ON THE CONCEPT OF MODULES IN
PROGRAMAING SYSTEMS

) D.D. Cowan
University of Waterloo

C.J. Lucena
A. von Staa
Pontifical Catholic University of Rio de Janeiro

€S-76-03
January, 1976

ON THE CONCEPT OF MODULES IN
"PROGRAMMING SYSTEMS

D.D. Cowan
University of Waterloo

C.J. Lucena
A. von Staa
Pontifical Catholic University of Rio de Janeiro

CS-76-05
January, 1976

- ON THE CONCEPT OF MODULES IN PROGRAMMING SYSTEMS

by

D.D. Cowan
Computer Science Department
University of Waterloo
Waterlioo, Ontario
Canada

C.J. Lucena
A. von Staa
Informatics Department
Pontifical Catholic University
of Rio de Janeiro
Brasil

Key phrases: Modularity, Programming languages, Programming
25> g g g 9
systems,

CR Categor%es: 4.2

This research was supported in part by grants and contracts from:
The National Research Council of Canada,

The Canadian International Development Agency,

IBM (Canada).

Abstract

The effective and widespread use of methods for the design and
construction of programs will require support by a cd]]ection of automatic
or semi-automatic procedures often called a system's environment for
program development., The design of such Systems requires a clear under-
standing of the semantics of programs and the rules for their synthesis,

particularly the concept of modularity. | |
| This paper is intended to éontribute further to the understanding
of the concept of mbdu]arity since program units called modules will allow
the synthesis of complex programming systems from off—thé-she]f program"
components. Such a method of system construction should significantly reduce
the cost of software production. |

The concept of a module is presented in several stages in this paper.
First, it is characterized by showing that modularity is a property of
certain programming units at a giQen Tinguistic level. Once this axiom
of modularity is established, then modules are further distinguished from
other types of program units by five properties. A program unit which
satiﬁfies these five properties is said to have strong modularity. It is
then determined that three linguistic levels appear adequate to characterize
most programming situations and there is a general discussion of the type
of language required at each of these linguistic levels. At this point,
contemborary language features both implemented and suggested, such as
procedures, clusters and module interconnectfon languages are surveyed to
determine how well they satisfy the modu]arity properties at the apprbpriate‘
linguistic levels. Finally, the concept 6f Sharfng is examfned and it is

shown that a module which is shared is a module in a weak sense.

1. Introduction

The effective and widespread use of methods for the design and
- construction of programs will require support by automatic or semi-automatic
procedures; such a set of procedures has 6ften‘been called a system's
environment for program deve]opment. When designing such systems a clear
understanding of the semantics of programs and of the synthesis rules for
creating such programs is required.- |

Recent research in software engineering has led to some new
-concepts in the area of programming language design, a better understanding
of program stfucture and a better characterization of some of the fundamental
properties of software systems; The concept of modularity, for instance, has
received a very thorough treatment in the works of Parnas [2,3], Dennié [11,
Liskov and Zilles [4,5] and others.

This paper is motivated by a desire to contribute further te the
understanding of the concept of modularity, since the authors felt the need

for a very systematic characterization of the concept of modularity in

the process of designing a programming system for software development,
Program units called modules will allow the synthesis of complex programming
systems from "off-the-shelf" program components and hence programmers can
reduce the cost of producing such systems. Furthefmore, modules are powerful
mechanisms to model the abstractions which occur at the various levels of
development of a programming system. |

When trying to characterize the concept of a module a number of

issues come into play. Some of the important ones are: system and program

structure, programming language design, specification languages and

techniques, and management of programming. Previous research in our
opinion has not adequately related these issues to the definition and use
of the concept of modularity. Re]ated issues such as common base languages
also help to complicate the modularity prob]em.‘ | |

In this paper we start with a reference to Boebert used by
Dennis [1] (on the role of linguistic levels in modularity) and the concept
of software module specification proposed by Parnas [2,3]. We give some
properties as a base for our definition of modularity and then identify
some types of modules that can be used in connection with a programming
system. After defining modularity we present a survey of some programming
language features and determine if they satisfy our definition. The paper
is completed by discussing some pragmatics related to the implementation
of modularity.

Although the subject of modularity lends itself to a formal
mathematical treatmert, we opted, at this stage of our research, for a

systematic, but informal presentation of our ideas.

2. Basic Concepts

Discussion of the modularity problem is based on an informal
statement by Boebert [1], that we will state here as our basic axiom of
modularity. |

Axiom. AModu]arity is a property possessed by certain programming
units defined at a given linguistic level of prdgramming.

A Tlinguistic level oprkogramming, in‘the present context,‘is a

particular notation for the expression of computatioha1 algorithms that has

a syntax and semantics which distinguishes it from other notations.
- Different linguistic levels are used to express different phases of the
development of a programming system. For example, a set of precompiled
programs can be joined together for execution by a 1linking language, while
these various precompiled programs will have been written at some time in
high-level languages such as ALGOL 60, PL/1 and COBOL, or perhaps in
assembler language. The precompiled programs also may have been described
ét én early stage of development through a non-executable specification
language such as PSL [9] or the more informal language HIPO [17]. Each
of the these notations, the Tinking Tanguage, the normal programming
‘language, and the program specification language all represent different
linguistic programming levels. In the paper we use the concept of
linguistic level to help define modularity but our choice of levels is
somewhat unconventional. By associating modularity with a given linguistic
level it will allow characterization of a module independent of the linguistic
level at which it occurs.

DeRemer and Kron [7], in a recent paper, make implicit use of
the concept of linguistic levels; in fact, the difference théy'describe
between LPSs (Languages for Programming in the Small) and MILs (Module
Interconnection gpnguages,or Languages for.Programming in the Large) suppbrts
the axiom of modularity, that modularity is closely related tollihguistic
level. | | |

One's experience and the 1itérature on software lead to a list of
properties which when applied to a program unit at a given linguistic level,
defines it as a module. The properties are stated hext in a concise manner

with a short discussion accompanying each one,

Property 1 - Composition by nesting is the property which allows

- program units to be invoked and/or declared inside other program units
to an arbitrary depth. |

The Tlinguistic Tlevel defined‘by FORTRAN for instance, makes no
provision for combining separateiy written FORTRAN programs; a complete
FORTRAN program consisting of main program and subprograms cannot serve as a
prdgram module because it cannot be further combined with other units to
form larger modules. |

- Property 2 - Syntactic non-interference fs the property which

allows program units to be invoked and/or declared in a program text, written
in a given programming language, without requiring any syntactic changes
in the program text in which it is being placed.

The Tinguistic level defined by ALGOL 60, for instance, violates
this property. A situation may occur in ALGOL 60 where a clash of names
occurs when two procelures are placed in the program as declarations within
the same enclosing procedure. Thus the use of nonlocal references‘in an

ALGOL 60 program unit (procedure) violates property 2.

Property 3 - Semantic context-independence is the propérty which
allows a program to have an invariant meaning indepeﬁdent of the location in
which it is declared and/or invoked within an algorithm expressed at a given
linguistic level.

Suppose that a program unit, defined at a given linguistic level,
is specifiéd by two first-order predicate-calculus formulae that represent
respectively its input and output assertions in the Floyd sense [18]. If

the program unit's specification, as given by these two assertions, is

B - 5 =

invariant within the program text where it is invoked and/or declared, then
- we say that the program unit satisfies property 3.

Property 4 - Data generality is the property which allows a

program unit to communicate with other program units of the same 1inguist1c
fevel, using arbitrary data structures. |

Satisfying this property means that the program unit implements
Parnas' hiding principle [2]. Through this principle no program unit
(programmer) should have any information about the inner workings of the
modules with which it communicates. The hiding principle is, of course,
a fundamental property required in off-the-shelf programming.

Property 5 -~ Definitional completeness is the property which

forces a program unit defined at a given linguistic level to carry a semantic
definition which is comprehensible to a class of users.

A program unit's definition is an inherent part of the concept of a
module. In fact, no off-the-shelf programming is viable unless modules
carry a complete operational definition. In fact, when a modular program
is being synthesized; the specification of the module (its definition)
should precede its implementation. For instance, an operational module
definition should carry information about the type, form and nature (whether
input or output) of parameters, a clear statement about the precision,
cost and restrictions (input assertions) and a description of the actions to
be taken when something unexpected occurs (sometimes called the module's |
robustness). When engineering a modular system it is important to express

the definition in such a way that it can also be handled automatically.

A program unit must also be correct in order to be called a module.
Properties 3 and 5 {mply correctness and so this is not explicitly stated

as another property.

3. The Concept of Mpdulakity

The concept of modularity is stéted here as a notibn which is
independent of particular language features and programming methods. The
reasons for this method of presentation appear in the discussion following
the definition. Modularity is defined as follows: 7

Definition A program unit defined at a certain.linguistic Tevel
is a moduie, or a linguistic level allows a program unit to exhibit strong
modularity (qr simply, modularity) if and only if the program unit satisfies
properties 1 threugh 5.

By defining modules in this abstract manner, a principle is
provided for the software engineér'in‘deg{éﬁing and constructing programming
tools. When designing']anguages for constructing programming systems
the software engineer can choose the linguistic levels and methods of
constructing and manipulating modules using the properties stated in
section 2. In general, each linguistic level will contain features for
. encapsulating program units into modules, a set of control structures and
data types.
| Several approaches to brogram development can be discussed
abstractly in terﬁs of our definition of modularity with specific reference

to properties 1 through 5. For example, top-down programming, bottom-up

programming, incremental program verification, and interchangeability
and efficiencyfcan be characterized.

Our definition of linguistic level is somewhat differenf than the
ones presented in the 1itefature [14] on top-down structured programming.
- Top-down structured programming in its "classical" form is usually practised
at a single linguistic level that is considered to support modularity,
because of property 1. The use of decreasing linguistic levels allows
an interesting extension of the concept of top-down prbgramming, since we
- are able to support this type of programming.both within and between levels.
A hint of this extension of top-down programming was contgined in [15].

Bottom-up programming is characterized by properties 2 to 5 since
we require modules to be independent and well-described entities, which allow
for the composition of:prOQrams from ready-made (off-the-shelf) program
units.

Properties .3 and 5 allow for incremental program verification
since each module may be proved correct independent of its environment.
In fact,'if we examine thé program as a whole, expressed at a given linguistic
level, the properties of individual modules can be proved correct independently
and then the properties of the modules can be abstracted when the whole
program is proved correct. Of course, the same remarks apply to the testing
of modules.

Properties 2 to 5 allow a module to be replaced by an equivalent
one. Furthermore, property 4 (data generality) allows not only the replace-

ment of a module by one that'implements a different algorithm on the same

data structures but replacement by one that uses the same or different
algorithm on a different data structure. Optimization, that is, the selection
of the most efficient implementation for a given specification becomes a

widely applicable technique.

4, levels of Language for Modular Programming

In previous sections there was no attempt to pre-define the
number and form of the linguistic levels required for the complete expression
'of a programming system. Although it is now generally accepted that program-
ming should take place through a spectrum of inter-coﬁmunicating linguistic
'Ievels, which within Tevels proceed from various stages of specification to
various stages of implementation, it is difficult to establish criteria to
specify the number of linguistic levels and their respective characteristics.
In previous sections only the conditions for a given linguistic level to
support modularity have been stated; in this section a specific model is
proposed that fixes éhe number of Tinguistic levels and tries to characterize
modularity in each of these levels. Of course, this is only one possible
model which might be proposed but it seems to work well in explaining the
role of various programming constructs in modularity.

There are a number of reasons that support our proposed partitioning
into three linguistic Tevels, which is also the partitioning we‘propose for
our programming system for program deveTopmeht []9]. They are:

a) Some reasonable theoretica] arguments in favor of similar three

level models [16].

b) Most of the current language features and programming techniques

in the literature can be comfortably classified into the three]eveTs.

-9 -

Modularity is examined at three 1inguistic'1eve1s that are called respéctive]y
systems, program and‘data-abstraction Tevels. As mentioned before, the
reader will note some similarities between these three levels and the three
levels called relational, access path and machine levels, that Earley [16]
defines for data structures, |

~ In a working modular system the three Tinguistic levels (the
, system~1eve],_the program-level and the data-abstraction level) can be
visualized in terms of contemborary program structures. At the system-level,

modules (which we will call system-modules) are usually pre-compiled programs

which are connected together by a module-interconnection language (using

the terminology in [7]). The program-level, supports program-modules,
which generally speaking stand for procedures in the ALGOL sense. The data-

abstraction level, supports data-abstraction modules which stand basically

for implementations of abstract data types. Figure 1 sketches the inter-
relationships between our three selected kinds of modules.

The descrip%ion in the previous paragraph is an analytical
presentation of the levels of modu1arity. From a synthesis point of view,
using a top-down approach, the three levels relate to each bther in the
following way: system-modules are specified together with their inter-
connections; program-modules are defined so as to implement system-modules
(data abstractions are left unspecified); data abstréctions are later
imp]éménted and they define the programming system's machine level. It is
important to emphasize at this point the differences between the control
structures used at the various levels. The module interconnection Tanguage

used at the system-level will probably look like a graph language,

—

- 10 -

[:] System Tinguistic level (nesting of system interconnections)
<:::> Program linguistic level (nesting of‘procedures)

(:) Data abstraction linguistic level (nesting of data abstractions)
~— — — = Inter-level communications Tinks

Figure 1 Module interconnection at the system, program and
data abstraction Tinguistic levels.

describing the connection between the various nodes (system-modules) and

the content of each node. At the program-level the control structures will

“be the standard control structures found in an ALGOL-like language

(IFTHENELSE, DOWHILE, CASE, etc.). The data-abstraction level, illustrated
in the next section, will call for a module interconnection language similar

to the type used at the system-level.

-11 -

5. Language Features for Modular Programming
| WE.feei that most of the language features that exist 6r have

been proposed to support the concept of modularity can be satfsfactori1y

examined through the use of our three-level mode]l(not that the model is

completely general but probably because the problem of modularity has not

been éufficient]y explored). Furthermore, we think that our general concept

of modularity and the use of the three-level model of linguistic levels,

helps classify and clarify specific language features fof modular programming.
Although we are considering the three-level model as‘the basis for

our programming system for program development, no engineering decisions

about specific system featurés will be”diséuséed in this paper. By

specific system features we mean special notation for module specification

and programming mechanisms for module entoding. It can be observed that

the higher the linguistic level, the closer the specification and the program-

ming mechanisms will be.

5.1 The System-Level

The system-level is the highest level in our model., System-modules
are specified (when they need to be built) or identified (when they are in a

library waiting for off-the-shelf utilization) through a notation that can be

‘well characterized by the expression: module interconnection language (MIL) [7].
Ready-made modules at this level are often termed load modules and object |
modules. When the newly specified modules are finally built (at lower
linguistic levels), the MIL program is "compiled" into a linking language

which is supported by some operating system.

-12 -

It {s possible to identify in the literature some notational
systems which are candidates to support some form of modularity at this
linguistic level. HWe will examine two of these notational systemélin the
context of our definition of modularity. |

The MIL proposed in [7] was designed to define "system»ﬁodu]es".
Top-down and bottom-up programming methodologies as well as some form of
incremental proof and interchangeabi]ity can be achieved in that system.
For each "module" m at a node n of the MIL system tree, two statements are
required in the MIL program:

a) the "statement of origin", Tisting the resources defined in m;

b) the "statement of usage", listing the resources that are

used, but not defined in m.
A complete MIL program consists of a sequence of "system-descriptions",
each assumed to be compilable alone, or in conjunction with others.
Figure 2 shows a system module specification example taken from [7].
| The PSL (Problem Statement Language) is also a system-level design

language developed by Teichroew and others at the ISDOS Project [9]. PSL
uses the following concepts to describe a system-level design: interface
objects produce iggg}i_for the system and receive outputs from the system;
sets (files) consist of entities (records) which in turn consist of groups
and/or elements (fields) of data; processes produce and receive data subject

to events, conditions and time intervals which describe dynamic behavior;

system parameters provide size information. The example in Figure 3 taken

from [9] illustrates a system-level design of a vefy'simpie payroll program-

ming system.

-13 -

system Input

“author 'Sharon Sickel
date 'duly 1974’
provides Input-parser
consists of

root module

originates Input-parser

uses derived Parser, Post-processor

uses nonderived Language-extensions

subsystem Scan

~must provide Scanner

subsystem Parse

must provide Parser

has access to Scan

subsystem Post

must provide Post-processor

Figure 2 DeRemer and Kron's system description

A description of a system-level design in PSL is composed of
sections of various types. Sections and statements within sections can
occur in any order, |

Some comments are in order about the two system;1eve1‘specifica—
tion languages. The goal of PSL appears to be more general than DeRemer and

Kron's MIL. Since both notations are machine-readable, a system for

¢ 24nbl4

403 403 403 403 403 1¢

_ 0¢

¢ sgafo| dws-pue-sjuswidedap Ag QIAITIY 6l
tbulssaooad-||oafed Ag QILVHINTD 8l

¢ sandano-woay sAsAed 1ndLno £LL
, : gl
, fUuO0ljewAO0 UL~-4d] SeW-| [o4Aed S3Lvadn Gl
- ¢ sandano-wa3 sAsAed SILVY3INTY 12l
= | fuoljewdojul-aakodus SIATIITY £l
0 - ‘6ulssaooud-| [04hed $$3304d 2l
, _ Lt
¢Bulssaooud-| | oaked Ag @31vadn ot

fUOLJPWA0SUL-Ud] SR~ | | 04Ked 13S 6

8

‘bulssadoud-|io4fed Ag QIAIFO L

¢ sgafo] dwa-pue-sjusuiaedap A9 QILVYINID 9

fuoLjewuojul-aakofdus LOdNT §

El . .v

¢ sandano-wajsAsAed S3AT303 €

‘uoLjewojut-aafo dus SILYYINTD 2

¢ s99A0| dws-pue-sjuawiiedap JOVAYILINT L

INIT-MINON J9¥d-MINON LNIWWOD 3INI43G INIT-Y3d-3INO
9530 OV=9UYWH L=9UVWI OL=DYVWNY GZ=IUVYWG OL=9YVAY 02=DUVWN G=DYYWS HINNJON LNIdd X3IANION 3714

. . _ Sdd Y04 SH3ILIWVHYd
~ INIWILVLS W3780¥d Q3LLVWYO4
I1dWYX 3~ TT08AVd

- 15 -

specification analysis (called PSA in the case of the ISDOS project) can

be built and consistency checks can be app1iéd to the spezification.

Both specification languages are open-ended,. in the sense that they may be
further described (implemented) in terms of lower-level linguistic Tlevels.

Examining both systems using our definition of modularity,

the fo]]owing conclusions can be drawn: the program,unfts called section
(both processes and data) are modules at the Tinguistic level defined by PSL.
MIL's modules are not strong modules in the sense of our definition. To
justify this statemenfiis necessary to examine each of the properties that
are required by our definition.

Property 1 (Composition by nesting) - Both sections and MIL's
modules satisfy it. In fact, data definition and process sections in PSL
may refer to other sections of the same type to an arbitrary degree of
nesting. In MIL, modules can be composed to form systems of modules.

Property 2*(Syntactic non-interference} - Since no two PSL's
sections or MIL's modules can bear the same name, syntactic non-interference
is satisfied by the definition of the reSpective notational systems.

Property 3 (Semantic context-independence) .- The linguistic
level defined by PSL satisfies this property. Let us take a process section
first. Its general form is the following:

Process Section

PROCESS name

RECEIVES inputs

GENERATES outputs

USES data TO DERIVE/UPDATE data

MAINTAINS relation and/or subsetting criteria

- 16 -

A process in PSL can both USE data generated by any other process and

DERIVE (UPDATE) data to be used by any other process. The sémantics of

the data definitions are fixed (data is always defined in terms of ENTITIES,

SETS, GROUPS and ELEMENTS). The semantics of a process seétion are‘therefore

self-contained and property 3 is satisfied for these construcis. By the

same token, data-definition sectiohs, e.g. Set Section, are program units

that safisfy property 3.

| An MIL program defines the scope of definition of resource names

across their module and subsystem boundaries. MIL allows for a controlled-

access mechanism through which the power and the responsibility to establish

- channels for transmitting names of reéources between siblings in its |

system tree rests solely with their parent. Since, in this case, the

semantics of one ﬁodu1e,may have to be defined in terms of the resources

defined in another module, we say that MIL modules do not satisfy property 3

(we will review this,issue in section 6 of this paper). |
Property 4 (data generality) - Both PSL and MIL program units

satisfy this property. The interpretation of this statement needs special

attention. PSL data and process sections do Satisfy the property because

they communicate via data strdctures whose meanings are universa1 to the

PSL system. The same happens in MIL because there we have a trivial form of

communication: resources are typeless. Data generality only hd]dé in tﬁe

latter case if we consider this linguistic level as a terminal one, that is,

providing it does not communicate automatically with lower linguistic levels.

- 17 -

Property 5 (definitional completeness) - The Tinguistic Tevel defined
by PSL and MIL is suppported by language features that we can basically call
definitional. The program text is identical to the program's documentation.

In this sense we can say that both PSL and MIL satisfy property 5.

It should not be too‘difficu1t to "compi]e"llanguages ét the system
level such as MIL and PSL into linking languages which can be "interpreted"
by an operating system, since the difference between non-executable specifica-
tion languages and standard Tinking and job control languages appears to be

minimal.

5.2 The Program-Level

At the program-level, a lower Tlinguistic level, there are at present
two types of interrelated Tanguages. These are the specification languages
such as plain assertion languages and Parnas' specification language [3]
which describe how a module should behave and the implementation or so-called
programming 1anguages\which describe how a module achieves its specification.
Ideally one would Tike to compile a specification direct1y but efficiency
considerations based on current computer architectures require that
Specffications be rewritten in procedural forms before code can be generated.

In order to bridge the present gap between specification (intent)
and programming (implementation) at the linguistic level our system will use
a very,ﬁigh-leve1 programming language which will support abstract data
structures [4]. This means that this language will have control structures to
manipulate data structures and their operations but the definition of the

data structures and operations will occur at another linguistic level (the

=18 -

data-abstraction level discussed in the next seétion). The gap'between
intent and implementation is bridged in the sense that the statement of the
implementation and its specification can easily be proven equivalent by some
known techniques (e.g.[21]). This is so because opérationa] specification
notations do not usually carry the description of implementation data
structures. A standard high-level language which does describe these details
is therefore level-incompatible with such spec¢ifications (one being far more
abstract than the other) and therefore equivalence proofs are hard to obtain
(even informal ones).

The next few paragraphs examine a number of different notations for
-specifying and implementing modules in the light of our definition‘of modularity.
Specifically plain assertion languages, Parnas' specification language [3]?
the classical ALGOL procedures [20], forms [6] and clusters [4] are considered.

We have indicated that the very high-level programming language for
our system operates on abstract data structures. Hence, there are two concepts
of abstraction present at this level (which must not be confused): the module
as an abstraction mechanism and data abstractions. It is not the intention at
this linguistic Tevel to consider the implementation of data structures
but rather to use data in its abstract form. That rules out the consideration
of clusters at this linguistic level since they are mechanisms for the imple-
mentation of abstract data types. The example presented in Figure 4
illustrates a program at the program-level using abstract data types.

The PL/I extensidn used in this example was proposed in [22].

-19 -

EX: PROC OPTIONS (MAIN);
DCL stack(type ABSTRACT TYPE};
DCL p stack(BIN FIXED);

®

IF input='("' THEN stack@push(p,k)
ELSE IF input=')' THEN DO;
PUT SKIP LIST(k,stack@top(p));
stack@pop(p) ;
END

Figure 4 Programming with abstract data types in PL/1

Forms and ALGOL-type procedures (functions) and the several variations of

this concept are considered as the natural modeling facility for the concept
of modularity at the program level. Although forms can also be seen as a
modeling capability for data abstractions (acting as clusters) this particular
capability does not belong at the linguistic level we are considering

in this section. Forms were designed as a hybrid between}a'macro and a class
(in SIMULA [23]). It subsumes the notions of macro, procedure, generator,
and/or coercion (and as we mentioned before the notion of type as well).

At this point we need to find out if standard procedures and forms
define modules, in oUr sense, at this linguistic level. It is straight-
forward to conclude that they do not. Both procedures and forms (through
some control mechanisms) allow the possibility of sharing and hence violate
properties 2 and 3. Suppose that forms are not cohsidered further for this
reason (this concept of sharing will be reviewed later), and that a version of
prdcedure is adopted in which only data communication through parameters is
allowed. Procedures would have then satisfied properties 1 to 3, but would
still fail to satisfy the property of data génefa]ity; In‘fatt, current.

programming languages do not support features which allow for the free inter-

- 20 -

change of data structures between procedures with no knowledge of the
communicating procedures' internal representations. This question will
be addressed separately in section 5.4.

Even though procedures are not able to satisfy.figorously our concept
of modularity at this linguistic level, some notational features which can |
éasi]y be incorporated into procedures allow fulfillment of property 5
(definitional completeness) and hence achieve a reasonable approximation to
modularity. | In fact, it has been suggested that\the assertions that
specify programs expressed at this level should be made an integral part of -
thé program‘text. Although this may be a considerable improvement over the
_conventiona]lprogram documentation techniques, this approach is still simplistic
because it does not allow expression of several fundamental properties of
programs (such as fault tolerance} since they are not normally expressib]e.
through assertion languages. Parnas [3] has proposed a notation for program
specification that when used in assocation with procedures appears to be ade-
quate for the attainment of property 5. The notation‘requires some improve-
ment since it does not allow specification of precision or cost of the module

being defined and is not amenable to mechanization in -its present form.

Figure 5 shows a self-explanatory example of Parnas' notation taken from [3].

- 21 -

‘Function PUSH(a)

p0551ble values: none

integer: a

effect: call ERR1 if a > p2 v a < 0 v 'DEPTH' = p]
else [VAL = a; DEPTH = 'DEPTH'+1;]

Function PQOP

possible values: none

parameters: none

effect: call ERR2 if 'DEPTH' =0
the sequence "PUSH(a); POP" has no net effect if no error
calls occur.

Function VAL

possible values: integer initial; value undefined .
parameters: none
effect: error call if 'DEPTH' = O

Function DEPTH

possible values: integer; initial value O

parameters: none

effect: none

pl and p2 are parameters. pl is intended to represent the maximum
depth of the stack andp2 the maximum width or maximum size for
each item.

.

Figure 5 Parnas' module specification notation

5.3 The Data-Abstraction Levé1

In the.previous‘secfion consideration was given to language
features to be used at the program-level. At this point it was decided to
treat data structures as an abstract entity and delay consideration of
their implementation to another 1inguistic level. As a consequence discussion

of the cluster mechanism was delayed until this section.

-22 -

At the data-abstraction level we are interested in specification
- notations and programming mechanisms to describe and implement data

abstraction modules, which sometimes are called types. A cluster [4,5]

is one such mechanism and is composed of an operation list (names of all
operations applicable to objects of the type), an object desﬁription
(representation that implements the type) and a sequence of operation defini-
~ tions. Most important of é]l, a user of a data abstraction modeled through a
_ cluster can manipulate objects only through the operations names and not
directly via their representation. This establishes a satisfactory Tink

with program modules (program modules do not have side-effects from this
‘source) and allow data abstraction modules modeled through clusters to satisfy
properties 2 and 3. Since clusters can be used inside clusters to an
arbitrary degree of nesting, property 1 is also satisfied.

As in the previous section, we cénnot conclude that the proposed
mechanism satisfies the definition of modularity, because clusters do not
allow data generality. Data generality can be characterized for the present
case, in the following way. If two variables a and b are declared to be of the
same abstract data type T, it is conceivable that T would be implemented by
two different clusters using dffferent data representations. If wé now
define a binary operation a ® b we would expect the operation td take place
in a manner transparent to the user. In other words, data generaiity would
guarantee that variab]es‘of the same type with different underlying repre-
sentations cou]d communicate withcﬁt any knowledge about their respective

implementations. Clusters do not admit this possibility.

- 23 -

The concept of clusters can be conveniently defined via a number
of specification techniques for data abstractions. Liskov and Zilles survey
some of these specification techniques in [5]; Figure 6 illustrates two of
them. It is reasonable to conclude that clusters satisfy property 5 since
they can be described by either of these methods of specification.

The reader may have concluded that we ére being quite permissive
aboutﬁthe requirements to satisfy property 5. In fact, clusters as they are
currently specified, do not have all the important properties required
to satisfy the definitional completeness criteria. Two examples are presented
to illustrate this point. First, cluster specifications certainly do not
indicate error conditions and exceptions both of which cOQ]d be encountered
in data abstraction modules. Second, it can be observed that the only free
variabies in a cluster are other cluster names, which must eventually be
bound to object modules of clusters. Here we have a specification problem
which is close to the specification problem at the system-level. One can
conceive of a cluster interconnection 1anguagé which specifies who knows
whom within a collection of data-abstraction modules modeled by clusters.
Certainly current cluster specifications do not completely define their
interconnections. Thomas [8] has actually called MIL a programming system
that helps the expression of this type of specification.

One should also note that a set of clusters used to program another
cluster characterizesa virtual machine. Such a characterization is a useful

abstraction when one considers a common base language (section 5.4).

- 24 -

1 CREATE (STACK)
2 STACK(S) & INTEGER(I) > STACK(PUSH(S,I)) &
[POP(S) # STACKERROR > STACK(POP(S))] &
[TOP(S) # INTEGERERROR o INTEGER(TOP(S))]
3 (vA)[A(CREATE) &
(vS)(vI)[STACK(S) & INTEGER(I) & A(S)
> A(PUSH(S,1)) & [S # CREATE A(POP(S))1]
> (vS)[STACK(S) > A(S)1] |
4 STACK(S) & INTEGER(I) > PUSH(S,I) # CREATE
5 STACK(S) & STACK(S') & INTEGER(I)
* o [PUSH(S,I) = PUSH(S',I) 5 $=S']

6 STACK(S) & INTEGER(I) > TOP(PUSH(S,I)) = I
7 TOP(CREATE) = INTEGERERROR
8 STACK(S) & INTEGER(I) > POP(PUSH(S,I)) =

9 POP(CREATE) = STACKERROR

|
(%2

a. Axiomatic specification of the stack abstraction.

~ Functionality:
CREATE : + STACK
PUSH :+ STACK % INTEGER - STACK
TOP : STACK = INTEGER u INTEGERERROR
PoP + STACK - STACK u STACKERROR
Axioms:

1' TOP(PUSH(S,I)) =1

2' TOP(CREATE) = INTEGERERROR
3' POP(PUSH(S,I)) = S

4' POP(CREATE) = STACKERROR

b. Algebraic specification of the stack abstraction.

Figure 6 Specification techniques for data abstractions

- 25 -

5.4 Data Generality and Common Base Languages

It has been recognized that the most critical property of modularity
1s data generality. That is, the definition and use of module interfaces to
allow the passing of data betweeh modules independent of data representétion.
Looking at our three-level model, it can be seen that prob]ems.occur with the
available program features at all the levels.

At the system-level, for instance, data generality is only achieved
when a universally known data representation (normally supported by A physical

medium) is provided. Figure 7 illustrates this fact.

Universal
Data

Represen-

tation

SM SM

(Standard Representation
on tapes, disks, etc.)

SM: System Module

Figure 7 Data Generality

- 26 -

The functions f1 and f2 map the data structures in SM1 to a standard
representation and from a standard representation to SM2 respectively.

The idea of a universally known data representation allows the achievement
of déta generality at all linguistic levels. The previous situation can be
simulated, in general, even in the case in which the same physical medium

- such as main memory is being used for programs and daté by choosing a
universal data representation’and adopting a specific programming discipline.
The programming discipline would require the programmer of a module to write
the functions f1 and f2 and incorporate them into the module. The commuhi-
cation, with dafa generality, between two modules would take place as

i1lustrated in Figure 8.

Figure 8 A form of communication with data generality

- 27 -

The same solution can be transported from the syétem«]eve] to the lower
linguistic levels. For instance, if we always incorpbrate the two
functions f1 and f2 into c]ustérs, the binary operation @ between the
variables a and b and the binary operation «, that assigns a value to c in

the statement

c<a®db,
could be executed automatically even if a, b and ¢, of the same type T,
hsed different implementations for T. This is the application of the same
data generality mechanism to the data-abstraction level.
Less expensive solutions can also be proposed to allow the language

 features discussed before to satisfy our definition of modularity. One

efficient solution is based on a generalized use of type descriptors f10,11]

of the kind defined by clusters. It consists in the transmission of type'

descriptors between modules. Through this approach values of type type

(data abstractions) ¢an be transmitted, i.e., there are variables, parameters
and functions in the programming]angﬁage of type type. The transmission of
type descriptors allows the postponement of strong type checking until the
moment when modules are assembled together. Since type descriptors typically
do not change during execution, it is possible to perform static type checking.
Conditions for static type checking and parameter aséociationbcan be found

in [11]. Von Staa's approach allows the communication with data generality

at any level of our model, providing only that the different modules follow

the specification (definition) of the operations in the data abstraction.

- 28 -

In Figﬁre 9 we show how a data type descriptor (cluster-Tike)
implementing strings can be defined. To reduce the size of the example,
several simplifying assumptions were made. It is assumed that a (1:0)
vector is the null vector as in APL. It is also assumed that vector assignments
are possible as in ALGOL 68 or PL/I. Also, the assumption is made that some

form of dynamic memory management exists such as in LISP or SNOBOL 4.

Type string of (type user_type which defines (vector, copy) is
begin string; |

user_type vector value(1:flex size:=0);

gutside scope functions;
null is value:=yector.null;
function copy(string from) is value:=from.value;
function convert(user type yector from) is value:=from
function concat(string head, tail) is value:=convert
‘ (vector.concat{head,tail));

end functions;

end string;

Figure 9 Data desckiptor "string" receives a type descriptor
as parameter :

To properly implement the above programming mechanism a method was devised
through which it is possible to combine modules which receive parameters

of the same abstract type that have different implementations. The method

- 29 -

requires the existence of a table of conversion functions and an algorithm
that establishes how to get from one representation to the other (based on
existing representations).
| After the characterization of programming features for data

generality in the context of our definition of modularity and of our three-level
model for program development, it is important to c]arify the requirements for
a common base language.

In both methods for achieving data generality discussed above, the
problem of conversion between representations is present. Both the encoding
of the program segments that implement the functions f] and f2 in the first
mathod and the encoding of the programs that constitute the conversion
functions in the conversion function table used‘fn connection with the second
method can be, in general, very complex tasks.

If programmers were able to encode the implementation of clusters
in a set of instructions in a common base language perhaps the solution to our
problem would become more tractable. Specifically, the common base language would
probably contain certain basic data types such as integers, reals, lists, etc.
and operations on them such as add, subtract, insert and delete. There could
be several implementations of each basic data type and its corresponding
operations. A1l clusters will be encoded in the basic data tybés-either
directly or through nesting. Different clusters may use different representa- -
tions of the same basic data type and so there still is the problem of data
generality to be conquered. This problem may now be manageable since only
convehsioﬁ routines have to be provided bétween the basic data types and not

between all data types used.

- 30 -

Dennis»[]]‘proposes to borrow these operations from VDL. Standish's
operations on basic'data structures, which resemble VDL also serve as a basis
for the language. We opted for the practical approach of using Tompa's‘[24]
and Low's [25] type of operation primitives to be able to compile clusters
into any representation from a predefined 1library of representations. In
summary, the advantages of writing the low-level details of clusters in terms
of a common base language are many fold:
 a) It supports portability.

b) It allows for the automatic selection of the best underlying

representation [25].

c) It facilitates the encoding of conversion functions.
Conversion functions can naturally be encoded through the use of the following
set of primitives (common base language).
o ADD: adds an element to the structure
SUB: subtracts an element from the structure

SELECT: selects an element from the structure

INSERT: inserts a new element into the structure

REPLACE: replaces an old element in the structure
LINK: Tinks two sub-structures

DETACH: detaches two sub-structures
COPY: generate§ a copy of the structure |
SUCC: finds the successor of a given element in the structure

PRED: finds the predecessor of a given element in the structure

- 37 -

The operations can be easily axiomatized as in [12]. A cluster that refers

to a base representation level has the following form (in extended PL/I [22]):

name: CLUSTER ON REP1 (parameter list) IS OPys-++s0P 3
[declaration of global (to the cluster) variables]
CREATE

DCL r REP;
[create body]
ENDCREATE
opy: PROC (parameter 1ist) RETURNS (type);
[declaration of local variables]
[op; body]
END opys
6pn: PROC. ..

END name;

In opy to op, REP1 is handled in terms of the primitive operations. 1In the
PL/I extension version, the programmer has access at this level to all PL/I
data types with the exception of pointer and base variables. This is meant to
delay the use of implementation details to the base representation level
(handled by the standard operations in the common base language). A base
representation-level cluster is then written in the following manner, where
the symbol template stands for the PL/I data types used to implement the

concrete representation.

-3 .

repr: REP (parametér list) USES <template;
[declaration of global (to the cluster) variable]
CREATE
[create body]
ENDCREATE
ADD: PROC (parameter list);
[declaration of local variabies]
[body of standard operation ADD]
ENDADD;

SUB: PROC...
SELECT: PROC...

END.repr;

By the presentation of the above language features it was our intent to
explain our views on how the concept of common base languages relates to the

concept of modularity by helping its effective implementation.

6. On the Problem of Sharing

So far, we have been characterizing language features' modeling
capabilities according to our very strict definition of modularity. We have
seen that it appears possible to'design language features to achieve full
modularity. Suchba form of modu}arity will certainly contribute to reduced

costs and enhance reliability in a number of programming areas. We believe

- 33 -

that the so-called applications programming area will be the greatest bene-
ficiary of this approach. Nevertheless, we think that the so-called systems'
programming area could be hampered by the amount of discipline whicn is

required. Efficiency problems can appear in rather unique ways in systems
programming. This is a good reason for weakening the requirements on modularity,
providing it is clear that this weakening is taking place.

The‘concept that systems' programming requires is the concept of shar-
ing (particularly data sharing, since program sharing can be obtained with
full modularity). We believe that a programming system which supports
modularity, should also support a version of modularity that could be called
modularity with sharing. Of course, the sharing should be controlled through
access rights mechanism in order that a high degree of modu]arity be main-
tained. In this version of modularity DeRemer and Kron's MIL and the form
concept are welcome. In particular, they provide for access rights control
mechanisms. i

Since sharing implies the loss of semantic context-independence,

a number of new specification features are required. We envisage a notation
system in which the properties that were subtracted from the independent
modules (the ones that cannot be proven independently because of the inter-
relationship with other modules) are factored out and verified together.

This is similar to the proof of certain properties (deadlocks, etc.) of
systems modeled through their graph models of computations (which display
only control relationships). Once the system's data interconnections are
proven correct we can then move to the verification of the individual modules.

The extra burden imposed on the system design and implementation process is,

- 34 -

in this case, probably not as serious as in the applications area, since it
can be claimed that systems programmers are usually far mecre specialized

in programming techniques than applications programmers.

7. Conclusions
We have proposed a definition of modularity based on five

-properties that try to capture the comp]efe semantics of the concept. We
also studied several implications of the definition with respect to the desigh
of language features to support modularity. Several of the current proposed
language features do satisfy our very strict definition of modularity
providing that a few changes are introduced. The changes have mostly to do
with supporting the property df data generality. We acknowledge the need for
sharing in the design of programming systems and claim that a weak concept

of modularity should also be accepted providing that it is reinforced by

some additional specification features. We believe that our approach to the
modularity issue contributes to the better understanding of the concept and

that in particular it helps designing systems to support modular programming.

- 35 -

References

(1] Dennis, J., "Modularity" in Advanced Course on Software Engineering,
Springer Verlag, 1973.

[2] Parnas,D.L., "On the Criteria to be used in Decomposing Systems
into Modules",CACM, vol.15, No.12, 1972.

[3] Parnas,D.L., "A Technique for the Specification of Software Modules
with Examples", CACM, vol.15, No.5, 1972,

[4] Liskov, B.H. and Zilles, S.N., "Programming with Abstract Data Types",
Proceedings of ACM SIGPLAN Symposium on Very High Level Languages,
SIGPLAN Notices, vol.9, No.4, 1974,

[5] Liskov, B.H. and Zilles, S.N., ”Specificatidn Techniques for Data
Abstractions: IEEE Transactions on Software Engineering,
vol.1, No.1, 1975, '

[6] Wulf, W.A., "ALPHARD: Toward a Language to Support Structured Programs",
Technical Report, Carnegie-Mellon University, 1974,

[7] DeRemer, F., Kron, H.,'"Programming-in-the-Lafge Versus Programming-
in-the-Small", Proceedings of the International Conference
on Reliable Software, Los Angeles, 1975.

[8] Thomas, J.W., "The Basis for a Module Interconnection Language for
CLU", Report CS-9, Computer Science Group, Brown University,
1975. .)

[9] Teichroew, D., Bastarache, M.J., "PSL User's Manual", ISDOS Working
Paper No.98, Department of Industrial Engineering, The
University of Michigan, 1975. .

[10] Staa, A.v., Lucena, C.J., "On the Implementation of Data Generality",
Research Report IS-1-75, Departamento de Informatica,
Pontificia University Catolica do Rio de Janeiro, 1975.

[11] Staa, A.v., "Data Transmission and Modularity Aspects of Programming
Languages"”, Research Report CS-74-17, Department of Computer
Science, University of Waterloo, 1974.

[12] Lucena, C.J., "On the Synthesis of Reliable Programs", Technical
Report UCLA-ENG-7505, Computer Science Department, University
of California at Los Angeles, 1975.

[13] Guttag, J.V., "The Specification and Application to Programming of
Abstract Data Types", Technical Report CSRG-59, 1975.

[14]

[15]
[16]

[17]
[18]
- [19]
[20]
[21]
tzzj
[23]
[24]

[25]

- 36 -

McGowan, C.L., Kelly, J.R., "Top-Down Structured Programm1ng Techniques",
Petrocelli/Charter, New York 1975.

Mills, H.D., "0S 360 Job Control Language Programming", Classroom notes.

Earley, J., "Relational Level Data Structures for PrOgramm1ng
Languages", Acta Informatica 2, 1973.

IBM Report GC 20-1851-1, "HIPO - A Design Aid and Documentation
Technique"”, 1975. '

Floyd, R., "Assigning Meaning to Pkograms“, American Mathematical
Society, vol.19, 1967.

Lucena, C., Cowan, D.D., "Toward a Systems Env1ronment for Computer
Ass1sted Programm1ng", to appear.

Naur, P, et al., "Revised Report on the Algorithmic Language ALGOL 60",
Comm. ACM 6, 1, 1963.

Hoare, C.A.R., "Proofs of Correctness of Data Representations", Acta
Informatica, vol.1, No.1, 1972,

Schwabe, D.,‘Lucena, C., "Specification and Uniform Reference to Data
tructures in PL/I", to appear.

Dahl, 0.J. et al., "The Simula 67 Common Base Language", Norwegian
Computing Centre, Oslo, 1968.

Tompa, F.W., "Choosing a Data Storage Schema", Ph.D. Thesis,
University of Torcnto, 1974.

Low, J.R., "Automatic Coding: Choice of Data Structures", Stanford
University, Computer Science Department, STAN-CS-74-452, 1974.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

