TOWARD A SYSTEM'S ENVIRONMENT FOR
COMPUTER ASSISTED PROGRAMMING

Carlos J. Lucena
Potifical Catholic University
of Rio de Janeiro

Donald D. Cowan
University of Waterloo

CS-76-06

January 1976

TOWARD A SYSTEM'S ENVIRONMENT FOR
COMPUTER ASSISTED PROGRAMMING

by

Carlos J. Lucena
Informatics Department
- Pontifical Catholic University
of Rio de Janeiro
Brasil

Donald D. Cowan
Computer Science Department
University of Waterloo

- Waterloo, Ontario
Canada

Key Phrases Modularity, Programming languages,
' Programming systems. |

CR Categories 4.2

This research was supported in part by grants and contracts from:

The National Researcn Council of Canada,

The Canadian International Deve]opment Agency,
1BM (Canada).

TOWARD A SYSTEM'S ENVIRONMENT FOR
COMPUTER ASSISTED PROGRAMMING

Carlos J. Lucena and Donald D. Cowan

Abstract

This report describes the design approach being used for the
specification of a system‘s environment for computer assisted program-
ming. The proposed system is aimed at supporting some major results in
programming methodology such as specification and correctness techniques,
techniques for program modularity, the representation of abstract data
types and program portability and efficiency. Instead of providing a
list of the desirable features for a system with the above general goals
the authors'atteMpt to present a sound logical argument on why and how the
environment's components‘are interrelated. The proposed system attempts
to amalgamate a number of apparently diQerse notions related to

specification and programming language mechanisms.

1. Introduction

Research in programming methedolegy has suggested that the
development. of programming systems should be supported by other programming
- systems generally known as environments for program development. Practi-
¢ally all of the research efforts under way to‘produce such environments
are still at the design phase, Theke are several reasons for this situation.
First, the field is very new. Second, the required features for a system's
environment for program deve]opmentAdictate the production of complex
software which réquires carefu1 thinking before implementations are produced.
Finally, implementation techniques for the most promising programming methods
and language features currently known are not precise enough to enable automatic
procedures to be built. This report attempts to do more fhan present a list
of the features that we intend to incorporate in our programming system's
environment. We opted for focusing attention on the basic principles that
need to be followed in the design of one such system, as well as the Justifi-
cation of the engineering decisions already made toward the construction of
our system.

Two major differences distinguish the design of our system from

most proposed systems. First the system is not‘centered in one single
Vinguistic level. Second, the system is aimed at sﬁpporting both the
specifigation and the imp]ementation of each level in its multi-layered
structure. |

We believe our system differs from most of systems proposed in the
1iterature (e.g. [1,2,3]). These systems can generally be described as a

central language processor (for a high level language, an extended high level

-2 -

language or at most a very high-level .language) surrounded by é number of
software tools that support the deve]opment of programs in that language
and hence‘uée only one linguistic level. Figure 1 outlines the system's

architecture for such systems.
editing
facilities

debugging and tools for documentation

testing aids ‘%\\\\&\ I ‘g///n’ generation

language
processor
\&\\x\ tools for program
Tlibrary optimization
facilities
measurement
tools

Figure 1 System's environment based on a
single programming language

Most proposed systems stress program reliability and so the basic
software tool supported is either a semi—automatic verification facility
[4] or a powerful testing facility [1]. These systems also were mostly
engineered to support one programmer in developing a program in a high-level
language (FORTRAN, PASCAL, ECL, etc.).

The development of large software packages for both applications and
systems is quite common and one questions whether the tools discussed in the

previcus paragraph will support such activities. These doubts arise because

-3 -

most of these systems are convenient for only one programmer and hence, they
do not support a strong form of communication amohg the programmers and
designers of software systems. Cbmmunication in this sense means that the
system does not provide the facility for a formalized form of program
documentation which clearly states the Specificétions of a module. Conse-
quently, the programmer would not have a complete view of the program he has
“to develop and would have difficulty constructing ii completely and accurately.
Our propdsa] describes a system's environment whose goal is to have

several programmers at different levels of the software development process

developing a relatively large software system. Some examples of these

different levels might help to clarify our meaning. In constructing a
system one usually specifies the modules that are required, their input-
output requirements and files and the interrelationships among varioué
modules. Eventually this specification is converted to a linking language
which is executed by the operating system. As a second step, the modules
have to be specified in more detail so that they can be properiy implemented
in a suitable programming language. These two steps of specification and
imp]ementation-destribe two different levels of software development. A
complete discussion of the choice of levels and the concept of modularity

is contained in [5].

. The goal that was mentioned in the previous paragraph imposes one
strong requirement on the design of the system'é environment. Communication
intra-level and inter-level within the environment has to be very precise.
For that reason, our system's environment requires that all the programming

done in the system be driven by documentation. It means that the documentation

at every level has to be encoded in a formal notation and verified for

consistency before any code at that Tevel {s produced to implement a program

segment.,

Other requirements are also suggested by the above general goal.

Each level of programming in the software development process should be able

to express itself through a linguistic level that models

abstractions that occur at that level

convénient]y the -

. This fact induces the idea of inter-

related linguistic levels (the number and characteristics of each level

remaining to be determined).

Finally, it is required of the systems design

that it supports in all its levels a very clear and operatioha] concept of

modularity, since we aim at supporting groups of programmers working simul-

taneously for the production of various parts of the same software syst°m

Figure 2 displays the over-all organ1zat1on of our proposed system.

Module
= Specification _ Linking ﬁ“Data Base
‘&,gs* Notation =¥ Language [%#»Software
‘ ' : Tools

: Module

/ Specification _ ~ Modular € Data Base

, / Notaj:mn Prog.Lang. <alSoftuare |
Tools
YR R 5 Module
Specification Data Abstr {3
"ﬁ;/ Notation <=>Prog.tang.@&§Data Base
‘?;ﬁf” ' “1Software
: : Tools

Conventions:

A interactive user,

{ gets refined into.

<= the left side specifies

programs that are
semantically equivalent
to the ones represented
in the right side.

A Once the level below

i ~is compiled it is
used by the level
above.

<~ interacts with.

Figure 2 Multi-layered system’s environment

«§ -

- After examining the requifements imposed by the general gba],'we turn to
more specific services that the system's environment is intended to support..
The system should support: *
a) 0ff-the-shelf modular programming;
b) The development of custom-tailored program modules
c) A deéign strategy through which the management of a software
project is able to reject as soon as possible in the process of
development, a given software product being developed with the aid
of fhe environment. In qther words, the need for 1teration‘in the
- design and implementation process should be recoghized as early
as possible. The indicators to be used for that‘purpose are:
correctness, robustness (toierance to errors) and performance;

d) The development of portable programs.

Figure 3 presents an overview of the system's environment in operation.
g p]

v
docum.
CTM
' docum.
[11% 7 OSM sed>
‘ docum.
sed> OSM

Conventions:

€TM - Custom-tailored module € ——- compiled module is returned.
OSM - off-the-shelf module ses> - from the modules' library.
——» - documentation is transferred
for the encoding of the next
level down,

Note: Incomplete levels (that is, specified CTMs together with 0SMs)
can be executed symbolically. .

Figure 3 System's environment in operation

Two important strategies will be used in the design of our system's
environment. - The sub-systems that support the specifié Tinguistic levels
‘can be built and used'independent1y. It is not our intention to reinvent
notations and language features; in fact, we incorporated into our‘systém
(sometimés in an adapted version) several prograhming mechanisms that ha?e

been propbsed by different authors.

2. On Modules and Modular Programming

In a previous report [5] we attemptéd to define précise]y the

concept of module as it is used in the context of programming systems.
There we characterized modularity as a property possessed by a given linguistic
level of programming. A linguistic level is a formal language with a distin-
guishing syntax and semantics. We require modules to be programming units
characterized at given]inguistic levels which possess the propefties‘of
syntactic non-interference, semantic context-independence, composition by
nesting, definitional completeness and data genera]ity.A The names of the
properties suggeét their intended meanings (the reader is referred to [5]
for details). The last two properties in the 1ist are not satisfied by either
contemporary or recently proposed programming constructs and yet are
fundamental for the development of oUr~System's environment.

. By definitional completeness we mean that“modulés have always to
carry an operational definition associated with its imp1emenfatibnfcode.
In the case of a custom-tailored module the definition drives the synthesis

of the implementation (not in the sense of automatic compilation) and in the

N ;.

case of an off-the»éhe]f module the definition serves to completely identify
modu]és in the module library. Furthermore, the documentation (definition)
establishes the 1ink between the linguistic levels: it must be possible to
make consistency checks between successive levels of documentation that
occur in the step-wise refinement process. In our system's environment,
the following decisions were made about documentation (definition,
specification)f “ |

a) Documentation will have a non-procedural form at all linguistic
level and will be machine processable.

b) It must be possible to make consistency checks intra-level and

| inter-level based on the documentation notation.

c) The documentation notation will be sufficiently formal to allow
interpretive symbolic runs‘of the programs they describe at a
given linguistic level (not necessarily the generation of code to
a base machine).

By data generality we mean the possibility of inter-communication
between modules via arbitrary data structures. Without thié property there
is no way a programmer can encode his module without some know]edge about the
internal workings of the modules he will be using. Data generality will
be enforced in our environment through two program mechanisms. The first
method assumes the existence of two typés of universal data structures in
the system's environment: physical media representations and a virtual
generalized representation. The physical media representations stand for
the representations of data dictated by the standardized access mechanisms

adopted within the environment for the various mass storage devices available

to the system. The virtual generalized representation is not related to
any specific storage medium and is universally known by users of the

environment. "This method, which we shall call the conversion function method,

requires that each module possesses two sets of mapping functions F, and F

1
that allow for the conversion to and from the universal data structures

2

(communication's media) to the module's internal representation [5].

Figure 4 illustrates the outlined method.

9 f
97 2 |
P : P
F F
9n- 1 2 fn-l_
' no_ 'n_. v

P - Physical media representation
V - Virtual generalized representation

Figure 4 Conversion function method for
data generality

" The above method handles the problem of data generality between

compiled modules. The second approach is called the type descriptor's

transmission method. In [6] a type descriptor is an extension of the concept
of the SIMULA [7] class. It allows the transmission of type descriptors

between modules. Values of type type (data abstractions) can be transmitted

-9 -

since there are variables, parameters,‘and functions in the programming
language of type type. The tkansmission of type describtors allows the
postponement of strong type checking until the moment when modules are
assembled together. Since typé descriptors typically do not change du}ing
execution, it is possible to perform static association of type descrihtor
parameters and hence perform static type chebking. Conditions for static
type checking and parameter association can be found in [6]. The type
descriptor's transmission method allows for module composition with data‘.
generality at the two lower Tinguistic levels discussed below.

We adopted a three-level model as the fundaménta1 way of referring
to the linguistic levels defined within the environment. In-fact, there‘
are more than three levels since tWo,of them have access to common base
languages that provide a uniform way of referencing data structures. The ‘
three basic levels that compose the framework on which the environment is
built are called: system-level,program-level and data-abstraction lavel.

No automatic translation takes place between Jevels for the synthesis of
custom-tailored modules: each level is individually hand-coded by programmers
at that 1eve1.. Each level induces a programming system within the environ-
ment that can be implemented and used separate]y., Nevertheless, we believe
that the major strength of the system is the capability of interconnection

between levels and the software management techniques that it suggests.

3. Major System Features
The system-level is the linguistic level defined by the system's

- specification language PSL: a Problem Statement Language [8]. PSL is

- 10 -

essentia11y a convenient notation for encoding the system's graph

(representing éontro1 and data flow) that usually appears in the early

phases of programming system's design. In particular, PSL describes a system's
network with two kinds of nodes: process and data element nodes. Directed
links are found in the network between process and data element nodes, but

not between process nodes or between data element nodes. The links connect

a process with its input and output data. The nodes of the graph are described
in a COBOL-1ike manner through program segments called sections. The basic

sections of PSL are the following:

System Parameters

Component of the system SECTIONS
. Documents INPUT
OUTPUT
History Data Information SET
ENTITY
RELATION
Data Definition GROUP
ELEMENT
Process Definition PROCESS
Conditional Control EVENT
| CONDITION
INTERVAL
Operational Interfaces INTERFACE

SYSTEM PARAMETER

1 -

PSL being a‘formal language, it allows a PSL problem statement to be analysed
for consistency and other properties through a query langwage called PSA
(Problem Statement Analyser). Recently reported efforts [9] to generate

code from PSL have taken the approach of describing further the semantics

of a PSL section by means of a COBOL-like programming 1anguage.‘ Even though
we are not interested in generating code automatically from this 1eVei, we
will be able to use some ideas about modifications to be introduced in the
PSL language identified during this effort; The unstructured data type
ELEMENT, for instance, could have its domain described in a manner similar to
PASCAL [10]. In our system, the Qrocedure part of a sectibn‘wi11 be called

the input-output state description part. This part of the PROCESS section

is the last one to be written in a problem statement. Since PSL describes
transformétidns and data, the input-output state descriptioh part df a
section will comprise a set of assertions that describe in a non-procedural
manner the input and the output states of a process (for instance, theée
assertions will state explicitly the subsetting criteria relating ELEMENTs

to GROUPS etc.). Instead of Qenerating‘PSA reports our system wi11 be able
to perform symbolic executions with the PSL source code. As soon as some
statistics are gathered on the average performance of PSL operations (UPDATE,
DERIVE, etc.) when actually implemented, the designer will be able to compare
time requirements for a system, with times obtained from simulated runs

done with the problem statement. This simuiafion feature will probably
enhance the programmer's analytical capability at the system's level. PSL
will then be compiled into a Tinking language which will combine off—the«sheif‘

modules with the code for newly developed modules.

- 12 -

A1l the information about a given proceés (text of the process‘
“section in the PSL source and associated data sections) éreitrahéferred by
the system to a programmer in charge of a module at the program-level
(in case a custom-tailored module needs to be developed). At the program-
level the programmers will rewrite thié inherited documentation in the form
of an exténded version of Parnas' software module specification language [11].
The constituents of a program module specification will be in our case:.

a) the set of possible values;

b) data types specification, including axioms for operations

on the types;

c) Timited values;

d) parameters;

e) effects.
Items a) and b) are the input-output assertions of the module. Item b) is
a suitable representation of an algebraic specification of the abstract data
types that will be used by the module (as in [12]). Coming from the
specification-level of documentation to the program-level will require the
creation of a set of input, output and program variables. These variables
will have to be declared as being of certain abstract types and the'input-
output assertions will be expressed in terms of them. The content of the
input-output state descriptions and the modu1e input-output assertions‘are the
same although they are expressed in a dffferent way._‘Consistency checks
can be carried out mechanically betWeen the two 1eve]s of specification

(e.g. by generating tables of values from the respective sets of assertions).

=13 -

The programming language to be used at this level is a very high-Tevel language
(using abstract data types and the type deseripter transmissi’gn technique)
called MOSAICO [13]. Experiments with this level of language are béing
conducted with an extended version of PL/I. Since implementations (a very
high-level program) and program specifications are interchangéab1e, that is,
in the absence of an implementation the operations defined on the abstract
data type may be interpreted symbolically, we can as in the previous Tlevel
"test the specification". Actual code for the imp]émentation can only be
generated when data types are implemented.

- The data-abstraction level receives the data type specifications
from the program module plus some requirements about precision and efficiency.
The cluster mechanism [14] that we use for the data abstraction level
comprises a common language [15] which refers to representation level ciusters.
It allows us to have a library of "base machines" which can be selected
according to their performance in a given application [16]. Portability should
also be achieved using the library of base machines, since compilers can be
written to imp]ément the base machines on different computers. The same
test data used for symbolic runs with the program module specification can
bé used for actual runs with the code generated for the very high-level
language prdgram (eventua]]y supported by instrumentation features to check
the performance requirements).

Before the code generated for the program-level is linked with the

- other modules at the system—?eve],Athe program module is extended with

conversion functions to satisfy the criterion of data generality.

-

4. Conclusions

‘We have discussed the central concepts of a syétem's environment
for computer assisted programming. We have avoided practical issues such
as the editing facilities requfred by a system's environment [17] to
- concentrate on the problem of Tevels of]anguage. As the implementation
work progresses we are sure that some practical restrictions will interfere .
with the conceptual design level and some design changes may have to be

introduced.

-15 -

References

1]
[2]
(3]
(43
[5]
[6]

[7]

[8]
[91

[10]
[n]

[12]

[13]

4]

Ramamoorthy, C.V., Ho, S.F., "Testing Large Software with Automatic =~
Software Evaluation Systems", Proceedings of the International
Conference on Reliable Software, 1975. '

Culpepper, L.M., "A System for Reliable Engineering Software",

Proceedings of the International Conference on Reliable Software,
1975. '

Wegbreit, B., "ECL Programming System", Proceedings of the Fall Joint
Computer Conference, 1971. ' ,

‘Good, D.I., London, R.L., Bledsoe, W.K., "An Interactive Program

Verification System", Proceedings of the International Conference
on Reliable Software, 1975, - -

Cowan, D.D., Lucena, C.J., Staé, A.v., "On the Concept of Modules in
Programming Systems", Technical Report (S5-76-05, University of
Waterloo, 1976, ‘

Staa, A.v., "Data Transmission and Modularity Aspects of Programming
Languages", Research Report CS-74-17, Department of Computer
Science, University of Waterloo, 1974. ‘

Dahl, 0.J., et al., "The Simula 67 Common Base Language", Norwegian
Computing Centre, Oslo, 1968. :

Teichroew, D., Bastarache, M.Jd., "PSL User's Manual", ISDOS Yorking
Paper No.98, Department of Industrial Engineering, The Univ.
of Michigan, 1975, o ‘

Nunamaker, J.F., Konsynski, B., "Progress Report on Automatic Code ,
Generation from PSL", Management Information Systems, Univ. of Arizona,
1975. ' ‘

Wirth, N., "The Programming Language Pascal", Acta Informatica 1, 1971.

Parnas, D.L., "A Technique for the Specification of Software Modules
with Examples", CACM, vol.15, No.12, 1972. ‘ g

Guttag, J.V., "The Specification and Application to Programming of
Abstract Data Types", Technical Report CSRG-59, Univ. of Toronto,
1975. _ .

Staa, A.v., Lucena, C.J., "MOSAICO: A Language for Modular Programming”,
to appear.

Liskov, B.H., Ziliss, S.H., MProgramming with Abstract Data Typas™,
Proceedings of ACM SIGPLAN Symposium on Very High Level Languagss,
1974, '

-16 -

[15] Schwabe, D., Lucena, C., "Specification and Uniform Reference to
Data Structures in PL/I", Research Report, Computer Science

Department, Pontificia Universidade Catolica do Rio de Janeiro,
1976. :

[16] Low, J.R., "Automatic Coding: Choice of Data Structures", Stanford
University, Computer Science Department, STAN-CS-74-452, 1974,

[17] Donzeau, V. et al., "A Structure Oriented Program Editor: A First Step
Towards Computer Assisted Programming", Rapport de Recherche No.114,
Institut de Recherche d'Informatique et d'Automatique, 1975.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

