VERIFICATION CONDITIONS AS REPRESENTATIONS
FOR PROGRAMS*

by
M.H. van Emden
Research Report CS-76-03

Department of Computer Science
University of Waterloo
Waterioo, Ontario, Canada
January 1976

VERIFICATION CONDITIONS AS REPRESENTATIONS
FOR PROGRAMS

M.H. van Emden*

1. Introduction

An important early contribution to the method of characterizing the semantics
of programs by means of the semantics of first-order predicate logic was made
by Manna [16]. The following subsequent developments in the theory of programs
and in resolution theorem-proving have added a new interest to Manna's results.

1) Improved resolution theorem-provers are able to execute effectively,
as a program, the logical sentence representing a program according to Manna's
method. The logical sentence is the conjunction of the verification conditions,
in the sense of Floyd's proof method, that establish the partial correctness
of the program. In practical programming it may well be advantageous to program
directly in verification conditions (see [8] for E.W. Dijkstra's work pointing
in this direction); hence the interest of running verification conditions
directly as a program.

2) Improved models for programs (the "grammar model" [1,5]) give Manna's
method a wider applicability.

3) Increased understanding [Y] of the semantics of predicate logic
has made it possible to relate Manna's results to the more recent fixpoint

semantics for programs in general.

This paper is devoted to a discussion of these developments. I will give
a definition of grammar-modelled programs in their full generality, although

only those, the "flowgraphs", that correspond to the "flowchartable" variety

*) Department of Computer Science, University of Waterloo,
Waterioo, Ontario N2L 3G1, Canada

-2
will be used. Floyd's method for proving partial correctness is formulated
for flowgraphs and justified by operational semantics. After an interlude
leading up to the fixpoint semantics for resolution logic, I will prove that
the terminating computations of a flowgraph are characterized by the un-
satisfiable instances of a formula containing the conjunction of its veri-
fication conditions. This amounts to a denotational semantics for flowgraphs.
The final section explains how verification conditions can be run as predicate-

logic programs on the PROLOG system. [7,19].

2. Grammar-modelled programs, flowgraphs, and flow diagrams

In order to be able to describe sufficiently precisely a class of
programs and their computations, I will use the "grammar model®, which is

inspired by [1,5].

A machine is defined to be a set of commands, each of which is a binary

relation over some supposedly given set of states. A program schema is a

grammar of Chomsky's hierarchy of generative grammars. A program is obtained
from a program schema and a machine by identifying each of the nonterminals

of the program schema with a command of the machine.

For a given state Xy» @ terminated computation of a program is a sequence

of pairs,(t],x]),...,(tn,xn) where %, ... t, is a string generated by the

program schema from which the program is obtained and where Xgo++eaX, are
states such that (x;_;.x;) « t; for i=1,...,n. Note that tys...st are also
commands of the associated machine. The start state of the terminated

computation is Xo3 its halt state is Xy e

An interpreter for a program is a procedure for constructing a terminated

computation for any start state for which such a computation exists.

-3-
In this paper I will assume that a machine may be characterized in

the following way: a machine contains one of more eleémentary commands,

which may differ from example to example, and a machine is the smallest
set closed under ("Peirce") product: if Cq and c, are commands of the machine
then their product €q3C is also one; a pair (x,z) of states is in Cq3Cy

iff there exists a state y such that (x,y) « ¢ and (y,z) e Coe

Examgle 1.1

In the set notation for the commands of this example, the variables
u,v,w,u',v',w' are considered to range over the rational numbers.

the set of states = {(u,v,w)} v {{u,v)} v {(w)}

the commands:

set notation for command "Algo1" notation for command
{((usv,yw)y(u,v',w')): v'i=v-1 & w'=u x w} VoW:=v-T,u x W
{({u,vow),(u'sviow)): u'=u x u & v'=v/2} UsV:i=U X U,V/2

(E.W. Dijkstra's "parallel assignment")

{((U,V),(U,V,1))} real wesl

("initializing declaration")
[0(usvaw), (W)} und u,v

("undeclaration")

{((u,0,w),(u,0,w))} v=0
{((u,v,w), (u,v,w)): v=0} v=0
("guard")
{((usvyw), (u',v',w))zeven(v) & aven(v)su,v:=u x u,v/2

u'=u x u & v'=v/2}
{((u,0,w),(w))?} v=0;und u,v

("guarded command")

-4-

"Guards" and "guarded commands" were introduced by E.W. Dijkstra [8].
A guard is a command, hence a binary relation over the set of states. In
general, a guard is a subset of the identity relation consisting of those
pairs where the guard, regarded‘as a condition, holds. A product g;c, where g
is a guard and c¢ is not a guard, is called a guarded command.

the machine: some set closed under product containing the above commands

the program schema
(nonterminals: {S,P,Q}

,terminals: {W1,V0,UV,VW}

sproductions: {S -~ W1 P
,P > VO
,P>UV P
P> VW P
}
»start symbol: S
)
the program is obtained by the following identifications:
W1 = (real w:=1)
VO = (v=0; und u,v)

uv

(even(v); u,v:=u x u,v/2)

W = (vow:=v-T,u x w)
some "computations":
computation 1

computation 2 computation 3

j tﬁ X3 ti X4 ti X
0 - (2,103 -- (2,10) -- (2,10)
1 Wl (2,10,1 W1 (2,10,1) W1 (2,10,1)
2 uv 54,5,1; uv 4,5,1 uv 4,5,1;
3 W 4,4,4 VW 4,4.,4 Vi 4,4,4
4 w . 16,2,4) uv 16,2,4) uv 16,2,4)
5 w 256,1,4) Vi 16,1,64) VW 16,1,64
6 Vi 256,0,1024) Vi 16.,0,1024) Vil (16,0,10
7 VO (1024) '[0) (1024) VW (16,-1,2
8 VW (16,-1,2
ad inf

5

"Computations" 1 and 2 are terminated computations. They have the same
start state and they have the first four pairs in common. "Computation"

3 shares with computation 2 the start state and the first 6 pairs. It

is not something defined up ti11 now. This will happen later on, but only
for programs derived from schemas of type 3, as the one in the example

happens to be.
(end of example 1.1)

A very convenient representation of a type-3 grammar is the state-
transition diagram of the finite automaton which recognizes the language
generated by the grammar. The state-transition diagram is a labelled
directed graph in which there is a node for each nonterminal in the grammar
and one additional node, say H, the halt node. The node corresponding to
the start symbol is the start node. For each production N1 -~ T Ny in the
grammar there is an arc labelled T from node N] to node N2‘ For each
production N -+ T in the grammar there is an arc labelled T from node N to

the halt node H.

The state-transition diagram is a convenient representation because
each path through it from the sturt node to the halt node, if regarded as
the sequence of the labels of its arcs, is a string generated by the grammar,
and vice versa. A program is conveniently represented by the result of
replacing, in the state-transition diagram of a type-3 program schema, the
terminal symbols labelling the arcs by commands of an associated machine.
This representation, and also the program itself, will be called a flowgraph.
For instance, the program in example 1.1 is represented by the labelled graph

in Box 1.1

even (v);
UVie UxU, v/2

Box 1.1:
The flowgraph
example 1.1

Note that the program in example 1.1 is indeterminate *) : for instance,

for the initial state (2,10) there are several different terminated computations,

as illustrated in the example.

The following program is a determinate

variant **) of the one in example 1.1.

5%

Teven(v);
(U wis v-rs Uxw

(u,vi= uxu, v/2

Box 1.2:

*)

A determinate variant of Box 1.1

The usual "nondeterministic" is an unfortunate (compare "nonfortunistic")

and inappropriate (compare "nonappropriistic") neologism, which could only have
gained wide acceptance in an illiterate (compare "nonliteristic") discipline.

**)

below) is the same.

In the sense that the input-output relation computed by the program (see

Sy

It is usual in theoretical studies of programming to replace a
test by an indeterminate branch and to place complementary partial dummy
statementé on each outgoing arc of the branch. This device is nearly uni-
versally (see for instance [3,6]) attributed to R.M. Karp [11]. If one would
eliminate the guards in Box 1.2 by means of Karp's device, the flow diagram
in Box 1.3 would be obtained. This relationship is the justification of my
choice of the term "flowgraph": it is similar to a flowdiagram, but it is a

graph. Flowgraphs can also be found, for instance, in Burstall [6].

START
real w:=]
- P
F v=0 '>_I;__ und u,v
) Q{ < 7
o J
—(evenlv) A HALT
VoW 1= v, uxw l U,V = uxu, v/2

Box 1.3: The flowdiagram version of Box 1.2

-8

3. An_operational semantics for flowgraphs

A path of a flowgraph is a sequence of (node, state) pairs
(No’xo)”"’(Nk’xk)"" k =0,1,...

where N0 = §, the start node, and where each pair after the first is a successor
of the pair before it in the sequence: a pair (Ni’xi) is a successor of
(N;_1o%5.q) 3FF (x;_15x5) € t,, the command Tabelling an arc from Ns_q to

N..

The state X is called the start state. In a finite path the last

pair may be such that no successor for it exists. If the node insuch a last

pair is the halt node H, then the path is a terminated path, otherwise

it is a blocked path.

Note the following simple connection between a terminated computation
for programs in general and a terminated path for programs that are also

flowgraphs: by the definition of a terminated path

(NOSXO)" L S(Nr"xn)

there must exist an arc frow N, ; to N, for i =1,...,n. Let t; be the
command labelling this arc. Then
(t] ’x])s--- s(tnaxn)

is the terminated computation for initial state Xq*

The semantics for a flowgraph can be described at several Tevels
of detail. At the most detailed level the behaviour of a flowgraph can
be described by the set of paths. At a less detailed level it can be
described by the set of (node, state) pairs which occur in some path.
Finally, we can regard a flowgraph as a "black box" and only consider

"input-output" behaviour. Such behaviour is characterized here by the

-0~

input-output relation computed by the flowgraph: a pair (x,y) of states

‘belongs to this binary relation iff there exists a terminated path with x
in the first (node,state) pair and y in the last (node,state) pair. Note
that the input-output relation, as it consists of pairs of states, has the
status of a command. This suggests a hierarchical structure of flowgraphs:

a flowgraph can itself be a command in another flowgraph.

Blikle [5] discussed semantics at all three levels of detail; the use
of generalized paths ("computation sequences") for the characterization of
input-output behaviour of programs with a type-2 schema can be found in de

Bakker and de Roever [3].

4. Floyd's method for flowgraphs

Suppose ¢ and ¢ are sets of states. Such sets will be, improperly,
called assertions, although this term will also be used properly for the
statement that a state belongs to such a set. A flowgraph is partially
correct with respect to assertions ¢ and ¢ if for each terminated path with
start state in ¢, the final state is in y. Note that x ¢ ¢ does not imply
that there exists a terminated path with x as start state; it is this

deficiency that the "partial" in "partial correctness" refers to.

If F is the input-output relation computed by flowgraph €, then its
partial correctness with respect to ¢ and ¢ can be expressed as an inclusion
among binary relations:

¢'3F < Fsy!
where ¢' is the partial identity containing just those pairs (x,x) such that
X ¢ ¢, and similarly for y'. In the sequel I suppose the meaning of ";"
to be extended so as to include an automatic transition of possibly occurring

sets of states to their corresponding partial identities. Thus, the above

-10-

property will be written as

¢sF = Fsy ... (3.1)
A convenient notation (when F is not very short) for the partial correct-

ness of € is the following variant of a notation due to C.A.R. Hoare:

{6} €& {¢}

The method of representing the behaviour of programs and their
components as binary relations seems to be due to de Bakker and Scott [4].

The expression (3.1) for partial correctness may be found in [3].

The purpose of the method of Floyd [10] is to prove partial correctness
for a program written as a flowdiagram. The method applies to flowgraphs
as well, as will now be explained [6]. Let S be the start node and H the
halt node of a flowgraph. According to the method there is associated with
each node an assertion which is denoted here by the same symbol as the
associated node; the context should make it clear which type of object meant.

The assertions are said to verify the flowgraph if for each arc the verification

condition
holds; L, (L2) is the assertion associated with the initial (final) node of

the arc, and C is the command labeliing the arc.

The premiss of Floyd's rule of proof is that the flowgraph be verified.
The conclusion is its partial correctness with respect to any assertions
¢ =S and ¥ 2 H:
63F < F3y
where F is the input-output relation computed by the flowgraph. |

Theorem 4.1. If a (node,state) pair (L,x) occurs in a path with start state

x0 € S then x ¢ L, the associated assertion.

-11-

Proof. Let (Li-i’xi-i)’ (Li’xi) be two successive pairs in the path. By
the definition of a path, (xi_],xi) € Ci’ the command labelling an arc from
Li-] to Li in the flowgraph. By the supposition that the assertions verify
the flowgraph, L1_1;Ci c Ci;Li' Suppose now that X1 € Li—i’ then X; € Li'
Apparently, if in a path of a verified flowgraph x ¢ L, then the same holds for
all subsequent pairs.. It was assumed that Xq € S, the assertion associated

with the node in the first pair of a path.

It is easy to see that Floyd's rule of proof is justified by the special
case ofrthis theorem for finite paths. It should be noted that Floyd's
method may also be usefully applied to algorithms that do not terminate
(operating systems, or programs controlling telephone exchanges may be de<igned

never to terminate).

Example 4.1 Let Uy and Vo be rational constants and u, v, and w be variables
ranging over the rationals. Associate the assertions (sets of states)
{(uo,vo)},'{(u,v,w):wxuV = uzo}, {(uzo)} with the nodes S, P, and H, respectively,
of the flowgraph in Example 1.7 or Box 1.1. Then the following verification

conditions hold true:

{S} real w := 1 {P}
,{P} v=0;und u,v{H}
,{P} even(v);u,v := uxu,v/2{P}

,and {P}v,w := w-1,uxw{P}

Hence, the flowgraph is verified. Floyd's rule of proof concludes that, whenever
an interpreter constructs a terminated computation, the halt state of the
computation consists of the singleton uzo, where Uo and v, are the values of

u and v in the start state of the computation.

- 12 -

5. Resolution Logic:

For ease of reference I have collected in this section some
definitions and results concerning the clausal form of first-order predicate
logic. A useful introduction to clausal form and its use inrresolution
theorem-proving is [17].

The formation rules of the Tanguage are as follows. A sentence
is a set of clauses. A clause is a set of literals L, written as

L L

1---kn
except when the set empty: it is then called the null clause and is
written as

O

A literal is either +A (and then it is a positive literal) or

-A (and then it is a negative literal), where A is an atomic formula.

An atomic formula is a P(t1,...,tm), where P is an m-place predicate
symbol and t],...,tm are terms,

A term is either a variable or an expression f(t;,....t,) where
f is a k-place function sywbol and t],...,tk are terms, Constants are

O-place. function symbols. Cornstants and variables are chosen from the

same set of symbols; variables are distinguished by being preceded by an

asterisk. The predicate symbols and the function symbols are sets of

symbols mutually disjoint from each other and from the constants and from
the variables.
One sentence, clause, Tliteral, atomic formula, or term is an

instance of another if the one can be the result of substituting a term

- 13 -

for every occurrence of a given variable in the other. A sentence, clause,
Titeral, atomic formula, or term is ground if it contains no variables.

I will explain that part of a semantics for logic in clausal form
which assigns relations as denotations to predicate symbols and which
determines whether a sentence is true in a given interpretation.

The set of ground terms which can be constructed from the constants
and other function symbols occurring in a sentence S is called the Herbrand
universe of S. The set of all ground atomic formulas P(t],...,tm), such that

P occurs in S and t],...,tm belong to the Herbrand universe H of S, is

called the Herbrand base A of S. A Herbrand interpretation is a subset of A.

The denotation of an m-place predicate symbol P in a Herbrand interpretation I

is the following m-place relation:

tysenest ViP(teo st) 1}

The following rules determine whether a sentence S is true in a
Herbrand interpretation I. (If this is the case, then I is said to be a
(Herbrand) model of S; the set of models of S will be written as M(S); if

M(S) is nonempty then S is said to be consistent).

A ground literal +A is true in I iff A e I.

A ground literal -A is true in I iff A ¢4 I.

A ground clause is true in I iff at Teast one of its literals
is true in I. (Hence a ground clause is to be understood

as the disjunction of its Titerals.)

- 14 -

A clause C is true in I {ff every ground 1n$tance of C is
true in I. (Hence a clause is to be understood as the
universally quantified disjunction of its literals.)

A sentence is true in I iff each of its clauses is true in I.
(Hence a sentence is to be understood as the conjunction

of its clauses.)

It may be proved [9] that for any consistent set of "Horn clauses"
(those with at most one positive literal) the intersection of all Herbrand

models is itself a model; this one will be called the minimal model. This

property of Horn clauses is called the model-intersection property.

For a set R of regular clauses (those with exactly one positive
Titeral) there is a useful characterization of the minimal model as the
minimal fixpoint of certain map T, from interpretations to interpretations,
associated with R. Let A be the Herbrand base of R. T is defined as
follows:

T(I) contains & ground atomic formula A e A iff for some

+A -A . -A

1 " m

]

ground instance Co of a clause C in R, Co

and A],...,Am e I, m=0,

It may then be proved [9] that an interpretation is a model of R iff it
is closed under T. Hence, the minimal model of R is the least fixpoint

of T. It may, moreover, be proved [9] that

MR) = U T(s)
n=0

where ¢ is the empty subset of A.

- 15 «

6. Flowgraphs represented in resolution logic

A program schema of type 3 is represented in resolution logic by
a set Vof regular clauses, each of which represents a production of the
program schema. A terminal symbol is represented by a two-place predicate
symbol; a nontermina] by a one-place predicate symbol. Throughout this
section I will use as predicate symbol the same symbol as for the terminal
or nonterminal it represents: the context will make clear which kind of
-symbol is intended.

A preduction

N] T N2

of the program schema, where N] and N2 are nonterminals and T is a terminal,

is represented in ¢ by the clause

-N](xx) ~T(%x,%y) +N2(xy).

A production
N->T
of the program schema, where N is a nonterminal and T is a terminal, is
represented in ¢ by the clause
“N(%x) -T(xx,xy) +H(xy).
A machine is represented by a set M of clauses of the form

+C(x,y)

where the constants x and y represent states and where C represents a

command of the machine; +C(x,y) e M iff the pair of states (x,y) e C,

a command of the machine.

- 16 -

A program has been defined as the result of identifying each
nonterminal in a given program schema with a command in a given machine,
The representation in logic is obtained in a similar way: the predicate
symbols for nonterminals in V or those for commands in M may be chosen in
such a way that the desired identifications take place in the set v u M,
which is then the representation of the resulting program. Again, it should
be clear from the context whether a symbol means a command, the nonterminal
identified with it, or the predicate symbol representing either.

Note that a c]auﬁe -N](xx) C=T(xx,xy) +N2(xy) repreéenting a
production N] T N2 may be regarded as a verification condition in the
sense of Floyd's method: in a given interpretation the clause is true iff

N]'; T _C_T';Né
where N, T', Né are the denotations of N], T, and N2 respectively in the

interpretation.

Example 6.1

The clausal form of the verification conditions in Lxampie 4.1 and
also the representation of the program schema in Example 1.1 is:
SS(xx) -W1(xx,xy) +P(xy).
-P(xx) -VO(xx,xy) +H{xy) .
-P(xx) -UV(xx,xy) +P(xy).
P(%x) -VW(xx,xy) +P(xy).
end of Example 6.1.

- 17 -

Let T be the function (defined in the previous section) from

interpretations to interpretations associated with the regular clause
¥uMu {?‘+S(x0):xO € ¢}
for some set ¢ of states.

Lemma 6.1

For n = 1,2,..., the ground atomic formula N(y) e T"(¢) iff the
(node, state)-pair (N,y) occurs in a path of length at most n of which
the start state Xo € @.
Proof

Proceed by induction on n. N{(y) ¢ T(¢) implies, by the definition
of T (case m = 0), that N is S and y « # and that (N,y) is the first pair

of a path with start state in ¢.

k+1(

For the induction step, assume the lemma for n < k. N(y) ¢ T) |

implies, by the deffnition of T, that, for some 0 < k] < k, N(y) ¢ Tk1(¢)
and N(y) « Tk]+1(¢). Again, by the definition of T, this implies the
existence of an N, and an x such that -N](x) -C(x,y) +N(y) is a ground
instance of some clause in ¢, that +C(x,y) « M and N](x) eT 1(¢). By the
induction assumption (N1,x) is in a path of length at most Kys (N,y) is a

successor of (N],x) and occurs therefore in a path of length at most k,+7.

1
This completes the "only if" part of the lemma. The converse may

be proved in similar way.
The fact that lj T"(¢) is the minimal model nM(P) of

n=0
P= VuMu {+S(xo):x0 ¢ ¢} allows us to derive from lemma 6.1 the following

- 18 -

Theorem 6.1

A ground atomic formula N(y) ¢ nM(P) iff the (node, state)-pair
(N,y) is in some path with start state ine.

It is now possible to obtain a characterization of termination
of program execution by means of unsatisfiability which is quite similar

to Manna's [16]:

Corollary 6.1

P u {-H(xy)} is unsatisfiable iff there is a terminated path
with start node in ¢, |
Proof |

According to "Herbrand's theorem" (see, for instance, [18])
P u {-H(xy)} is unsatisfiable iff a finite set of ground instances of
clauses in P u {-H(xy)} is unsatisfiable. I will prove first that there
exists such a set with bn]y one ground instance of -H(xy) in it. Let
-H(y]),...,-H(yn) be the ground instances in a set S that must exist by
Herbrand's theorem. At least one, say H(yk), of H(y]),...,H(yn) must be in,
the minimal model nhd(P1) of P], thé subset of S of ground instances of

clauses in P. We know that
M(P) = M(P,)
and, hence,
nM(P1) c n M(P).

Therefore, H(yk) e n M(P) and by theorem 6.1 (H,yk) is in a path with start

state in ¢. That path is a terminated path.

- 19 -

This completes the "only if" part of the corollary. The converse

may be proved in similar way.
Manna [16] considers a formula ("wAP“) which is analogous to
Vu {+S(x0)} u {-H(xy)}

where interpretations of predicate symbols representing terminals are
fixed a priori. I achieve the same effect by explicitly listing, as it

were, those interpretations in M, and then adding this set of clauses.

Theorem 6.2
The flowgraph represented by V u M is partially correct with
respect to assertions ¢ and ¢ iff ¥ u M has a model with ¢ < S' and y o H',

where S*' and H' are the denotations of S and H in this model.

Proof

To show that the flowgraph is partially correct, suppose that
(S,x) 5. .0s(Hyx,)

is a terminated path and that Xg € ¢ Then, by Theorem 6.1 the ground

atomic formulas
S(xo),...,H(xn)

are in the minimal model of P and therefore also in the supposedly existing
model of ¢ u M with ¢ < S' and y o H', Therefore, Xp €V which establishes

partial correctness.

- 20 -

To prove the "only if" part I show that nM(P) is a model of
VuMwith ¢ < S' and ¢ o H'. Any model of P (and because P contains only
Horn clauses nM(P) is one by the model-intersection property) is a model
of VuMwith ¢cS',

It remains to show that H' < y. By Theorem 6.1, H(x) ¢ nM(P)
only for those x which are the halt state of a terminated path of which
the initial state ¢ ¢. By the assumption of partial correctness, x e V.
Therefore, H' < .

Theorem 6.2 justifies in its "if" part Floyd's method of proof by
the denotational semantics for flowgraphs as given by Theorem 6.1. The
"only if" part may be regarded as a completeness result for the method: if a
flowgraph is in fact partially correct then assertions exist that would prove
it (if found) according to Floyd's rule of proof. For the completeness
property see de Bakker and Meertens [2] who established it for a generalization

of Floyd's method that applies to programs derived from schemas of type 2.

/. Running verification conditions as predicate-logic programs

The termination result in corollary 6.1 is different from the one
obtained by Manna [16], who finds that unsatisfiability of a formula with a
free variable representing input is equivalent to termination for all
inputs. The representation of a flowgraph as a sentence, as opposed to a
formula with a free variable, has each admissible input represented by unique
constant, say, Xy which is explicitly present in a separate clause +S(xo).
The termination result therefore applies to‘just the inputs thus listed in

the representing sentence.

- 22 -

In (:?_1.+1 the selected literal is ~T(x],xy) and therefore only input
resolution is possible, to wit, against a clause +T(x1,x1+1) of M, which
explains the form of CZi’ with which again only input resolution is possible,
this time against a clause of ¥, which explains the form of 021+].

It is not an isolated phenomenon that there is no occasion for
ancestor resolution in SL-derivations from a sentence characterizing the
semantics of a flowgraph. This is also the case for sentences containing only
Horn clauses and derivations where the top clause contains negative literals
only. Kowalski's "procedural interpretation® [13,14] is a powerful guide for
the use of such clauses in a heuristically effective way.

“Predicate-logic programming", as it now exists, can be characterized
as the endeavour of exploiting in combination the heuristic pdwer of Horn
clauses and the fact that an SL-resolution theorem-prover, without the need
for autonomous ancestor resolution, can be efficiently implemented. The
PROLOG system for predicate-logic programming, developed by Colmeraudr and
his group in the University of Aix-Marseille, is basically such a theorem-

prover [7,19].

-23-

“TTY-BOOLISTE-LIREFICHIER-BOOLISTE-TTY. |opoion job control
+.(DG, 1). ‘

=S(*X) ~WL(*X,*Y) +P(*Y) -SORTER(*Y) -LIGNE,
=P(*X) <VO(*X,*Y) +H(=*Y) -SORTER(*Y) -LIGNE.

V' —|-p(*X) -UV(*X, *Y) +P(*Y)| ~-SORTER(+Y) -LIGNE, |"OUtPut routines
-p(*X) -VW(*X’ *Y) +P(*Y) -SORTER(*Y) -LIGNE. tragmg the compu~
~H{*Y}), tation

+W1(*U.*V, #U, >y, 1),

+VO(*U. 0, %k, W),

+EVEN(#*V) ~RESTE(*V,2, *V1) -EQUALS(*Vv1,0).

HUV(*U *V, %W, %01, *V]1, *W) ~EVEN(*V)

W “MULT(*U, *U, *U1)

“DIV(*V,2,*v1),

tVW(*U. *V . * W, %0, *V1, *l1) “MOINS(*V, 1, *V1)

“MULT (*U, =W, *W1),

+EQUALS(*X,*X).

+FIN.
=+s(2,§33f‘““‘*-PROLOG Jjob control

e

1024

256 . 0 . 1024
256 . 1 . & states of the path in reverse order of the

16 . 2 . 4 flowgraph represented by V u M
L . 4 . n
L . 5,1
2 . 10 . 1
=-STOP, —————=3PROLOG job control

An annotated PROLOG sessioit showing the unsatisfiability of

Vu M u {-H(xy),+S(2.10)} where v is the representation in predicate

logic of the program schema in example 1.]; and M' is equivalent to the
infinite set M of ground clauses representing the machine in example 1.1.
Note that Vis also the set of verification conditions required for proving
partial correctness (according to Floyd's method) of the flowgraph

represented by Vu M.

10.

11.

12.

- 24 -

References

E. Ashcroft, Z. Manna, A. Pnueli: Decidable properties of monadic
functional schemas. Journal ACM 20 (1973) 489-499.

J. W. de Bakker and L. G. L. Th. Meertens: ‘On the completeness of
the inductive assertion method. Report IW12, Mathematical Centre,
Amsterdam, 1973.

J. W. de Bakker and W. P. de Roever: A calculus for recursive
program schemas. In M. Nivat (ed): Automata, Languages, and
Programming, North Holland, 1973.

J. W. de Bakker and Dana Scott: A theory of programs, an outline
of joint work. IBM Seminar, Vienna, August 1969.

A. Blikle: An extended approach to the mathematical analysis of
programs. CC PAS Report 169 (1974), Computation Centre Polish
Academy of Sciences, Warsaw PKiN, P.0.Box 22, Poland.

R. M. Burstall: An algebraic description of programs with asserticns,
verification, and simulation. SIGPLAN notices 7 (1972), pp 7-14.

A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel: Un systeme
de communication homme-machine en frangais. Rapport préliminaire,
Groupe de Recherche en Intelligence Artificielle, U.E.R. de Luminy,
Marseille, 1972.

E. W. Dijkstra: Guarded commands, nondeterminacy and formal deri-
vation of programs. CACM, 18 (1975), 453-457.

M. H. van Emden and R. A. Kowalski: The semantics of predicate Togic
as a programming 1anguage. Report MIP-R-103, Dept. of Machine
Intelligence, University of Edinburgh, 1974,

R. W. Floyd: Assigning meanings to programs. In J. T. Schwartz (ed.):
Proc. Symposium App. Math. Vol. XIX, Am. Math. Soc., Providence, 1967.

R. M. Karp: Some applications of Jogical syntax to digital-computer
programming. Thesis 1959, Harvard University.

R. A. Kowalski: A proof procedure using connection graphs. Journal
ACM 22 (1975), 572-595.

- 25 -

13. R. A. Kowalski: Predicate logic as programming langquage. Proc.
IFIP 74, pp 569-574, North Holland, 1974.

14. R. A. Kowalski: Logic for problem-solving. DCL Memo 75, Dept. of
Artificial Intelligence, University of Edinburgh, 1974,

15. Robert Kowalski and Donald Kuehner: Linear resolution with selection
function. Artificial Intelligence 2 (1971), pp 227-260.

16. Zohar Manna: Properties of programs and the first-order predicate
calculus. Journal ACM 16 (1969), pp 244-255.

17. N. J. Nilsson: Problem-solving methods in artificial inte]ligence.
- McGraw-Hil1l, New York, 1971.

18. J. A. Robinson: A review of automatic theorem-proving.
In J. T. Schwartz (ed.): Proc. Symp. Appl. Math. Vol. XIX,
Am. Math. Soc., Providence, 1967.

19. P. Roussel: PROLOG- manuel d'utilisation. Groupe d'Intelligence
Artificielle, U.E.R. de Luminy, Marseille 1975.

g. Acknowledgements

Keith Clark pointed out to me the 1ntérconnect10ns between Manna's
method, verification conditions, and pfedicate—logic proaramming. Without
his impetus the research reported here would not have started. Discussions
with Hajnal Andréka, Alain Colmerauer, and Istvdn Németi have sustained thé
work. Critical remarks by Robert Kowalski have helped in finishing it.

The UK Science Research Council and a Research Grant from the University
of Waterloo have provided support.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

