum degree algorithm [ Rose72a], which is oriented to
fill minimization. The example, used by Rose to show the
inadequacy of the minimum degree scheme, serves our

purposes. We reproduce it in figure 5.6

{N-=1)/2 nodes

complete sub-—
graph with
{N=1)/2 nodes

Filigure 5.6 Example with poor Levy ordering.
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The graph has a complete subgraph of 3(N-1) nodes, and
each of the other 3(N-1) 'y!' nodes in the graph |is
connected to every node of the subgraphe The Levy algorithm

numbers the node 'x' first, so that

H

|Env(G )| 3 N2 + O(N),

8.(G) $ N3 + 0O(N2),
However, for a minimum envelope ordering, for example, one

by the RCM scheme, we have

g N2 + 0o(N),

IEnv(Gr)'

8p(G) 3 N3 + 0O(N2Z),

The difference in this example iIs qulite significante.
Yet, the RCM and King schemes can even be much worse for
some hypothetical examples. Consider the example in figure
Sebe The RCM and King algorithms produce essentially the
same node or&erings. Generalizing the example to a grnphAof
N nodes, we have

4 N2 '+ O(N),

|Env(G )| lEnv(G )}

=% N3 + 0O(N2Z).

GE(Gk) GE(GP)
But for & minimum envelope orderingy for example one by the

Levy algorithm, we have

2 N+ 0(1),

ian(Gzli

OE(Gl) =6 N + 0(1).

Fortunately, for application prohlems,. fheseAschemes
seldom exhibit such erratic behavior; usually they produce
profiles satisfactory for practical purposes. In the next
sectione we =~ will test the behavior of the various
algorithms when applied to a collection of application

problems.
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5«7 Experimental Resulis

Evaluations of heuristic algorithms are usually based
on extensive experimental testingse. We will take this
approach in comparing the férementioned heuristic
aigorithms with respect to the running time and profile-
reduction performancee. In this sectiony, we will test them
on a8 collection of sparsé matrices that arise from
practical applications, and some conclusions will be drawn

on their general performance.

In the 11 terature, there have been some comparative
studies done on bandwidth and profile reduction algorithms.
In the survey article ({Cuthill?72], Cuthill performs
experiments on some model grid problems. Among the Cuthill-
McKee (CM), reverse Cuthill—McKée (RCM)y King and Levy
algorithms, it is reported that "the CM and RCM have
.pefformed generally best for small bandwidths, the Levy e«
for small wavefrqnts, and the Levy and RCM eee for small
profiles." However, Cuthill does not include eiecutlon time

of the algorithms in her papere

In [Bolstad73], Bolstad, Leaf, Linderman and Kaper
compare the RCM and King algerithms for the c¢lass of
ﬁatrices arisiﬁg inAflnite element applicationse They note
that, for the problems tested, the King scheme produces a
smaller envelope than RCM, but at the expense of more
computation time. It is also observed that the performances

of both algorithms depend crucially on the starting rode.
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However, noc specific suggestiqn has been given to overcome

this difficultye.

Recently, Gibbs, Poole and Stockmeyer [Gibbs74a] have
developed a new algorithm  (GPS) which 1is especially
tailored for bandwidth reductione A novel feature in the
GPS algorlithm is the notion of pseudo-peripheral nodes,
which we have discussed in sectlon 5.5+ The atgoflthm first
finds a pseudo-peripheral node R and a node R' in the last
level Ly¢g)(R) of E(R) where the width of E(R') is smallést
among those defined by nodes in LI(R)(R)‘ It then combines
the rooted level structures LE(R) and LE(R') to form a new
structure whose width is usually smaller than that of L(R)
and E(R')e The nodes in the graph are then numbered level
"by level in accordance with this new level structures. For a

complete description of the algorithm, see [ Gibbs74a].

in another paper [Gibbs74b], Gibbs, Poole and
Stockmeyer provide by far the most extensive and complete
comparative work on reduction algorithmse They compare the
popular RCM and King algorithms with their new algorithm
and those of {Cheng73a])], [Collins73] and {Wang73]s The
execution time of the GPS algorithm is impressive, and yet
GPS typically produces bandwidths and profiles comparable
to that of the RCM and King schemess. However, in their
testing, the original version of RCM [Everstine72] is used,
where a time=-consuming search for a reasonably good
starting node is performed. A similar search is involved in

their implementation of the King algorithm.
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In this connection, we pose the following question.
What wculd be the performance of the RCM and King
algorithms with pseudo~peripheral starting nodes? Ve
tabulate results using such comwbinations, and it is
interesting to compare the tables presented here with those
given in [Gibbs74b]es In view of the excellent ﬁerformance
of the GPS algorithm, we also include it in our

experiments.

The set of test problems is the same as those in
[GibbsT74b]. It is a collection of sparse matricés by EaH.
Cuthill and GeCe Everstine of the Naval Ship Research and
Developement Centrees These matrices arise in actual
application problems ——- in the study of various
structures, 1nc1ud;ng aircraft, Zas tanksy submarines,
propellar blades and satellitess The paper ([Gibbs74a]]

contains a detailed description of this collection.

The production code in [Crane75] is used for the GPS
algorithme It is the same program from which the data in
[GibbsT74b] are obtaineds All the other algorithms are
programmed by the author in FORTRAN. A listing of these
programs can be found in the appendix of this thesis. Extra
cere has been taken in the coding of the algorithms so that
the production codes are quite uniform in style and
performances It 1is believed that the running time of the
codes truly reflects the complexity of the algorithms. All
tests are run on the Unlversity of Waterloo IBM 360/75

computer using the FORTRAN IV H compiler with OPT = 2, The
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slizes of the production codes for the varlous algorithms
are listed for comparison:
GPS King Levy RCM
( B.94 6.67 1.51 5.56 ) K bytesa
A manr portion of the codes for GPS, King and RCM is for

finding pseudo=-peripheral nodes.

The experimental results are tabulated in a set of
tables. Table 5.1 conteins the ordering time of the various
algorithms. Note that the overall time for the GPS, CM, RCM
and King algorithms is the sum of the time for finding a
starting node and the actual ordering time of the
respective schemes. Table 5.2 tabulates the resulting
profiles and the corresponding factorization operation
counts of the schemes. For compleéteness, we include the

bandwidth and wavefront of the orderings in table 5.3
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6 RDERTING T I M E (seconds)
GPS KING / RCM / CM LEVY
!X' m |[E]l | Start | Order | Start King {(R)CM | Order
node node | Order Order
68 8B 134 | C.038| 0,034, 0,029 | 0.038 0.022 | 0,037
90 8 209 | 0,061 ] 0.043 | 0.054 | 0.043 0.024 | 0.058
92 8 272 | 0.043 | 0,045 | 0.045 | 0.046 0.027 | 0.059
130 9 509 ! 0.070| 0.056 | 0.055 0,068 0.032 ] 0.101
159 3] 501 ] 0.076| 0,087 | 0.0671 | 0,072 0.039 | 0.126
174 10 464 | 04102 0.076 | 0094 | 0.076 0,038 | 0.158
185 14 740 | 0119 | 0.078 | 0,100 ! 0103 0.043 | 0.178
220 8 T84 70.093 O0s116 | 0,073 | 0.087 0.058 | 0.217
263.~13 911 | 04174 | 0128 | 04162 | 04113 0.054 | G329
263 8 698 | 04131 ] 0.130 | 0.108 | 0,109 0.054 | D.318
310 10 1069 0.158)| 0.150 | 0.133 | 0.131 0.061 0.416A
312. 14 1119 | 04222 | 0156 | 04149 | 0.163 ©0.075 | 0.441
346 18 1440} 0.232 ]| 0222 | 0,173 | 0,198 0.092 | 0.521
360 11 1321 0.123 | 0.177 | ¢.125| 0.228 0.072 0.591-
436 11 1568 | 0,463 | 0243 | 0,440 | 0.233 G.095 | 0.758
512 14 1495 | 1.007 | 1.018 | 0.947 | 0.362 ©0.260 | 1.018
555 14 2032 | 0,227] 0268 | 0,198 | 0.458 0.116} 1.4985
918 12 3233 | 06798 | 0533 | 04752 | 04841 0.178 | 3.342
Table S.1 Ordering time for algorithmse.
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P ROFIULE F ACT O PERATTIONS
N GPS King Levy RCN CM GPS King Levy RCM CM
68 269 216 2186 269 271 1114 735 735 1114 11
80 579 575 569 5756 608 2808 2779 2738 2779 30
92 736 673 156 7398 839 74315 3670 4628 4384 55
130| 1588 1496 2373 1562 1601 13286 11912 28994 12874 135
159 971 1261 1215 965 19041 4837 7933 7575 4816 55
174 1466 1338 1342 1462 1647 8835 7445 7487 8782 198
185 3610 3993 3982 3711 4096| 44045 54593 55799 46811 558
220] 1868 1754 1749 1809 18S0| 11182 10228 10200 10672 113
263| 2346 2158 2449 2407 2743| 14901 12687 16855 15882 208
263 2001 1827 1861 2132 2231} 10953 - 9378 9663 12573 136
310 2726 2694 3712 2725 2801] 16598 16206 32005 16579 174
312| 5548 4306 4036 5548 7174 63934 41184 36068 63934 1044
346 7650 6457 12612 7688 10079105649 750117 304909 106929 1810
360! 6364 9884 10362 6364 6937 78668 179107 195053 78068 922
436, 7844 7928 7510 8181 B5358] 94687 97389 86059 101787 1321
512 4669 4786 5315 4749 5881 41797 44398 51566 42681 636
55528976 28382 32494 28807 37565| 918328 B94509 1195888 924441 1547
918 20369 54175 49204 21113 24259 281037 1988911 1749462 304544 3978
Table 5.2 Profile and operafion count of

schemes.
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B ANUDWIDTH WAV EFURONT
N GPS King Levy (R)CM GPS King Levy RCM CM™
68 7 30 48 7 7 5 5 7 7
90 7 11 17 9 7 8 7 8 9
92| 13 38 28 14 12 11 13 12 14
130 18 25 60 19 18 17 29 17 19
159 | 12 65 66 12 11 17 17 11 12
174 | 13 27 29 13 11 9 9 12 13
185 | 29 86 150 31 28 31 34 31 31
220 | 12 13 63 13 12 10 10 10 13
263 | 19 29 71 21 16 14 20 18 21
263 | 14 23 35 14 14 9 9 14 14
310 | 14 23 101 14 13 13 20 13 14
312 | 37 142 94 37 28 25 23 28 37
346 | 46 67  J41 47 34 26 62 34 47
360 | 34 303 292 34 34 46 48 34 34
436 | 33 49 69 34 a3 33 33 34 24
512 | 29 66 231 30 25 26 31 27 30
555 91 463 399 107 81 86 96 85. 167
918 | 49 7736 669 50 39 164 95 43 50
Tﬁble 5.3 Bandwldth and Wavefront of schemes.
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1«8 Comparntive Remarks

From the set of tables in section 5.7y we offer the
following general observations and remarks on the ordering

algorithms.

A substantial portion of the overall ordering time for
the GPS, King and CM/RCM algorithms is spent in finding a
pseudo-peripheral node. On the average, GPS, King and
CM/RCM use about 53%, 50% and 68% respectively of the total
time for this purpose. Can a reasonably gzood starting node
be determined using significantly 1lessa time? This question

deserves further investigation.

Although the Levy algorithm does not require any
particular node to start the ordering, it +typically
require: more execution time than the others for problems
of substantial size. For example, it is four times élower
than the RCM scheme for the problem with N = 5855. As we
have noted in sectlion 5¢3.1, its main shortcoming 1is its

‘slownesse.

The CM/RCM algorithm is the fastest in all casess On
comparing with the data in {éibbs74b],»this indicates a
tremendous increase in speed when the algorithm is to be
star ted at some pseudo—-peripheral node. Similar speed-up

can be noticed in the King algorithme

Such an increase in speed for the RCM and King

algorithms would not be useful if their profile-reducing
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abilities were at the same time decreased. Fortunately, the
results in tables 5.2 and 5.3 show that the generated
bandwidths and profiles are comparable to that  from the

original versions of the algorithms [Gibbs74b].

To evaluate the algorithms with respect to their
profile~reducing ability, we choose to measure their
deviations from the minimum profilee. Since the minimum
profile is nbt knowny the profile minlmum among the five
algorithms is taken as suche. For each algorithm, we compute
its arithmetic mean ({average) of the % difference from the
lowest profile, &and its standard deviations The standard
deviation values serve to measure the consistency of their

performancese.
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P ROF ILE OPCOUNT

GPS KING LEVY RCM CM GPS KING LEVY RCM

CM

average %

difi‘erencg Ted 152 2647 8.3 22.8 ) 15.0 47.5 T8.7 17.6 50.2

standard

deviation {9¢7 39.0 38.2 9.8 18.1 20+5 1395 132.2 20.7 45.7

Table 5.4: Average performance of algorithms.
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For our set of test matrices, it is found that on the
average, the GPS and RCM algorithms deviate least from the

smallest profile, and perform most consistently. Although

the King algorithm produces the lowest profiles in a lot of

casesy its erratic behavior in a few example=s, notably when

N is 360 and 918, brings it down in the evaluatione.

The Levy algorithm also exhibits erratic results for
some test problems. It is interesting to note that it
performs poorly on the greph with N = 346, which is

disconnected,

The comparative analysis in section 5:4¢2 ahows that
RCM can never be worse than CM in the envelope contexte.
From table 5.2, we note that RCM actually reduces the
envelope sizes and envelope operation counts in all test
exampless The difference can .be considered as slgniflcaﬁt;
indeed, the reduction can be as much as 25% for profile and
40% for arithmetic operationse. More dramatic savings of RCM
over CM on model problems have been reporfed by Liu and

Sherman [Liu75].

To summarize our observations, the RCM algorithm shows
consistently good performance 1In profile reductione. It
produces profiles which are, at worst, only slightly larger
than the "minimum" profile. Together with its simplicity

and speedy, it is a practical choice for a profile ordering.

The'GPS algorithm exhibits similar consistency as a

profile minimizer in all the test matrices. However, for

-118-



General Graphs

some finite element problems which we will report in
chapter 6, its performance is less efféctive. On the other
hand, it does a good job in finding an ordering with a
small bandwidth. Indeed, it is an exéellent choice for

finding & good bandwidth orderinge.
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Chapter & On Reducing ithe Profile of Flanite Element Syvstems

In this chapter, we shall consider the profile
reduction proﬁlem for the class of finite element graphse.
Such graphs have special structures which can be exploited
for our purpose. Along this 1liney, we introduce the idea of
an annihilation sequence, which originates with the york of
Ir@ns; A profile reduction algorithm for finite element
graphs 1s proposed and its performance is compargd with
that of the general graph algorithms in chapter 5 via

extensive experimental testings.

6.1 Finite Element Systems of Eguationsg

The finlte element method is a powerful numerical
method for soivingA partial differential equatiéns. "The
me thod has many important application areas, such as
structural mechanicsy wave propagation, elastic stability}

- heat conduction, and fluid mechanics. The fundamental basis
in the applicability of the method is the existence ofra

variational principle in the formulation of the problem.

In this chaptery, ﬁe shall study the solution of éparsg
symmetfic positive definite linear systems that arise in
ther application of finite element Qethods to two
dimensional problems. We begin with the few aspects of the
metﬁod that concern us. {Georg§71], [ Strang73]y and

"[Zienkiewicz70] are good sources concerning the method.
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Let R be s planar regilon with boundary 8Re In solving
a two-dimensional boundary value problem by a finite
element method, the reglion R is covered with a mesh M of
triangular elementse The mesh M has a node at sach vertex
and may also h#ve nodes lying on each edge and/or in the
interior of each elements Following [George?l},>we use thé
notation M(rss,t)t to refer to the mesh M, where ry, 8, and
¢+ are respectively the nuﬁbers of unknowns associated with
‘a vartex, an edge and an interior. We assume that r 2 1.
‘The system of trlangles M{rysyst) is called a fipnite element

mesh and M is the underlving mesh.

A finite element syvstem or mesh system of equations
associated with M{r,s,t) is any N by N symmetric positive
definite linear system

A x = by ‘ (6e1)
where the entry A;; is nonzero if and only |if unknowns x;
and x, are associated with nodes ofAthe same mesh element
of Ms Herey, N is the total number of unknowns in the finite
element mesh M{rys,t)e Figure 6.1 is an example of a fln;te

element mesh M(1,1,0) and its associated 16 by 16 mesh

matrixe.

+ The numbers r, sy and t depend on the degree of the
polynomial and the type of interpolation used In the
finite element approximation.
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Figure 6.1 A Zfinite element mesh and its
: agsociated matrixe.

Thé- graph G(A) of a finlte element matrix bears a
close relation with the finite element mesh, and it can be
reconstructed from the mesh ensily; From defipition {61y
the nodes of each triangular element in M(rss,t) _forms a
complete subgraph or a cligues  To obtain G(A); we merely
add edges so tﬁat mesh nodes belonging to the same element
are Jjoined. We sh;ll refer to G(A) as a finite element
&raphe The complete subgraph for an element in figure 6.1

is shown in figure 6.+.2.

M oxo»
[
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Figure 6.2 Graph for a basic element.

in general, the graph of the coefficient matrix has
many more edges than the diagram of the finite element
mesh, and very ofteny the graph is non-planar. Since the
finite element mesh 1is already adequate in showing the
zero-nonzero structure of the matrix, we shall use it to
represent the matrix diagramaticallye Birkxhoff and George
A[Birkhoff73] call it a g¢ligue diagrame In [ George73al],
George establishes an interesting correspondence between

the elimination process and a sequence of clique diagrams,
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«2 Element Annihilstion and its Relation to Ordering

Given a finite element mesh M(r,s,t), let G be the
finite element graéh associated with itese We are interested
in the following questions. How do we choose an ordering «
s0 that the ordered graph Ga has a minimum or near mlni@um
érotlle? How can the structure of the underlying mesh M be

exploited in order to determine such an ordering a?

A practical answer may be the use of element
annihilation which was first considered by Irons. In
[Irons70], he has exploited this idea in his frontal
approaéh to finite element systemses The technique
alternates between assembly of element coefficients and
eliminations This reduces the size of the matrix to be kept
in core and leads to impressive resultse. Irons also ﬁoints
out thaf the node numbering is not criticel but the way in
which the elements are‘ordered ise In this section, we
shall make #7 systematic study of the effect of element

annihilation in profile and frontal schenmes.

We begin with some definitionse The dual graph of a
mesh M is.  the undirected graph {(T(M),6(M)), where T(M)
consists of all the triangular elements of M and for
elements T and T; of My, {T,T'} is in 6(M) 1f and onlty if T
and T' share a common side. Consider the region with mesh M
in figure 6.3¢ Its Acorresponding dual graph is given as

showne
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Figure 6.3 Mesh and its dual graph

The following is a trivial and yet important property

of dual graphs.

Lepma 622 For any T in T(M), the degree of T in the dual

graph is less than or equal to 3. i

An ordering on the triangular elements of the dual
graph of the mesh M is defined +to be an aanibilation
seguence. In what ~follows, we shall show that any
annihilation sequence 0 defines a classa of.orderings on the
corresponding fini te element graph associated with

M(PQS't )o
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Let Ty T2 eeey T, be the sequence of triangular
elements In M ordered as given by 6. Here, m = |[T(M)|. For
our purpose, we let each Tl to be the set of nodes
associated with the corresponding trianglee. The j—=th
annihilpted set can then be defined as

m
an(G,Ti) = Tl \ U T, »
k=1+1

Node orderings are induced as follows.

procedure INDUCE( 6, a);
begin
for i:=1 step 1 until m do
begin
for x € an(6,T,) do

number x in a

wWhen the annthilation sequence is clear from the
context, we use an(Tl) to refer to an(G,T;). However, it
should be noted that the annihilated set of variables

depends on the given sequence G.

Cbservation 6s23 The éet an(6,T) is precisely the set of
nodes removed when T1 is annihilated from the remaining

triangless.
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Lemma H24: x € an(gT;) if and only if
i
Adj(x) C © T,+ and x € T, . 1
k=1

After step i, the set of numbered nodes is giliven by

the set

an(Tk)-
1

I a r

Kk

We find 1t convenient in subsequent discussions to denote

this set by an(G,T;,...,Ti) or an(T;,-..,Tl) if 6 is clesar

from contexte Evidently, an annibhilation seguence 6 induces
a class of node orderings which can be represented by the
series of nodeAsubsets:

an{Ty)y an(Tp)y ecey an(Tﬁ).
In the remaining part of this section, we shall see how the

nodes in an(Tl) should be numbered internallye.

At step 1 of the annihilation process, let
{Tl{....Ti-,} be the set of triangles that have been
annihilatede An element T in {TiseeesTj-1} is said to be
pseudo annihilated 1if T Nan(TiseeeyTj—3) = Do In other
words, a pseudo annihilated element is one that has been
annihilated and yet none of its nodes has been numbered (or
removed)s, This definition is motivated from the following

result.

Theorem 6213 Let 6:Tyy T2y esey Ty be an annihilation
sequence on a finite element mesh M(r;s,t). At step 1y 1f

no pseudo annihilated element has a common node with an(Tl)
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Lemma 624° x € an(6+T;) if and only if
i
Adj(x) C U T,» and x € T, n
k=1

After step i, the set of numbered nodes is given by

the set

an(Tk)o
1

i e v

k
We find it convenient in subsequent discussions toc denote
this set by nn(G,TI,...,TI) or &B(Tl,o’.'Tl) if 6 is clear
from contexte. Evidently, an annihilation sequence 6 induces
a class of node orderings which can be represented by the
series of node.suhsets:

an{Tg)y an{To)y esey an(Th).
In the remaining part of this section, we shall see how the

nodes in an(Ti) should be numbered internallye.

At step 1 of the annihilation process, let
{(TeseeeyTj -1} be the set of triangles that have been
annihilatede An element T in {TyjseeesyTj-3} is said to be
peeude annihilated if T Nan{(TpseeeyTj—3) = @ In other
words, a pseudo annihilated element is one that has been
annihilated and yet none of its nodes has been numbered (or
removed)es This definition is motivated from the following

resulte.

ITheorem 621: Let 6:Tyy Tay seey Ty be an annihilation
sequence on a finite element mesh M(rys,t)e At step i, if

no pseudo annihilated element has a common node with an(T;)
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then the profile 1is independent of the ordering of the

nodes in an(Tl).

Proof: By thecrem Je2, it is sufficient to show that for
any x and y in an(Ti)g

Adjan(TyyeeyT; 1 0 {x})IVU{x} C Adjlan(TyiseesyT;-1)U{y})IU{yv}.
Clearlyy, by lemma 6.3, x and y € an{Tiy+¢9T;j_1 )¢ Consider
any z in the right hand sides

If z = xy then x € Adj(y) (T Adjlan(TyyeasT;_1)U{y}),
since x and y belong to the element Tl'

On the other‘ hand, if z € Adj(an(Tyree T, ,)U{x}), we
need only to consider the case z € Adj{x)e By lemma 6.4, x
and zeT, for some 15x<i. If z € T, evidently
z € Adj(y)U{y}l. But if z €T, where k<, then
x € T, Nan(T;); this means at this stage T, is not a pseudo
annihilated elements Thus deTan(TI,.o.Ti_l) # © and

z € AdJ(T, Nan(TryesyTy—1)) ( Adilan(TysessTy—1))e

The result follows. s

Theorem 6+1 provides a condition, whereby all the node
or@erings induced by 6 are equivalent, in the sense that
they give the same envelope sizes The following corollary
contains a simpler and more useful condition for the result

of theorem 6.1 to hold.

nggllggx 6252 Let M(rys,t) and 6 be the same as in

theorem 6els If an(Ti) is non-empty for 1%i€m, then all the

orderings induced by 6 are equivalent.
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Proof: Note that an(T;) # O implies the element Ti has

never been pseudo annihilateds o

The condition in corollary 6.5 is satisflied in many
situations; for example, when the mesh M{prys,t) has
interior nodes (ie.e. t i3 nonzero)s But the conditions in
theorem 6.1 or its corollary are not always satisfied.
Consider the mesh M and annihilation sequence in figure
6.4. M(140,0) is assumeds It is easy to see that an(T,) is
empty and the two different orderings in filigure 6.4 on

nodes of an(T3) result in different envelope sizes.

x x
X X sym X X sym
X X X X X X
x X x X X X
X X X X x X

Figure 6.4: Two different induced orderings
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Befcre going to the next section, we illustrate the
idea of jinduced ordering using the example in figure 6.3.
Consider the following annihilation sequence of the dual
grgph:

ay by cy dy ey £y gr ho

We assume that gquadratic interpolation is used so that the
corresponding finite element mesh is M(1,1,0). Note.that
an(Ti) is non-—empty for 1€i<8. Corollary 6.5 thus applies

and we can number nodes in an(Ti) in any ordere.

The complete annihilation process is depicted in
figure 645« The overall induced ordering is given in figure
6.6« The envelope size of the corresponding permuted finite

element system turns out to be 116.

-130-



Finite Element Graphs

Ta
2) T3
1
Ta
1
Ts
Te

Figure 6.5:

Ty

Annihilation processe.

Ta

-131



-132-

Finite Element Graphs

24

b
% "
L]

X X X X X X

symmetric

LI
L]
L

X X X X X
X X X X X X X

x
X

X
x

X

X X X X

X X

X X X X X X

X X X X X X X

X X X X X

X X X
X X X X X X X

X X X X X X

X X X X X

X X X X X X

X X X X

X X X X X

X X X X X X

the ordered

ordering and

Overall
matrix

Figure 6.6



53

Finite Element Graphs

Existence and Characterization of a Preofile-Minlmizing
Anpibilation Seguencge

Our primary aim is to minimize the envelope size or
the profile of the graph associated with any given finite
element meshe The following results justify the use of

annihilation sequences in our analysises

Theorem £22: If @« is any ordering on the finlte element
graph G, there exists an annlhilation sequence ¢ which
induces an ordering a« satisfying

IEnv(GE)] < {Env(Gy) |,

and BE( G;) < BE(GG)'

Preoof: We shall prove the theorem by constructing an
annihilation sequence § such fhat one of its induced
ordering @ is never inferior to « in terms of storage and
operation counte
Let y; be the node numbered first in a. This node Yy,

belongs to some triangular element, say Tes Assign T to be
the first element in our sequence G. Then identify the set
ap(T). We note that for any x in an(T),

Adj(x) U {x} C Adj(y1) U {y1le.
Detine a new ordering a3y which renumbers the nodes in
an(T) first (in the same order as they appear in a)y, while
keeping the remaining nodes in the same relative order as
in ae The set an(T) may be empty. By theorem 3.2,

JEnv( Gy} < |Env(Ga)|,

and QE(G;) < QE(GQ,’
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where Gy is the graph ordered by mj.

We can now consider the ordering on the remalning mesh
with Ty (ises T) removed; the new ordering a; will be used
insteads We follow the same argument as before to determine
element T» in G. In this case, Y2y the node im&ediately
after an{T;) in a;y will be considered. Again, we have for
x € an{( Ty ),

Adjlan(TyIU{x} ) U [x} (C Adjlan(T,)U{y2}) U {y>}.

Let a3 be the ordering thus obtained.

We can caontinue the process until 6 is completely
constructeds If m = |T(M)|, the induced ordering a, of 6
satisfies

1Env(Gg)] € |Env(G,)],

and Op(Gy) < QE(GG).
This completes the proof ot the theorem. n ]
Theorem H23: Let M{(rys,t) be a finite eliement mesh.AThen

there exists an annihilation sequence 6 which induces a

minimum envelope orderings

Proof: Consider any minimum envelope ordering o on the
system assoclated with M{rss,t)e Theorem 6.2 implies the
existence of an annihilation sequence ¢ which induces an
ordering a such that

IEnv(Ga)I S JEnv(Gy)|.

Thus a itself 1s necessarily a minimum envelope ordering. O
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Iheorem 6a4: If t is nonzero, any minimum envelope
ordering a for a mesh system assoclated with N{(r,s,t) is an

induced ordering of some annihilation sequences

Bnggi: Assume that at Xge X290 ooy Xy is a minimum
envelope ordering and that it is different from all induced
orderingse. Apply the method in the proof of theorem 6.2 to
ay and let @S Y391 Y2e eeey YN be the induced ordering
obtaineds By construction and the minimality of ay we have
IEnv(G;)l = IEnv(Ga)lg
Since « is different from all Induced ordering, let 1 be
the index such that x, = y, for 1%kx<i, and ii *# y;+ The
nodes Xy and y; can only be different it
{xg9eerxj—1} = an{Tx...,TJ)
for some Jjy and y, e an(TJ¢;) but x; ] an(TJ+;)o This means
the removal of x, at this step annihilates TJ+g and some

other triangular elements. Since t # 0, we have

AdJ {xgreorxg—19¥;}) U {y;} C AdjC{xgveerxj1sx;1) U {x, }.
2

By corollary 3.7y @ cannoct be a minimum envelope ordering.

n

We con.ecture that theorem 6.4 holds if s*t |is

NONZeroce. But when sttt is equal to zero, the example
M(1,0,0) in figure 6.7 shows a minimum ordering which does

not correspond to any induced orderinge.

Theorem 6.3 assures the existence of an annihilation

sequence that will yield a minimum envelope node ordering
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b _ 1

x

X X sym

X X X

X X X
L x x X X
5 @

Figure 6.7:2 Minimum ordering on M(1,0,0)

on. the glveq finite element meshe Furthermore, in many
important cases, we know from theorem 6;4 {(and the
conjecture after the theorem) that finding annihilation
sequences 1s in fact a possible approache. These thgoretlcal
observations motivate the study otAelement orderings on the
dual graph of M. Ve bhegin the study by characterizing
envelope-minimizing annihilation seguences from the

structure of the dual graphe.

Recall that a node ordering aolxj, X229 oey xN is
minimum if it minimizes the gquantity {Env(Gg4)| over all
possible orderings. What, then, is the criterion we should

use in seeking annilhilation sequences?

Let us consider the stage when some triangles in M

have already been annihilatede A node is "active" (ie.e. in

the front) if and only if it belongs to some annihilated
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elements as well as some remaining triangles. More
precisely, if the annihilation of triangles T"""Tk
removes nodes X1Q.oo’*l' then
k m
x € AdJ({x‘,--,xl}) if and only 1f x € ( U TJ)ﬂ'( U Tj)e
J=1 J=k*+1
Thuss the number of active nodes, iAdJ({x;,..-,xi})l,
is wusually governed by the present number of active
triangle sides. By an active side, we mean an edge in the
set Inc( {TyyeeyTy}) of the dual graph. (See definition 3.2
in section 3e1)¢ Although there are other factors governing
‘the number of active nodes, we find that minimizing the
quantity llnc({T;,-..,Tk})l normally reduces the size of
node fronte. Thus, we arrive at the following observation: a
sequence T3 Toye snay Tn that miniqlzes the sum of edgeA
fronts
m
Z | IncC{Tyy eces Tu})I (642)
k=1
induces near-minimum envelope node orderings. The set

Inc{ {TyssesTy}) will be called the k~th edge front, while

the quantity ilnc({Tg,..,Tk}ll the k—-th edge fropntwidthe

While the criterion function (6.2) is associated with
the dual graph which is structurally simpier and is often
much smaller in size, we note that sequences minimizing the
sum of edge fronts do not necessarily induce minimum
envelope node orderings. Consider the finite element mesh
M(1,0,0) in figure 6+.8. It is not difficult to see fhat the

minimum value of
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Z III'IC( {T‘q seey Tk})‘
over all sequences is 8«4 The two annihilation sequences @,

and 6, both attaln this minimume

However, we find that

I

| Env{( Gy )| 17,

and | Env{( G| 18,
where G; and G, are the graphs labelled by &; and 63
respectively. Thus, the sum of edge fronts for 0, is

minimum and yet its induced node ordering does not give a

minimum envelcope.
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(8) (7) @) (3)
OO OMO
(3) | (5
(2 O
D @ |
(9) (3)

r - .
x ] x
x x X x
X x x
X x sym X x sym
X x X x X x
X x X x x x x
x x X X X X X
X X X X X X X X X
] X x x X X X
L L

Figure 6.8: Sequences that are not equivalent.
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’e4 Ordering Algorithms

’ed4e1 Improved Qrdering by Element Annihilation

The proof of theorem 6.2 in section 6«3 provides a
method that improves any pre-—-determined node ordering of a
finite element graphe Essentially, any given ordering
determines in a natural! way an annihilation sequence, which

in turn induces a node orderinge We can describe the

algorithm formally as follows.

procedure IMPROVE(X, T, ay a);
begin
comment: The input ordering a is improved by

element annihilation to a new ordering a;

S
(L]
i
=)
-

while i < [x] deo

bezin
x:= first un—renumbered node in «;
for triangular element T _J) {x} do
begin

for v € an(T) dgo

a(i):i= y
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wWith an appropriate data structure of the finite
element graph, IMPROVE is extremely cheapy, O(}X|,|T]{)e We
will consider the computer representation of finite element

graphs in section 6.5.1.

From theorem 6.2, the induced ordering a can never
increase the profile nor the envelope operation counte.
Consider the application of IMPROVE to the initial ordering
in figure 6.1. Figure 6.9 illustrates the way a is formed.
In the figure, we use 1 to denote the i-th node numbered in
@e This example demonstrates actual storage and operation

reductions over the initial ordering.

The best choice of the initial ordering seems to be
the one obtained from the reverse CuthIII-McKée ( RCM)
algorithm, which 1is known to be fast and effective (see
chapter 5)s The correspondingly induced ordering shell be
called the improved RCM ( IRCM) orderinge Numerical
experiments have been performed on the n by n regular right
triangular mesh M(1,1,0), and the results are tabulated in
table 6.1; They show that savings, thougzh not impressive,

can actually be achieyed over the RCM ordering.

Similar experiments have been tried to improve the
King algorithme It is interesting to see that, in all test

runs, no improvement can be founde. It may be attributed to
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x4 a=as

Figure 6.9: Improved ordering by annihitation.
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PROBLEM PRCFILE OPERATION COUNT
n N Nonz RCM IRCM IRCM/RCM RCM - IRCM IRCM/RCM
2 25 96 | 128 116 0.9063 589 484 0.8217
3 45 207 | 331 309 0.9335 1782 1570  0.8810
4 81 360 | 674 640 0.9496 4183 3810  0.9110
S 121 555 [1189 1141  0.9596 8324 7740  0.9298
6 169 792 |1908 1844 0.9664 | 14857 13992 0.9418

Table 6.12 RCM and IRCM on n by n regular right
triangular mesh M(1,1,0).

the local-frontwidth-minimizing characteristic pf the King
algorithm, so that the corresponding node ordering usually
turns out to be an induced ordering of some annihilation

sequence. This may help to eaccount for the better

performance of the Xing algorithm over RCM in finiteA

element applications as reported in [Bolstad73].
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6e4e2 Annihilation Ssouence Mionimlzing Edge-Frontwidth

In view of the discuss;on at the end of section 6.3,
we address ourselves to the problem of finding annihilation
sequences for the dual graph such that

Z |Inc( {Tyy seey Ty}
is minimum or near minimum. It bears a great similarity to
the envelope-minimizing problem, where the éum

S JAdJU {x19 eoey xll)l
is minimized in a symmetric graphe. fhls suggests an
algorithm similar t§ that of King (Bection 5.3¢2)¢ We now
describe the new sScheme for connected dual graphs below.

Extension to general dual graphs is straightforward.

procedure FIND_AS(T, &, Tay 6 )3
hegin |
comment: (T,8) is the input dual graph, Te the given
starting elementy, and O the output annihilation
sequence;
i:= 1
6(1):= Tgs
xhile i < IT| do
begin
T:= a triangle In AdJ{ {6(1)seey6(i)});
for T € Adj({6(1),.¢,6(1)}) do
kegin
if |Inc( {6(1)y¢440(1),%})]| < |Inc({6(1)9e0,y6(1),T})|

iben T:=
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6(1):= T

Like the King algorithm, the performance of FIND_AS is
sensitive to the starting element Tge The success 1ln using
pseudo peripheral node to start the King algorithm suggests
the use of a pseudo peripheral element in the dual graph

(T,S) as Tu-

In this way,; a node ordering can be obtalned by first
generating an annihilation sequence ¢ vifh FIND_AS, and
then applying the technique of annihilation to ¢ . In
subsequent discussions, this combination wili be referred

to as the glement annihilation (EA) algorithm.

In FIND_ASy; an element is 1labelled next in 0, if it
increases the edge frontwidth the 1leasts An equivalent
condition, which is more oriented to implementation, is

established belows

Lepma 6263 Let T € AdJ({Tl,..'Ti})l The quantity
IInc({T;,..,Ti,T})I is minimum if and only if

lInc(T)| - 2 JInc(T)N Inc( {T10.0'T1})| is minimum.

Preogf: The lemma follows from:

| Inc( {Tlo"’ri'r} |
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lInc({T;,..,Tl})I - llnc({T;,-..Tll)nlinc(T)l

+ [’IQC(T);| - IInc( {Tg,...‘!‘l})ﬂ*‘lnc(’l‘)l]

L

| Inc( {T;,.a.Ti})l + lIHC(T)I - 2'1!!0('[’)‘“'!!1(2( {T[poo’Tl})l

Lemma [P & Assume that there is no isolated element in
the dual graphe If |Inc{ {Tyys++Tj¢T} )| is minimum for T in

AdJ(ITg,-.,TI]). then it is minimum over all unlabelled

elements.

gggg;: Assume that T € AdJ({T;.-..Tll). Then we have
Inc('l")ﬂ Inc( {T‘to.,Tl} ) = 9,

so that

| Inct {T“..,‘ti,l‘} )l

1}

[IncC{TyrearT; 1) + lInc(T)| = 2[Inc(T) NIncC [TroeesT;})]

A

IInc( {T;,..,Ti} )l + IInc(T)l -2

A

IIBC( {Tl'."TI} )l + 1.
On the other hand, for T' @ AdJ([T;..o,Tl})q

IInc( {TlgcoyTl 'T'} )‘

]

[IncC {TyseesT; 3] + [Inc(T')|

v

iInc( {T"ougrl}}' + 1. ’ n

From lemma 67y we note that the element selected in
FIND_AS 1is actually one that increases the edge frontwidth
least among all untabelled elementss The King node ordering
algorithm does not have the corresponding property

[LevyTl].
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«5 Comparative Study

51 Data Menakement for Finite Element Graphs

The simplicity of data structures and the storage
economy of data lnfprmation are important aspects in
implementing ordering algorithms for finite element graphs.
A neat storage sScheme simplifies the actual coding of the
algorithm and often reduces the amount of overhead. On the
other hand, less storage requirement makes it possible to
order larger problems in primary Mamorye In order to
compare data management of the ordering algorithms in
section 6.4 and chapter 5, we have to look for relevant
information of a finite element graph and their computer

representationse.

Trlangular elements and nodes are the two basic
puilding items in a finite elemeﬂt graphe Their relations
completely desc:lbe the mesh and graph structures. Oof
interest to us are the adjacency gtructure and the dual
addacency structure., which give the adjacent relations in
the . graph and dual graph respectivelye. Different
representations o¢of the adjacency structure have beén
discussed in section S.2. The connéction table storage mode
is most appropriate when the graph 1ls regulart or near
regular. By lemma 602, the dual graph is near-regular,

since each triengular element has at most three neighboring

+ A graph is regular if all its nodes have the same degree.
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"elementse. It is then convenient and economical to store the

dual graph using a connection table DUALC | T| +3).

For each element T, it is sometimes useful to have a

list of the nodes belonging to Te. This collection over all

elements may be appropriateiy called the glement axnggiggg;
Since the number of nodes associated with an element is
usually fixed throughout the mesh, the element structure

can be conveniently stored as a two dimensional arraye

Another useful data structure for a finite element
g?aph is a pembership siructure, which can be considered as
the "inverse" relation of the element structure. For each
node x{ it has & list of all triangular elements to which x
belongse The structure is usually implemented in the form

of linked lists or arrays similar to connection tables.

We now discuss the rele played by these data
representations in ordering finite elemeﬁt graphse For the
general purpose ordering algorithme in chapter 5, it is
¢ommon to use the adjacency structure. In [George?1l],
George implements the RCM scheme for finite element systems
using the element and membership structufas. This selection
is more oriented to finite element applications. To
retrieve the adjacent set of a node x, we first identify
those trlgngular elements that contain xy; using the
membership structure. The nelizhbors,y, "which are the nodes

sharing common triangles with the node x, can then be found
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Finite Element Graphs

from the element structure. Such a choice is most suitable

for the IRCM algorithme.

The desirable data structures for a finite element
graph in the EA algorithm are quite differente. In producing
an annihilation sequence, it requires the dual adjacency
struc ture pf the_mesh. Then, to carry out the actual
labelling of the nodes during triangle annihilation, the
element structure is needed. Thus, the data structures

involved in the EA algorithm are relatively simple.

To compare the stofage requirements for the various
formsA of representation, we consider any given finite
element mesh M(r;s,t)s Let G=(X,E) be its associated finite
element graph and (T,€E) be its_dual graphs Define e to be
3r + 3s + t, the number of nodes in aAtriangular elements
It is clear that the storage locations required for the

various structures are:

Ad jacency 21E|l + 1xi,
~ADuai Adjacency 31T,

Element ’ e!t|vA

Membership z e|T|.

To relate~these quantities, let VB, VI, and H be the
respective number of boundary vertices, interlor vertices
and holes in the given mesh M. We quote the following

results.
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Lemma 628: ([Ewing70])
IT} = 2VI + VB + 2H - 2,
|€]l = 3vI + vB + J3H ~ 3. a

Lemma 619: ([George71])
ix] = (r+3s+21)VI + (rt2g+t)Ve + (35*2#)3 - (3s¥+2t),
21E|l + IX| = (p*r2)VI + J(p+e?)VB + pH -~ p,

where p 2e2 - I st2r)?. o

The results in lemmas 6«8 and 69 can be used to
estimate the amount of storage required to solve a
particular finite element problems. For large application

problems, we typically have

VI >> VB,
s0o that
| x| r + 3a + 2t
-
1T 2
21|l + |Ix]| 2e2 + p2 - 3J(2r+s)?
(3+e) |T| 2( 3+e)

These ratios indicate an advantage of the element—-coriented
storage schemes when high order elements (s+t>0) are used.
We tabulate the retios in table 6.2 for different values of

ry S and toe
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1xi 2lEl + x|
( TreSy 1) - - ——
1Tl (3+e) |T|
(1,0,0) 0.5 0.583
(111'0‘) 2.0 2+.556
(1,2,1) 4.5 5.885
Table 6.2: Ratios of node against element

storagee.

In table 6.3, we compute the

storage regulirements for

the various forms of representations on an actual finite

element problem. These data correctly reflect the ratios

given in tqble H6e20
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Element + Dual Adgj
: Adjacency | Membership | + Element
(rys,t) n 1 x| Il 1T Structure | Structures Structures
(1,2,1) 7| 484 3612 98 7708 1960 1274
8. 625 4704 128 10033 2560 1664
9 784 5840 162 12664 3240 2106
10 961 7820 200 16601 4000 2600
(1,1,0) 12 625 3096 288 6817 3456 2592
13 729 3627 338 7983 4056 3042
14 841 4200 392 9241 4704 3528
15 861 4815 450 10591 5400 4050
(1,0,0) 26 729 2080 1352 - 4889 8112 8112
28 841 2408 ;568 5657 9408 9408
30 961 2760 1800 6481 10800 10800
32| 1089 3136 2048 7361 12288 12288
Table 643: StorageArequlrements for finite

‘element graphs associated with the
n by =n regular right triangular
meshe
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5.2 Experimental Results

The EA algorithm is implemented 1In FORTRAN and a
listing of the code can be found in the appendixe. The
program uses the dual adjacency and element structures to
represert finite element graphse The performance of this
algorithm is compared with those ordering schemes studied
in chapter 5, namely GPS, KING, LEVY, and RCM. In contrast,

all these schemes utilize the adjacency structuree.

The test problems are provided by the current version
of CGeorge's mesh generation code. which is an extension to
the one given in [Ceorge71 ]. Input to the code are two
parameters 7 and B and a planar mesh Mg which is a gross
trianzulation of the domaine The parame ter V7 is the
subdivid#ng factor, whereby each trlanguldr side in t&e
lnput mesh is evenly divided into ¥ segments by Y-1 nodes.
By Jjoining the new nodes in the obvious way, we obtain a
refined mesh M having 72 times as many triangles as the
original meshe The second parameter p governs the number
and the diétributlon of nodes on the resulting wmesh M« It
corresponds essentially to the Qegree of certain piecewise
polynomial bases used in finite element applicationse. The
firal element mesh generated is given by M(r,s,t), where

r = 1, 8 = p-l, and t = i(p—ll(p*2).

The set of test problems consists of six mesh problems
designed by Georgee The basic meshes are shown in figure
6610, For each mesh, we vary the values of ¥ and P and the

experimental results are tabulated in tables 6+4-6.9.
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a) Square b) - Hollow square (small hole}

N
¢) Graded L d) Hollow square (large hole)
SN
\\\ ™
NN

N

\\

\\
N

\A\

2) + shaped domain f) H-shaped domain

Figure 6102 Baslic meshes for test problems.
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»543 Comparative Remarks

Some general observations on the performances of the
various algorithms will be drawn from the set of tabulated

resultse

Among algorithms GPS, KING, LEVY, and RCM, the RCM
scheme requires the least amount of execution time. In some
cases, it runs twice as fast as its strongest competitor.
fn generaly with respect to the ordering time, the
algorithms may be ordered as tollows;

time(RCM) < time(KING) = time(GPS) < time( LEVY ).

The EA algorithmAexhibits some-iﬁteresting behavior in
its execution time, The differences between its >running
time and those of the others for higher order e2lement
meshes are most strikings For mesh M(1,2,1), EA runs as
much as 6 to 16 times faster than RCM. For M(1,1,0), it
requires still 2 to 3 times less 'crdering. time. The
significant difference can be easily expiained by the
different magnitudes of the quantities |X| and |T] (see
table 6.2)¢ The EA algorithm operates on the dual graph,
which is much smaIler in size than the corresponding finite

element'graphs for high order Qlements.

The same reasoning applies to the case M(1,0,0). Since
ATE 2 2{x|, it is not surprising to see that RCM runs 2 to
3 times faster than FA. However, the ordering time of EA is

comparable to that of GPS and KING for M(1,0,0)



Finite Element Grabhs

We now compare the perfbrmances of the algorithms as
profile minimizers. For our set of test . problems,
élgorithms KING, LEVY and RCM perform gquite consistentlye.
They‘produce profiles reasonably close to the 1owesf. 1t is
interesting tc point out that the LEVY schems performs
extremely well for meshes wlth appendnges-rlndeed' for the
"t and "H"-shaped domains, it produces the smallest

protile in nearly all cases.

For M(1,0,0)y GPS generates profiles comparable to
that of KING, LEVY, and RCM. But its performance on higher
ordar element meshes is less consistente. In many cases, its

profile almost doubles the others.

In contrast, the EA algorithm performs reasonaebly well
for higher order element meshese. Together with 1ts small
storayge requiremsnt ( table 6.2) and its extremely fast
running time, we feel that EA is a practical alternaiive
whenAone is considering‘profile miniﬁizatlon of high order

element meshese

The performence of EA on M(1,0,0) is comparatively
less etféctive. Since its performence 1is insensitive to the
degree P-Of 'interpolation (which is one nf the advantéges
of this approcach), it is apparent that the annihilation
sequence given by the EA algorlthm.ls far frqm the best for
'large meshese. Indead, tbe tabulated data lmply that the
annihilation seguence . induced by the IRCM algorithm

{(section 6e4e2) is often better in this respectes The
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Finite Element Graphs -163~-

efficient determination of effective annihilation segquences
from the dual graph structure is certainly a practical

prcblem deserving future investigation.
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Chapter 1 Concluding Remarks

In the in-core solution of a given linear system by
the envelope me thod, the central problem is to determine a
permutation matrix so that the correspondingly permuted
system has a small profile. ¥We have used a graph-thepretic
approach +to study the method and 1its related ordering
probiems. Based on the envelope structure of a graph, the

minimum and minimal envelope problems have been posed.

Partial success has been achieved ;n tackling these
problems for the class of N by N matrices associated with
tree structures. We have presented an O(N logaN) recursive
algo:lthm which always generates a minimal envelope
ordering for trees of N nodes. While the minimal ordering
problep is of graph-theoretic interest, our final goal is
to solve the minimum problem. The design of an efficient
algorithm to find minimum orderings for tree structures is

{itself an interesting research problem.

The ordering problem becomes much more difficult for
general symmetric matrices. This can be reflected by the
heuristic nature of all the existing practical algorithms.
As illustrated by the examples in éection S46, these
heuristic algorithmas may give very poor orderings. However,
for Aapplicntion problems, they are typically o(N%)
algoritﬁme (12as2), which generally produce profiles

reascnably small for practical purposes.
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We have studied and analysed tﬁe algorithms of
Cuthill-Nckee, Kingy Levy and reverse Cuhill-NcKee. In
particular, a graph-theoretic proof has been given to show
that the reverse Cuth111~McK§e algorithm can never be
inferior to the original Cuthill-NMcKkee =acheme in the
envelope context. Moreover, our experimental results are in
favour of the reverse atgorlthi as a general purpose
profile reduction scheme. Indeed, when a pseudo—peripheral
gtarting node is used, the algorithm is extremely fast and

consistently effective.

All the aforementioned algorithms have a common
features They examine the graph structure only locally so
as to reduce the envelope size, which is a global quantity.
The insufficiency of local information suggests the
poésibility of devising algorifhma that take the entire
structure of the graph into accounte In some sSense, the
algorithm by Gibbs, Poole, and Stockmeyer may be regarded
as a global strategy for bandwidthAreduction. Along the
same line, Gibbs [GibbsT75] recently has developed one for

profile reductione The algorithm generates a "long and

thin" global level structure and then imposes a King~-like

numbering on each level. It is felt that this approach of
combining local  and global strategies can be quite

effecflve.

Finite element graphs constitute a special class of
graphs, and they arise from the application of the finite

element methode We have exploited the structure of these
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graphs - and have shown that the notion of element
annihilation |is an alternative approach “for profile
ﬁinlmlz&tion. In that case, the crucial factor becomes the

ordering on the set of triangular elements (ennihilation

sequence)e This approach has a distinctive advantage. For a

glven finite element meah M(r.a,t). the effectiveness of a
particular annihilation sequence ia independent of the
parameters ry sy and te. Thus, the same sequence can be used
for mesh problems with the same mesh structure M but

different interpolating polynomials.

To eapply the idea of element annihilationy we have
&eveloped an algorithm for producing reasonably good
annihilation sequences for two dimensional domains with
triangular elementse For high order element meshes, its
economy in data information, its speed, and its effective
performance show that the scheme is a practical alternative
to other mgthods for reducing profilese. Like the node
orderings, this algorithm is based on local information to
numﬁar the triangular elements. Combinations of local and

global strategies may result in better eannihilation

sequencess It is a posgssgible avenue for future
investigatione.
Al though we have restricted ourselves to two

dimensional domains with triangular elements, it should be
clear that the concept of element annihilation can be
extended to regions with quadrilateral elements or to three

dimensional domainse. For two dimensional quadrilateral
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meshes, we know [ Ewing70]:

|E] = 3(VB + 2vI) + H - 1,
where E is the set of quadrilateral elements, and VB, VI
and H are as before the respective number of boundary
vértlces. interior vertices and holes in the mesh. It
follows then

|IE| € VB + VI.
This suggests a potential advantage of the element apprcocach
in this gpplication since the number of elements can never

exceed the number of nodes.
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Appendix

The various ordering algorithms discussed in the
thesis are implemented in FORTRAN. A 1listing and

descrlpﬁion of the programs are given in this appendix.

Graphs are always assumed to be represented in the
form of connection tables (section 5.2)s The following
variables are used to describe a graph G=(X,E): !

N o=

is the number ikl of nodes in the graph G.
NR ——-

is the maximum degree of the nodes, and is the row

dimension of the connection table ADJNCY.
ADJNCY(NRyN) —---

is the connection table containing " the adjacency

structure of  the graphe ADJNCY( jyi) 18 the j=th

neighbor of node 1.

DEG(N) ==~

ig an integer array which stores the degree of the

Anodqs. The nei#hbors>or node 1 can be retrieved as:

ADINCY(141)y = o o o 5 ADINCY(DEG(i),i).

MASK(N) --=— o .

is an integer array with O's and lng used to mask off

subgraphs. It 1is introduced so that our orderiﬁg

implementations can be ganefal enough to be applied to

subgraphs.



Appendix

For clarity, the collectlion of. subroutines 1is

subdivided uccordind to their functionse.

Ae1 Utility Routines

These routines perform certain basic operations as
required by the various ordering schemes. Included in this
set are "COPY", "RCOPY", U“MINDEG", "SORT", and "FNDNBR".

Their functions are self-explanatory.
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Appendix

A+2 Starting Node Routinas

This set consists of two subroutines, ﬁsed for finding
a b-oudo-pqripﬁornl node. The level structure is a primary
conatruct in the routines; the variables associated with it
are described as follows.
NLVL —=-
is the number of levels lh the level structure, and it
1s equal to its length plus 1.
WIDTH —=—-— |
is the width of the level structure.
LS(N) ===
is fho main -tortn; for the level structure. Segments
of this grrif éorronpond to levels of the atructﬁra.
XLé(*)‘---

is the index array to the main vector LS(*). It is an

integer array of length at least NLVL+l. The i-th

level in the rooted level structure is given by:

LS(XLS(1))s o « o o » LS(XLS(i+1)-1).

The subroutines are explained in fair detail, so that
they can be used effectively and modi tied easily. To get a

paseudo-peripheral node, "FNROOT" should be called.



Appendix

%% ROOTLS{ ROOT s ADJNCY,NRyDEG,MASK,LSyXLSyNLVL,WIDTH, IBORT)

Purpoge: The subroutine generates the rooted level
structure at a given Input node. Only those masked nodes

will be considered in the level structure.

Parametars:

ROOT -—= is the input root at which level structure is
to be generated.

ADJNCY, NR, DEG, MASK =-=- are the input wvariables
degcribing the graphe

LSy XLSy, NLVLy WIDTH =--- are the output variables
describing the rooted structure.

IBORT ~~- is an input parameter which triggers early

return 1f WIDTH is greater than or equal to IBORT.

Iin that case, the returned rooted level structure

may only be partially formede.

Subroutines used: none.
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B FNROOT(ROOT.ADJNCY,NR,N'DEG,HASK,LS,XLS.NLVL‘LASTLV)

Purpose: This subroutine uses the finite iterative
scheme by Gibbs, Poole and Stockmeyer to determine a
pseudo-peripheral node for the masked component defined

by a given node.

Parameters:

ROOT =-=-- On inputy, it defines the component where a
gstarting node 1is required. On return, it becomes
the pseudo-peripheral node found.

ADJNCY, NR, N, DEG, MASK -=-- are the input variables
describing the graph.

LS, XLSy, NLVL =--- are the working variables used to
construct rooted level structures.

LASTLV(*) === is a working array required by the
algorithm to eatore the set of nodes in the last

level of the previous level structure.

Subroutines used:

YROOTLSY, "COPY%", "“SORT".
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3 CM/BCM RBoutines

This s8et of routines is used to determine the
Cuthill-McKee YGENCN" and reverse Cuthill-McKee "GENRCN"

orderingse.

%% CM(ROOT,ADJNCY,NR,DEG,MASK,CCSIZE,ORDER)

BPurposae: The subroutine de termines the

Cuthill=-NcKee ordering for a masked cgnpnected component.

Pacansters:

ROOT —--=- is the starting node for the CM ordering.

ADJNCY, NR, DPEG, MASK ~——=-=— are the input variables
déscriblng the graphe On return,; numbered nodeé
have their mask values switched to 0.

CCSIZE --- is an input variable containing the size of
the connected componente.

ORDER(%) === jis the output array containing the CM
ordering. Here, ORDER(i) is +the node numbered i in

the ordering.

Subroutines used:

" FNBNBR", "SORT".
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GENCM( ADJNCY ¢y NRyNyDEG,MASK, LS, XLSyLASTLV, PERM)

Purppose: The subroutine finds the CM ordering for a

general (posslbly disconnected) graph.

Baranetersg:

ADJNCY, NR, N, DEG, MASK === are the 1npuf graph
parameters. On returny, the MASK values of numbered
nodes become O.

LSy XLS, LASTLYV =-=-- are the working arrays for level
structures. They are used by "FNROOTY,

PERM{N) --- is the output array containing the general
CM orderinge PERN(i) is the new label for node i in
the new orderings.
thznntinaa nas§=

WMINDEG", "FNROOT", "“CN".

GENRCM( ADJNCY,NRy NyDEG, MASK,LS,XLS, LASTLV,PERNM)

Purpoge: This subroutine findas the reverse CM

ordering for a general (possibly disconnected) graphe.

Egggmalgzsi same as "“GENCM", except that PERM

. becomes the RCM orderinge.

Subreoutines used: same as "GENCN".

-A s O~
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«4 EING/LEVX Routipnes

Thie set implements the King "GENKNGY and Levy "LEVY"
atgorlthmé foé small profile orderings. YWSUBDEG" is =a
utility routine used by both schemes and is hence included
in this collection. Its function 1is8 clear from the

documentatione

%% KING( ROOT,ADJIJNCYyNRyDEG,MASK,)CCSIZE,ORDER,,FDEG)

Purpase: This = subroutine determines the King

ordering for a masked conpected component.

Parometers:

ROOT ~=~ is the starting node for the King ordering.

ADJNCY, NR, DPEG, MASK ——— are the input graph
parame terss On return, numbered nodes have thelir
mask values changed to 0. |

CCS1ZE -=- is an lnput parameter contalning the size of
the connected componente.

QRDER(*) -—= ig the resulting King ordering. ORDER(i) is
the old node numbered i in the orderinge.

FDEG(N) === is a working vector used to store the

current front degree of the nodes.

Subreoutines used:

HSUBDEG", "RCOPY", "FNDNBR".
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*% GENKNG{ ADJNCY,NRyNyDEGyMASK,LS,XLS, LASTLV,FDEG,PERN)

Burpoge: This subroutine finds the King algorithm

for a general (possibly disconnected) graphe

Parameters:

ADJNCY, NR, N, DEGy MASK === are the input graph
- parameterse.

LSy XLSy, LASTLV ~--- are the working vectors for building
level structures. They are used in "“"FNROOT".

FDEG(N) --- is a working vector used by "KING" to storse
current front degrees of the nodes.

PERN(N) -~= 1s the ocutput vector containing the general
iing orderinge PERM( 1) is the new label assigned to

node 1 in the ordering.

Surbroutines used.:

HMINDEGY, “FNROOT", "KING".
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%% LEVY(ADJNCY,NR,NyDEG,MASK,ORDER,FDEG,PERM)

Purppse: The subroutine finds the Levy ordering for

an input graphe.

Earsneters:

ADJNCY, NR, N, DEG, MASK === are the 1input graph
parameters. On return, the MASK values of numbered
nodes become 0.

OBRDER(N) -=-- is a working vector used to store the
invorsa,of the permutation vector PERM.

FDEG(N) === ims a working vector used to store the
current front degree of the nodes.

PERN(N) =--- is the output permutation vector containing
the LEVY orderinge. PERM(1) is the new label for

node 1 in the new ordering.

Subreoutinges used.:

NSUBDEG".
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5 ElLsment Annlhilntinn Routines

This set of routines iﬁp\ement; the EA algorithm as
- described in section 6¢4¢2: The following variables are
used to represent a finite element graph.
NV =—=
is the number of nodgs in a triangular element. It is
the row dimension of the elment structure TELNNT.
NT ===
is the number of triangular elements in the mesh.
TDUAL(34NT)} —--
is the connection table for the dual graph.
TDEG( NT) ==~
is the degree of each element in the duale.
TELNNT(NV4NT) ==-—
| is the element structure of the tinlte element graphe.
The nodes in triangle 1 are given by:

TELMNT(14i )y o o e o TELL‘NT(NV'{).
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%% PARTAS(ROOT, TDUAL,TDEGyMASK,CCSIZE,ASEQASPTR,EFRONT)

Purnose: This routine finds the annihitation
sequence of a connected component in the dual graphe. The

algorithm minimizing local edge frontwidth is used.

Earaneiers:

ROOT === is the starting element for the annihilation .
sequences It also defines the connected component.

TDUAL, TDEG —--— are the input dual graph parameters.

MASK(NT) — On returny; all the numbered elements have
their MASK value changed to 0.

CCSIZE ===.13 an input integer containing the size of
the connected componente

ASEQ(&T) —— is the vector for the annihilation
seqguence. |

ASPTR --- 18 an integer pointer to the vector ASEQ. On
input, AASPTR*I is the 1location in ASEQ for the
first element in the new annihilation sequence. On
output, it points to the last element.

EFRONT(NT) =--- is a working vact#r containing the

current edge frontwidth of the triangular elements.

"RCOPY"Y.
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%% FINDAS(TDUAL,NT,TDEG,MASK,LS,XLS,LASTLV,EFRONT,ASEQ)

Purpage: The subroutine is used ¢to find an
annihilation seguence o0f a given dual graph using

minimum edge frontwidth approache.

Parametere:d

TDUAL, NT, TDEG, MNASK --- are the input dual graph
parameterse.

LS, XLS, LASfLV -=-- are the working vectors for level
structures. They are used by "FNROOT" to find a
starting element.

EFRONT(NT) ——— is a working vector used by "PARTAS".

ASEQ(NT) === 1is8 the output annihilation sequence.
ASEQ(1i) is the i-th element numbered in the

seqgquences.

Subroutines used:

W“NINDEG", "“"FNROOT", "PARTAS".
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*% BA( TDUALyNT, TDEGy TELMNT ¢NVyNyMASK,LS¢XLSy) LASTLV,NTENP4ASEQ,PERN)

Purpase: The subroutine numbers a given finite
element graph by using an induced ordering of some

annihilation sequencee.

Parametsrg:

TDUAL, NT, TDEG, TELMNT, NV, N, MASK -~- are the input
finite element graph parameters.

LS, XLSy LASTLV === are the working vectors for level
stru¢tupes. |

NTEMP(*) --- is a working vector of length at least
maxinnn{NT,ﬁ).

ASEQ(NT) === is the vector to s8tore the annihiletion
sequence.

PERM(N) --- is the permutation vector, where PERM(1i) is
the new label assigned to node i in the new

labellinge.

Subreuiioes used:

"EFINDAS" .
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