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ABSTRACT

Many of the properties of methods for solving ordinary
differential equations‘are similar to the properties of methods for
differential difference equations. For example, Tavernini has shown that
cbnvergence of a consistent method fof ordinary differential equations
implies convergence of a consistent method for dffferentia] difference equations.
Cryer has given a generalization of the definition of A-stability of
methods for ordinary differential equations by considering the scalar
equation y'(t) = qy(t-8), 8 > 0, q real, and has illustrated methods
satisfying his generalized definitions.

In this thesis a complete characterization is given for the
asymptotic behaviour of the equation y'(t) = qy(t-8), B > 0, q complex,
and a partial characterization is given for the asymptotic behaviour of
y'(t) = py(t) + qy(t-8), B > 0, p and q complex. This enables the
authof‘to generalize the definitions and theorems due to Cryer. The
backward differentiation methods are shown to have nice stability
properties,

| These backward differentiation methods and the Adams methods
are incorporated into an automatic package (sjmi1ar to Gear's package
for solving ordinary differential equations) for solving the equation
y'(t) = £(t,y(t),y(t-8)), 8 > 0.

Sample probiems to test the effectiveness of the package are
given, and one example illustrates the surprising result that stiffness
can occur in a scalar differential difference equation. An appropriate

definition for stiffness of differential difference equations is given.
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CHAPTER 1

REVIEW OF NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

Existence ‘and Uniqueness

An initial value problem (I.V.P}) in ordinary differential

equations (0.D.E.) consiéts of a differential equation of the form
(1.1)  y'(t) = f(t,y(t))

together with an initial condition

(1.2) y(a) = Yy

The numerical solution of (1.1) and (1.2) consists of calculating a
sequence of vaiues {yn} whjch approximate the solution on a set of nodes
{tn}. This entire process assumes that (1.1) and (1.2) have a solution.
The following theorem, whose proof can be found in Henrici [12, p.112]
gives conditions on the function f(t,y(t)) such that (1.1) and (1.2) have
a unique solution,

Theorem 1.1

Let f(t,y(t)) be defined and continuous in a region
D={(t,y)|a st b, =<y < +e}
and suppose the function f satisfies the Lipschitz condition:

3L > 0 3 Y(t,y),(t,y*) € D

| F(t,y) -Flt,y*)| < L]y-y*|.

- 1.1 -
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Then for any given number Yoo there exists a unique solution y(t) to
(1.1), where y(t) is continuous and differentiable for all (t,y) e D

and y(a) = Ygr 0

Although this theorem and most of the theorems and results given
in this thesis refer, for simplication, to a scalar equation they are
valid with the obvious changes for systems. Any changes for systems

which are not obvious are clearly pointed out.

Linear Multistep Methods

Consider the sequence of poinfs t, = atnh where n = 0,1,2,... .
The parameter h which is regarded as constant (unless otherwise noted)
is called the steplength. The numerical problem is to determine a sequence
of numbers {yn} which is an‘approximation to the theoretical solution
ty(t,)3.

Let f = f(tn,yn). Then if the numerical method for determining
f

the sequence {y } is a linear relationship between y for

ntj’ ‘ntj

j=1,...,k, we call the method a k-step linear multistep method.

The linear multistep method (L.M.S.) may be written as
(1.3) IZ( ]2( |
1.3 O; Ypps = h B: f ..
~ jeg 3 T j=0 9 N

where “j’,Bj are constants, O # 0 and both g BO are not zero. As (1.3)

is arbitrary in the sense that all constants could be multiplied by the

same factor, a normalization is uSua]]y done by requiring o = 1.
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Assuming that Yao¥ne1s -+ Ypek-] e known , we hote that (1.3)
is a nonlinear (algebraic) equation for Yp4i Which may be difficult to
solve particularly for imE1icit methods (Bk #0). If By = 0, we say
the method ié explicit and the solution is direct.

An implicit method requires at each stage of the computation
the solution y ., of the equation

(1-4) yn+k = thf(tn+k’yn+k)' tg

where g is a known function of the previously calculated values.

Review of the Solution of Nonlinear Equations

Consider the nonlinear equation
(1.5) y = fly).
Define the sequence of iterates {ym} by the equation
(1.6) Y™ = f(y".

Then the following theorem whose proof can be found in Henrici [12, p.216]
gives conditions under which (1.5) has a unique solution and the sequence of
iterates defined by (1.6) convergesto that solutjon as m + +», |
Theorem 1.2

Let f(y) satisfy the Lipschitz condition |f(y)-f(y*)| < L|y-y*|
¥y,y* and 0 < L < 1. Then (1.5) has a unique solution to which the iterates

defined by (1.6) converge. 0
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If the Lipschitz constant in Theorem 1.2 is large, then an alterna-
tive method which may be used is the well-known Newton iteration. When
applied to the equation F(y) = 0, this has the form:

YU ROMFG™ m=0,1,2,...

Sufficient conditions for the convergence of Newton's me thod may be found

in [12,p.366]. We note, however, that convergence depends primarily

0

upon the closeness of y  to the solution.

Basic Concepts of Linear Multistep Methods (L.M.S.)

The L.M.S. (1.3) is said to be convergent if for all I.V.P,
(1.1), (1.2) subject to the hypothesis of Theorem 1.1

Alg ¥ = y(t)
t-a=nh
-yt ¢ [a,b] and all solutions of (1.4) which have starting values which
are a function of h and converge to y(a) as h » 0.

With the L.M.S. (1.3) we can associate the linear difference

operator

: k
(1.7) LLy(t),h] =  [o;y(t+jh)-ng,¥'(t+jh)]
| j=0 ’

where y(t) is an arbitrary function possessing as many higher order
derivatives as we wish. Formally, expanding y(t+jh) and y'(t+jh) in

to L
a Taylor series about t gives L[y(t),h] = } thay(J)(t) ,
j=0
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where the C; are constants. The L.M.S. (1.3) is said to be of order p

ifCy=0for0<jspandCpy#0. C

ot is called the error constant.

The L.M.S. i1s said to be consistent if the order p = 1,

The local truncation error at toek of the L.M.S. (1.3) is

defined to be L[y(tn),h] where y(t) is the theoretical solution to the
I.V.P. (1.1}, (1.2). If the previous values were exact (nd truncation
error was made) and the theoretical solution y(t) has continuous deriva-
tives of sufficiently high order, then we could show [14, p28]

] +1, (p+1) +2 +1(p*1)
Yt = Ynek = Cp+]hp y PP (e + o(PT) L The term € Py PR ()

n

is called the principa1 local truncation error. In practice, of course,

truncation error is made in the previous values. The actual error

y(tn+k) = Yotk is called the global truncation error. It can be shown

that if the local truncation error is 0(hp+1) then under certain conditions
the global truncation error is o(hP) [12, p.247]. Hence we try to
choose our methods with as great an order as possible to reduce the global
error.

"As a L.M.S. method is specified by the coefficients o, and Bj’

J
j=0,...,k, then we may specify a L.M.S. method by the first and second

characteristic polynomials

k K .
o(z) = [ ay2°, o(z) = } B.zY.
j=0 j=0

Consider the scalar equation

(1.8) y'(t) = ay(t), A a constant,
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circle. A region R of the complex plane is called a region of absolute

stability 1f the method is absolutely stable vih € R,
We can plot the boundary 3R of the region of absolute stability
for a method by using the boundary locus method [14,p.82]. Since the

roots of (1.9) are a continuous function of Ah the Ah will Tie on R
when one of the roots lies on the unit circle and hence the root has the
form exp(i6). Substituting this into (1.9) and solving for Ah gives

Ah = p(exp(ie))/c(exp(ie)). Letting 6 vary over the interval [0,2r]

and plotting the corresponding values of Ah gives us a plot of 3R in

the Ah plane. |
Examples

Consider the well known Euler method y =y, * hfn. Here

n+1
o(z) = z-1, o(z) = 1. Clearly p(1) =0, p'(1) = 1V= a(1), and the zero
of p(z) is a simple zero on the unit circle. Hence the method is
consistent and zero stable. Applying the boundary 1ocus method gives
Ah = exp(i8)-1. Clearly the region of absolute stability is the disc
|z+1] < 1.

:Im(Ah)

N

Ah plane

> Re(Ah)

Fig.1.1 Region of absolute stability of Euler method
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Another method to consider is the Backward Euler method
Yae1 = Yp 0oy

Here p(z) = z-15 o(z) = 1. Again we see that the method is consistent and
zero-stable, The boundary locus method gives Ah = T-exp(-i8) so that
the region of absolute stability is the entire Ah plane except for the disc

lz-1] < 1.

Ah plane

~
()

Fig.1.2 Region of absolute stability for backward
Euler method

Note that solutions to equation (1.9) go to zero asymptotically
for Re(Ah) < 0. We would 1ike the numerical method to behave in a similar
manner, Hence we say a method is A-stable if its region of absolute
stability contains the region Re(Ah) < 0.

Clearly from Figures (1.1) and (1.2), we see that the Backward

Euler method is A-stable while the Euler method is not.
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Derivation of a Method

Two special classes of L.M.S. methods which we will use later
are the explicit Adams-Bashforth and the implicit Adams-Moulton method.
The Adams methods are characterized by the first characteristic polynomial
o(z) which has the form 221, The coefficients of o(z) are then
chosen to maximize the order of the method with Bk = 0 for the explicit
mefhod and Bk # 0 for the implicit method. 1In fact, this produces a k step

method of order k.

Predictor-Corrector Methods
‘ | Recall that for implicit methods we must solve, at each step,
the equation y ., = hskf(tn+k,yn+k) f g. By Theorem 1.2 this can be

solved by the iteration

m+] m
York = PBf(tnpoYna) + 0

where yg+k is arbitrary provided
(1.10)  h < 1/(L[B]).

Normally the acceptable limit on h is determined by other considerations
(such as accuracy) except in those differential equations with a very large
L which are considered separately.

- It is obviously desirable to keep the number of iterations to a

minimum so as to minimize the number of function evaluations. We would

0
n+k

as close as possible to_yn+k. This is normally done

therefore like to make the initial guess y
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by using an explicit method (called a predictor) to compute yg+k. The
implicit method is called the corrector.

Normally, the restriction (1.10) is not important, however
there is a class of problems which exhibit a property called 'stiffness’
in which the restriction (1.10) is important and a Newton iteration must
be used to solve the nonlinear equation (1.4). |

The linear system y'(t) = Ay(t) is said to be stiff if the
eigenvalues of A are widely separated in magnitude and the time scale is
large enough. This definition is somewhat ambiguous because it really
depends on whather we are interested in transient or asymptotic solution
behaviour. For the more general problem y'(t) = f(t,y) we can do a
local linearization and thus we would modify our definition to apply to
the eigenvalues of the Jacobian of f. Then it is necessary to use methods
which are A-stable in order to take a large step relative to the time
scale, ‘

The following (depressing) theorem by Dahlquist [7] restricts
the order of linear multi-step A-stable methods.

Theorem 1.4
An explicit linear multi-step method cannot be A-stable and

the order of an A-stable method cannot exceed two. 0

In order to overcome this problem Gear [11,p.213] suggests
a slackening of the A-stability requirement with the following definition.

A numerical method is said to bé stiffly stable if its region of absolute
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stability contains R], R2 and it is accurate for all h ¢ Ry when applied

to equation (1.9) with Re(A) < 0, where

= {hA|Re(hA) < -a}

A
U —
i

~
|

o = {]-a < Re(hr) <b, -c < Im(hA) < c}

and a, b, ¢ are positive constants,

1\

-C
t

Fig.1.3 Stiff stability region

Gear then proposed a class of methods called backward differentiation

methods. These methods have the form

k
20 Ci,j _yn+j Bk fn_l_k.

j:
That is we, take‘c(z) = Bkzk and choose By and p(z) to maximize the order.
This produces a k-step method of order k. The first and second order

backward differentiation methods are A-stable [11,p.214]. In fact, in

[11,p.214] Gear plots the region of absolute stability for these methods.
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The first to sixth order methods are stiffly stable.

A method is called A, stable if its region of absolute stabi]ify
includes the negative real axis. Cryer has shown [5] that the higher order
backward differentiation methods are not even Aj stable.

Alternately, one could consider using implicit Runge Kutta

methods which are A-stable, but these methods are not considered in this

thesis.



CHAPTER 2

REVIEW OF THE NUMERICAL SOLUTION OF
DIFFERENTIAL DIFFERENCE EQUATIONS

Basic Existence and Uniqueness Theorem

Consider the eduation
(2.1)  y'(t) = ft,y(t),y(t-8(t)))
where 8(t) = 0 and y(t) = g(t) on the initial set E, defined by

0
| Eto = {t-g(t)|t-B(t) < ty for t > ty}.

Thus the right-hand side of the differential equation depends on the solu-
tion at the given time and the solution at a previous time. D.D.E's

are also different from 0.D.E's in that the solution must be specified

on the initial set EtO which is frequently an interval. If, for exampie,

B(t) = 8, a constant, then E,

= [tO-B,to] and we would want the solution
0

y(t) for t > ty-
If we apply the method of steps [ 9, p.6] to (2.1) we obtain

the equation

y'(t) = f(t,y(t),g(t-B(t)))
(2.2)

y(ty) = alty)

to be solved on the interval [ty,t ], where t, is chosen so that
t] - B(t]) = t,. This equation has a solution if f and g are continuous
and the solution is unique if f(t,y,x) satisfies a Lipschitz condition in

its second argument for t near to, for y near y(to) and X near

-2.1 -
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g(tO-B(tO)). The following theorem, whose proof can be found in
El'sgol'ts [ 9, p.20] givés a more general theorem,

Theorem 2.1

Consider the equation

(2.3)  y' (&) = F(t.y(t) y(t-8(t))

g(t) on an initial set E, .
0
Suppose B(t) is continuous and non-negative, g(t) is

y(t)

continuous on Et and f satisfies a Lipschitz condition in all arguments
0
beginning with the second. Then there exists a unique continuous solution

yg(t) to (2.3) for t > td. 0

We note that in general for (2.3) (unless the initial function
g(t) satisfies some very special conditions [1, p.51])that discontinuities
can occur in the higher order derivatives at those points ty such that
tk+]'8(tk+1) = ty» even for "smooth" f. The discontinuity at t, can occur
in the k+1 derivative, but the lower order derivatives will be continuous
at tk. Thus the solution smooths itself out for increasing t. The
discontinuities in the lower order derivatives cause problems for numerical

methods and must be accounted for as we shall see later.

" Numerical Methods for D.D.E's

To simplify the analysis and eventually the coding of a method,

we will consider differential difference equations of the form
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y'(t) = f(t,y(t),y(t-B)) t>0
(2.4)

g(t) t e [-8,0]

y(t)

where y is a scalar, B >‘0, and f and g satisfy the hypothesis of Theorem
2.1. As Wiederholt [20, p.3] notes, this type of equation describes
physical systems in many different areas such as rocket propulsion and
control theory and hence inc]udes a reasonable class of problems.

Recall that L.M.S. methods are based on a linear relationship among
.{yn} and the values of the function {f(tn)} at the points {tn} using Yn
as an approximation to y(tn) to evaluate f. Define f = f(tn,yn,y;)
where y; is an approximation to y(t -8). Then the formula (1.3) for L.M.S.
method can be applied directly to solving (2.4) provided we prescribe
how to obtain y:. Clearly as y: ~ y(tn-B) we must save sufficient past
values in order to obtain an accurate approximation y; to y(tn-B). Note
that if the step size is small compared to B then this can require saving
many values.

If the step size is chosen so that g = mh then t -8 = (n-m)h
coincides with a previous node and we can use Ypom @S an approximation to
Yy

To obtain an arbitrary step size Cryer [6] suggests choosing m e I'
(set of positive 1nteger§) and u € [0,1) such that 8 = {(m-u)h. Then
tn-B = (n-m)h + uh, Cryer suggests obtaining the value of y at t, ’ from the

J+

j+]atj='-°’tj,g+]~ Let E denote the operator defined

by Eyj = Y41 and then take the approximation to y(tj+u) to be

2+1  values of y at t
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~H] + . : .
E Y(E;u)yj where 2 ¢ I, y is a polynomial in E of degree at most %,
and whose coefficients depend on u, We require that y be exact if u=10

2-1 and y(1,u) = 1. Normally

or y(t) is a constant. That is Y(E,O) = E
v is taken to be an interpolating polynomial since such a polynomial has
these properties,
Example

The well-known Euler method y .i = ¥, +hfn could be used with

linear interpolation, whence y(E,u) = uE + 1 - u,

Convergence of Numerical Methods

The above description allows us to derive numerical methods
for (2.4) by modifying numerical methods for 0.D.E's. This is done in the
hope that properties of methods for 0.D.E's such as convergence and stability
will carry over to so]Ving (2.4).

Taverini [19] has shown for the L.M.S. method {p,0} [6] that

lim oy, = y(t)
t-ty=nh

g/m=h>0
where y(t) is the solution of (2.4) subject to the hypothesis of Theorem 2.1
if and only if the method {p,0} is convergent for O0.D.E's. This is a nice
property, since we need only consider convergent methods for 0.D.E's,
which have been well studied. For a discussion of the case 8 = (m-ulh the
reader is referred to Taverini [19].
Recall that the definition of local truncation error and order

of a method was independent of the differential equation‘and thus the same
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definitions can be used for methods in D.D.E's. Neves [17] has shown

that when using a method whose local truncation order is 0(hp+])

one must use an interpolation formula whose order is 0(hP) in order to
preserve the global order of convergence of the original 0.D.E.

method. That is, a method of order p must use an interpolation formula
whose error is O(hp+]) and hence must use at least p+l points, if only
function values are saved. In the case of equation (2.4) one simply needs
to save at least p+1 function values which is always possible.

Also we must handle the problem of possible discontinuities
in the higher order derivatives. One way of handling this problem is to
modify the method using jumps in y(t) and lower order derivatives of y(t).
Instead of Taylor series, one uses an extended Taylor series due to Zverkina
[22]. For an English translation of this paper and a description of this
technigue the reader is referred to [13].

The other way of overcoming the problem is to use a variable
order, variable step algorithm such as [11,p.158] and include the points
of discontinuity in the set of mesh points. For equation (2.4) we |
know that smoothing of the solution occurs and that we need only include
the p+1 points tg * jB, j =0,...,p in the set of nodes tn where p is the

maximum order of the method being used.

Stability of Numerical Methods for D.D.E's

The stability of numerical methods for D.D.E's has been studied
previously by Brayton and Willoughby [3], Wiederholt [20], Brayton [2]
and Cryer [6].
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Brayton and Willoughby show by means of an example that when
Euler's method is used to solve a neutral differential difference
equation (a neutral D.D.E. has the form y'(t) = f(t,y(t),y(t-8),y'(t-B))
the range of values of the step size h for which the method is stable
can differ from the corresponding range of values of h for 0.D.E's,

Widderholt donsiders the linear D.D.E.

y'(t) = qy(t-B) Bst >0
(2.5)

g(t) t e [-8,0].

y(t)

Applying a L.M.S, method {p,0} to (2.5) with B = mh we obtain the linear
difference equation
k

k
jzoaj ‘yn+j = hq jZG BJ- .yn+j_m.

The associated characteristic polynomial is
(2.6)  Cl(z,q.m) = 2"p(z) - hqo(z).

Wiederholt determines numerically for m = 1,2,3 and for specific choices
of p,o the set of values of g for which the zeros of C(z,q,m) lie inside
the unit circle.

| Cryer considers equation (2.5) with g real since it is known
"(Beliman and Cooke [1, p.444]) that y(t) -~ 0 as t - += for all initial
functions g(t) if and only if Bq ¢ (-w/2,0). Cryer then defines a method
{p,0} with B = mh to be QAO stable if the numerical solution converges to

zero asymptotically for all Bg ¢ (-w/2,0), m ¢ 1* and a1l initial functions
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g(t). Cryer remarks that he does.not consider equation (2.5) with
complex g or the more general equation y'(t) = py(t) + qy(t-B) because
of a lack of results on the asymptotic behaviour of D.D.E. with complex
coefficients. As we shall see in Chapter 3 some of these more general
‘equations can be considered.

Cryer then generalizes the above definition to an arbitrary
step size by using the technique discussed before. The method {p,o,v}[6]
is called ggﬂo stable if the numerical solution converges to zero asymptoti-
ca]iy'for all gq ¢ (-1/2,0), m ¢ I+,Au e [0,1) and all initial functions

g(t). The cofresponding characteristic polynomial is

m+L -1

(2.7) C(z,q,m,u) =z o(z) - hqo(z)y(z;u)

so that the method {p,0,Y} is GDA0 stable iff all the zeros of
C(z,q,m,u)lie in the unit circle for all Bq e (-m/2,0), m e 1" and
u e [0,1).

Cryer then proves the following interesting theorems.

Theorem 2.2

If the method {p,o} is DAO stable then it is zero-stable.
Similarly, if the method {p,o,y} is GDA0 stable then {p,o0} is zero
stable. Furthermore, if the k-step method {p,o} is DA0 stable and
of order k it is implicit. Similarly, if the k-step method {p,o,v}

is GDAO stable and of order k it is implicit.
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This is a good theorem because much is known [14] about the stability
of methods for 0.D.E's, and justifies the belief that we should modify
methods for 0.D.E's to D.D.E's.

Theorem 2.3
The Backward Euler method and the Trapezoidal rule [14, p.15]

used with linear interpolation are GDA0 stable.

Theorem 2.4

The modified trapezoidal rule Yo+1 = YV = hfn+]/2 where fn+”2
is computed by linear interpolation is DA0 stable but not GDA0 stable.

The modified trapezoidal rule belongs to the family of modified
Adams methods considered by Zverkina [22] which are particularly useful
for delay differential equations since they preserve the order even when
stepping over discontinuities and of course when the,dé1ay is small compared
to the step size h, as is the case in equations with harmless delay [8],
one will step over discontinuities. It is surprising that these methods
are not as stable as the ordinary tfapeioidal rule.

The following theorem enables us to prove results on the
location of the zeros of (2.6) and (2.7) by only considering those

zeros on the unit circle.

Theorem 2.5
Let the zeros of p(z) other than z = 1 be inside the unit circle
and let {p,o} be convergent. Then {p,0} is DA, stable iff V¥8q « (-m/2,0),

m e I+,(2.6) has no zeros on the unit circle. Furthermore, {p,0,v}
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is GDA, stable iff Bq ¢ (-1/2,0), m € I+, ue [0,1),(2.7) has no zeros
on the unit circle. |

This theorem greatly simplifies the work involved in proving
stability results about methods. Even so (Cryer [6]) the proofs are long
and tedious. However, no other technique seems to be known for proving

stability results.



CHAPTER 3

NEW RESULTS ON THE ASYMPTOTIC BEHAVIOUR
OF A LINEAR D.D.E

Introduction

As Cryer has noted in [6], he did not consider the more

general equation
(3.1) y'(t) = py(t) + qy(t-8)

where y is a scalar, p and q are complex constants and B > 0, in
generalizing the definition of A-stability, because of a lack of‘results

on the asymptotic behaviour of the solutions to (3.1) where p and q are
complex. It is possible in the case p = 0, q an arbitrary complex

number to completely characterize the asymptotic behaviour of (3.1) in

- terms of a simple condition on q. This permits us to easily generalize

the definition of A-stability to differential difference equations, for

the case p = 0, as we shall see later. In the case where p and q are
arbitrary complex numbers it is not yet possible to completely characterize
the asymptotic behaviour of the solutions to (3.1) in terms of simple
conditions on p and q. However, we can give a simple sufficient condition
on p and q fo ensure that ai],solutibns to (3.1) converge to zero as t + +w.,

We characterize the asymptotic behaviour in the following two theorems.

Theorem 3.1

Consider the equation

- 3.1 -
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(3.2)  y'(t) = ay(t-8)

(3.3)  y(t) =g(t) on [0,8],

where y(t) is a sca]af, q = yexp(i¢), ¢ « [0,2m) is a complex number,
and g(t) < c°0,8].
Then all continuous solutions to (3.2), (3.3) satisfy lim x(t) = 0
' t

oo
if

(3.4) Re(q) <0 (¢ e (w/2, 3m/2)) and
0 < By < min{¢-w/2, 3n/2-¢}.

Proof
It is first shown that a necessary and sufficient condition for
all continuous solutions to (3.2) to approach zero as t -+ + is that all
roots of the corresponding characteristic equation have negative real
parts. That is, we need only show that all exponential solutions of the
form exp(at) approach zero as t - +w,
We cannot apply the theorem in [1,p.115] on the asymptotic behaviour
of linear D.D.E. since it is only valid for real coefficients. However,
writing y(t) = y](t) +iy,(t), q = q;+1 q, where y](t), ¥o(t), ;> 9, are

real, and equating real and imaginary parts of equation (3.2) gives
(y1(t)> Q(y](t) )
.Yz(t) .Yz(t)

where Q is the real matrix [q1 ) qZ] )
2 N
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The corresponding characteristic equation [1,p.166] for this system
of D.D.E. is det|Is-Q exp(-8s)| = O which yields the two equations
s = q exp(-Bs) and s = q exp(-Bs). If these equations have roots with
negative real parts then the solution to the vector equation decays to
zero are t ~ += [1,p.190].
As the characteristic equation for (3.2) is s = q exp(-Bs) it

follows that we need only consider exponential solutions to equation (3.2).

| To simplify the algebra, consider exponential solutions of
the form exp(aqt), where o = r exp(i(o+2km)), 6 e [-¢,-¢+2m), k € I
(set of all integers), r > 0. Then exp(agt) = exp(ry exp(1(9+¢+2kﬂ))t) =
exp(ryt cos(8+¢))exp(iryt sin(e+4)), so that the modulus of the exponen-
tial solution is exp(ryt cos(e+¢)). Clearly, the asymptotic behaviour
of the exponential solution is determined by the sign of cos(8+¢)

and we need only show cos(6+4) < 0.
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The characteristic equation for 3.2 is given by
aq exp(aqt) = q explaq(t=-B)). That is, a = exp(-agB). Since there cannot be

a non-7eyo constant solution, we may assume o # 0. Solving for B we get

B = &n of(-aq)
= (5 m 0)/(-q]al?)
= [on r+i(o+2km)Ir exp(~i(e+2km))/(yriexp(i¢))
= =[an r+i(e+2kn)]lcos (6+d)~i sin(e+d)]/(yr).
"o Re(B) = -[on r cos(0+d)+(0+2km)sin(0+p)]/(vr).
Im(B) = ~[(6+2km)cos(0+¢)=-Ln r sin(0+p)]/yr.

As B is veal, then Im(B) = 0; hence (6+2km)cos(6+¢p) = 2 r sin(6+¢).
If sin(e+$) = 0, then {e+2km) = 0, so that cos(6+d) = cos(¢-2kw) = cos ¢ < O.
We may then assume sin(6+¢) # O.

Now r {6} = exp((6+2kn)cot(6+9)) and

B = -L{6+2km)cot(6+d)cos (6+)+(8+2kn)sin(6+¢) 1/ (yr)

-(6+2km)/{yr sin(o+d))

i

A(9)/(yr(e)) where A(8) = -(6+2kw)/sin(6+d).

i

Clearly as 8 > 0, A(8) > 0.
If sin(6+p) + 0 and 6+2km > 0, then ¢ = w. This is the case
if q is real and we have seen this result in Chapter 2. We may assume

¢ # mand A(6) » z= as sin{8+¢) » 0,
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Case (i) (o+2km > 0)

Now sin(e+p) < 0 and & + ¢ e (w,2m).
As 8+1T+-¢, B+ 0

6 + 3m/2 ~ ¢, B> 2k + (3m/2-0)/v

g+ 21 - ¢y B >t

Using the following lemma we can complete the proof.

Lemma 3.1
The function 8(8) = A(8)/(yr(s)) is a strictly increasing

function of © for 8 + ¢ e (mw,2nm).

Proof We need oriy show that g'(0) =-dp/de > 0.
8'(8) = (A'(6)r(0)-r' (8)A(0))/r’(8) and

At(e) = [(o+2kn)cos(e+p)-sin(0+9)1/sin’ (o)
f(8) = r(6)[cos(0+¢)sin(+o)-(o+2kr) Isin? (6+4).
81 (6) = ~[(0+2km)24sin?(0+6)-2 sin(e+6)cos (0+0) (8+2km) I/sin> (6+6).

As (e+2kw)z+sin2(e+¢)—2 sin(0+¢)cos(6+d) (0+2km)
>'(e+2kﬂ)2+sin2(6+¢)cosz(8+¢)«2 sin(6+¢)cos(6+9) (6+2kw)
= [(e+2kw)-sin(e+¢)cos(e+¢)]2 =0,

then clearly 8'(8) > 0. O

We can now easily complete the proof of the theorem. As B is
strictly increasing for 6 + ¢ ¢ (m,2m), then 0 < By < (3n/2-¢) implies

6+ ¢ e (m,31/2) and hence cos(0+¢p) < 0.
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Case (ii) (o+2kw < 0)

Now sin(6+¢) > 0 and (0+9) e [0,m).
As 60" - ¢, B> tm

0+ /2 - ¢, B> -(n/2-¢+2kn) [y

B +n" ¢, B0,

It is easy to see from the proof of the above lemma that B is a
strictly decreasing function of 6 for 6 + ¢ ¢ [0O,m). Then 0 < By < ¢ - 7/2
implies 6 + ¢ « (m/2,7) and hence cos(6+¢) < O.

Therefore, if 0 < By < min{3n/2-¢,6-1/2}, cos(6+p) < 0. O

Remarks

| The criterion on g in Theorem 3.1 is sharp in the sense that if g
does not satisfy (3.4) then we can find an exponential solution to (3.3)
which does not converge to zero as t » +», That is,we simply choose

o+2km so that cos(6+¢) = 0,

Im(q)

—TT/2 -1 0 et e e et e b .__W_Re( q)

Fig.3.1 Region of g-stability for B =1
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The region of stability of equation (3.2), shown in Figure 3.1
for 8 =1, is determined by plotting the boundary, For Im(q) > 0, that is
o e (w/2,m) we have y = ¢ - ©/2 and thus Re(q) = (¢-m/2)cos ¢ and
Im(q) = (¢~m/2)sin ¢. Therefore, we can parametrize the boundary of the

region in terms of ¢.

Theorem 3.2

Consider the equation

(3.5) y'(t) = py(t) + aqy(t-8)

where y is a scalar, p and q are complex constants and g8 > 0. All exponen-
tial solutions (hence all solutions) converge to zero as t =+ +« under the

condition

(3.6) Re(p) < -|ql.

Proof As usual, we may write p = pexp(iv), g = yexp(i¢) where p,y > 0.
Condition (3.6) can be written as -p cos ¥ > v. |

To simplify the algebra consider exponential solutions of the
form explog+p)t with o = (p/y)r exp(i(6+2kn)) where &  [0,27), k ¢ I, r > 0.
~pr exp(i{e+g+2kn)) + cexp(iy)

Then ag+p

it

o[cos y+r cos(6+¢) + i(sin y+r sin(6+¢)].

Ifz =cos ¢ +r cos{6+d) + i{sin Y+ r sin(e+¢)) then ag + p = pz so that
the modulus of the exponential solution is exp{p Re(z)t}. The asymptotic
behaviour of the solution is determined by the sign of Re(z) and we

need only show Re(z) < 0.
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The characteristic equation of (3.5) is
(aqtp)explagtp)t = p exp(og+p)t + q exp [{oq+p)(t-B)].
That is o = exp[-(uq+p)e];

an{pr/y) + ife+2km) = -pzB.
12

It

coszw + 2r cosy cos(o+9) + r2c052(9+¢)

+ sinzw + 2r siny sin(6+¢) + rzsinz(e+¢)

=1 + 2r cos(0+p-y) + TZ 2 (1-Y)2-

If z =0 then r =1 and n(p/y) = 0 which contradicts condition (3.6),

SO we may assume z is nonzero.

Solving for B, we get

g = -ZLan(pr/y) + i(e+2km)1/(pl2]%).
Re(B) = -{ ln(prly)[coswfr cos (o+¢) J+(o+2km)[sinytr sin(e+¢)]}/(p|z|2).
Im(B) = ~{-tn{pr/y)[siny+r sin(e+p)]+(e+2km)[cosy+r cos(e+¢)]}/(plz12).

As B8 is real then Im(B) = 0, hence (8+2kw)(cosyrr cos(6+p)) =

en(pr/y)Lsinp+r sin(e+s)].

Case (i) (siny + r sinf{e+y) = 0)

Eithér (e+2kw) = 0 or cosy + v cos{o+p) = 0.
If cosy = ~-r cos(6+d) then,since
siny = -r sin(6+¢),squaring, adding and solving for r gives r = 1,
which as we saw before is impossible. Thus we cannot have cosy + r cos(e+¢) = O.

If (e+2kn) =0 then 6 = 0 and B = -an(pr/y)/[o(cosy+r cosé)]

iV

-2n(or/y)/Locosy(1+r cosd/cosy)]. Condition (3.6) implies -Re(p) > |q| 2 Re(q),
hence - pcosy > ycosd. If cos¢ < O then Re(z) = cosy + r cos{6+¢) =

cosy + r cosd < O and the exponential solution decays. If cos¢ > O then
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cosy/cosy < =y/p. For 0 <r <yp, B<O
v/p < r < -cosy/cos¢, B > 0
r > -cosy/cosb, B < 0
so that we must have y/p < r < -cosy/cos¢, which implies Re(z) < 0.

Therefore, the exponential solution decays.

Case (ii) (siny+ r sin(8+¢) # 0)

an(pr/y) = (6+2km)[cosy+r cos(e+¢)1/[sinp+r sin(e+¢)]

and B = (0+2km)/[-p(siny+r sin(6+d)]

-A(r,8)/o where A(r,8) = (o+2km)/[sinp+r sin(o+¢)].

As 8 > 0 we require A(r,6) < 0, The equation derived from putting Im(g) =0
becomes
A(r,8)[cosy+r cos(e+¢)] = an(pr/y).
Suppose, if possible, that cosy + r cos(6+p) = 0. Then &n(pr/y) < 0;
r < y/p. cos{f+$) = -cosu/r = -pcosy/y = -Re(p)/|q| > 1. This

contradicts condition (3.6). Thus,we must have cosy + r cos(6+p) < 0. 0

Remarks

Note that (3.6) is a sufficient condition for the solution to
converge to zero as t - +«. However, the solution can converge to zero
when condition (3.6) is not satisfied. It is difficult to specify a good

condition for solutions to (3.5) to converge to zero as t - +=,
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T Im(p)

Re(p)

A 4

Re(p) = -q 0

Fig.3.2 Region of p-stability

Theorem 3.3

Consider the equation

(3.7) y'(t) = qy(t-B) + f(t)

where y is a scalar, q a complex constant, B > 0, and f is a continuous
function satisfying |f(t)| < ¢ exp(-at), o and c positive constants.
Then all continuous solutions to (3.7) satisfy |y(t)| < c*exp(-o*t)

where c*, o* are positive constants and q satisfies condition (3.4).
40

Proof Clearly I |f(t)|dt is bounded, so applying Theorem 3.1 along

t
with the theorem from [1, p.361] yields the desired result. 0
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We can use this theorem to determine the behaviour of a system
of D.D.E's which depend only on the past solution and such that each

component has the same lag.

Theorem 3.4

Consider the vector equation

(3.8) y'(t) = Qy(t-8)

where 8 > 0 and Q is an n x n complex matrix. Suppose the eigenvalues
of Q are ay = yjexp(iej), j =1,...,n. Then all solutions to (3.8)

converge to zero under the conditions
(3.9) 0 < BYj < min{3w/2-¢j, ¢j-w/2} j=1,...,n.

Proof By [20, p.11], 3 a matrix R 3 RQR-] has the form
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qs+1 1 0 \W
9541 1
Jp = .
1
L0 0 Qgqq ) XM

where m > 1 is the multiplicity of the eigenvalue S and J2""’Jr have
the same form as J;. Clearly, the variables y1(t),...,ys(t) become
decoupled and we may apply Theorem 3.1 to each component to show that
yi(t) +0ast~+» fori =1,...,s.

Let y*(t) = [y ,1(t)s..usy (t)]" and consider the equation

s+m

(3.10)  y*(t) = dy*(t-8).

Clearly, the last equation of (3.10) is ys+m(t) = qs+1ys+m(t—8) and so
by Theorem 3.1 ys+m(t) is exponentially decaying. The second last
equation of (3.10) is ys+m=1(t) = qs+]ys+m_1(t-6) + ys+m(t-8) which has

the form of equation (3.7) if we take f(t) =y . (t-g). Thus, y5+m~](t)

S+HM
is an exponentially decaying function. Similarly, we can show that
all the components of y*(t) are exponentially decaying and similarly

all the components of X(t) are exponentially decaying. [

We might hope to give a similar generalization to a system of
D.D.E's for equation (3.5). However, this can be done only by imposing

fairly restrictive conditions.
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Theorem 3.5

Consider the vector equation

it

(3.11)  y'(t) = Py(t) + Qy(t-g)

~

where P, Q are n x n complex matrices having eigenvalues Pis 9
respectively, i = 1,...,n. Suppose P, Q are simultaneously diagonalizable,

that is, 3a matrix R > RPR']

y .

= d1ag[p1,...,pn] and RQR™" = d1ag[q],...,qn],
and further that each pair Pis 9y satisfies condition (3.6) or p; = 0

and q, satisfies (3.4). Then all continuous solutions to (3.11)

converge to zero as t -+ +w,

Proof The fact that P, Q are simultaneously diagonalizable allows
us to reduce (3.11) to a decoupled system and we may apply either

Theorem 3.1 or 3.2 to each component to complete the proof. O



CHAPTER 4

NEW RESULTS ON THE STABILITY OF NUMERICAL METHODS

Theorems 3.1 and 3.2 in Chapter 3 give a more complete characteri-
zation of the asymptotic behaviour of a Tinear D.D.E. We can use these
theorems to generalize the definitions of DA0 stability and GDA0 stability
of Cryer [6]. As we shall see later,we can also generalize Theorems 2.2

and 2,5, Using Theorems 3.1 and 3.2 we get the following definitions:

Definition 4.1

A L.M.S. method {p,0} with B = mh is called Q-stable if all the
roots of the characteristic equation (2.6) C(z,q,m) = 0 are inside the unit

circle whenever q satisfies the conditions (3.4) and m e It,

Definition 4.2

A L;M.S. method {p,o,y} with 8 = (m-u)h is called GQ-stable if
all the roots of the characteristic equation (2.7) C(z,q,m,u) = 0 are inside
the unit circle whenever q satisfies the conditions (3.4), m ¢ 1" and
ue [0,1).
Applying the L.M.S. method (1.3) to equation (3.1) with B = mh
yields the difference equation
k k

k
iy = PL ByYneg * AL 8 ¥ ey

The associated characteristic polynomial is given by

(4.1) CP(z,p,q.m) = 2"(p(z) - ph o(z)) - qh o(z).

- 4.1 -
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Definition 4.3

A L.M.S. method {p,0} with 8 = mh is called P-stable if all the
roots of the characteristic polynomial (4.1) are inside the unit circle
whenever p,q satisfy condition (3.6) and m « I,

Applying the L.M.S. method (1.3) to equation (3.1) with g = (m-u)h
yields the difference equation

k k

k
Yoy .. =ph i By . .+aqh]BE
LR BT B N

=2+ .
Y(E ’u)yn-m+j .

The associated characteristic polynomial is given by

(4.2) CP(z,p,q,m,u) = 2"(p(z)-ph o(z)) - ghy(z,u)a(z).

Definition 4.4

A L.M.S. method {p,0,v} with 8 = (m-u)h is called GP-stable if
all roots of the characteristic polynomial (4.2) are inside the unit circle
whenever p,q satisfy condition (3.6), m ¢ 1" and u ¢ [0,1).

Using these definitions we can state the following theorems which

are just a generalization of those in [6].

Theorem 4.1 .
If a L.M.S. method {p,0} is Q-stable it is zero-stable. Further-

more, if the method {p,d,Y} is GQ-stable, it is zero-stable,

Proof Clearly any method which is Q-stable must be DA, stable and hence
by Theorem 2.2 is zero-stable. Similarly, the result is proved for GQ-

stability.
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Theorem 4.2
If the k step method {p,0} is Q-stable and of order k it is
implicit. Furthermore, if the k step method {p,o,y} is GQ-stable and of

order k it is implicit.

Proof Again any such methods are DAO and GDA0 stable respectively and

the result follows by Theorem 2.2.

Theorem 4.3
Any method which is P-stable is A-stable. Furthermore, any k

step method which is order k and P-stable, is implicit.

Proof The result that a P-stable method is A-stable follows immediately
by letting q = 0 in equation (4.1). As the method is of order k and A-
stable it must be implicit [7]. 0

It would be nice f Theorem 4.3 was also true for Q-stable
and GQ-stable methods, but it is not known to date if this theorem is true
or false and definite results are difficult to obtain.

One of the basic methods [6] for showing that the stability
polynomials (2.6), (2.7) have all their roots inside the unit circle is to
first show that for small q inside the region defined by (3.6) that (2.6) and
(2.7) have roots inside the unit circle and then show that there are no roots
on the unit circle. The following theorem allows Us to consider only the

zeros of a stability polynomial on the unit circle.
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Theorem 4.4

Let the zeros of p(z) other than z = 1 Tie inside the unit disc,
and let {p,0} be convergent. Then {p,s} is Q-stable, if and only if ¥q
satisfying (3.4) and m ¢ IT the characteristic polynomial C(z,q,m) (2.6) has

no zeros on the unit circle.

Proof Let 21(q),..;,zm+k(q) be the zeros of C(z,q,m) with z](O) =1
and Izj(O)l <1 for j>1. The zj(q) are continuous functions of the
variable q since the roots of a polynomial are continuous functions of its
coefficients [15,p.3]. Thus, 3 - a region about the origin so that
|zj(q)| <1 forj>1,

As {p,o} is convergent, we have p(1) = 0 and p'(1) = o(1) # 0.
As z](q) is a simple zero we may differentiate the equation C(z1(q),q,m) =0
with respect to q. This yields

dz dz
1 do 1
zy dq B h0(21) - hq dz; dg

©

=0,

|

dz
m-1 1 md
omzydqq A

al

Setting q = 0 in the above equation gives

dz1(0)
0(1)[16'- 'h] = 09

dz](O)
hence --‘aa--—- =

"

dz, 2
Now z,(q) = 1+ aa~(0)q +0(q")

1+ hqgt O(qz),

so that for small q in the region defined by (3.4), that is for small q belong-
ing to the region of stability of y'(t) = g y(t'B), lz](q)l < 1.
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As the zj(q) are continuous functions of q, then, if there is no
root on the unit circle for q satisfying (3.6), there can be no roots

outside the unit circle.

Theorem 4.5

Let the zeros of p(z) other than z = 1 be inside the unit disc and
let {p,0} be convergent. Then {p,s,y} is GQ-stable if and only {f Yq
satisfying (3.4), me IT and u e [0,1) the characteristic polynomial

c(z,q,m,u} has no zeros on the unit circle.
Proof The details of the proof are the same as for Theorem 4.4,

Theorem 4.6
The first and second order backward differentiation methods are

P-stable.

Proof The backward Euler method (first order backward differentiation
method) applied to (3.1) with B8 = mh gives the difference equation
yn+1(l-hp) - ¥, - hay, .y The associated characteristic polynomial is
(1-hp)2" - L Bgq/m = 0.

Let P(z) = zm'1[z(1-hp)-1] and Q(z) = -Bg/m. Clearly, both P and
Q are analytic inside and on the unit circle, with P(z) having m zeros inside

the unit circle for Re(p) < 0. On the unit circle

it

]P(z)| |z(1-hp)-1] > | {1-hp]-1]

-h Re(p) > h|q| = [Q(z)].

v
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Applying the theorem of Rouché [15, p.2] to P,Q we have that P(z) + Q(z),

which is the characteristic poTynomia], has the same number of zeros inside

the unit circle as P(z), name}y m zeros. Hence, the method is P-stable.
The second order backward differentiation method applied to (3.1)

with B = mh gives the difference equation

Ynao(1-2hp/3)~(8/3)y,  1+(1/3)y,~(2/3)hq y, \» = 0.

The associated characteristic polynomial is

2" (1-2hp/3) 22-(4/3)2+1/3] - (2/3)hq = 0.

Let f(z) = (1-2hp/3)2° - (4/3)z + 1/3,
P(z) = 2"f(z) and Q(z) = -(2/3)hq.
1£(2)]° = £(2)F(ET

i

(17/9) - (8/9)Re(z) + (2/3)Re[(1-2hp/3)z%]
(8/3)Re(1-2hp/3) + |1-2hp/3]2.

t

For z on the unit circle z = exp(i6), 0 <6 < 27 and p = py + ip, where p,,

p, are real. Then
£(2)12 = (4/9)0%p = (8/9)pyn(1-cos 6)°
+ (4/9)6(h,p,,0)

where G(h,pz,e) = (4/9)[h2p§ + 2hp, sin 6{cos 0-2)

+ 2(1-cos 8) + 3(1-cos 8)2]
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is a quadratic in hp, with coefficients a function of 6. The discriminant

of G is -4(1-cos 6)4, hence G(h,p,,6) > 0. Thus
1£(2) |2 = (4/9)0%3 > (4/9)0%|ql? = la(2)|°.

Therefore, |P(z)| > Q(z)|. Again, applying the theorem of Rouché yields

the desired result.

Theorem 4.7
The first and second order backward differentiation methods are

GP-stable, when used with linear and quadratic interpolation respectively.

Proof The backward Euler method used with Tinear interpolation, when

applied to (3.1) with 8 = (m-u)h, gives the difference equation

Yna1(1-PR) =y = haluy, o+(T-udyy q) = 0.
The characteristic polynomial associated with this equation is

Z™(1-hp) - M1 hq(uz+1-u) = 0.

Let Q(z) = -hq{uz+1-u). For |z| =1 and u ¢ [0,1) we have that

1Q(z)! = nlgl [ut(1-u)] = hq|,

hence the proof of Theorem 4.5 generalizes to this case. Similarly, the
proof of Theorem 4.5 will generalize to the second order backward differen-
tiation method provided that, for |z| = 1, the polynomial

%u(uﬂ)z2 + (1-u){1+u)z + %u(u-]) is less than one in magnitude. Letting

z = exp(i6) we can easily show that this is true, hence the result follows.

0
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In order to analyze the stability of various multistep methods
we will need the following lemma concerning the location of the zeros of

various polynomials.

Lemma 4.1
The polynomials (z-1) - Bq = 0 and z(z-1) - Bq(z+1)/2 =0

have no zeros outside the unit circle for Bg satisfying (3.4).

Proof (By contradiction)

For the first polynomial, z = 1+ Bq. Thus, for Re(q) < 0 and B
small, the root lies inside the unit circle. If 3 a root z on the unit
circle then we may assume z has the form exp(ig), 0 < 6 < 2w, which
gives (cose-1) + i sine = By(cos¢+i sing), Equating the real parts and

the squares of the absolute values gives

(cos6-1) = By cos¢d

(By)2 2(1-cos0).

i

Solving for By gives By = -2 cos¢. Noting that -cos¢ = {i}g%g&gég%) -and

that sin(a) 2 (2/m)a for 0 < o < 7 /2 we easily see that
gy > min{¢-m/2,3n/2-¢}, which gives us a contradiction.

For the pther polynomial clearly z = -1 is not a root
(i.e. 8 # w) so assuming that z e unit circle we have
z(z-1)/(z#1) = Byexp(i®$)/2; hence exp[i(06-¢+m/2)]tan(6/2) = By/2.
Equating absolute values gives By = 2/tan{6/2)|. Equating real parts
gives tan(6/2)sin(e-¢+n/2) = 0. Clearly tan(6/2) # 0 so that
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0-¢+m/2 = km, k ¢ I. The only values of 6 of interest are 6 = ¢-m/2
and 6 = ¢o+n/2.
| If 8 = ¢p-1/2 then 0 < 6/2 < 7/2 and tan(6/2) = tan((¢-m/2)/2) >
(¢-m/2)/2.

If 6 = ¢+n/2 then 0 < 7-6/2 < w/2 and -tan(6/2) = tan(w-6/2) =
tan((31/2-¢)/2) > (3n/2-)/2.

Therefore, |tan(6/2)| > %'min{¢-ﬂ/2,3n/2—¢} and By = 2|tan(6/2)| >

min{¢-m/2,3n/2-¢}, which is cleérly a contradiction of condition (3.4).

Lemma 4.2

Consider the polynomial
(4.3) ZM(z-1) - gh[(1-v) + vz], q = yexp(i¢)

where 8 = (m-u)h, m € I+, v e [1/2,1]. Then this polynomial has no zeros

on the unit circle for m > 1 and q satisfying (3.4).

Proof (By contradiction)

Yppose a zero on the unit circle, so that we may assume
z = exp(i8), -m < 8 < m. Clearly, as t1 are not zeros we have -m < 8 <,
8 # 0. Equating (4.3) to zero we obtain exp(i6)z2™ = ny[(1-v)+vz]/(z-1) =
(-ihy/2)[cos(6/2)+i(2v-1)sin(6/2)1/sin(6/2). Equating real parts and
squares of the absolute values to zero gives cos(me-¢) = (hy/2)(2v-1) and
tan?(6/2) = (hy/2)2[1-(ny/2)2(2v-1)21, or sin?(6/2) = (wy/2)?[1+av(v-1]sin® (6/2)].

This last equation implies sinz(e/z) < (hy/Z)Z.
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Let ¢ = (hy/2)(2v-1) and T = tan(e/2). We may choose ¢y such
that 0 <y <m/2 and sing = ¢ since 0 < ¢ < 1. Then cos(mo-¢) = siny =
cos (y-n/2) hence mo-¢ = 2km + (y-m/2). As 0 < (me)? = (2m(8/2))? <
(2m(n/2)sin(8/2))% < (mhy/2)? = (ngy/2)? < 7%, -r <me < m, thus the only
va]ués of 6 we are interested in are given by

(¢-ﬂ/2) +¢ for0<o<m

mg =
(¢-31/2) -~ ¢ for -m < 8 < 0,

Also, as -1/2 < 6/2 < /2, (me)2 = [2m(e/2)1% < (2nT)% = (8y)2/[1-c].

Case (i) (mo = (¢-m/2)+yp)

m8)2 = [(¢-n/2)+1% > [(¢-m/2)+sinp]?,

which implies

[(p-n/2)+c]? < (8)%/[1-c°1.

For m/2 < ¢ < m, By < (¢-1/2) < m/2 so that
g(¢) = [(¢-7r/2)+c]2 - (¢-ﬂ/2)2/(1-c2) is negative for ¢ « (n/2,7]. However,
g(n/2) = ¢ > 0 and g'(¢) = 20[1-c(¢-w/2)fcz]/(1-c2), so that we can easily
show for v e [1/2,1] and m > 1 that g'(¢) is positive which implies g(¢)
is positive, which is clearly a conﬁradiction.

Similarly, for ¢ ¢ (w,31/2), we consider the function

g(¢) = [(¢-1T/2)+c]2 - (3ﬂ/2-¢)2/(1-c2) and obtain a contradiction.

Case (ii) (m6 = (¢-3m/2)-y)

The proof here is similar to case (i).
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Theorem 4.8

The Backward Euler formula and the modified trapezoidal rule are

Qustable;

Proof The characteristic polynomial associated with the Backward Euler
method 1is zm(z-l)-hqz.

For q satisfying (3.4) this polynomial has no zeros on the unit
circle form = 1 by Lemma (4.1). Taking v = 1 in Lemma (4.2) shows that
this polynomial has no zeros on the unit circle for m > 1. Hence, the
Backward Euler method is Q-stable.

The characteristic polynomial associated with the modified
trapezoidal rule is zm(z-1)-hq(z+1)/2 =0,

For q satisfying (3.4) this polynomial has no zeros on the unit
circle for m = 1 by Lemma (4.1). Taking v = 1/2 in Lemma (4.2) shows that
this polynomial has no zeros on the unit circle for m > 1. Thus the

modified trapezoidal rule is Q-stable,

Theorem 4.9
The modified trapezoidal rule used with linear interpolation is

not GQ-stable,

Proof Any method which is GQ-stable is GDA0 stable and Cryer [6] has
shown that the modified trapezoidal rule is not GDA, stable.

Remarks

The author believes that the Backward Euler method used with linear
interpolation is GQ-stable although he does not have a proof for it.

Firstly, Cryer [6] has shown that this method is GDA0 stable.
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Next, consider the characteristic polynomial of the method which
is zm(z-1)~hqz(uz+1-u).‘ Actually, we need only consider the polynomial
Q(z) = zm'](z-1)-hq(uz+1-u). Note that in order to have a large step (i.e.
" h > R) we must have m = 1 and that the zero of P(z) for m = 1 is
z = (1+Bq)/[1-8qu/(1-u)], which is ihside the unit circle for q satisfying
(3.4) and u € [0,1). For a large step size the method is stable.

Also suppose u e [1/2,1] and m > 2. LetM=m-1, Q = q(m-1)/{m-u)
and v = u. Then Q(z) = zM(z-l)-(BQ/M)(vz+(1-v)) and *|BQ| < [Rq| so
that the zeros of Q(z) are inside unit circle for m > 2 by Lemma 4.2.

Thus there is good reason to believe that the method is GQ-stable.

Plotting of the Regions of Q-stability

Let t = Br in the equation y'(t) = qy(t-8). Then %%‘= %%'%%'2 %_Qx

dt
so that %%—= Bay(B(t-1)). Define y*(t) = y(Bt) then

g%t-= Bay*(t-1) so that we can always put the equation in the form

y'(t) = qy(t-1) by a simple scaling of the time variable. Hence for plotting
stability regions for numerical methods applied to this’type of delay
equation, which just depends on past function values, we can just consider
the equation y'(t) = qy(t-1) and the stability region of this equation having
the boundary defined by

(4.4) y = min{3n/2-¢, ¢-m/2}

with q = yexp(i$), ¢ e (n/2,3w/2). Note that this boundary curve is symmetric

about the axis fm(q) = 0.



Applying the boundary locus method to a multistep method {p,o}

we get,

~exp(ime)p(exp(io)) - (gq/m)o(exp(is)) = 0.

Solving for q gives
q = m exp(imo)p(exp(io))o(exp(iv)).

This equation defines a countable number of curvés as m is a positive
integer. We may plot some of these curves defining the regions of QQstabiiity
for small values of m and hopefully determine if methods are not Q-stable
and obtain an intuitive feeling as to where the methods are not Q-stable.
Hopefully, the higher order backward differentiation methods will have
stability properties similar to stiff stability for 0.D.E's.

For the backward differentiation methods o(z) = Bkzk,so that
g=m exp(i(m—k)e)p(exp(ie))/ﬁk. The regions of Q-stabi]ity for the
first order methods with m = 1,2,3aregiven in Figure 4.1, Other regions
of Q-stability are given in Appendix B.

It is interesting to note [Appendix B] that, the second order
backward differentiation method is stable for m = 1,2,3 as we might well
expect. It is conjectured that this method is Q-stable. The stability
regions with m = 1, for the higher order methods show‘a similarity to the
stiff stability regions of Gear for 0.D.E's [11,p.215], with a section
missing near the boundary of (4.4), except for the order six method which

appears to be stable for m = 1.



Fig. 4.1 Region of Q-Stability for B.D. method of
Order 1 with 8 = mh
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Plotting the Regions of P-Stability

- Next, we wish to consider the equation y'(t) = py(t) + qy(t-g).
We can easily show by a simple scaling of the time variable,as above,that
we need only consider the equation y'(t) = py(t) + qy(t-1) and the
stability region Re(p) < -|q|. Applying the boundary Tocus method for the

multistep method {p,0} applied to this equation, we get
p = [p(2) - qho(2)27"1/(ho/2))

so that for the backward differentiétion methods we have
p= (eXb(ie))(exP(—ike)/Bk - q exp(-ime).

This defines a curve in the p-plane which depends on m and q.
To obtain a feeling for the stability behaviour of a method we can take
q = 1 and plot the corresponding p curves for m = 1,2,3,4 along with the line
Re(p) = -|q|. Figure 4.2 illustrates the boundary of this region for ihe
Backward Euler method, Boundaries of the region for the higher order methods
are given in Appehdix B.

Clearly, the first and second order backward differentiation methods
behave as expected since we know these methods are P-stable. The higher
6rder methods have stabi]ity regions similar to those for 0.D.E's. However,
there is some surprising behaviour., The third order method is stable for |
m=1,2,3,4 and q = 1, and the fourth order method is stable for m = 1,2
and q = 1, This results since, for small values of m, the contribution from
the term q exp(-img) is not small. Note that the third to sixth order

methods cannot be P-stab]e.
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Fig.4.2 Region of P-Stability of B.D. method
of Order 1 with B = mh

\
!



CHAPTER 5

DESCRIPTION OF AN AUTOMATIC PACKAGE FOR SOLVING
¥ (t) = £(t,y(t),y(t-B)) USING MULTI-VALUE ALGORITHMS

Consider the problem

H

(5.1) y'(t) = f(t,y(t),y(t-6))

]

y(t) = g(t) on [ty,ty*e].

We will use the generalized Adam's methods (G.A.M.) [11,p.155] since little
is known about a specific problem when writing a general package. Gear
[11,p.158] has successfully incorporated these methods into an automatic
package which changes step size and order to efficiently solve 0.D.E.

Many of his ideas can be used in designing a similar package for D.D.E.‘
and we will discuss these ideas for 0.D.E. and how they can be modified

for D.D.E.

Basic Differences

The main differences between solving 0.D.E. and D.D.E. are
outlined below:

1) The initial function g(t) can be used to generate the starting values
for the method; however, variable order methods are usually self starting in
order to handle the problem outlined in 2).

2) Discontinuities can arise in the higher order derivatives. We
can minimize this problem by ensuring that the set of points where dis-
continuities occur are included in the set of mesh points.

3) There is a need to save past function values to compute y(t-8).

This will be discussed more fully later.

- 5.1 -
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Basic Algorithms

[} 1 T .
Let Yo = Dps¥nooe o Yoot oe - oWppeqd - A multi-
value algorithm [11,p.103] for 0.D.E. has the form

, (5.2) Xn,(O) N BXn-]

(5.3) Lo, (me1) = Yn,tm) + 8 8l (m))

where B is a matrix reflecting the particular nature of the multivalue

algorithm in use, and
G(y,) = -hy, + hf(t .y.).

(5.2) is called the predictor and (5.3) the corrector.
We may also consider equivalent methods [11,p.142] by using the
following transformations:

& = Ty

Bn,(m) = Wn,(m)

F(x) = G(T™'x)

A= TBT !,

The multivalue method is then written as
(5.4) gn,(O) = Aa

~n-1

(5.5) én,(m+1) = Qn,(m) + &F(gn,(m)).
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In the case of generalized Adams methods [11,p.155] we consider
the vector (yn,hyﬁ,...,hyﬁ_k+])T for a k-step method since the other
components do not appear in the‘formulas. Usina the equivaient representa-
tion which incorporates scaled derivatives, we have
3, = (Xn,hyﬁ,..,,hk']yﬁ']/(k-])!) for a k-step method. The transformation T

is such that F(T']gﬁ (m)) = Gy, (m)) so that F is easily evaluated as

-hyﬁ + hf(tn,yn) and hyﬁ isAjust the second component of a,- The scaled
derivative representation has the advantage of controlling round-off error |
better (although not as well as backward differences) and of changing step
size easily. The matrix A in (5.4) is just the Pascal triangle matrix [11,p.149].
Hence, we can easily compute A a, using only additions [11,p.149] and thus
easily perform the prediction step (5.4). The coefficients & for the
corrector algorithms in the scaled derivative representation are given in
Table 5.1. |

We may also use the backward differentiation hethods [11,p.214] to
overcome stiffness problems. Stiffness can even occur in the scalar
D.D.E.problem with a single well behaved function. This will be discussed
further in Chapter 6. The vector 2 for the backward differentiation methods
in scaled derivative form are given in Table 5.3 and can be found in

[11,p.217].

Error Control, Step Size and Order Change

In an automatic package using a variable order method the error

is normally controlled by controlling the local truncation error. A q-th
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TABLE 5.1

Coefficients of & for G.A.M,

Order q 1 2 3 4 5 6
. : 1 5 3 251 95

0 2 T2 g8 720 7288

21 1 1 1 1 1 1

) 1 3 11 25 137

2 I T2 26 T20

: 1 1 35 5

3 3 3 77 8

3 1 5 17

"4 20 g 96

. 10

5 120 40

1

L 720

TABLE 5.2
Error Constants for G.A.M.

Order q 1 2 3 4 5 6
c 1 1 .1 19 3 863
q+1 z 2 28 0 160 "60480
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TABLE 5.3

Coefficients of & for B.D.M.

Order q 1 2 3 4 5 6
1y 1 2 6 12 60 60
0 3 11 25 137 147

21 1 1 1 1 1 1

2 1 6 7 225 406

2 3 1T 10 278 q
1y 1 1 85 245

3 1T 5 278 588

% 1 15 175
4 50 274 1764

2 1 7
5 27 588

1

g 764

TABLE 5.4
Error Constants for B.D.M.

Order q 1 2 3 4 5 6
¢ L A
g+l z 3 4 5 6 7
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order Adam's method has a Tocal truncation error Cq+1hq+]yq+] provided
the order of the predictor plus the number of corrector iterations
exceeds q [9, p.155]. We will use a q-1'th order predictor with a q'th
order corrector, so that even after one iteration the method will be of
vorder q [11,p.155]. The error constants for the G.A.M. are given in
Table 5.2 and for the B.D.M. in Table 5.4,

Clearly, to estimate the Tocal truncation error, we must
estimate yq+1. Let Vaq denote the change in the Tast component of a,.
Then Vaq = hq(yg+1 - yﬂ)/q!, so that Cq+]q! Vaq is an estimate of the
local truncation error. The algorithm which is used in the program

controls either the local relative error per unit step or the Tocal error per

step. That s, we accept a step proyided the test,

IA

~(5.86) Cq+]q! va, h € ymax

or Cq+]q! Vaq < € ymax,

where € is the requested tolerance and ymax is the maximum absolute value
-of the previously computed so]ution, succeeds. YMAX is originally
vprovided by the user and can be overridden by the user each time control
returns to the user. The user must select error per unit step or error per
step. In the case of a system of equations we replace Vaq with the L, norm
of ng in the tests (5.6).

The step size is easily changed from h to ah by multiplying 2, by

the matrix diag[],u,...,aq'1], where we are using a q'th order method.
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To decrease the order of a method, we simply omit the last
component of 2, To increase the order of a method, from q to gq+1, we
must add the component hq+]y2+]/(q+1)! to g, = (yn,...,hqyg/q')!

As before, hq+1yﬂ+] is estimated by using Va_ q! so that the last component

q
becomes Vaq/(q+1).

Algorithm for Automatic Control

If we have solved the corrector equation (5.5), then (5.6) gives
a criterion for accepting or rejecting the computed solution,

If a step fails, then we want to decrease the step size and/or

the order. We consider using the order q or g-1 method which gives the

maximum step size. Given the present step size h and order q then the new step

size 1s ah, where the o for order q and error per unit step is given by

(5.7) =l e ymax/(ic,, aq|q!)]”q

and the o for order q-1 is given by

(5.8) o= Cylhe ymax/(lcqaql)]’/(q‘])_

where aq is’the last component of 2 For a system of equations we use the
L, norm of gq. If nguz = 0, as frequently happens with D.D.E. (since
with a constant initial function higher order derivatives are zero),

the step size is decreased by 10. These values of o are chosen so that
when C; = C, = 1 and there is no roundoff error, then the error test (5.6)

would be satisfied exactly. C], C2 are chosen slightly Tess than one in
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the hope that the error test (5.6) will be satisfied even in the presence
of roundoff error, and inaccuracies ih the asymptotic error formula.

The program in Appendix A uses Gear's values [11,p.156] for C], CZ. The
order corresponding to the largest step is chosen and the decrease in
step size is performed. Of course, if the order is one to start, we can
only decrease the step size. »

If the step succeeds, we repeat with the same step size h and
order q until at least g+1 steps after the last change in order or step
size, and at least ten steps after the o were last estimated, if no increase
in order was made at that time. In considering increasing the step to ah,

the o for order q is given by (5.7) and the o for order g+l

with error per unit step is given by
= 2 1/q+]1
(5.9) a C3[h € ymax/(|Cq+2V aqlq!)] .

In the case of a system of equations we use the Hvz in (5.9). Again

&2
if HVzquZ = 0, the step is increased by ten. If the order is less than
six then the order corresponding to the largest step is selected provided
that o is greater than 1.1. If neither o is at least 1.1, there is no
change in étep size or order. The value of Vzgq in (5.9) is obtained by
saving the value of ng from the previous step, and computing Vzgq just

before a step increase is imminent.

Solution of the Corrector Equation

The corrector iteration (5.5) can be written as

B, (1) = 3,00t &(F(Qn,(o)) +o..t F(Qn,(m))) and only the first two

components of 3, () need be updated at once, since for the G.A.M. the

.

function F(a) depends only on the first two components of a. The
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functional iteration (5.5) is performed a maximum of three times. After
the m'th iteration, the test
(5.10) F(Qn,(m)) < € h ymax/(2q+1)

is performed and if it succeeds the corrector iteration has converged.
If this iteration does not converge in three steps then the step size h
is decreased to maximum (h/4, hmin) where hmin is the smallest step size

to be used.

Modifications for D.D.E.

The above formulas for the predictor step, the corrector step
with the error estimation and step and order changing algorithm can be
directly adapted to D.D.E. provided we replace f(t,yn) by f(t,yn,in)
where &n is an approximation to y(tn-B).

At the point tn we have previously computed the scaled derivative
representation 2 and we want to compute 3041 This can be done by using
the formulas (5.4), (5.5) provided we replace f(tn,yn) by f(tn,yn,yn)
where &n = y(tn-B). Thus we must provide a value for
fe = Y41 pe) and hence § o= y(t 4-B). It .-B < [t),ty8],

then we can generate y(tn+1—8) from the initial function g(t).

If to4qB ¢ [to,t0+8] we cannot compute y from g(t). However,

n+l

tq =t ,1-8 must belong to the interval (tn-B,t ) and thus we require a

B n+l
representation of the solution on this interval. Clearly, we can save at

least the points in this interval and possibly a fixed number outside the
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interval in order to compute an approximation to y(tB) by an interpolation
formula. Suppose tB is Tocated between the nodes tj and tj+1, and that
Yo7 Wos computed by using an order q formula. This implies that an
interpolation formula of order g can be used to compute an apprbximation
j+1’tj"“’tj-q+] since the Adams
formulas are really interpolatory formulas. One problem arises when h >

to y(tB) provided we use the points t

because then tj+1 = tn+1 and we do not have the function value y needed

n+l
for the interpolation process. This is overcome by ihc]Uding the interpola-
tion in the corrector iteration and updating the approximation to y(tB)

whenever y is updated.

n+l
Suppose we have the set of points Xgse e sXy and the corresponding
function values yg,...,yy. To perform the interpolation to find y(x)

where Xy . < x < xy we will use the Newton divided difference formula

(4, p.195]. P(x) = Yo * (x-xo)y01 ...+ (X'XO)"‘(X"XN-])yO...N'

The required divided differences are the diagonal entries in the divided

difference table:

Y. Yoz Yo12
Y3 Yo3 Y013

YN Yon  YoINn Y012...N



- 5.1 -

The table is generated row by row, so that changing YN has the effect
of changing only the last row in the divided difference table. Also
this changes only the last term in the divided difference formula, so
the term y, + (x-xo)y0 + ...t (x-xo)...(x~xN_2)yO...yN~1 is saved to
efficiently evaluate polynomial P(x) whenever only Yy changes. Thus,
when h > B, including the interpolation in the corrector iteration can be
made less expensive. |

The adaptation of a Newton correction iteration for stiff
problems in 0.D.E. to D.D.E. requires some slight modifications. The

Newton corrector iteration [11,p.217] for systems is
_ BF _)v-1
(5.11) 2y, (me1) = &, (m) - A5z °&) Flay (m)

where F(a) = hf(t,ay.,P(a;)) - a; and 3, a; are the first and second row

of Qn,(m)’
If h < B then P(ao) = 0, since the interpolation does not depend

on ¥o41s and for h > B, P(go) is the polynomial given'by the Newton

divided difference formula. Hence P'(XN) =0 for h < B and
SRS = R
- N 204 YN “N-1
Therefore W= [%% °g]

of ' of-
"Q']I + Rloh['é"y"' P (yN)ay]-
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Normally these Jacobians would be revaluated at each step in the Newton
iteration; however, in many stiff problems the Jacobians are slowly changing:
and thus can often be held constant over a number of steps.

Note that for h > g, the numerator of P'(yN) is computed during
the interpolation stage so that it can simply be saved. Each term in the
denominator is also computed during interpolation, so that if the re-

evaluation of W is required, the product of these terms is calculated

and saved.
The matrices %§-and %%-are evaluated by numerical differencing.
of .
Thus, we approximate the (i,j) entry 5}1 of the matrix %;— by
J |

[fi(t,yj+r,§) - fi(t,yj,y)]/r, where r = max{e[yj|,82}.

Having evaluated W, we need not actually compute W']. To compute

N-]F(a ) we need only find the LU decomposition of W and solve the

n,(m)
equation W (correction term) = Fla, (m)) to find the correction term at
the m'th iteration.

After each iteration the test
-1
(5.12) | W F(an,(m))”z < eh ymax/(2q+1)

is performed. If (5.12) succeeds the corrector jteration has converged.
If the corrector iteration fails to converge in three steps the Jacobian
is re-evaluated. If the iteration still fails to converge the step size
is decreased to max(h/4, hmin), and the process repeated.

O0f course, with any change in step size the Jacobians are re-

evaluated.
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To handle the problem of discontinuities in the higher
order derivatives, the user must call the subroutine with endpoints
'to + kB for k =1 to 5 and then to the point at which the computed solu-

tion is desired.

Implementation of the Algorithm

We consider in this section the data structures used to store
information and implement the algorithm. We also consider how to modularize
the program. |

The scaled derivatives are naturally repreéented as a vector,
so an array A is used to store them. An array SAVE is used for temporary
storage of the scaled derivatives so that if a step fails the values
stored in SAVE may be used in restarting with a new step or order.

The coefficients of the vectors & in equation (5.5) for both
G.A.M. and B.D.M. are given in Tables 5.1, 5.3, and as we can see from
the tables, the collection of coefficients can conveniently be stored in
the upper Hessenberg part of a matrix. Thus the coefficients are stored
in the upper Hessenberg part of the matrix CL(7,7) and are initialized
during the first call to the subroutine. This makes the program more
portable since the recompilation of the program on a different machine
will cause the coefficients to be initialized to the accuracy of that machine.
The error constants Cq given in Tables 5.2, 5.4 are naturally represented

in the array CQ(7). Part of the computations, in 5.7-5.9 to determine
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the value of o to use in changing order and step size, and in 5.6 for
controlling the error, involve constants such as [].O/lcq.ﬂq!I]]/q in 5.7,
which are independent of the step and thus need be computed only once.
These constants are computed and stored in ERRCON. ERRCON{1,Q)

contains the constant for order gq-1, ERRCON(2,Q) the constant for order
q, ERRCON(3,Q) the constant for order g+1 and ERRCON(4,Q) the constant
used in the error test (5.6).

The past values are saved in a circular queue where each entry
in the queue contains three pieces of information: the previous time
TBACK, the computed solution at TBACK and the order used to compute the
solution at TBACK. This is handled by using two real arrays
PASTT(QMAX), PASTY(N,QMAX), and one integer array PASTQ(QMAX), where N
is the dimension of the system being solved. Al1l three arrays are of
dimension QMAX with PASTT(I}, PASTY(*,I), PASTQ(I) representing respectively
the three pieces of information described above at the entry in the queue
pointed to by the integer I. BEGIN and END are integers pointing to the
beginning and end of the queue, with additions being made to the end of
the queue at the end of a successful step by increasing END by one modulo
QMAX. The circular queue is modified slightly so that when the step size
H is greater than the lag BETA an entry can be added to the end of
the queue, changed and deleted before the step is completed to enable
the corrector iteration to use the predicted solution in the interpolation
process. There is also a pointer INDEX into the queue which points to

the last node used in the interpolation formula. Of course, when H > BETA
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we know that provided the predicted value is added to the end of the
queue then INDEX will equal END and it is unnecessary to search the queue
to find the nodes needed for interpolation. Ar array DELTAQ(N) is used

to save Va .
~q

The program has been modularized by breaking it up into subroutines.
Even though this increases cost especially on IBM machines the readability
of thé program improves and the flow of control is more evident. The
following is a Tist of the subroutines used and a brief description of

their function.

ADD - adds an entry to the end of the queue.
CHKERR - decides on the success of a step by controlling truncation

error and determines and controls changes in order and step

size.
CHSTEP - changes the step size.
CORECT - performs the functional corrector iteration for G.A.M. and

changes step size if convergence does not occur.
DECOMP - routine found in [10] to find the LU decomposition of a matrix.
DDE - driver routine which determines when the endpoint of integration
is reached and controls the addition and de]étion routines
for the circular queue.
DELETE - deletes unwanted entries fram the circular queue.

DDIFF

computes the divided difference table needed in Newton's

divided difference formula.
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ERROR - a routine used for the printing of error messages.

EVAL - a routine to evaluate the Newton divided difference
polynomial.

FUNCT - decides how to compute y(t-B) and calls the appropriate
routines.

JACOB - evaluates the partial derivatives 253 %; .

PREDCT - performs the predictor step (5.4).

PUT - transfer one matrix to another.

SEARCH - performs a binary search of the queue to find the entries
needed to do interpolation.

SETUP - initializes the method, the error control ahd the queue.

SOLVE - routine found in [10] for using thé LU decomposition provided
by DECOMP for solving a system of equations.

STIFFC - performs the Newton corrector iteration for B.D.M. and
changes step size if convergence does not occaur.

ouT - prints out a formatted vebtor or matrix.

Debugging Aids

The program in Appendix A contains a debugging facility, which

of course, could be deleted from a production code since it involves some

overhead.

This debugging facility not only allows someone familiar with

the program to determine the cause of bugs (no large program ever seems

to be completely bug free), but also for a casual user of the program to

write out intermediate results in a given time range. There are three
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debugging parameters contained in a blamk common block,
namely IDEBUG, KDEBUG and LDEBUG.

The Tast two debugging parameters are the simplest so we will
discuss them first., If LDEBUG is nonzero then control is passed to the
routine CHBUG (T, IDEBUG) after each step, even if it is not successful.
Thus this routine may change the debugging parameter. Hence, if the
routine is encountering trouble in a certain range of time values the user
can gain control of the intermediate output by changing IDEBUG. If
KDEBUG is nonzero then a call is made to the subroutine TRUE(T,Y) which
calculates the known solution Y at the point T. This parameter is
much more useful to the person correcting bugs in a program.

The other parameter IDEBUG permits the printing of more
information when it is increased. For example, if IDEBUG equals four
then all the information for IDEBUG = 0,1,2,3 is printed also. The

following is a description of the information printed at each level:

IDEBUG

IA
o

no information is printed.

=1 prints out the values of ¢, h, h . , B and t on entry to

min
the subroutine as well as the initial values of h and a.

= 2 prints out the value of t and y(t) after each successful
step.

= 3 prints out when a change in step or order is being considered

and in the stiff case when the Jacobian is re-evaluated.
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= 4 prints out the scaled derivatives and other information before
and after the corrector iteration and the partial derivatives
when the Jacobian is evaluated.

= 5 prints out the matrix A during each corrector iteration.

= 6 prints out how y(t-g) was evaluated.

=17 Aprints out entries and deletions to the gueue.

= 8 prints out the pointer to the queue values used for
interpolation.

= 9 prints out the array A before and after the predictor step.

The user must provide two subroutines. The first routine
DERIV(T,Y,YBETA,F) evaluates f(t,y(t),y(t-8)) given t,y(t) and y(t-8).

The second subroutine PHT(T,Y) evaluates the initial function
g(t) and stores it in Y. The subroutine for evaluating the partial deriva-
tives called JACOB(F,FPLUSR,PDY.PDYBAR,Y,YBAR,YPLUSR,EPS,T,N) can
be replaced by a user subroutine of the same name which Stores §£L%§XLZL

and 2;-(t,y,§) in the matrices PDY(N,N) and PDYBAR(N,N) respectively.
oy



CHAPTER 6

NUMERICAL RESULTS AND CONCLUSIONS

The debugging of an automatic package for solving delay differentizl
equations involves finding a collection of problems which will exercise various
parts and features in the package. The first problem is a system of D.D;E's
which has an oscillatory solution where the initial function is a solution
of the D.D.E. so that the true solution is known. -Also there will be no

discontinuities in the higher order derivatives.

Problem 6.1

y'(t) = -y(t-m/2) for t > m/2
sin(t)
9(t)=( ) 0<t<m/2
~ cos(t)
y;(t)
- (10)
yz(t)

This problem was integrated, using the generalized Adams methods
with an error per unit step, from w/2 to 5.0. The tolerance was £ = .002
and an initial step size of h = 0.1 was attempted. KDEBUG was set to one
since the true solution was known. The parameter IDEBUG was set to three
which will print out information on step and order changing, to show how use-
ful this parameter is. It a]iows a user to discover how the package is work-

ing on his problem. The output generated for this problem is given below.

-6.1 -
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DDE SOLVER FNTERED

EPS = 0,1999999FE-02 H = 0.9999996E~01 HMIN =
BFTA = 0.1570794E 01 T =  0,1570794E 01

A SYSTEM OF DIMENSION 2 TS BFING SOLVED

INITIALIZATION DONE FOR ADAMS METHODS
ERKOR PER UNIT STEP USLD

STEP FAILED WITH ORDER = 1
STEP SIZE BFING CHANGED FROM
H = (0.9999936F~-01 TO H = 0.3334740E~02

STFP SUCCEEDED WITH H= 043334740E-02
SOLUTION AT T = 01574128 01 IS

YO 1) = 0,9909888E 00

Y( 2) = ~Q.3332500F=-02
TRUE SOLUTION 1S

Y1 = SIN( 04.1574128F 01) = 0.9¢ 9 948F 00

Y2 = COS( 0.1574128E N1) = =0.3331816L-02
STEP SUCCEEDED WITH H= 0.3334740E~02
SOLUTION AT T = 0.1577462F 01 IS

Y¢ 1) = 0.99989666E 00

Y( 2) = =0.6667163E~02
TRUE SOLUTION IS

Y1 = SIN( 0.1577462F 01) = 0.9999778F 00
Y2 = COS( 041577462F 01) = =N0.66653818E-02

POSSIBLE INCREASE IN ORDLER AND STEP SIZE
ORDER INCRKEASED TO 2

STEP SIZE BEING CHANGED FROM

H = 043334740E~02 TO H = 0.,1111016E 00

STEP SUCCEEDED WITH H= 0.1111016E 00

SOLUTION AT T = (+1688563E 01 IS
YO 1) = 0.9930691F 00
YO 2) = =0.1173827F 00

TRUE SOLUTION IS
Y1 = SIN( 0.1688563E

- : 1) 0.9930735E 00
Y2 = COS( 0,1688563F N1)

-0.117494981: N0

W

STEP SUCCEEDED WITH H= 0.1111016E NO

SOLUTION AT T = 0.1799664E 01 18
Y 1) = 0« OT7303XKE 00
YO 2) = =0.2266508E 00O

TRUE SOLUTION IS

Y1 = SIN( 0.1790664LE 01) = 0.9739239E 00
Y2 = COS( 0.1799664E 01) = ~0.2268753FE 00

STEP SUCCEEDED WITH H= (.1 6E 00
SOLUTION AT T = 061910766E S

YO 1) = 0.0428115E 00

YO 2) = =0.3331244E N0
TRUE SOLUTION IS

Y1 = SIN( 0.1510766E 0

A3 Ne9427649F 00
Y2 = CoS( 0.1910766E 01

~0e3334581F 00

POSSIBLE INCREASE IN ORDER AND STEP SIZE
ORDER INCREASED TO 3

STEP SIZE BEING CHANGFD FROM

H = 0.1111016E 00 TO H = 0.2978103F 00

S
noH

0.9999999E-10



STEP SUCCEEDED WITH H=
SOLUTION AT T = (0.,22085
Y( 1) = 0.80372906E
YO 2) = -N.5952001E
TRUE SOLUTION 18§

0.2978103E 00
75 01 IS

0

2
o=’

Y1 = SIN(
Y2 = COS(

0.2208575E
0.220857SE

01)
01)

0.8034202EF 00
~0.5954124F 00

STEP SUCCEEDED WITH H=
SOLUTION AT T = 0.25063
YO 1) = 0«.5938073E
YO 2) = -0D.8049494F
TRUE SOLUTION IS
Y1 = SIN( 0.250638SE
Y2 = COs( 0.2506385E

STEP SUCCEEDED WITH H=

0.,2978103E 00

85E 01 1S

00

00

01) = 0.5933447E 00
01) = =~0.8049484F 00

0.2978103E N0

SOLUTION AT T = (Q42804194E 01 IS

YO 1) =  0.3317776F 00
YO 2) = -0.,9438897E 00
TRUE SOLUTION IS i
Y1 = SIN( 0.2804194F 01) = 0.3310331F 00
Y2 = COS( 0.2804194E 01) = -0,9436192F 90

STEP SUCCEEDED WITH H=
SOLUTION AT T =
Y( 1) = 0e40)41755E-01
YO 2) = =0999T7982E 00
TRUE SOLUTION IS
Yi = SIN( 0.3102004E nt) = 0.39 g
Y2 = COS( 0.3102004F 01) = =0.99921
VA

POSSIBLE INCREASFE IN ORDER AND STEP
ORDER INCREASFED TO 4

STEP SIZE BFEING CHANGED FROM
H = (.2978103E 00 TO H =

0«2978103E 0N
03102004E 01 IS

0.3762149E 00

STEP SUCCEEDED WITH H=
SOLUTION AT T =

0¢3762149E 00
0+3478218E 01 IS

YO 1) = ~0.3297686E 00
YO 2) = =0.9443701F 0O
TRUE SOLUTION IS
Y1 = SIN( 0.3478218E 01) = -0.3303037E 00
Y2 = COS( 0.3478218E 01) = ~N,9438747E 00

STEP SUCCEEDED WITH H=

SOLUTION AT T
YO 1) =
Y(O 2) =

TRUE SOLUTION
Y1 = SIN(
Y2 = COSs(

STEP SUCCEEDED WITH H=

SOLUTION AT T
Y( 1) =
Yt 2) =

TRUE SOLUTION
Y1 = SIN(
Y2 = CoSs(

-0 +«6537942E
-0+7569280E

= 0#3854432F 01

IS
0.3R54432E

00
00
01
0.3854432F 01

= (0.4230646F 01

-0.8864260E €0
-0+4635737E 00

IS
0.4230646E 01)
0+4230646E 01)

0.3762149E 00

Is

~0+6539845F 00
~0.7565080F 00

0«3762149E 0O

Is

~N.8361887 00
-0.4633243E 00
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STEP SUCCEEDED WITH H= 0.J3762149E 00

SOLUTION AT T = 0.4606860F 01 IS
Y( 1) = ~0.9951142E 00
YO 2) = =0.1052335F 00

TRUF SOLUTION IS
Y1 = SIN( 0.4606860FE 01) = -0.9044370E 00
Y2 = COS( N.,4606860F N1) = =N, 1052330E N0
STEP CHANGE TO REACH ENDPOINT EXACTLY
STEP SIZE BEING CHANGED FROM
H = 03762148 00 TO H = 0419265699E 0N

STEP SUCCEEDED WITH H= (.1965699E 00

SOLUTION AT T = 0.4803430E 01 IS
YO 1) = =-0.9966628F 00
Y¢ 2) = te9111315E~01

TRUE SOLUTION IS
Y1 = SIN( 0.4803430F 01) = =0.,9958587E 00
Y2 = COS( N.4803430E N1) = (0.9091485E-01

DDE WILL TERMINATE IF STEP IS SUCESSFUL

STEP SUCCEEDED WITH H= 0.19265699E 00

SOLUTION AT T = 0.49900001 01 IS
Y( 1) = =0.9598602E 00
Y(O 2) = 0+2840038E 00

TRUFE SOLUTION 1S
Y1 SIN( 0.49999990F
Y2 COS{ 0.4999999E

L]
1

-0.,9580246E 00
Na2836612E 00

hon J o]
b
' -
i
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The next problem was chosen to illustrate some of the difficulties
with discontinuities in the higher order derivatives. Also as the initial
function is a constant, then initially higher order derivatives are zero
and so care must be taken in the step estimating algorithm for variable
order methods since normally these derivatives appear in the denominators

of the expression for estimating step size.

Problem 6.2
y'(t) = y(t-1) t>0
y(t) =1.0 S1<ts<0

The exact solution of this problem on the interval [0,4] is easily

obtained by analytic integration and is given by:

1+t 0 <t <1
(t2+3)/2 . 1<t<?
772 + (£-2)(t2-t+10)/6 2 <t <3

1A
o
IA
o~

t424 - t3/3 + 7t¢%/4 - 5t/2 + 85/24 3

Note that the solution has a discontinuity in the k-th derivative
at the point t = (k-1).

This problem was integrated from 0.0 to 3.2 with a tolerance
e = .001 and initial step size h = 0.1. The debugging parameter IDEBUG
was set to one and KDEBUG was set to zero. The output generated is given

below:

DDE SOLVER ENTERED :
EPS = 0.9999%99E-03 H = 0.9Y99906E-11 HMIN = 0.0009997E=07
BETA = O 10000DCE 01 T = 0.0 ' '
A SYSTEM OF DIMENSION 1 IS BEING SOLVED

INITIALIZATION DONE FOR ADAMS METHODS
ERROR PER UNIT STEP USED

DDE WILL TERMINATE IF STEP IS SUCESSFUL

DDE WILL TERMINATE I¥ STEP IS SUCESSFUL
THE SOLUTION AT T = 0,3198999E 01 I5 N.6922497E 21
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To illustrate the effect of the discontinuities in the higher
_ order derivatives, the equation was integrated from 0.0 to 3.2 including
~ the points 1,2,3 in the mesh and not including these points. The results

are summarized in Table 6.1.

TABLE 6.1
. A t y(t)
True Solution - _ 3.2 6.90806
Solution with points
t=1,2,3 included 3.2 6.90964
Solution without 3.2 | 6.92250

The accuracy of the solution appears to be affecﬁed by the
inclusion of the points, where discontinuities occur in higher'order
derivatives, in the mesh. It appears that including these points in the
mesh improves the accuracy. It should be noted in both cases‘that the code
would automatically decrease the order and step in the presence of the
discontinuities; this behaviour is simi]af to that observed by Neves [16].
0f course, for the D.D.E. the possible points of discontinuity are known
in advance and can easily be included in the set of mesh points. However,
for a more general type of pfoblem with variable time lags this can cause
serious problems [17, 18]. _ e

The next examples deal with the_prob]em of 'stiffﬁess‘ for‘delay
differential equations, and an appropriate definition of 'stiffness',for
delay problems. The next example illustrates some‘stabi1ity problems with

a scalar equation.
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Problem 6.3
y'(t)
y(t) = exp(-t) on [-8,0] |

where 3 = 2n(104-1) = 9,21024. Note that B has been chosen so that exp(-t)

H

-10,000 y(t) + y(t-g)

L]

is the solution to this problem. Clearly then, the solution is reasonably
smooth on the interval [0,10]. However, the parameter 10,000 connected
with y(t) causes problems for the Adams methods.

In fact, in éttempting to integrate this problem to t = 10 with a tolerance

of € = .01 the Adams methods failed to solve the problem unless h was

less than 10'4.

The stiff option in the package easily overcame this problem
since the backward differentiation methods are GP stable for these parameter
values [Theorem 4.7]. The results of using it with an error per step algorithm,

the parameter IDEBUG set to three and KDEBUG set to one are given below:

DDE SOLYFR ENTERED

EPS = (04,9998096E-01 H = 0.9909999E-04 HMIN = 0.990939095-15
BETA = 0,0210230E 01 T = 0.3088535E=-83 ' '
A SYSTEM OF DIMENSION 1 IS BEING SOLVED

INITIALIZATION DONE FOR STIFF METHODS
ERROR PER STEP USFD

STEP SUCCEEDED WITH H= (.,8000909E-04
SOLUTION AT T = (.9210339E 01 IS

Y€ 1) = (Ge1000001E~-D3
TRUE SOLUTION I3

EXP(-T) = 0.1000002r=-02
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The following examp]e is a scalar prob]em wh1ch‘has two exponen—~

tial components with very different arguments and yet causes no stab1]ity

problems.
Problem 6.4
y'(t) = -y(t-g)
y(t) = exp(—o(,.lt). + exp(-—oczt) on ["‘8,0]

where g = ]0"3 and aps 0 3re the two real poéitive roots of the equation
a = exp(aB). Hence both exp(-ait) and exp(-azt) satisfy y'(t) = -y(t-g)
so that the solution to problem 6.4 is y(t) = exp(-a1t) + exp(-azt).

o = 1.00100 and Ay £ 97118.01. This is an interesting example since components -

1ike these in a system of 0.D.E. would be associated with stiffness, but in

problem 6.4 they cause no such problems, since §l:-15 not 1arge
dy
These examples give rise to the following definition of stiffness

fpr D.D.E.

Definition 6.1
The problem y'(t) = f(t,y,¥) is called stiff if I%;{ or l | is

large relative to the time scale and the solution does not change drast1ca11y on
the same time scale.

0f course in systems of D.D. E one can encounter difficulties
with stiffness sim11ar‘to those for 0.D.E. by having the eigenvalues of the

Jacobian differ greatly on a suitable time scale.
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Conclusions and Extensions

The axact relationship between A stable methods for 0.D.E. and
P,Q stable methods for D.D.E. is not known in general. Clearly, for the speci-
fic methods considered in Chapter 4, the properties of methods for D.D.E.
are similar to those for 0.D.E. More study is needed to determine the
relationship between methods for 0.D.E. and for D.D.E.

Although the computer program in Appendix A has no obvious
bugs at this stage, it still needs exhaﬁstive testing by people other
than the author. Also the package encounters some difficulty with the dis-
continuities in the higher order derivatives, even when including the points
of discontinuity in the mesh. For these points, one could possibly adapt
the formulas of Zverkina [22] for incorporation into this package. This
would not be suitable for stiff problems because of the stability properties
of Zverkina's methods [6]. However, one might be able to modify the backward
differentiation formulas to account for discontinuities.

For a more general package we would like a package similar to

Neves [16], which solves the retarded differential equation
y'(t) = f(t,y(t),alt,y(t)))

where o is a lag function and the initial function is defined on the
appropriate interval, and incorporates the generalized Adams and backward

differentiation methods.



APPENDIX A

Fortran Computer Programs to Solve

a D.D.E.



A-0

Sample Program Page A - 1

List of Subroutines

Subroutine Page
ADD A-21
CHKERR A-13
CHSTEP A-19
CORRECT A-8
DDE A-2
DELETE A-19
DDIFF A-21
ERROR A-20
EVAL A-18
FUNCT A-16
JACOB A-15
QuT - A-20
PREDCT A-17
PUT A-20
SEARCH A-18
SETUP A-5

STIFFC A-10



ctt#tmttt*#**tatt*t**m*t**##$mm#¢##******m*#m****#m#**t*t****#***##**#t#1
MAINLINE ROUTINE

c THIS ROUTINE TESTS THE DDE SOLVER ON THE PROBLEM
c YLI*(T) = =YI(T=BETA)

¢ Y29(T) = -Y2(T=~BETA)

¢

c WHERE BETA = P1/2 AND

[+]

[] Y1(T) = SIN(T) ON (0,PI/2)

c Y2(T) = COS(T)

Cc

c

t*ttttt****#*******#t***tt*****#t#t****#**#*******t****##*#*****#******

REAL A(7,2), DELTAQ(2), SAVE(7,2), W(38), WORK( 38)
REAL CL(7,7)y ERRCON{4,6), PASTT(100), PASTY(2,100),

+ BETAy EPS, H, HMINy, T, YMAX

. INTEGER g:sTQ(iOO‘, BEGIN, END, INDEX, START, Qy QCOUNT, TYPE,

AX

LOGICAL REEVAL '
COMNON IDEBUG, KDEBUG, LDEBUG

¢ S e e e s vrmmm e ——————— =

«0
BPS = +01/(TEND - TO)
CALL DDE( A, CL, DELTAQ, ERRCON, PASTT, PASTYy, SAVE, ¥,

+ WORK, BETA, EPS, Hy HMIN, T, TO, TEND, YMAX,
+ PASTQ, BEGIN, END, INDEX, N, Q. QCOUNT, QMAX,
+ START, TYPE, REEVAL )

sTOP

END

C***#*‘*******ﬁ***#*#*************##**#****#**##********************#***

C
SUBROUTINE DERIV(T,Y,YB,F)

c
Sk A O R R RO S RO ORI O R R R AR R K Ok
c THIS ROUTINE COMPUTBS THE DERIVATIVE F(T,Y(T}y Y(T~BETA))
G KA o A 0 SRR AR KO J R A ORI R A AR o s OB kR
REAL Y(1), YB(1), F(1)
F(1) = -YB(1)
F(2) = -YB(2)
RETURN
END
C

‘c*‘*#l*****t*******#*##*#*lt#***ﬂ**##****#*#****t#***#***#*t###*#*#*****

[+
SUBROUTINE PHIC Ty Y )

c
ct#***#tt#***#**#*#*****##t****#****#**#***#*##**#*****#*t*****#**#**##*
REAL Y(1), T
Y(1) = SIN(T)
¥(2) = cOS(T)
RETURN
END

C*#*‘*************************#***##*******#*********#******##**#*******

Cc
SUBROUTINE TRUE( T )

< )
c****#t**#***************#***#**##**#***#*#**#***#****#*************#***
REAL T, Y1, Y2
Y1 = SIN(T)
Y2 = COS(T)

WRITE(6,1000) Ty Y1y, Ty Y2
1000 FORMAT(' Y1 = SIN('yE14.7,%) = ',E14.7/" Y2 = COS(',
+ Eld.7,') = $,E14.7)
RETURN
END

C‘**‘*#******#*#*****#*##**##**#****#*##*#**********#*****ﬁ**#******##**

SUBROUTINE CHBUG( T, IDEBUG )

C
C**#"*t********#*******#*******#*****************#****##*#******#*##*##
RETURN
END
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C*‘tt‘#*##‘t#‘tlt#l‘tttl*t#‘t*##&#t**t*t*ﬁtt#**t**##**tt#itt#*#*t*#!ttt#nggggglg
b
. SUBROUTINE DDE(A,BCLq DELTAQ, ERRCON, PASTT, PASTY, SAVE, W, 'DRKDDEOgO%O

YBETA, EPS, H, HMIN, T, TO, TEND, YMAX, DDE00040
+ PASTQ, BEGIN, END, INDEX,; N, Qs QCOUNT, QMAX, START, TYPE, DDR00050
+ REEVAL ) . DDEQ0060

c DDE0O070
cttat‘.‘ttt#tlt*t*t**ttt**t#t*t*#t#t*#tttt*#t**t#t**t##*#*ttt*******t***gDEggggg
DE
AUTHOR AND IMPLEMENTER - VICTOR K. BARWELL gogggggg
D
THIS IS8 AN AUTOMATIC ROUTINE FOR SOLVING THE SYSTEM OF DDE00120
DIFFERENTIAL DIFFERENCE EQUATIONS DDE00130
DD
Y*(T) = F(T, Y(T), Y(T-BETA)) FOR T .GT. TO + BETA DDE0O 150
Y1) = PHI{T) FOR TO <LEe T oLEs BETA DDEQO{ 60
DEOO1L
THIS PROGRAN REQUIRES THE SUBROUTINE DERIV( T, Y, YBETA, F ) PDEOQ180
TO EVALUATE F AND THE SUBROUTINR PHI( T, Y ) TO EVALUATE THE DDE00190
INITIAL FUNCTION. Y, YBETA, F ARE VECTORS OF DIMENSION N. DDE00200
THE EQUATION IS INTEGRATED FRON  TO + BETA TO  TEND DDE00210
USING VARIABLE STEP, VARIABLE ORDER METHODS. DDE00220
- DDE
ALL ARITHMETIC IS SINGLE PRECISION AND THE SAME VARIABLE DDE00240
NAMES ARE USED IN ALL THE SUBROUTINES. THE OUTPUT IS DONE USING DDE00250
A FORMAT CODE OF El4.7 FOR THE REAL VARIABLES, THIS WOULD HAVE DDE00260
TO BE CHANGED DEPENDING ON THE PRECISION OF THE MACHINE. THE DDE00270
CODE SHOULD OTHERWISE BE PORTABLE. THE AUTHOR HAS PUT THE DDE00280
BESONABLE RESTRICTION THAT THE SYSTEM OF EQUATIONS BEGIN SOLVED DDE00280
HAS DIMENSION LESS THAN 100. nnsggggg
DDE
THE UNFAMILIAR USER NEED ONLY CONCERN HIMSELF VWITH THOSE DDE00320
PARAMETERS CHECKED WITH A %, AND PROVIDE THE APPROPIATE DDE0GI30
STORAGE OR VARIABLES FOR THE OTHER PARAMETERS. THE ONLY DDEOO 340
VARIABLES WHICH CAN BE CHANGED ON RETURN TO THR PROGRAN PDE00IS0
ARE YMAX AND TEND. PRE00OI60
. DDEGOJIT0
THE SOPHISTICATED USER CAN USE THE SUPPORTING SUBROUTINES DDEO0IB0
TO PROVIDE ADDITIONAL INFORMATION., FOR EXAMPLE THE SUBROUTINE  DDE00380
FUNCT CAN BE USED TO PROVIDE THE SOLUTION AT OFF NESH POINTS DPDE00400
BY INTERPOLATION. DDE00410
DDE00420
DDE00420
————— DDE0O 440
REAL ARRAYS DDE00450
————————— DDE00460
DDE00470
*  A(74N) - A VECTOR CONTAINING THE SCALED DERIVATIVES DDE00480
AC1,N) - WILL CONTAIN THE SOLUTION AT ANY GIVEN TINE. DDE00480
DDE
CL(7,7) - A UPPER HESSENBURG MATRIX WHICH IS USED TO STORE DDE00510
THE VECTORS L WHICH DEFINE THE CORRECTOR. DDE00520
PELTAQ( N} - USED BY THE PROGRAN FOR ESTIMATING STEP SIZE DDECO530
DDE
ERRCON(4,6) ~ AN AREAY USED TO STORE ERROR CONSTANTS FOR nuaoossg
DETERMINING STEP SIZE AND ORDER DDEQ0S60
DD
PASTT({ QMAX) =~ A VECTOR USED TO STORE THE PAST TIME VALUES. DDE0OSE0
DDE0OS9Q
PASTY(N,OMAX) - A NATRIX USED TO STORE THE PAST SOLUTION VALUES. nnnggoog
POEO06T
SAVE(7,N) -~ A TENPORAKY STORAGE AREA TO HAVE SCALED PDE00620
DERIVATIVES FOR RESTARTS APTBR THE FALILURE OF A  DDE00630
STEP DDE00640
W(NER2 ) -"A MATRIX TO HOLD THE JACOBIAN MATRIX USED IN THE DDE00650
. CORRECTOR ITERATION FOR STIFF METHODS DDEOD 660
DDE 6
WORE( 1 54N+ 2#N*%¥2) ~ WORKING STORAGE FOR THE SUBROUTINES . DDEQUSEO
. PDE 690
IN THE CASE OF ADAMS NETHODS USE W(1) AND WORK(13N) DDE00700
THE USE OF THE WORK AREAS IS OUTLINED BELOW DDE00710
DDE00720
WORK(1,N) - POLYL(N) DDE0O730
vorx( N¥1,N) - YB(N) DDE0D740
worg( 28+1,8M) - DIVDIV(T,N) DDE00750
WORK(DN+1,10N) - P(N), F DDEQ07 60
wORK( 10N+1,11N) — FPLUSR(N), SIGMAF(N) DDE00770
WORK( 12N+1,13N) ~ Y(N) DDEQQ 780
WORK( 13N+1,14N) - YBAR(N) PDE00790
YORK( 14N+1 415N ) - YPLUS(N) DDE00860
VORK( 15N¢1y 1EN+N¢R2) - PDY DPDE00810
WORK( 1 SN+1+N€%2,15N+1+2N%%2) - PDYBAR , DDEQ0820
DDE0OS30

nnaonnnnnoonnnonnnnncnnnoonnnnnnoonnannannoonnonoonconanonnonnnnonaoaononon
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INTEGER PASTQ(1), BEGIN, COL, END, INDEX, STARTs N, Q, QCOUNT,

+

+
+

REAL VARIABLES

BETA THE TIME LAG

EPB THE REQUESTED ERROR TOLERANCE

H =~ &TEP SIZE TO BE ATTEMPTED NEXT OR INITIALLY
HMIN - MINIMUM STEP SIZE TO BE USED

T = THE INDEPENDENT VARIABLE

TO = THE INITIAL FUNCTION IS GIVEN ON TO,TO+BETA.
TEND ~ THE ENDPOINT OF THE INTERVAL OF INTEGRATION.
YMAX ~ NAXIMNUM L2<NORM OF THE SOLUTION TO DATE

INTEGER ARRAYS

PASTQ(QNAX) ~ A VECTOR USED TO STORE THE ORDER AT A PAST NODE.

INTEGER VARIABLES

BEGIN - A POINTER TO THE BEGINING OF THE CIRCULAR QUEUE.
END ~ A POINTER TO THE END OF THE CIRCULAR QUEUE.

INPEX = A POINTER IN THE QUEUE SUCH THAT PASTT(INDEX) IS
THE FIRST NODE PAST T-BETA.

N - DIMENSION OF THE SYSTEM

START 0 THE FIRST TIME THE SUBROUTINE IS CALLED.
1 TO CONTINUE COMPUTING THE SOLUTION FROMN THE
PRESENT TIME T WITH THE SAVED INFORMATION.

ADAMS NETHODS WITH ERROR PER UNIT STRP

ADAMS METHODS WITH ERROR PER STEP .

BACKWARD DIFFERENTATION METHOD WITH '

ERROR PER UNIT STEP ( NOT RECOMMENDED

BACKWARD DIFFERENTATION METHOD WITH ERHNOR PER STEP

QCOUNT - INDICATER USED BY THE PROGRAN TO PREVENT FREQUENT
- TESTING FOR POSSIBLE STEP INCREASE

Q = ORDER OF THE FORNULA PRBSENTLf BEING USED.

QMAX = THE MAXINUM SIZE OF THE CIRCULAR QUEUE USED TO SAVE
INFORMATION ABOUT THE PAST SOLUTION

t

TYPE

(MY -]

(]

LOGICAL VARIABLES

REEVAL - INDICATES WHEN TO REEVALUATE A JACOBIAN IN STIFF
PROBLEMS

QMAX, QPLUS1, TYPE
REAL A(7,1)y CL(7,7), DELTAQ(1), ERRCON(4,6), PASTT(1),
PASTY(N,1), SAVE(7,1), W(i), WORK(1),
BETA, BPS.I:i HMIN, Ty TENP, YMAX

LOGICAL DONE, FINISH, REEVAL, SUCESS
c COMMON IDEBUS, KDEBUS, LDEBUG
IF (_ ( IDEBUG «GEe 1 ) «AND. ( START -EQ. 0 ) )
WRITE(6,1000) EPS, H HMIN, BETAy, Ty N
1000  PORMAT( '-DDE SOLVER ENTERED'/4'EPS ='t,E14.7," H = *,E14.7,
+ EMIN = " ,B14.7/% BETA = ¢ ,B14.7,' T'= %,E14°7/
c + ¢ A SYSTEN OF DINENSION '.Ii,' IS5 BEING SOLVED!)
c
¢ CHECK.  FOR RESTARTS .
¢

LA LR

IF ( SBTART «BQ. 0 ) CALL
SETUP( Ay CLy ERRCON, PASTT, PASTY, WORK,
BETA, EPS, H, T, TO,
PASTQy BEGIN, END, INDEX, N, Q, QCOUNT, QMAX, TYPE,
REEVAL )

DDE00840
DDE0O850
DDEO0O860

DDEQ0OB60
DDE0Q970
DDEQ09S8O
DDEOO0SS0
DDEO100Q
DDEO1010
DDE01020
DDE01030
DDE01040
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DDEQ1210

DPE(O1280
DDEO01280
PDEO1300
DDEO1310
DDEC1320
DDE01330
DDEQ01 340
DDEO1350
DDEQ1 360
DDEQL1 370
DDEQ1 380
DDEO01380
DDE01400 -
PDE01410
DDE01420
DDE01430
DDEO1 440
DDEQ1450
DDEO1460
DDE(Q14°70
DDE01480

Aok kk ok kokkkkokkkkk ok DDEO1 490

DDEQ1500
DDEO1510
DDEQ1520
DDE01530
DDEQ1 540
DDEO15S50
DDE01560
DDEQ1570
DDEO1580
DDEO1590
DDE01600
DDEO1610Q
DDEQ1620
DDEO1630



Q

0O 0 a0 aq aoanon

[
o

809

c
20

a 0 annoaae

aQ o

ancaaan

[eXeTrYele]el

001

[
<

40

§0

EE L R &R +4+4++

+4+ 4+

FINISH = +FALSE.
DONE = +FALSE.

HAVE WE FINISHED

IF ( PINISH
IF ( LDEBUG

) RETURN
eNE. 0 ) CALL CHBUG( T, IDEBUG )

IR { T ¥ 1.5¢R «LT. TEND ) GO TO 30

IF (

DONE ) GO TO 20

DDEOQ1730Q
DDEO1740
DDEO17580
DDEO1760
DDEQ1770
DDEO1780
DDEO1790
DDEQ1800Q
DDEO1810
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9% 00 00 00
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ALPHA = (Q.5%( TEND - T )/H DDE(1 880

IF ( IDEBUG GE. 3 ) WRITE(6,909) DDE01 800

FORMAT(* STEP CHANGE TO REACH ENDPOINT EXACTLY') DDEOIS10

CALL CHSTEP( A, ALPHA, H, HMIN, Ny Q4 REEVAL ) DDE(1820

QCOUNT = ¢ + 1 DDE(Q1830

DONE = +TRUR. DDPE(01940

q0 TO 30 DDEQ1950

DDEQ19860

FINISH = +TRUB. DDE01970Q

IF ( ( IDEBUG «GEs 1 ) .AND. ( START oEQ- 0) ) DDEO01980
VRITE( 6,1001) DDE01990
FORMAT( *ODDE WILL TERH[NATE IF STEP IS SUCESSFUL') DDEQ02000
DDE02010

DDE02020

SAVE SCALED DERIVATIVES DDE02030
FOR RESTARTS DDEO02040Q
DDEQ20S80

DDE02060

CALL PUT( A, SAVE, Ny Q + 1) PDE(O2070
DDE02080

CALL PREDCT( A, N, Q ) DPE(02090
DDE02100

IF ( TYPE <LE«. 1 ) CALL DDEQ2110
CORECT( Ay, CL, WORK(2%N+1) WORK( 9%N+1 ), WORK(10%N+1), DDE(G2120
PASTT, PASTY, 'Oﬂl(i) SAVE, WORK( 12%N N+1), DE02130

WORK( N+1), BETA, EPS, B' HMIN, T, TO, YIJ\X' DDE(2140

PASTQy BEGIN, END, INDEX, Ny Q» QMAX, REEVAL ) DDEQ215S0

DDE02160

IF ( TYPE «GEe 2 ) CALL DEQ2170
STIFFC( A, CL, WORK( 2kN+1), '02!(9*N+1) 'ORK(IO*N*I)Q BDBozlso
PASTT, PASTY, WORK(1), WORK(15«N+]) DDEC2180
vonx(iStN+1*N*t2) SAVE, 'ORK(Z‘N*I‘ 'ORK(IZ*N*I) 0980220

WORK(N+1), WORK(13«N+1), WORK( 14%N+1), W(1), DDE02210

BETA EPSy H, HMIN, T, TO, YMAX, DDE02220

PAS ¢+ BEGIN, END, INDEX, N, Qs QMAX, REEVAL ) DDEQ2230

A DDE02240

CALL CHKERR( A, DELTAQ, ERRCON, SAVE, DDE02250

EPS, Hy T, HMIN, YMNAX, DDEQ02260

-INDEXy N, Qy QCOUNT, TYPE, DDEQ2270

REEVAL, SUCESSy FINISH ) PDEO22R0

_ DDE02290

IF ( SUCESS ) GO TO 40 DPDEQ2300
DDE02310

DONE = +FALSE. DDEO02320

GO TO 30 DDE02330
. DDE02340

DDE 02350

UPDATE QUEUE FOR DDE02360
PAST FUNCTION VALUES DDEQ2370
DDEQ238B0

: DDE02390

CALL ADD( A PASTT, PASTY, T, PASTQ, BEGIN, END, N, Q, QMAX )DDEQ2400
CALL DELBTB( BEGIN, END, INDEX, OMAX ) DDE02410
DDE02420

DDE02430

COMPUTE THE L2=-NORM OF DDE02440
MAXINUM SOLUTION TO DATE DDEQ2450
DDE02460

DDE02470

TEMP = 0,0 DDE02480
DO 50 COL = t, N DDE02490
TEMP = TEHP + ABS( A( 1,COL) )k#&2 DDE028S00
CONTINURB DDEO2510Q
YMAX = AMAXI1( YMNAX, SQRT(TBUP) ) DDE(02520
@o TO 10 DDE02530
END DARNIK4AN
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[+ DE

SUBROUTINE SETUP( A, CL, ERRCON, PASTT, PASTY, WORK, DDE02570
+ TA, BPS, Hy T, TO, - DDE02580
+ PASTQ, BEGIN, END, INDEX, Ny Q, QCOUNT, QMAX, TYPE, DDE02580
+ REEVAL ) gngg%ggg

c D
CHRA AR AR AR ORI ok A AR AOK KRR RO kA ok Kk R AUk ok ok 4ok ok DDE 02 620
c THIS PROGRAM INITIALIZES THE ERROR CONSTANTS NEEDED TO ESTIMATE DDEO02630
c THE ERROR IN THE STEP, THE VECTOR L USED IN THE CORRECTOR AND DPDE02640
c THRE INTIAL STARTING VALUES NEEDED FOR ORDER, STEP SIZE AND PAST DDE02650

[+ FUNCTION VALUES FOR THE ALL THE METHODS, DDE02660
c*#*ttl*#t‘i‘*#*#t***tt*!ttt#*#t#t**t#‘#*ttttt#t*#**##‘*t*#*t#t*ttt*####DDE02670

INTHGER PASTQ(1), BEGIN, END, I, J, Ky N, Q, QCOUNT, QNAX, TYPE DDEO2680
INTEGER COL DDE02690

REAL A(7¢1)y CL(7¢7)y CQ(7), ERRCON(4,6), PASTT(1), PASTY(N,1), DDE02700

+ v(1), womK(1Y, BETA, B! EDPS DDE02710

REAL QFACT(6) /140, 2.0, 640, 24.0, 120.0, 720.0/ DDE02720
LOGICAL RERVAL DDE02730
COMMON IDEBUG, KDEBUG, LDEBUG DDE02740

c - DDE02750
c DDE02760
¢ DDE02770
C TEST FOR ADAMS METHODS DDEO2780
¢ DDE02780
P DDE02800
IF ( TYPE .GE. 2 ) GO TO 10 DDE02810

c DDE02820
c DDE02830
[ o INITIALIZE ABS8(CQ) IN THE ERROR ESTINATE . DDEO02840
[+ CQ*I*H**‘O*I)*Y(Q‘I)/Q‘FACTORIAL FOR ADANS METHODS DDEQ2880
c DDE02860
¢ DDE02870
CQ(1) = 1.0 DDE02880

Ca(2) = 1.0/2.0 DDE02880

CQ(3) = 1.0712.0 DDE02900

CO(4) = 1.0/24.0 PDE028910

CQ(8) = 19.0/720,0 DDE02920

CQ(6) = 3.0/160.0 DDE0293

CQ(7) = 863.0/60480.0 DPE0294

c DDE02850
c DDE02860
[ o] THE CORRECTOR STEP FOR ADAMS METHODS DDE02970
c DDE02980
¢ DDE02990
CL(141) = 1.0 DDE03000

CL(2+1) = 1.0 DDE03010

c ) DDE03020
CL(1y2) = 1.0/2.0 DDE03030

CL(252) = 1.0 DDE03040

CL(3,2) = 1.0 DDE030850

o] DDEQJ060
CL(1,3) = 5.0/12.0 DDE03070

CL(2,3) = 1.0 DDE03080

CL(3,3) = 3.0/4.0 DDE03090

CL(4,3) = 1.076.0 DDE03100

c DPDE03110
CL(1,4) = 3.0/8.0 DDE03120

CL(244) = 1.0 DDE03130

CL(3,4) = 11,0/12.0 DDE03140

CL(4,4) = 1.0/30 DPDE03150

CL(5,4) = 1.0/24.0 DDE03160

c DDE03170
CL(1,5) = 251.0/720,0 DDEO3180

CL(2,6) = 1.0 DDE03190

CL(3,5) = 25.0/24.0 DDE03200

CL(4,5) = 35,0/72.0 DDE033210

CL(5:5) = 5.0/48.0 - DDE03220

CL(6,5) = 1.0/120.0 DDE(3230

c DDE03240
CL(1,6) = 95.0/288.0 DDEQ3250

CL{2,46) = 1,0 DDEO0J260

CL(3,6) = 137.0/120.0 DDE03270

CL( 4.6’ = 5.0/8.0 DDEOSZBG
R seesdis

) = 1l . B

CL(746) = 1.0/720.0 DDEOJ3310

c DDE03320
IF ( IDEBUG +GE. 1 ) WRITE(6,1000) DDE03330

1000 FORMAT( YOINITIALIZATION DONE'FOR ADAMS METHODS') DDE03340
DDE0J3350

GO TO 30
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INITIALIZE ABS(CQ) IN THE ERROR ESTINATE
CQ+1%H*&( Q+1)%Y( Q+1}/Q-FACTORIAL FOR STIFF METHODS

20Jd = 11 7
CQ(J) = 1.0/FLOAT(J)
CONTINUB

INITIALIZE THE L~VECTORS IN
THE STIFF CORRECTOR

CL(l.l’ = 1«0

CL(241) = 1.0

CL(1,2) = 2.0/3.0
CL(2.2) = 1.0

CL(3,2) = 1-0/3.0
CL(143) = 6.0/11.0
CL(243) = 140

CL(393) = 6.0/11.0
CL({443) = 1.0/11.0
CL(1,4) = 12,0/25.0
CL(2¢4) = 1.0

CL(3.4) = 1-0/10000
CL(4'4) = 1¢0/540
CL(5,4) = 1.0/50.0
CL(1,6) = 6040/137.0
CL(246) = 1.0

CL(3¢5) = 226.0/274.0
CL(446) = 85.0/274.0
CL(548) = 1540/274.0
CL{645) = 1.0/274.0
CL{1:6) = 60,0/147.0
CL(24,6) = 1.0

CL(3'6) = 40600/441.0
CL(4,6) = 245.0/588.0
CL(546) = 175.0/1764.0
CL(646) = T7.0/588.0
CL(796) = 1.0/1764.0
IF ( IDEBUG LGE. 1 ) WRITE(6,i010)
FORMAT( YOINITIALIZATION DONE FOR STIFF KETHODS')

TEST FOR ERROR PER UNIT STEP

IF ( (TYPE «EQe 1) «ORs (TYPE +EQe 3) ) GO TO 60

INITIALIZE THE ERROR CONSTANTS USED FOR ESTIMATING THE STEP SIZE

THE SECOND COMPONENT OF THE ARRAY IS ASSOCIATED WITH THE ORDER.
THIS INITIALIZES CONSTANTS FOR ERROR PER UNIT STEP

BRRCON(2,1) = 1.0/(CQ(2)*%QFACT(1))/1.2

ggnignga 1% =SSQRT(1 «0/(CQ(3)%QFACT(1)))/1.4
ERRCSN(i.J) = (140/(CQ(J)*QFPACT(J) ) )**( 1.0/FLOAT(J~1))/1.3
BERRCON( 24J) = (1.0/(CQ(J+1 )*QFACT(J)))*%(1.0/FLOAT(J))/1.2
%:RCON(Q,J’ = (140/(CQUI+2)RQFACT(J)))*%(1+0/FLOAT(J*+1))/1.

CONTINUE

BRRCON( 146) = (1.0/(CQ(6)¥QFACT(6)))*%(1.0/5.0)/1.

ERRCON(2,6) = (1.0/(CQU7)%QFACT( 6)))%%(1.0/6.0)/1. 2

PO S0 J = 1,6
ERRCON( 4,J) = QFACT(J)*CQ(J+1)

CONTINUE

IF {( IDEBUGe GEs« 1 ) WRITE(6,1020)

FORMAT(* ERROR PER UNIT STEP USED')

DDEQ3360
DDE03370
DDEQ03380
DDE(J390
DDE03400
DDE0J3410
DDE03420
DDEQJ3430Q
DDEQJ440
DDEOJ450
DDEQJ46

DDEQJ47

DDEQJ 48

DDE03498

DDEO0J3 S00
DDEO03510
DDEQJ3S20
DDEO03530
DDE0J3640
DDE03550
DDE03S60
DDEO03570
DDEO3580
DDE0J3580
DDEO0JI600
DDE03610
DDE0J620
DDE03630
DDE0J 640
DDE03650
DDE03660
DDEQJ3670
DDEQJI680
DDE0J3680
DDE0J700

DDE0J3 740
DDEQJITS0
DDE03760
DDEO3 770
DDEO0J780
PDE0J3790
DDE0J3B800
DDE03810
PDEOJ3B20
DDEQJ3830
DDEQJB40
DDE0JIS8S0
DDE03860
DDEO38TO
DDEQJ880
DDEO3 880

DDE03920
DDE03930
DDE0JIB40
DDE0J3950
DDE(3 960
DDEQJIS70
DDEOJ3 9880
DDE03980
DDE04000Q
DDEQ4010
DDE04020
DDE(04030
DDEG4040

4 DDE04050
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PDE04150

GO TO 80 DDE04160
DDE04170

- DDE04180

- INITIALIZE THE ERROR CONSTANTS USED FOR ESTIMATING THE STEP s;zz DDE04180

THE BBCOND COMPONENT OF THR ARRAY IS8 ASSOCIATED WITH THE ORDER. DDE04200

THIS INITIALIZES CONSTANTS FOR ERROR PER STEP - DDEQ04210

— - ~~ DDE04220

DDE04230

60 ERRCON(2,1) = 1.0/8QRT(CQ{2)*QFACT(1))/1.2 DDE04240
ERBCON(JIy1) = (1.0/(CQ(II*QFACT(1))})%%(1.0/3.0)/1.4 DDED4250

e 70 4 = 2, 5 DDE04260
xnncou(i,d) = (1.0/(co(J)*oFACT(J)))*t(1.0/FL0AT(J))£1-3 PDE04270

ERBCON( 2¢J) = (1.0/(CQ(J+1)%QFACT(J)))I%k(1.0/FLOAT(J*1))/1.2 DDE04280
ERRCON(JeJ) = (1.0/(CQUI+2)RQPACT(J) ) )*%(1.0/FLOAT(J+2))/1.4 DDE04290

70 CONT INUE DDE04300
BRRCON(146) = (1.0/(CQ(6)%QPACT(6)))*%(1.0/6+0)/1.3 DDE04310
ERRCON(2,6) = (1.0/(CQ(7)XQFACT(6)))x%(1.0/7.0)/1.2 DDE(04320

DO 80 J = 1,6 ‘ DDE04330
ERRCON( 4,J) = QFACT(J)*CQ( J+1) DDE04340

80 CONTINUE DDE04380
DDEQ4360

IF ( IDEBUG +GE. 1 ) 'IITEL6‘i030) DDE04370

1030 FORMAT(' ERROR PER STEP USED') DDE0Q4280
[ +] : DDE04390
[ - DDE04400
(¢ INITIALIZE ORDER, STEP SIZE PDE0O4410
c PAST FUNCTION VALUB DDE04420
] QUEUE POINTERS, P JACOBIANS DDEQ4430
c DDEQ4440
4] WORK(1-N) I8 USED TO STORE Y(TO + BETA)} DDE04450
[+] DDE04460
c WORK(N+1,2N) IS USED TO STORE Y(TO0) DDE04470
c DDE04480
c WORK( ZN+1,3N) IS USED TO STORE Y'( TO+BETA) DDE04490
c DDE04500
[+ DDE04510
] DDEQ4520
po Q =1 DDE04530
QCOUNT = 2 DDE04540

T = TO + BETA DDE(Q4550

H = AMIN1( H; BETA ) DDE(4560

o] . DDE04570
C DDE04580
Cc INITIALIZE THE SOLUTION AT TO + BETA DDE04580
c DDE04600
[ . DDEQ4610
CALL PHI{ T, WORK(1) ) DDE04630

CALL PHI( T0, WORK(N+1) ) DDE04630

CALL DERIV( T, WORK(1), WORK(N+1), WORK(2¢N+1) ) DDE04640

PO 100 COL = 1, N DDE04650
A(1,COL) = WORK(COL) DDE04660

A(2,70L) = HXWORK( 2%N+COL) DDE(04670

100 CONTINUE DDE(04680
[+] DDE0O4 690
[+ DDEQ4700
c INITIALIZE THE QUEUE : DDE(04710
e DDE04720
c DDE(04730
INDEX = 1 DDEQ4740

BRGIN = 0 DDEQ4750

END = 0 DDE04760

CALL ADD{ A, PASTT, PASTY, T, DDE04770

+ PASTQ, BEGIN, END, N, Q, QMAX ) DDE04780
BEGIN = 1 : DDEQ4780

c DDE04800
IF ( TYPE .GEB. 2 ) REEVAL = +TRUE. DDE(4810

c DDE04820
IF ( IDEBUG +GEe 5 ) WRITE( 6,1040) DDEQ4830

1040 FORMAT(' INITIAL SCALED DERIVATIVES ARE') DDE04840
IF ( IDEBUG +GE. 5 ) CALL OUT( Ay Ny 2 ) DDE(Q4850

RETURN DDE(4860

END DDE04870
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DE04890
SUBROUTINE CORECT( A, CL, DIVDIF, ¥, SIGMAF, PASTT, PASTY, POLYl, nnsoqeoo
+ SAVE, Y, YB, E04910
* BETA, EPS, H, HMIN, T, TO, Xy 0304920
+ PASTQ, BEGIN, END, INDEX, N. Qy QMAX, REEVAL )n0304933

c
c*ttt‘ttt**tttlt******#**t#*****#***tt**t**tt***t##*t**************#t***DDE04950
c THIS PROGRAM PERFORMS THR connscron ITERATION DDE04960
c A(NyN) = A(N,0) + CL*( F(A(N,0)) + +.c + F(A(N,M-1))) DDE04970
c DDE04980
~ VECTOR FOR CORRECTOR OF O DDE04880

RDER Q
c#tt*tt:#t“#.#t**t**t*t**tt********#tt*#‘*#t*##*tt#*#tt***#*#*****#***#DDBOSOOO

NTEGER_PASTQ(1), BEGIN, COL, END, INDEX, J, Q, QMAX, QPLUS1, ROWDDE05010
REAL ACT,1), cn(% 7), DIVDIF(7,1)q F(1), PASTT{1), " DDE05020

+ PAS iOLfl(l)’ SAVB(I‘ SIGNAF(1), TNODE(7), DDEQS5030

+ ¥e1), ¥hii DDE05040

+ BPS, EPSC, K, HMIN, YMAX . DDEOS050
LOGICAL SMALLH, CORR, REEVAL DDEO5060

COMMON IDEBUG, KDEBUG, LDEBUG DDEO5070

[ o] DDEOS0QRO
REEVAL = FALSE DDE0S080

10 EPSC = EPS*H*YIAXI(S.O*FLOAT(0*1)) DDE0S5100
IF ( IDEBUG +.GE:. 4 ) WRITB(6,1000) Qy EPSCy Ty B DDEOS110

1000  PORMAT('-CORRECTOR STARTED WiTH ORDEX = ¢,i1 DDE0S120
+ /* BPBC= *,E14.7¢% T= ' ,B14.7," Hx ' ,B14.7) DDEO0S130

PO 20 ROW = 1, DDEOS5140
SIOUAF( R0W) = 0.0 DDE0S150

20 CONT INUE DDEOS 160
TPLUSH = T + H » DDE05170

TBACK = TPLUSH - BBTA DDEQS18Q

REEVAL = oFALSE.
SMALLH = TRUE.
CORR = .FALSE.

=A==
oo
=t m
[=1=1=]
[Z3Z30
BN
=O0
[~1=1-]

c DDE05220
IF ( H «GT+ BETA ) SMALLH = .FALSE. DDEO0S230

IF ( SMALLE ) GO TO 30 DDE05240
c ' DDE05250
CALL ADD( A, PASTT, PASTY, TPLUSH, PASTQ, BEGIN, END, DDE05260

+ N',Qy QMAX ) DDE05270
INDEX = END DDE05280

30 CALL PUNCT( DIVDIF, TNODE, PASTT, PASTY, YB, POLYi, DDEOS28
+ BETA, DIFF, GPRIME, TBACK, TO, DDEO0530
+ PASTQe, BEGIN, END, INDEX, N, NPTS, QMAX, DDE0S5J310
+ CORRy REEVAL, SNALLE ) DDE05J320

c DDE05330
c DDE05340
c FUNCT CONPUTES THE PAST FUNCTION VALUE Y(T—BETA) DDEOS5J50
c DERIV COMPUTES F(T, Y(T), Y(T-BETA)) DDE05360
& DDE05370
c DDEOSJ8
DO 80 I = 1, J DDEOSJP

CORR = QTRUB- DDROS40

DO 40 cOL = 1, DDE0541
¥cSory"="4c1,cor) DDE0S42

40 CONTINUE DDROS543
c DDE05440
CALL DERIV( TPLUSH, Y, YB;, F ) DDE05450
c DDE05460
PO 50 COL = 1, N DDE05470
F(COL) = H*F(COLl - A(24COL) RDEOS480
SIGMAF(COL) = SIGHAF(COL) + F(coL) : DDE05490
s0 CONTINUE . DDEOS5500
c DDE05510
IF ( IDEBUG .GE. 5 ) WRITE(6,1001) I DDE05520
1001 FORMAT( ' OBEFORE CORRECTION', Il, ' WE HAVE') , DDEO5530
IF ( IDEBUG .GE. 5 ) CALL OUT ( Ay Ny 2 ) DDE05540
c DDE0S550
c DDE0S5560
c CORRECT FIRST TWO COMPONENTS DDEQS5570
c DDE05580
¢ DDE05590
DO 60 COL = 1, N DDE 05600

A(1,coL) = AC1,C0L) + CL(1,Q)#F(COL) DDE05610

A(2,COL) = A(2,COL) + F(COL) DDE05620

60 CONTINUE DDE05630
C DDE05640
IF ( IDEBUG +GEs 5 ) WRITE(6,1002) I : DDE05650

1002 FORMAT(* AFTER CORRECTION i WE HAVE'! ) DDEOS660
IF ( IDEBUG .GEs 5 ) CALL OUT ( Ay Ry 2 ) DDEOS670
c DDE05680
c -- e e o DDEOS 630
[+ TEST FOR CONVERGENCE DDEO5700
C OF THE CORRECTOR DDEOG5710
C DDEO5720
¢ DDE05730



ABSF = 0,0
PO 70 COL = 1, N .
ABSF = ABSF 4+ ABS( F(COL) )#%2
710 CONTINUEB
ABSF = SQRT(ABSF)
IF ( IDEBUG .GEB. S5 ) WRITE(6,2000) ABSF

2000 FORNMAT(® *, 'L2-NORM OF CORRECTION TERN Is ¢

IF ( _ABSF +LE. EPSC ) GO TO 110

IF ( SMALLH «OR. { I .EQ. 3 ) ) GO TO 90

CHANGE LAST ENTRY IN THE DIVIDED DIFFERENCE TABLE

aaaan

DO BO COL = 1, N
DIVDIF(NPTS,COL) = A(1,COL)
80 CONTINUE

[+

BETA, DIFF, GPRIME,

e

®
(=}

CONTINUE

CORRECTOR FAILED TO CONVERGE SO
CHANGE THE STEP SIZE

aaconoaa _a

IF ( IDEBUG +GBe 3 ) WRITE (6,1003)

-
=
=
(]

ALPHA = 0.25
IF ( H «LT. HMIN ) CALL ERROR( 2 )

IF ( SMALLH ) GO TO 100
END = END -~ 1§
IF ( END «EQ. O ) END = QNAX

100 CALL PUT( SAVEy Ay Ny Q + 1

[}

)
CALL CHSTEP( A, ALPHA, Hl ?H%N' Ny Qy REEVAL )
Q ¢+

CALL PUT( A, SAVE, N,
CALL PREDCT( A, Ny Q')
GO TO 10

CORRECTOR CONVERGED
COMPLETE ITERATION

anaanonon

110 QPLUSL = Q + 1
IF ( SNALLH ) GO TO 120
END = END - 1
IF ( END +EQe 0 ) END = QNAX
120 IF ( QPLUS1 .LT. 3 ) GO TO 130

c
DO 140 COL = 14 N
DO 130 ROW = 3, QPLUS1
A(ROW,COL) = A( ROW,COL) + CL{ ROW,Q )RS IGMAF( COL )

130 CONTINUE

140 CONTINUE
C

150 IF ( IDEBUG «GEes 4 ) WRITE(6,1004) H: Ty Q
1004 FORMAT( *OCORRECTOR DONE WITH */% H= 'Ei4.7'. T= ',E14.7,

+ * ORDER= %,I1)
IF ( IDEBUG «GE. 5 ) CALL OUT( A, N, @ + 1 )
RETURN

END
C‘*#tt‘*‘#ﬂ****t***t#**#*##t*##****#******#*********t*****##t******t*t*t

CALL FUNCT( DIVDIF, TNODE, PASTT, PASTY*OYB,

’
PASTQ, BEGIN, END, INDEX, Ny, NPTS, OMAX,

CORR, REEVAL, SMALLH )

FORMAT( *OFUNCTIONAL CORRECTOR FAILED TO CONVERGE!')

DDE05740

DDEOS750
DDE(QS5760
DDEOS770
DDEQS780
DDE0GS5790

DDEOS5820

DDEO58B30
DDEOS5840
DDEOSBS0
DDEOSS

DDEO5870
DDE0OS880
DDEOS880
DDEO0S900
DDE(0S5910
DDEO0S920

DDEQOS980
DDEO0OS980
DDE06000
DDEO6010
DDE(36020
DDE06030
DDE06040
DDEO06050Q
DDE06060
DDE06070
DDE06 080
DDEO060P0O
DDEO06100
DBE06110
DDE06120
DDE0O6130
DDE(06140
DDEO6150
DDEQ&160
DDEQ6170
DDE061 80
DDE06180
DDE0620(Q
DDE06210
DDE06220
DDE06230
DDE06240
DDE(}6250
DDED6260
DDE06270
DDPE06280
DDE06280
DDE06300
DDE06J10
DDEQ6J2

DDEQ633

DDE06340
DDED6350
DDEQ6360
DDE06370
DDEO6380
DDEQ06 390
DDE06400
DDED6410
DDE06420
DDE06430
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DDEO6440

SUBROUTINE STIFFC( A' ; DIVDI¥, P, FPLUSR, PASTT, PASTY, POLYI,DDBOG4$O
D

YBAR, SAVE, SIGMAF, Y, YB, YBAR,
BETA, EPS, H, HMNIN, T, TO

E06460
DDEO6470
DDE06480

YMAX
PASTQ' BEGIN, END, INDEX..Nf Q, QHAX' REEVAL )DDED6490

c E06500
c*.“.***‘#*******“***#*************‘**********************#**********#DDEOGSI9
H THIS PROGRAM PERFORMS THE CORRECTOR ITERATION DDE06520
c AN ML) = ACN M) = W-1KF(ACN,M)) DDE06530
c DDE06540
¢ % - THE JACOBIAN MATRIX DPDE06550
b DDE06560
¢ CL(*,Q) ~ VECTOR FOR CORRECTOR OF ORDER Q DDE06570
C“*““*‘*;******'****‘**‘**#***************#*‘****#*********#*********DDEOﬁSSO
INTEGER PIVOT( 99) o DDE06590

INTEGER PASTQ(1), BEGIN, COL, END, INDEX, J, Q, QMAX, QPLUS1, ROWDDEQ6600

REAL A(7,1)y CL(7,7), DIVDIF(7,1); F(1), 06610

+ PASTT(i) PASTY Ny,1)s, POLY1(1l), PDY(N,l) PDYBAR(N,1), DDEO6620

+ SAVE(7,1), SIGMAF(1), TNODE(7), W(1), Y(1), YB(1), DDE06630

+ tmn(ﬂ. YPLUS(1), DDE06 640

+ EPS, EPSC, H, HMIN, DDE 06650
LOGICAL SMALLN, CORRy REEVAL DDE06660

COMMON IDEBUG, KDEBUG, LDEBUG DDE06670

c DDE06630
10 EPSC = EPS¥H®YMAX/(2.0%FLOAT(Q+1)) DDE 06690
IF ( IDEBUG .GE. 5 ) WRITE(6,996) Q, EPSC, T, H DDE06700

9906 FORMAT( '~NEWION CORRECTOR STARTED WITH ORDER = ',I1 DDE067 10
+* Al EPSC- .131407" T= ',El“o”" H= "93!4-7) DDEQ6T20
TPLUSH = T + DDE06730

TBACK = TPLUSH - BETA DDE06740
SMALLH = .TRUE. DDEO6750

CORR = oFALSE. DDE06760

c DDE06770
IF ( H «GT. BETA ) SMALLH = .FALSE. DDE06780

IF ( SMALLH ) GO TO 20 DDE06780

c A DDE06800
CALL ADD( A, PASTT, PASTY, TPLUSH, PASTQ, BEGIN, END, DDE06810

. Ny Qy QMAX ) DDE06820
INDBX = END DDE06830

20 CALL FUNCT( DIVDIF, TNODB, PASTT, PASTY, YB, POLYIl, DDE06840
+ ETA, DIFF, OPRIME, TBACK, TO, DDE06850

+ PASTQ, BEGIN, END, INDEX, NPTS, QMNAX, DDE06860

+ CORR, REEVAL, SMNALLH ) : DDEQ68BT0

c DDE06880
IF ( «NOTe REEVAL ) GO TO 90 DDEO6890

c DDE 06800
c - DDE0G6910
¢ PARTIAL DERIVATIVES ARE EVALUATED, THE JACOBIAN NATRIX DDEQ6920
[+ IS8 EVALUATED AND THE LU-DECOMPOSITION IS FOUND DDE06930
¢ DDE06 940
c DDE06950
DO 30 COL = 1, N DDE 06960

Y(COL) = A(1,COL) DDE06970

YBAR(COL) = YB(COL) DDE06980

30 CONTINUE DDE(069980
¢ DDEO7000
CALL JACOB( F, FPLUSR, PDY, PDYBAR, Y, YBAR, YPLUSR, PDE0Q7010

+ EPSy Ty N ) DDE07020

c DDEQ7030
DO 50 COL = 1, N DDEQ7040

DO 40 ROW = DDE07050

VRetcortl Ve mow) = cL(1,0)%ux(  PDY(ROW,cOL) + pDEDT060

. GPRINE#PDYBAR( ROW,COL) ) DLEG7070

40 CONTINUE PPECT080
WONR(COL~1) + COL) = —1.0 + W(N¥(COL-1) + COL) DDE07080

50 CONT INUR DDEQ7100
DDEOQOT110

IF ( IDEBUG +.LTe 4 ) GO TO 80 DDEQ7120

c DDE07130
WRLTE( 6,997 DDEQ7140

997 PoRuATel PHEY PARTIAL DERIVATIVES AND JACOBIAN ARE®) DDE07150
c DDE07160
DO 70 COL = 1 DDE07170

WRETE( 619 9bs) coL DDE07180

2968 FORMAT( 0',12 . COLUNNS OF THE KATR[CES ARE? DDEO7180
+ L] 'GX"PDY"IIX,'PDYBAR"63, ") DDEO7200

PO 60 ROW = 15 N DDE07210

URITE(6.9§9) PDY(RO'.COL); PDYBAR(RO‘yCOL)' DDE07220

+ W(N&(COL~1) DDEG7230

999 FORMAT(' ',3(E14.7,1X)) DDEQ7240
60 CONTINUE DDE0O7250
70 ‘CONTINUE DDEQ7260
C . DDEO7270
80 DDE07280

CALL DECOMP( N, N, W, PIVOT )
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‘CONTINUB

DO 100 ROV = 1, N
SIOMAF( ROV) = 0,0
CONTINUEB

-

FUNCT COMPUTES THE PAST FUNCTION VALUE Y{T~BETA)
DERIV COMPUTES F(Ty Y(T)y Y(T~BETA))

D0 170 1 = 1, 3
CORR = O*RUE.

Do 110 coL
Y(COL)
CONT INUR

CALL DERIV( TPLUSH, Y, YB, F )
PO 120 coL

F(cCoL)
CONT INUE

1, N
ali,con)

tH

1, N
H*F(COL) - A(2,COL)

IF {( IDEBUG «GEe. 5 ) WRITE(6,1001) I
FORNAT( ' 0BEFORE CORRECTION ',I1,' WE HAVE' )
IF ( IDEBUG +GEB. 5 ) CALL OUT ( Ay N, 2 )

COMPUTE ¥W-INVERSEXF
AND SAVE IN F
CORRECT FIRST T¥WO COMPONENTS

CALL SOLVE( N, N, ¥, F, PIVOT )

DO 130 ROW = 1, N
SIGHMAF( ROW) = SIGMAF(ROW) + F(ROW)
CONTINUE .

DO 140 COL = 1, N
A(1,COL) = A(
A(2,C0oL) = Al

CONTINUE

IPF ( IDEBUG «GEe 5 ) WRITE(6,1002) I
FORMAT(' AFTER CORRECTION ®,11,' WE HAVE ¢ )
IF ( IDEBUG +GBe 5 ) CALL OUT ( Ay Ny 2 )

14COL) - CL{1,Q)*F(COL)
2,COL) - F(COL)

TEST FOR CONVERGENCE
OF THE CORRECTOR

ABSYF = 0.0
DO 150 COL = 14 N
ABSWF = ABSWF + F(COL )%%*2
CONTINUE
ABSWF = SQRT( ABSWF)
IF ( IDEBUG «GE« 5 ) WRITE(6,807) ABSWF
FORMAT(* L2-NORM OF THE CORRECTION TERM W-1%F IS?)

IF ( ABSWF .LE. EPSC ) GO TO 210
IF ( SMALLH ) GO TO 170

CHANGE LAST ENTRY IN THE DIVIDED DIFFERENCE TABLE

DO 160 COL = 1, N
DIVDIF(NPTS,COL) = A(1,COL)
CONTINUE

CALL FUNCT( DIVDIF, TNODE, PASTT, PASTY, BETA, DIFF,
GPRIME, YB, POLY1l, TBACK, TO,
PASTQ, BEGIN, END, INDEXs; N, NPTS, QMAX,
CORR, REEVAL, SMALLE )

CONTINUE

DDEQ7290
DDEO07300
DDEQ7 310

DDEO7360

DDEO7 480
DDE(Q7490
DDE07500
DDEO7510
DDEQ7520
DDEO7830
DDEQ7540
DPDEO7550
DDEO7560
DDE0O7570
DDEO7580Q
DDEQO7580
DPDEO7600
DDEOQO7610
DDE(07620
DDEO07630
DDEQ7 640
DDE07650
DDEOT 660
DDEO7670
DDE(7680
DDEO7690
DDEQ7700
DDE07710
DDEO07720Q
DDEQ7730
DDEQ7740
DDEO7T50
DDEQ7760
DODEQ7770
DDEQ7780
DDERO7790
DDE07800
DPDEQ7810

DDE07970
DDEO7980
DDEQ7990
DDEOSOOQQ
DDEO8Q10
DDEO08020
DDE08G30
DDEQ8040
DDE(8OS0
DDE0OB0O60
DPDEOSO70
DDEOS8080

DDEO080S0
NRROKT1NN
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CORRBCTOR FAILED TO CONVERGE SO CHECK
FOR REEVALUATION OF THE JACOBIAN

-

IF ( IDEBUG +GE. 3 ) WRITEB(6,1003)
FORMAT( ' ONEWTON ITEBRATION FAiLEn TO CONVERGE?')

IF ( REEVAL ) GO TO 190

IF ( IDEBUG +GEe. 3 ) WRITE(6,1004)
FORMAT( *+',38X,'JACOBIAN IS REEVALUATED')
BEEVAL = .TRUE.

IF ( SIALLB ) GO TC 180
END END - 1
IF ( END +«EQs 0 ) END = QMAX
CALL PUT( SAVE, Ay N, Q+1 )
CALL PREDCT( A; N, Q
GO TO 10

JACOBIAN ALREADY REEVALUATED
80 CHANGE THE STEP SIZE

ALPHA = 0.25
IF ( IDEBUG +GEe 3 ) WRITE ( 6,1005)

FORNAT( "OJACOBIAN ALREADY EBEVA%U%TED S0 STEP SI1ZE IS CHANGED')

IF ( E LT« HMIN ) CALL ERROR(

IF ( SMALLH) GO TO 200
END = END - 1
IF ( END +EQe 0 ) END = QMAX

CALL PUT( SAVE, A,
CALL CHSTEP( A, ALPBK

CALL PUT( Ay SAVE, N,

CALL PREDCT{ A, N, )
G0 TO 10

)
Hl HHIN. Ny Qy REEVAL )

CORRECTOR CONVERGEDy DELETE FRON
QUEUE AND COMPLETE iTERATION

1F ( SMALLB ) GO TO 220
ND EN 1

IP ( ERD oBQ- 0 ) BEND = QMAX
QPLUSL = Q + 1
IF ( QPLUS1 .LT. 3.) GO TO 250

PO 440 COL = 14 N
DO 230 RO¥ = 3, QPLUS1
A(ROW,COL) = A(ROW,COL) = CL({ROW,Q)}*SIGNAF{COL)
CONTINUE
CONTINUE

IF ( IDEBUG +GEs. 5) WRITE(641006) Hy T, Q

FORMAT( ' OCORRECTOR DONE WITH '/' H= ',El4.7,' T= *,EBl4.7,
ORDER= *,1I1)

IF ( IDEBUG +GE. é ) CALL OUT( Ay Ny Q + 1 )

REEVAL = .FALSE.

RETURN

END

DDEQ

DDEQ

DDEQ
DDEO

DDE08J30Q
DDEO08310
DDE0O8320
DDE08330
DDEOSJ340
DDEO8JS0
DDEQBJ360
DDEO8370
DDEORB380
DDE(8390
DDEOB400
DDEOS8410
DDEO8420
DDE(08430
DDEOS 440
DDEQS8480
DDE08460
DDE08S470
DDEO8480
DDEOB480
DDEO8S00
DDEO8S10
DDEOSS520
DPDPEO8S530
DDE(N8540
DDEO8 560
DDEOBS60
DDEOSS70
DDEO8580
DDEQ8590
DDE(G8600
DDE08610
DDE(Q8620
DDEO8630
DDPE(Q8640
DDR08650

DDEOB68O
DDEQ8680
DDE08700
DDEGB710
DDE08720
DDE08730
DDEQ8740
DDEQ8750
DDEO8760
DDE08770
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c#t**t‘tt*t**#***t#t**t***#*#**********#**t***********t#*******##!******33583780

790

SUBROUTINE CHKERR( A, DELTAQ, ERRCON, SAVE, EPS, H, T, DDEOSSO00

+ HMIN, YNAKX, DDEO8S10

+ INDEXy N, Qy QCOUNT, TYPE, REEVAL, SUCESS, FINISH ) gggggggg
gt&*#tttt##tttl**t#*t*l#ttt*ttt*t*#*tt*tt**tt*t*t*t*##t*#*t*t*#***tt*vt#nnnoaﬂdo
c THIS PROGRAM CONTAINS THE LOGIC FOR DETERNINING DDEOQB8S0
c THE SUCESS OF A STEP AND FOR CHANGING STEP SIZE ) DDEO8B60
c AND ORDER, DDEOSR70
o sl oo oo oo ool o s e o e ot e o s ke ook o oo ksl ook ok ok ok R R Rk ok ok Rk k Rolokk %ok DDEOS S 80
INTEGER COL, Ky Qy QCOUNT, QPLUS1, TYPE DDE 08890

REAL A(7,1), ALPnlz), DELTAQ( 1), ERRCON{4,6), SAVE(7,1), DDE(08900

+ DELSQ, EPS, Hy NORMAQ, NRNDAQ DDE(QBO10
LOGICAL FINISR, RSEVAL, SUCESS DDE08920

COMMON IDEBUG, KDEBUG, LDEBUG DDE(OB930

c DDEQ8940
SUCESS = -TRUE. DDE (08950

QPLUSL = Q + 1 DDE(Q8960

c DDE08970
NRMDAQ = 0.0 DDEOBSS0

DO 10 COL = 1, N DDE(0S9980
NRMDAQ = NRNDAQ + ( A(QPLUS1,COL) -~ SAVE(QPLUS1,COL} )*%*2 DDE0S000

10 CONTINUE DDE09010
NRMDAQ = SQRYT( NRMDAQ ) DDE09020

c DDE0S030
ERR = ABS( ERRCON( 4,Q)*NRMDAQ ) DDEQS040

IF ( (TYPE «EQe 0) +ORs (TYPE eBQe 2) ) ERR = ERR/H DDE09050

c . DDE09060
IF ( ERR +GT. EPS*YMAX ) GO TO 120 DDE08070

c DDE(QS080
c - o v e DDE(0D 090
c STEP SUCEEDED DPDE08100
c ———— e —-—.— . DDE09110
[+ DPDE09120Q
IF ( IDBBUG +GEe 3 ) WRITB(6,1000) H DDEQP130

1000 FORMAT( '~-STEP SUCCEEDED WITH H= ',El14.7) DDE0D 140
T =T+ 8§ : DDE09180

IP ( IDEBUG +GE. 2 ) WRITB(6,1001) T DDE09160

1001 FORMAT(®* SOLUTION AT T = ',E14.7,' IS ') DDEQ9170
IF ( IDEBUG «GEe 2 ) CALL OUT( As No 1 ) : DDE09180

IF ( KDEBUG .NE« 1 ) GO TO 20 DDE09180
wnxrs(a;looz) DDE09200

1002 FORNAT(' TRUE SOLUTION IS') DDE(08210
CALL TRUE(T) DDE(09220

c DDE0Y9230
20 QCOUNT = QCOUNT - 1 DDE (09240
IF {( OCOUNT +GTe 1 ) RETURN DDE09250

IF ( QCOUNT <«EQe. 0 ) GO TO 40 DDE09260

C , DDE09270
C DDE09280
c POSSIBLE INCREASE AT THIS OR THE NEXT STEP SO DELTAQ DDE(09280
c IS SAVED ' DDE09300
] DDE09310
C DDE0S320
DO 30 COL = 1, N . DDE09330

DELTAQ(COL) = A(QPLUS1,COL) ~ SAVE(QPLUS1,COL) DDE09 340

30 CONTINUE DDE0SJIB0
RETURN - DDE0Y9360

C DDE09JT0
C DDEO0D3IBO
c COMPUTE DELTA SQUARED DDEQY3B0
c -—— DDE09400
C . DDECO410
40 DELSQ = 0.0 DDE09 420
DO S50 COL = 1, N DDE09430

TEMP = A(QPLUS1,COL) - SAVE(QPLUS1,COL) DDE09 440

DELSQ = DELSQ + ( TEMP - DELTAQ(COL) )%%2 DDE(9450

DELTAQ(COL) = TEMP DDE09460

50 CONTINUR DDE09470
DELSQ = SQRT( DELSQ) DDE09480

c DDEQ9490
c - DDE08500
c PICK ORDER Q, Q+1 UP TO A MAXINMUM DDE09510
¢ OF SIX TO GIVE MAX STEP SIZE DRE09520
b DDEQ9530
¢ DDE09540
IF ( IDEBUG +GEe 3 ) WRITE(&6,1003) DDE09550

1003 FORMAT( *OPOSSIBLE INCREASE IN ORDPER AND STEP SIZE!) DDEN9560
QCOUNT = 10 DDEO9570

K =1 DDEQS580

c L ] . o DDEQ9590
IF ( NRMDAQ «NEs 040 ) GO TC 60 DDE09600

IF ( Q «NE. 6 E =2 DDE09610

ALPH(K) = 10.0 , DDE09620

GO TO 90 DDE09630

c DDE09640
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IF ( (TYPE .EQs 0) +ORe (TYPE <EQ. 2) )

ALPH(1) = BRRCON(z,Q)‘ABS(EPS*H*YIA!/NRKDAQ)**(IQOIFLOAT(Q))
IF ( (TYPE +EQe 1) .OR. ( TYPE +EQe J)

ALPH(1) = ER‘CON(Z'Q)*ABS(EPS*YHAX/HRHDAQ)**(l-o,FLOAT(Q*l))

IF ( Q +EQe 6 ) GO TO RO

IF { DELSQ .NE. 0.0 ) GO TO 70
K =2
ALPH(2) = 10.0
GO TO 80

IF ( (TYPE «EQe 0) +OR. ( TYPE «EQes 2) )

ALPR(2) = ERRCON(Q.O’*ABS(EPS‘H*'NIXIDELSQ)**(IOO/PLOAT(0+1’,
IF ( (TYPE .EQ. 1) «ORe (TYPE +EQ. J)

ALPH(2) = BRRCON(Q.Q)‘ABS(BPB*'.AX/DELSQ"*(1!0/FLOAT(Q‘2))

DETERMINE THE MAXIMUM ALPHA

IF ( ALPH(2) +6Te. ALPH(1) ) K = 2

IF ALPHA IS TOO SMALL NO CHANGE

IF ( ALPH(K) <LE. 1.1 ) RETURN

IF TRUE THEN NO INCREASE IN ORDER

IF ( K «EQ. 1 ) GO TO 110

INCREASE ORDER

DO 100 COL = 1, N
A(Q+2,C0L) =
CONTINUE
Q=0Q +1
IF (- IDEBUG «GEs 3 ) 'RITB{6‘1004) Q
FORNAT(' ORDER INCREASED TO y I1 )

CALL CHSTEP( A, ALPH(K), H, HMIN, N, Q, REEVAL )
QCOUNT = Q + 1
RETURN

DELTAQ(COL)/FLOAT( Q+1)

STEP FAILED

QCOUNT = QPLUSI1

FINISH = .FALSE.

SUCESS = +FALSE.

IF ( (TYPE +BQ. 0) +OR. { TYPE «EQe 2) )

ALPH(2) = BRECON(zpo)*ABS(EPS‘H*'!AX/NRHD‘Q’**(IQO/FLOAT(Q))
IF ( (TYPE +EQ. 1) LOR. CTYPE <EQ. 3) )

+ ALPH(2) = ERRCON(2'0)*ABS(EPS*!NAX/NRHDAO)**(I.OIFLOAT(Q*I))

CALL PUT( SAVE, Ay 'Ns Q + 1 )
IF ( IDEBUG .GE. 3 ) WRITE( 6,1005) o
FORNAT( 'OSTEP FAILED WITH ORDER = %oI1)

IF ( Q +GT. 1 ) GO TO 130

CONNOT DECREASE ORDER

CALL CHSTEP( A, ALPH(2), H, HMIN, N, Q, REEVAL )
RETURN -

POSSIBLE DECREASE IN ORDER BY ONE

NORNAQ = 0.0
DO 140 coL 1, N

NORNMAQ NORMAQ + A(Q+1,COL )%%2
CONTINUE S

NORMAQ = SQRT(NORMAQ)
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C DDE10480

IF ( NORMAQ +NE. 0.0 ) GO TO 150 , DDE10480

ALPH(1) = 0.1 DDE10S00

GO TO 160 DDELDS10

1650 IF ( (TYPE +EQs 0) +QRe { TYPE «EQ. 2) ) . DDE10520

+ ALPH(1) = ERRCON(1,Q)*ABS{ EPS* H*YMAX/NORNAQ)*%(1.0/PLOAT(Q=1)) DDE10530

IF (  (TYPE o.BEQ. «ORe ( TYPE +EQ. DDE10540

4+ ALPH(1) = ERRCON(1,Q)*ABS( EPS*YMAX/NORMAQ)EA(1.0/FLOAT(Q)) DDE10550

c . DDE10560

c PDE10570

C DETERMINE THE MAX STEP SIZE : DDE10580

c PDE10580

¢ DDE10600

160 K =2 DDE10610

IF ( ALPH(2) +LTe ALPH(1) ) K = 1 : PDE10620

DDE10630

DDE10640

IF K=1 THEN DECREASE ORDER DDE10650

DDE10660

. DDE106790

IF ( K «EQs 1 ) Q= @Q - 1 DDE10680

IF ( IDEBUG +GE. 3 ) WRITE(6,1006) Q DDE10680

1006 FORMAT( ' ALGORITHM WILL USE ORDER ',I1) DDE10700

CALL CHSTEP( A, ALPH(K), H, HMIN, Ny Q, REEVAL ) DDE10710

RETURN DDE10720

END DDE10730

c#t*#tt#***#t**#*#t#*#**t**#**tt****t*ttttt*tt****t#t####**&#*tttt*ﬁ#*t*nnz%g;gg
DDE

SUBROUTINE JACOB( F, FPLUSR, PDY, PDYBAR, Y, YBAR, YPLUS, DDE10760

+ EPSy Ty N ) DDE10770

c DDE10780

00 o3 o o 2 o o oo o oo o o a0 o ool o oo o oo o e e o i ok ok ko kR ok ok DDE 10 790

¢ THIS ROUTINE EVALUATES THE PARTIAL DERIVATIVES OF F(T,Y,YBAR) DDE10Q800

c WITH RESPECT TO Y, YBAR BY USING NUMERICAL DIFFERENCING. THE DPDE10810

c VECTORS F, FPLUSR, Y, YBAR, YPLUSR, ARE USED IN GENERATING DDE10820

c THE PARTIAL DERIVATIVE MATRICES PDPY, PDYBAR WHICH HOLD DDE10830

[ THE PARTIAL OF F WITH RESPECT TO Y AND THE PARTIAL OF F DDE10840

C WITH RESPECT TO YBAR. T IS THE INDEPENDENT VARIABLE AND DDE10850

c N IS THE DIMENSION OF THE SYSTEMe. IN A USER WRITTEN DDEL1Q860

c SUBROUTINE THE USER NEED ONLY CALCULATE PDY, PDYBAR. DDE10870

CHmk sk ok e R ok ok ook sl ool Ao ke o ok ok ok oo ok ok ok kol oKk koo ook ok ek Kok ok k%X DD E 10 880

INTEGER COL, N, ROW : DDE10880
REAL PF(1), FPLUSR(1)y, PDY(N,1), PDYBAR(N,1), Y(1), YBAR(1l), DDE10900

YPLUS(1), EPS, RY, RYBAR DDE10910
C i e DDE10920
DO 50 coL = 1, N DDE10830
RY = EPSKAMAX1( EPS, ABS{Y(COL)) ) DDE10940
RYBAR = EPS¥AMAX1( EPS, ABS(YBAR(COL)) ) DDE10850
c DDE10960
DO 10 ROW = 1, N DDE10870
YPLUS(RO" = Y(ROW) } DDE1
10 CONT INUE DDE
¢ YPLUS(COL) = Y(COL) + RY DDE
DDE
CALL DERIV( T, YPLUS, YBAR, FPLUSR )
c CALL DERIV( T, Y, YBAR, F )
C
C EVALUATE VECTOR PARTIAL DF(T,Y,YBAR) BY DY(COL)
C
c

DO 20 ROW = 1, N
PDY(ROW,COL) = ( FPLUSR(ROW) - F(RO¥) )/RY
c20 CONTINUE

DO 30 ROW = 1, N
YPLBS(DO" = YBAR({ ROW)
30 CONTINUE
YPLUS(COL) = YPLUS(COL) + RYBAR

A=A -A~-A-A-A-A-R-R-3-2-N-1-R-) 0]
CooLoUouUuuoouoouoUoe
[elolaiotololololol sl ol i3 ol 3 ko))
Ladad ol T T Y Y Y T Y Y e Y Y ST
(et kP o ot o Pk ek e ek ke e s i o . g b Pk P €
NNNNR R et i b i e — e OO 000000000

BOLNOOXRNIINALN=OOXICNHALN=OO0R
COCOO0QOOOO00OODROCOOOO0OORR

c
c CALL DERIV( T, Y, YPLUS, FPLUSR )
c -
g EVALUATE VECTOR PARTIAL DF(T,Y,YBAR) BY DYBAR(COL) b
- — D
C DDE
DO 40 ROW = 1, N DPE1
PDYBAR( ROW,COL) = ( FPLUSR(ROW) - F(ROW) )/RYBAR DDE11250
40 CONTINUE DDE11260
C DDE11270
50 CONT INUE DDE11280
RETURN DDE11290
END DDE11300
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c

DDE11320
SUBROUTINE PUNCT( DIVDIF, TNODES, PASTT, PASTY, POLY, POLY1, DPDE11330
+ BETA, DI¥F, GPRINE, T, TO, DDE11340
+ PASTQ, BEGIN, END, INDEX, N, NPTS, QMAX, DpPE11350
+ CORR, REEVAL, SNALLH ) . ggg{{ggg
g*******'*****************.***‘**********t#*****‘**‘**‘***********t*****DDBIl380
[ o] THIS PROGRAM EVALUATES THE FUNCTION AT Y(T) BY USING DDE11380
[o] THE INITIAL FUNCTION IF T BELONGS TO T0, TO+BETA AND USES DDE11400
C INTERPOLATION IF NOT. IT SAVES THE DIVIDED DIFFERENCE TABLE IN DDE11410
c CASE ONLY THE LAST NODE CHANGES FORM ONE CALL TO THE NEXT. DDE11420
Caesg e o sfe sl e sk she s e a0 ofe afe ok o o e e s e s s s o e sl ol o 2 s o s e ofe e ok o o e ok ke ke ok ekl kol ek ek ok ko ok k2 kX DDE 11430
INTEGER PASTO(1) DDE11440
INTEGER BEGIN, COL, END, INDEX, I ISTART, N NPTS, QMAX, ROW DDE11450

REAL DIVDIF(7¢1), PASTT(1), PASTY(N,1), POLY{1), POLY1(1), DDE11460
+ TNODES(1), BETA, DIFF, T, TO DDE11470
LOGICAL CORR, REEVAL, SMALLH DDE11480

CONNON IDEBUU, KDEBUO, LDEBUG : DDE11 480
c —— «wwe==DDE11500
c DDE11510
IF ( T +GT. TO + BETA ) GO TO 10 DDE11620
c DDE11530
IF ( IDEBUG .GE. 8 ) WRITE(6,1000) T DDE11540
1000 FORMAT(* F( T+HyY(T+H)yY(T+HZBETA) )= PHI( ',E14.7,')1) DDE11550
GPRIME = 0.0 DDE11560
CALL PHI( T, POLY ) DDE11570
RETURN DDE11580
C DDE11580
10 IF ( CORR ) GO TO 120 DDE11600
DDE11610

IF ( <NOT. SMALLH ) GO TO 20 DDE11620

c DDE11630
CALL SEARCH( PASTT, T, BEGIN, END, INDEX, QMAX ) DDE11640

IF ( IDEBUG .GE. 8 ) WRITE(6,1002) INDEX DDE11650

1002 FORMAT( ¢ OBEARCH ROUTINE FINDS INDEX = 9,1§) DDE11660
20 - IF ( PASTT(INDEX) eNE« T ) GO TO 40 DoRi1on0
DO 30 ROW = i, N : DDEL1680
POLY(ROW) = PASTY( ROW, INDEX) DDE11700
a0 CONTINUE PDE11710
GPRIME = 0.0 DDE11730
IF ( IDEBUG .GE«. 8 ) 'gITE(G;IOOG) INDEX DDE11730

1003 FORMAT(®* F( T+H, Y(T+H), Y(T+H-BETA) ) = PASTY( *y,1,15,%)) DDE11740
RETURN DDE11750

c DDE11760
¢ DDE11770
o] STORE THE DIVIDEP DIFFERENCE TABLE DDE11780
c - : DDE11780
¢ DDE11800
40 NPTS = PASTQ( INDEX) DPDE11810
ISTART = INDEX - NPTS DDE11820

¢ DDE11830
IF ( CORR ) GO TO 120 DDE11840

c DDE11850
IF ( ISTART .LT. 0) GO TO 70 DDE118B60

c DDE11870
PO 60 I = 1, NPTS DDE11880

DO S0 COL = 1,4 N DDE11890

ROW = COL DDE11900

DIVDIF( I,COL) = PASTY( ROW, ISTART+I) DPDE11810

50 CONTINUE DDE11920
TNODES(I) = PASTT( ISTART + I) DDE11930

60 CONTINUE DDE11940
GO TO 120 DDE11850

[o] DDE11960
70 ILINIT = QNAX + ISTART + 1 , DPE11970
ITEMP = NPTS : DDE11980

PO B0 I = ILIMIT QMAX DDE119980

DO 80 COL = 1, N DDE12000

ROW = COL . DDE12010

DIVDIF( ITEMP,COL) = PASTY( ROW, ITENP) DDE12020

80 CONTINUE DDE12030
TNODES( ITENP) = PASTT(I) DDE12040

- ITBMP = ITEMP = 1 . DDE12050

80  CONTINUE - DDE12060
c DDE12070
ITEMP = INDEX DDE12080

DO 110 I = 1, INDEX DDE12080
DO 100 GOL = 1, N DDE12100

ROW = COL DDE12110

DIVDIF( ITEMP,COL)} = PASTY( ROW, ITEMP) DDE12120

100 CONT INUE DDE12130
TNODES(I) = PASTT( LTEMP) DDE12140

ITENP = LTENP - 1 DDE12150

110 CONTINUE DDE12160
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c DDE12170
120 CALL DDIFF( DIVDIF, TNODES, N, NPTS, CORR ) ‘ DDE12180
c PDE12190
c DPDE12200
c PO FUNCTION EVALUATION DDE12210
C DDE12220
c DDE12230
CALL EVAL( DIVDIF, TNODES, POLY, POLYl, DIFF, GPRIME, T, N, NPTS,DDE12240
+ CORRy REEVAL ) DDE12250
IF ( IDEBUG +GE«. 8 ) WRITE(6,1004) T, POLY DDE12260
1004 FPORMAT( 'FUNCTION AT T = ',E14.7,% CONPUTED BY INTERPOLATION', DDE12270
+ t IS ",E14.7) ’ DDE12280
[ DDE12280
c DDE12300
RETURN DDE12310
END DDE12320
ct#*#****#tt******#tt*##**#*#**#***#*********t******#*****t*******t*****DDE%Zgig
DDE12

SUBROUTINE PREDCT( A, Ny, Q ) Dbgigggg

C DD
c***tttc*vt*t*tt*#t**s**********vt**t******t*t**#***tts*****************nne12370
TRIS PROCRANM PERFORMS THE PREDICTOR STEP BY EFFECTIVELY DDE12380
c MULTIPLYING THE SCALED DERIVATIVES BY THE PASCAL TRIANGLE DDE12390
c MATRIX. THAT IS A = PASCAL NATRIX * A. DDE12400
Rk A kA o R Rkl o R AR ook Rk Sk ok Atk ol Kk koK k¥ DDE 12410
INTEGER COL, Jy Jl, J24 N, Q, QPLUS1 DDE12420
REAL A(7,1) . DDE12430
COMNON IDEBUG, KDEBUG, LDEBUG DDE12440
c ~DDE12450
QPLUSL = Q + 1 DDE12 460
IF ( IDEBUG .GE. § ) WRITE(6,1000) Q DDE12470
1000 FORMAT( '~PREDICTOR ENTERED WITH ORDER = *,I1) DDE12480
IF ( IDEBUG oGE. 9 ) CALL OUT( A, N, QPLUSL ) DDE12 480
po 30 J = 2, QPLUS1 ) DDE12500
po 20 3} = J, QprLUS1 DDE12510
J2 = QPLUSL -~ J1 + J - 1 " DPE12520
[} DDE12530
[+ DDE12540
c PO BACH COMPONENT DDE1258§0
c OF THE SYSTEM DDE12560
[} DDE12870
c DDE12580
PO 10 COL = 1,4 N DDE12580
A(J2,COL) = A(J2,COL) + A(J2+1,COL) " DDE12600
10 CONTINUE DDE12610
DDE12620
20 CONTINUE . DDE12630
30 CONTINUE DDE12640
IF ( IDEBUG .GEe. 9 ) WRITE(6,1001) DDE12650
1001 FORMAT(' PREDICTED VALUES ARE') : DDE12660
IF ( IDEBUG «GE. 9 ) CALL OUT( A, N, QPLUS1l ) DDE12670
c DDE12680
RETURN DDE12680
END : DDE12700
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C**#*“#***t#t*#***#*t#*t##**********#*t#*t‘**‘***#*#****#**#***ttt****tDDE12710

DDE12720
SUBBOUT!NR SEARCH( PASTT, T, BHEGIN, END, E, QMAX ) ggg}%;gg
Ctt#ttt*t*#*#**#t**t#*tt*t*ttt#t*#*****#‘t*t*#tt#tt*t*#t#*t#ttt##*tl**ttnbs12750
THIS PROGRAM SEARCEES THE CIRCULAR QUEUE OF SAVED FUNCTION DE12760

c VALUES TO FIND THE INDEX SUCH THE PASTT(INDEX~1) +LEBe. T +LE. 99312110
PASTT( INDEX) USING A BINARY SEARCH 2780
ct##t*tt#t***t***t***t#t#‘******t#tt#t#tttﬁt#t##‘*ttt**********#*#*t***tDDEIZ790
IMTEGER B, BEGIN, E, END, MID, QMAX DDE12800

REAL PASTT(1)y, T DDE12810

c DDE12820
c ) DDE12830
B = BEGIN DDE12840

E = END : DDE12850

NMID = E - B DDE12860

c . DDE12870
IF ( MID .GB. 0 ) GO TO 30 DPDE12880

c DDE12880
P ( PABTT(I) eGE. T ) GO TO 10 DDE12800

1 DDE12810

ao TO 30 nnnlzgzg

c NLE1I283
10 IF ( PASTI(1) 4GTe T ) GO TO 20 DDE121940
B = 1 : DDE12950

RETURN DDE12960

c DDE12970
20 B = QMAX DDPE12980
DDE128860

30 MID = (B - B)/2 DDE13000
IF ( MID .EQe 0 ) RETURN DDE13010

MID = B + NID DDE13020

IF ( PASTT(MID) JLE. T ) B = NID DDPE13030

IF ( PASTT(NID) .GT. T ) E = MID DDE13040

G0 TO 30 , DDE13050

END DDE13060

ool e el ke ol s sk ol e ai o e o 3o o o ke sl ool ok o 9K ool ook o s ol s e ale e o ke ol o afe ke o ok o e ek ok ok ok ko kok ok ok Xk k DDE 13070
[« PDE13080Q
SUBROUTINE EVAL( DIYBIP TNODES, POLY, POLY1, DIFF, GPRIME, T, DDE13080

+ Ny NPT§ CORR, REEVAL ) DDRIQ%gg

c

AR o ok i o o o o o o o e o o ool o el e st ok g e kR Aok sk ok koK skok ok X DDE 13120
[+] THIS PROGRAM COMPUTES A FUNRCTION VALUE BY INTERPOLATION DDE13130
C USING THE DIVIDED DIFFERENCE TABLE. IF IN TEE CORRECTOR DDE13140
c LOOP IT UPDATES THE FUNCTION VALUE BY USING THE LAST nns13150
c DIVIDED DIFFERENCE IN THE TABLE E13160
c#*tt#t*‘*t‘t‘#t*tt#**ttit‘**ltt#*tt#**#t*#ttt#t#tl#t##**t**l**tt#tt***#DDB13170
INTEGER COL PDE13180

REAL nxvo:pf? i). Po&!(l). POLY1(1), TNODES(1), DDE13180

+ IME, T DDE13200
LOGICAL COny. REEVAL DDE13210

c DPDE13220
b4 DDE13230
IF ( CORR ) GO TO 60 DDE13240

DO 10 COL = 1, N PDE13250

poLYi(coL) = prvprr(1,coL) DDE13260

10 CONTINYUE . : DDE13270
DIFF = T ~ TNODES(1) DDE132B0

c DDE13280
IF ( NPTS +EQe 2 ) GO TO 40 . DDE13300

NM1 = NPTS -~ 1 DDE13310

DO 30 I = 2, NNMi DDE13320

DO 20 COL = DPE13330

POLYI(COLS POLY1(COL) +DIFF¥DIVDIF(I,COL) DDE13340

20 CONT INUE DDE13350
DIFF = (T - TNODES(I))*DIFF DDE13360

30 CONTINUE DPDPE13370
c » . DDE133B0
40 IF ( +NOT. REEVAL ) GO TO 60 DDE13390
GPRIME = n:rr ' DDE13400

DO S0 I = 2, DDE13410

GPRIME = opntuz/(rNODES(uprs: ~ THNODES(I-1)) DDE13420

50 CONTINUE DDE13430
c DDE13440
60 DO 70 COL = DDE13450
ronr(con) = POLYI(COL) + DIFE¥*DIVDIF(NPTS, COL) DDE 13460

70 CONTINUE DDE13470
c DDE13480
RETURN DDE13480

BND DDREASNO
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c##t*tt"***##*****l*t*t**t#************tt*t*********#*************t#***nnﬂ13510

DDE13520
SUBROUTINE CHSTEP( A, ALPHA, H, HMIN, N, Q, REEVAL ) 33%{%323

c .
ki ook ok ok A ook i ok ok ok ok ok kR ok kol sk R Sk ok ook K Rk Kk kkok ok kK xk DDE 13550
c THIS PROGRAM MULTIPLIES THE SCALED DERIVATIVES BY THE DIAGONAL  DDE13560
] MATRIX C(ALPHA) WHOSE ENTRY IS C(I,XI) = ALPHA¥*(I1-1), THIS DDE13570
[ CHANGES THE STEP SIZE H TO ALPHA%®H DPDPE13580
Sk kR kR Rk Rk Rk KRR RO KRR ok Rk Rk ok Kk X Kk kXX K DDE 13550
INTEGEBR COL, N, Q, QPLUS1, ROV DDE13600
REAL A(7,1), ALPHA, TENP PDE13610
LOGICAL REEVAL DDE13620
COMMON IDEBUG, KDEBUG, LDEBUG ! PDE13630
- DDE13640
IF ( { H oLE. HMIN ) .AND. ( ALPHA «LE. 1.0 ) ) CALL ERROR(2) DDE13650
IF ( ALPHA®H .LT. HMIN ) ALPHA = BMIN/H DDE13660
IF ( IDEBUG «GE. 3 ) WRITE(6,1000) B DDE13670
1000 FORMAT(® STEP SIZE BEING CHANGED FROM!/* H = ',El4.7,* TO H = ') DDE13680
TEKP = 1.0 DDE13680
QPLUSL = Q + 1 - DDE13700
DO 20 ROW = 1, QPLUS1 DDE13710
PO 10 COL = 14 N DDE13720
A(ROW,cOoL) = TEMP*A( ROW,COL) DDE13730
10 CONTINUE DDE13740
: TEMP = TENPEALPHA DDE13750
20 CONTINUE ) DPDE13760
B * ALPHA%*H DDE13770
REEVAL = .TRUE. DDE13780
IF { IDEBUG .GE. 3 ) WRITE(6,1001) H DDE13780
1001 FORMAT( *+',28X,E14.7) DDE13800
[+] DDE13810
RETURN ) . DDE13820
END . DDE13830

Rk ok Rk R AR ROk oK R Rk R R ok R ok o Sk Rk Kk Kok ok koK Rk DDE 13 840
e

DPDE13850

c SUBROUTINE DELETE( BEGIN, END, INDEX, QNAX ) nne%gggg
DDE

ook Aok A R S oK o o ok oo Aol A ok ok o A ok o e R R kR ok Kk ok ok ok ok Rk kR DDE 13880

c THIS PROGRAM DELETES THOSE ENTRIES IN THE QUEUE WHICH DDE 13890

C WILL NO LONGER BE NEEDED FOR INTERPOLATION. ALL THE NODES DDE13800

c PASTT IN TO, TO*BETA AND THE PREVIOUS SIX NODES LESS THAN TO DDE13910

c " ARE RETAINED DDE13820

Gk Aok o ke A ko Ko s o e R oKk ok ok ok ko okokok ok kokk ok ok k DDE 13930

INTEGER B, BEGIN, E, END, INDEX, QMAX DDE 138940

CONMON IDEBUG, KDEBUG, LDEBUG . DDE13950

c DDE13960

IF ( IDEBUG .GEe. 7 ) WRITE(6,1000) BEGIN, END "DDE13970

1000 FORNAT(' QUEUE POINTERS BEFORE DELETION ARE ',13,' AND *,13) DDE1J3980

B = BEGIN DDPE13990

E = BEND DDE14000

IF ( B -~ E oLTe 0 ) GO TO 10 DDE14010

[ o] DDE14020

IF ( B .GT. IKDEX ) GO TO 20 DDE14030

DDE14040

10 IF ( INDEX - 5 .GT. BEGIN ) BEGIN = INDEX - § DDE14050

IF ( IDEBUG .GE. 7 ) WRITE(6,1001) BEGIN, END DDE14060

1001 FORMAT(' QUEUE POINTERS AFTER DELETION ARE ", I3, AND ',13) DDE14070

RETURN - DDE14080

c DDE14080

20 IF ( INDEX .LT. 6 ) GO TO 30 DDE14100

B =1 DDE14110

IF ( IDEBUG «GEe 7 ) WRITE(6,1001) BEGIN, END DDE14120

RETURN DDE14130

c . DDE14140

30 BEGIN = BEGIN + 1 ) . DDE14150

IF ( B +EQes QMAX ) BEGIN = 1 DDE14160

IF ( IDEBUG .GE. 7 ) WRITE(6,1001) BEGIN, END DDE14170

RETURN ’ . DDE14180

END DDE14190



A - 20

c‘#l““***“.**'**‘******"********#**“"‘*‘*‘***********‘#********#*tDDE%:%?%
- DDE
SUBROUTINE PUT( A, By N, R ) pDE14220
c
c.‘#*‘.‘*‘**‘***********#*‘*t*t't*“*t*“..‘**‘.‘*“‘"t***‘*#’#******‘.DDBI4240
'] THIS PROGRAM PUTS THE FIRST R ROYS OF THE MATRIX A DDEL14250
c INTO THME MATRIX B WHERE A AND B HAVE 7 ROWS AND N COLUMNS. DDEL14260
c*‘**.'***‘*.‘***********‘*‘*****’***‘#‘*‘**““*“‘********************DDE14270
NTEGER COL, ROVW DDE142B0
INITORCTSe5! B2t DDE14280
c DDE14300
DO 20 COL = 1, N DDE14310
DO 10 ROW = 1 R DBE14320
B(Row,coL} = acrow,cor) DDE14330
10 CONTINUE . : DPDE14340
20  CONTINUE DDE14350
c DDE14360
RETURN DDE14370
END DDE14380
c**‘**“****‘*****ﬁt*****t*****‘*..#***#*#*‘*“‘****Q#***********#'*'*“DDE{2338
[+] . DPDR
SUBROUTINE ERROR( NUMBER) gggi::;g
c#tttttt*t*tt##tttt*tt*t#tt*t**ttt*t#*m**ttttt*t##tt#****ttt**ttatt***ttpbst4430
[+ THIS PROGRAM PRINTS OUT THE ERROR MESSAGES DDE14440
C*****'*'***‘*“*‘*#*****'**************‘***‘************t**#***********DDE14450
INTEGER NUMBER PE14460
IF ( NUMBER .EQe. 1 ) 'E[TB(SolOO) DDEI4470
IF ( NUMBER .EQ. 2 ) WRITB(6,110) DDE14480
100 FORMAT( 'OQUEUE OF PAST VALUES OVERFLOWED') DDE14490
110  FORMAT( * OCORRECTOR FAILED TO CONVYERGE, STEP CANNOT BE DECREASEQ')DDEI‘SOO
STOP E14510
END . . 93514520
o . DDE14530
CARRRARER AR R R AR K AR AR A A KRR KRR KRk ok Rk Sk Rk K XX K DDE 14540
[ o} DDE1456590
SUBROUTINE OUT( Ay N, QPLUS1 ) DDE}:ggg
C DE
c**‘.‘**##*“*‘*‘*'********‘**********‘***‘*******#*‘**#*#*‘*#*****#****DDE14580
THIS PROGRAM OUTPUTS THE SCALED DERIVATIVES OF A SYSTIEM DDE14580
[+ OF N BQUATIONS WHEN A METHOD OF ORDER Q HAS BEEN USED. DDE14600
Ckok ik ik Rk ki fikok **********##***#*‘*#**t***‘******#***##‘**********DDE14610
INTEGER COL, N, QPLUSL1, ROW . DDE14620
REAL A(7,1) DDE14630
C DDE1464
PO 30 COL = 1, DDE 1465
0 opLus1 6T, 1 ) GO TO 10 DDE14660
wRITE( 6' 1000) COL. A( 1 .COL) DDE14670
1000 FORMAT( c12,9)'= 1,E14.T) DDE14680
Go TO 30 DDE14690
c DDE14700
10 WRITE(6;1010) COL DDE14710
1010 FORMAT( THE SCALED DERIVATIVES FOR THE ',12,°! CO‘PONENT‘.DDBI4720
+ ' OP THE SYSTEN' ) E14730
» DO 20 15, 9PLUSL BDE14740
. 'anE(b‘ 02 ) koW, coLy A(!O',COL) DDE14760
1020 FORMAT( v12, ) '= V,E14.7) DDE14760
CONTINUE DDE14770
30 CONTINUE DPE1478(
C DPDE14780
RETURN . DDE14800

END DDE14810



A - 21

C“t#t‘*l#t#t*‘***‘*#‘*t"‘*‘#tt********tt#!t*#**##*###‘***#*#*#*#**t*#*hng14820
bD

14830
SUBROUTINE DPIFF{( DIVDIF, TNODES, N, NPTS, CORER ) gggi:ggg
C
c*‘**'****‘*“**#*“‘*****‘#***********‘*‘****.*****"‘********‘*****‘**DDE14860
[+4 THIS PROGRAM COMPUTES THE DIVIDED DIFFERENCE TABLE. ET ONLY PDE14870
[ ] UPDATES THE LAST ROW DURING THE CORRECTOR STEf . gggi:ggg
c
[o] DIVBIF - CONTAINS THE FUNCTION VALUES ON ENTRY AND CONTAINS PDE149500
[o] - THE DIAGONAL OF THE DIVIDED DIFFERENCE TABLE ON EXIT. ggg%:g%g
c
[+ TNODES - THE VALURBS OF T IN THE DIVIDED DIFFERENCE TABLE ggﬁg:gio
¢
c NPTS - NUMBER OF ENTRIES IN THE TABLE : PDE1485
¢ DDE 14960
¢ N - DIMENSION OF THE SYSTEM A DDE14870
c DDE14980
c CORR = INDICATES TO ONLY UPDATE THE LAST ROW DDE14990
c*stttt*t*t*tt#ttttttttttt##tttt*ttt*tttttttt*tttttts#**ttttt**t*tt*#t*tnnslsooo
INTEGER COL NPT PDE15010
REAL nxvnxp(? 1)) tNODBS( 1), DENOM DDE15020
LOGICAL COR DDE15030
C . - DPEL15040
¢ : , " DDE15050
IF ( CORR ) GO TO 40 DDE15060
c DDE15070
‘DO 30 I = 2, NPTS DDE15080
DO 20 J'= I, NPTS . DDE15090
DENOM = TNODES(J) - TNODES( I-1) DPE15100
DO 10 COL = 1, N DDE15110
DIVDIF(J,COL) = ( DIVDIF(J,COL) — DIVDIF(I-1,COL) ) DDE15120
DIVDIF(S,COL) = DIVDIF(J,COL)/DENON DDE15130
10 CONTINUE DDE15140
20 CONTINUE DDE15150
30 CONTINUE DPDE15160
RETURN DDE15170
[ DDE15180
¢ DDE15180
o] UPDATE ONMLY LAST ROW DDE15200
¢ DDE15210
c DDE15220

40 PO 60 I = 2, NPT
. DENOM = TNODBS(NPTSD - TNODES( I-1)

DO 50 CcOlL = 1,
( DIVDIF(NPTS,COL) - DIVDIF(I~-1,COL) )DDE15260

cwe
Cvog
mme
ol
oA
Mot
bl
[=1=1-

N
DIVDIF(NPTS,COL)

DIVDIF( KPTS,COL) = DIVDIF( NPTS,COL )/DENON DDE15270

50 CONTINUE DDE15280

60 CONTINUE DDE15290

c , DDE15300

RETURN : PPE15310

END BDE15220

c#t:t***t*tttt**¢*¢t*mtt#ttt*ttttt*tttttt-#ttttttt***t#ttt****ttt*t:t##*nnE15323
DDE153

SUBROUTINE ADD( A, PASTT, PASTY, T, PASTQ, BEGIN, END, N, DDE15350

+ Q, QMAX )  DBEIS360

c*‘*“******‘***“*“‘***‘.“*“*****l*"‘****‘**‘*‘**“t**‘*‘**‘******‘nﬂﬁ15380

¢ TEIS PROGRAM ADDS AN ENTRY TO THE QUEUE E15390

c*‘*“***l*..#*#***‘*****‘***#**"***‘****.***“**********************'*DDE15400

INTEGER PASTQ(1), BEGIN, COL END, N, Qs QMAX, ROW DPDE15410

BEAL A(7,1), PASTT(1), PASTY(N,1)) T : DPE15420

COMMON IDEBUG, KDEBUG, LDEBUG - DDE15430

¢ - DDE15440

END = END + 1 PDE15450

c DDE15460

IF ( END +GTe QMAX ) BND = 1 DDE15470

c DDE15480

IF ( BEGIN - END «EQe 0 ) CALL ERROR( 1 ) DDE15480

o DDE15500

PASTT(END) = T DPE15510

DO 10 ROW = 1, N . . DDE15520

COL = ROW PDE15530

. PASTY(ROW,END) = A(1,COL) — . DDE15540

10 CONTINUE DDE15550

PASTQ(END) = Q + 1 DDE15560

IF ( IDEBUG .GEe 7 ) WRITE(6,1000) END, T DDE15570

1000 FORMAT( *OENTRY ADPDED TO THE QUEUR PASTT( ', 1IS5,%) = *,E14,7) DDE15580

IF ( IDEBUG +GEes 7 ) CALL OUT( Ay Ny 1) DDE15590

c _ PDE15600

RETURN DDPE15610

END DDE15620



APPENDIX B

Plots of the Boundaries of Stability Regions for

the Backward Differentiation Methods
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Region of Q-Stability for B.D. method
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