PROGRAM VERIFICATION TABLEAUS
E.A. Ashcroft
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
CS-76-01

January 1976

PROGRAM VERIFICATION TABLEAUS

by
E.A. Ashcroft
Department of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

Abstract ’
A method is described for the presentation of formal

partial-correctness proofs in a concise and readabie way.

Key phrases: Program proving, Formal systeﬁs, Partial correctness.

CR Categories: 5.24.

This research was supported in part by a grant from the
Canadian National Research Council.

1. Introduction and Summafy

Formal proofs of programs, using Hoare's axiomatic method,
caﬁ be presented in a readable way, by making such proofs look Tike
proofs by Floyd's method of attaching assertions to programs. The
method is simple and natural(and rather obvious), buf'it requires
that the formal theory only produce pfodfs with certain structural
propefties. |

Basically, the method of Floyd [3], for proving properties
of programs, {s as follows. The program in question is drawn as a
flowchart and then "assertions" are attached to some of the edges of the
flowchart (at least one edge per loop). These assertions are intended to
express properties that will be true whenever control passes along the
corresponding edges; such assertions are said to be valid. To check a
set of attached assertiohs for validity it sﬁffices to prove that, for
each assertion, if any values of the variables fn the program satisfy the
assertion then moving to the next edge at which an assertion is attached
will give values to the variables that will satisfy this next assertion.

" Valid assertions are useful because they can tell us what is

happening as the program computes, and aiso because such an assertion
attached to the last edge of the flowchart will express some property of
the result of the program (assuming termination).

For example, in Fig.1 is shown a flowchart for computing NM,
where N and M are integers and M is non-negative. (+ denotes integer
division.) The assertions attached to the flowchart are shown to be valid

by checking the following four conditions:

(1) Mz0—>Mz0&1xN ="

(i) Y >0 & odd(Y) & XY = M = v:2 > 0 & ZXXX(XXX)Y%Z - M
(i11) ¥ >0 & ~odd(Y) & zxx' =\ = V2204 2x(xex) 72 = WM
(iv) v=osazx =Wz

X = XxX

{

Fig.1 Flowchart for an exponentiation program, with attached
assertions. ‘

These correspond to going from the START to o, from o back
to o via B, from o back to o via vy, and from o to the HALT. The conditions
are easily shown to be true using the following properties of integers:
(a) y 20 & 0dd(y) = y = 2(y=2)+]
(b) 0dd(y) = y = 2(y+2)
(€)X = (xxx)Y
(d) & = o

(e) y 2 0= (y:2) =0,

(Here we are ignoring the differences between computer arithmetic and "true"
arithmetic. Therefore, the program is only correct if we assume there is
no integer overflow, a fragile assumption for an exponentiation program.)

The method is basically simple and easy to understand, but
suffers from a certain informa]ify.

With the advent of the axiomatic approach of Hoare [4], program
proving became a mathematically respectable occupation. In Hoare's
approach, program text is used, rather than flowcharts, and in fact such text
is‘incorporated directly into formulas expréssing properfies of the text.

If R and Q are assertions and S is a program fragment, {R} S {Q} means that
if R is true and S is executed then if S terminates Q will be true.*
Hoare's formal system allows such formulas (which will henceforth be called

“properties") to be proved as theorems.

This is a variant of Hoare's notation due to Manna and Vuillemin [5].
It leads to more legible verification tableaus, as will be seen,

-4 .

As a program, the flowchart of Fig.1 will be

51:X = N;
SZ:Y =M
53:2 = 1
54:ﬂh119 Y#0 do

Sg:1f 0dd(Y)

then Z := ZxX

X
se null fi;

(1]

It

56:Y = Y25
57:X = XxX

end

A~

(The 1labels S]...S6 will be referred to later.)

If we call this text P, then the property proved earlier is

expressed by the property
=M
M20}p {z=0i").

This can be proved in Hoare's system as follows (those unfamiliar with Hoare's

system should refer to Section 3).

Proof

(1) Y >0 & 0dd(Y) =Y-1=2(Y:2)
2) x' =

(3) Y>0= Y220

(4) ~0dd(Y) = Y = 2(Y:2)

(Properties of integers)

-5,

(5) X\ =M &y > 04 0dd(Y) = 2o0a@(Y52) Mgy s g
(from (1) and (2))
20Y:2) -\ Mgy 5 03 7 .= 2xx (zx2(Y2) Mgy 5)

(6) {ZxXxX
| (assignment axiom)
7)) XY = WM ey > 08 0dd(V)} Z := zxx (kY2 o WM gy 5 g)

(preconsequence rule on (5) & (6))

8) zx' = WM ey > 08 0dd(Y) » @) = Mayso
| (from (4))
9 xR S Mgy s 0p i @Y - Ma v s 0
(nu11 axiom)
(1) 2’ =Wy > 08 0dd(V)r il 22 < WM gy s o)
(preconsequence rule on (8) & (3))
(1) ! = WM& v > 0} if 0dd(Y) then Z := IxX

2(Yz2) _

else null fi {ZxX =Mav>o0)

(conditional rule on (7) & (10))

It is now getting‘tedious writing out the statements of the program,
so in the rest of the proof the labels in the program will be used to denote

the statements that they label. For example, Line (11) can be written

M 2(Y+2) _

(11) ' = M sy > 03 s (2xx Mevs> oy,

(12) x2(Y:2) Mgy s g o Zxxz(Y*Z) =nMav220
(from (3))

(13) zxx252) C Mg vio 5 0y S iz =M ey 2 0

(assignment axiom)

(14)

(15)

(16)
(17)

(18)

(19)
(20)

(21)
(22)

(23)

(24)
(25)

(26)

(27)

(28)

“b =

Y M

2?52 gy >0y g @l =M s v 2 0)

(preconsequence rule on (12) & (13))
2! = W a0 sgisg @ =W av e 0)

(concatenation rule on (11) & (15))
XZY = (Xxx)Y (property of exponentiation)

22 = M M

-Navz20rs, ! =M sy s 03

(assignment axiom and (18))
M

2t = Wa v > 0r ssgs, ' =W a e o)

(concatenation rule on (15) & (17))

Y20&4Y#0=Y>0

M

ax' =W avzo0rs, zx' =wMay -0

((19) & while rule on (18))

o =M av-0=2z2=\"
{ZxxY = NM &Y 2 0} 34.{2 = NM} (poﬁtconsequence rule on (20} & (21))
K= avaors, ' =Wavaor
_ | (assignment axiom)
{XY = NM &Y 20} S43S, {Z = NM} (concatenation rule on (23) & (22))
oMaamzors, ' =W sy 20
v(assignment axiom)
o= ez 03 55455, 2 = N |
(concatenation rule on (25) & (24))
oM =Mame o S] oM=ame o0

(assignment axiom)

M M

Mz0=N =N &M=20

-7 -

(29) . M =20} $ oM = WM a M 0} (preconsequence rule on (27) & (28))
(30) Mz 0} 51;52;53;54 {z = NM} . (concatenation rule on (29) & (26))
0

The use of labels in place of statements made the proof easier
to write (but not easier to read). NeVertheless; the repetition of statements
and assertions necessitated by the many applications of the concatenation -
and consequence rules makes writing formal proofs such as these rather a
chore. One may be forgiven for reverting to the less formal method of Floyd,
With its appealing imagery of attaching assertions to the program itself.
v) But we can combine the 'pictorial' quality of Floyd's method with
the formal theory of Hoare by using Verification Tableaus. A verification
tableau is simply a program (not a flowchart) with assertions inserted between
and around statements. The rules for correctly inserting these assertions
are easily checked, and such a verification tableau is equivaIeht to a
completely formal proof using Hoare's formal system. In fact, a proof can be
constructed for any verification tableau and vice versa.

The following is the verification tableau of the formal proof

~ given above.

{M 2 o}
M=o =M X := N
Mmzo g M= Y := M
fyzosx =" Z =1
yzoazx =M while Y # 0 do
iy >0 & 2x' = n™ if 0dd(Y)
then

{Y >0 & 0dd(Y) & zxx¥ = ™

{Y >0 & 0dd(Y) & zxxxx""1 = \M

v > 0 & 2opd(YE2) My 7 := IxX
oy > 0 g zxx2(YR2) My

else
Y >0 & ~0dd(Y) & zxx' = ™}
v > 0 & 2x2(Y2) My null
v > 0 & zxx2(Y52) My £l

v o> 0 & 2x2(Y2) _ My
v:2 2 0 & 20802 My y sy

o2 0& 2 = WM X 1= XxX
208z =\ end

iy =08 zxx\ =M

iz = N

This is a verification tableau because
(1) for all consecutive formulas {R}HQ} we have

Res>Q (i.e. R implies Q)

-9 .

(11) foria]l formulas surrounding assignments

{R} X; = e {Q}

we have that R is Q:i.

(ii1) for formulas around conditional statements
{R} if B then {R;}... 1Q;} else {R,} ... {Q,} fi {Q}
we have that

R] is R & B, R2 is R & B and Q].= QZ = Q.

(iv) for formulas around while statements
{R} while B do {Ri}...{Q;} end {Q}
we have '

Q] is R, R]‘is R&B and Q is R & B, .

Tableaus are merely a notational convenience, yet the concise
and natural way in which they present proofs seems to make program proving
simpler. They are a contribution not to the theory but to the practice
of program verification.

Some programming languages, such as ALGOL-W, already have facili-
ties for annotating programs. It is interesting to note that it would be
quite feasible to have a compiler which takes tableaus as its data rather
than programs, and checks conditions (ii), (iii) and (iv) before compiling
code. If a tableau is then not a verification tableau, i.e. is not tantamount
to a proof of correctness, it must be because of two consecutive formd]as
{R}MQ} for which R ;& Q. Such a compiler, which only accepts annotated
programs, would force the programmer to think about proving his

programs, and would make him bring his errors out into the open, in the form

- 10 -

of formulas that follow textually but not logically.

The rest of the paper gives the formal definition of verifi-

cation tableaus and proves their equivalence to formal proofs.

- 11 -

2. Formal Description of Programs and Tableaus

We will use conventional BNF grammars to describe the programming
language and the corresponding language of "annotated programs" or tableaus.
As for programs, in practice certain layout conventions will be used when
writing tableaus, to improve readability. These are not part of the formal
description.

We will assume four basic syntactic categories:'

{variable>, <éxpression>, {logical expression> and <formula>. Formulas are
the "assertions" that can be used to annotate programs, and we assume that
logical expressions are formulas, and that the set of formulas is closed
under negation "=", conjunction "&" and the substitution of expressions
for free occurrences of variables.
Programs
{program> ::= (statementlistd
¢statementlist)> ::= <statement>|
{statementlist>;<{statementlist>
¢statement> ::= null|<assignment>|<while>|
{conditional>
<assigﬁment> ::= <variable> := <expression>
<while> ::= while <logical expression>
do <statementlist> end
<conditional> ::= if <logical expression>
then <statementlist>

else <statementlistd fi

L tas]

e =12 -

The syntactic ambiguity caused by the production for
(statementlist> is unimportant. (Ambiguity in a grammar is important only
if syntactical analysis is used for semantic purposes. Here, semantically,
the composition of statements is associative.) The ambiguity is there to
allow a neat tie-up with the formal theory of the next section, (In
proofs we do not want to be restricted to considering ";" as only asso-
ciating to the left or only to the right.)

Tableaus
(tableau> ::= {<formula>} <STATEMENTLIST> {<formula>}
CSTATEMENTLIST> ::= {<formula>} <STATEMENTLIST>|
(STATEMENTLIST> {<formula>}|
<STATEMENT> |
<STATEMENTLIST>{<f0rmu1a>} <STATEMENTLIST>
(STATEMENT> ::= null| <ASSIGNMENT>| <WHILE>|
<CONDITIONAL> -
<ASSIGNMENT> ::= <variable> := <exﬁression>
CWHILE> ::= while <logical expression> dg

{<formula>} <STATEMENTLIST> {<formula>} end

<CONDITIONAL> ::= if <logical expression> then
{<formula>} <STATEMENTLIST> {<formula>} else
{<formula>} <STATEMENTLIST> {<formula>} fi

The similarity between these two grammars is obvious. Essentially,
the grammar for tableaus inserts one or more formulas (within cur]y brackets)

before and after every statementlist (and hence every statement) in a

program,

=13 -

(We drop the semicolons in the formal definition of tableaus,
Just to simplify the proofs in this paper. In practice, tableaus are
constructed by adding formulas (within curly brackets) to programs, and
the semicolons are left in. But as far as the tableau is concerned the
semicolons don't matter, which simply means that the positioning of
formulas relative to semicolons is irre]evant.)

Given any STATEMENTLIST S in a tableau, we can strip off the
~formulas (and curly brackets) and, after possibly inserting some semi-
colons, we obtain a statementlist which we denote P(S).'

Conversely, if we take a statementlist S and.precede and
follow every statement by one or more formulas within curly brackets,
we will obtain a STATEMENTLIST S' say (if we ignore the semicolons).
This process is called "annotating" the statementlist S, and the formulas are

an "annotation" of S; the STATEMENTLIST S' is said to be "annotated".

-14

3. A Formal Proof Theory for Programs

We will use the formal theory of Hoare [4]. Some minor changes
have been made, in particular, the use of the notation {R} S {Q} where
Hoare uses R{S}Q.

In the following P, Q and R are formulas, B is a logical
expression, S] and 52 are statementlists and Q:i denotes the formula

resulting from replacing all free occurrences of variable X5 by expression e.

Axioms
null {R} null {R}
X
assignment {Qe1} X; i= e {Q}

Rules of inference

{R&B1S, (Q} , (R&B}S, {Q}

conditional {RY if B then S] else 32 110}
{R&B}S, (R}
while]
{RY while B do s] end {R&B}
R}S,{P},{P}S
concatenation {R}S,{P},{PIS,{Q}

IS5 5,00

R = P,{P}S]{Q}
preconsequence {R}S]{Q}

RIS, (@

postconsequence

215 -

4, Verification Tableaus

For a tableau T to be a verification tableau, that is, essentially

a proof of the program P(T), the annotation of P(T) must be valid. The
conditions for an annotation to be valid are as follows:
(1) For any two contiguous formulas, {R}{Q}, we require that R = Q.
(11) For any STATEMENT S enclosed by formulas R and Q, {R} S {Q},
we require that
(a) if S is gull then R and Q are identical;
(b) if S is an ASSIGNMENT
X; 1= e N
then R is Q' ;
(c) if S is a WHILE
while B do (R} S, {Q;} end
(for STATEMENTLIST S]) then
R] is R&B, Q] is R énd Q is R&B; ' .
(d) if S is a CONDITIONAL
if B then (Ry} S, {Qy)
else {R,} S, {Q,} fi
(for STATEMENTLISTS S] and 52) then

R] is Ré&B, R2 is R&B and both Q] and Q2 are Q.
Notice that in checking for validity, the only real work is in checking
condition (1); condition (ii) simply requires testing identity of strings
(formulas). Notice also that the use of if ... then ... else ... fi

rather than simply if ... then ... else makes it easy to identify STATEMENTS.

- 16 -

For instance, without the ii,
{R} if B then ... else {P} S; {QHUHV}

could mean
(R}'Af B then ... glse {P} S, {Q}U} £i (V)
or {R} if B then ... else {P} P Q) fi {UMHV}:

Deciding which was meant would add an extra complication to
checking validity.
A similar remark could be made about the use of end in the while

statement,

- 17 -

5. Equivalence of Verification Tableaus and Formal Proofs

We show that for every formal proof of a program (using the
formal theory of section 3), there is a verification tableau, and vice
versa.

THEOREM 1 For any statementlist S, and formulas A and Q, if {R} S {Q}

is provable then there is a STATEMENTLIST S' such that P(S')= S and

{R} S' {Q} is validly annotated. |

Proof By induction on the structure of the proof of {R} S {Q}.

In the simplest proofs, {R} S {Q} is simply an axjom, either {R} null {R}
or {Q:i} X; 1= @ {Q}. In both cases {R} S {Q} fs validly annotated and

P(S) = S (conditions (ii)(a) & (b) in section 4). Otherwise, the last step
in the proof of {R} S {Q} must use one of the five rules of inference,

and these five cases are checked as follows.

conditional: S must be of the form if B then S, else 52 fi and we must
have previously proved

{R & B} S {Q} and {R & 8} S, Q3.

By the induction hypothesis there are STATEMENTLISTS Si and Sé such that
P(Si) = S] and P(Sé) = 52 and {R & B} Si {Q} and {R & -B} Sé {Q} are
validly annotated. In that case letting S' be
if B then {R & B} SJ {Q)
glse {R & B} s; {Q} £i
we see that P(S') = S and {R} S' {Q} is validly annotated (see condition

(ii)(d) in section 4).

- 18 -

while: Here S {s while B do S, end, Q is R & 8, and we have previously proved

{R & B} S] {R}.
By the induction hypothesis {R & B} Si {R} is validly annotated and P(S]) = .
We let S' be yhile B do {R & B} S; {R} end, so that P(S') = S, and we see that
{R} Si {R & B} is validly annotated (conditfon (i1)(c)).

concaténation: Here S is S];S2 and for some formula P we have already
proved that |

{R} S {P} and {P} S, {Q}. |
By the induction hypothesis {R} S {P} and {P} S, {Q} are validly annotated
and P(Si) = S, and P(Sé) = S,. Then, letting S' = §; {P} S, we see that
P(S') = 53 52 = S and {R} S' {Q} (={R} Si {P} Sé-{Q}) is validly annotated.

preconseguence : Here there must be a formula P such that we have previously

proved R = P and {P} S {Q}. By the induction hypothesis there is a

STATEMENTLIST S" such that {P} S" {Q} is validly annotated and P(S") = §S.

Letting S' = {P}S" we see that P(S') = S and {R} S {Q} is validly annotated
(by condition (i)). |

postconsequence: As for preconsequence, but with S' = S"{P}.

This completes the proof. 0

COROLLARY 1 For every proof of a program there is a corresponding

valid annotation of the program, i.e. a verification tableau.

THEOREM 2 For every STATEMENTLIST S if {R} S {Q} is va]idly annotated
then there is a proof of {R} P(S) {Ql.
Proof By structural induction on STATEMENTLIST S. If S is a STATEMENT
there are the following cases:
(1) S is null. Then if {R} S {Q} is validly annotated Q must be
identical to R, and {R} P(S) {Q} is then an axiom.

- 19 «

(11) S is an assignment
Xy 1= e.)
i .
Then R must be Qe , and again
{R} P(S){Q} is an axiom,
(ii1) S is a WHILE
while B do {R & B} S; {R} end

and Q is R & ™B.

By the induction hypothesis, since {R & B} S] {R} is validly
annotated there is a proof of {R & B} P(S]) {R}. Using the
while rule there is then a proof of {R} P(S) {R & “B}.
(iv) S is a CONDITIONAL
if B then {R & B} S, {Q}
glse {R & "B} S, {Q} fi.

By the induction hypothesis there are proofs of {R & B} P(S]) {Q}
and {R & 8} P(Sz) {Q}. Using the conditional rule there is then
a proof of {R} P(S) {Q}. .

If S is not a STATEMENT there are three cases:

(a) S is {P}S! fof formula Pland STATEMENTLIST S'. Since {R} S {Q}
is validly annotated, R = P and by the induction hypothesis
there is a proof of {P} P(S') {Q}. By the preconséquence rule
there is then a proof of {R} P(S) {Q}, since P(S') = P(S).

(b) S is S'{P}. This case is treated as in (a), but using the post-

consequence rule,

(c)

- 20 -

S is S] {P} 52 for formula P and STATEMENTLISTS S] and 52.
Since {R} S {Q} is validly annotated, {R} s, (P} and {P} S, {Q)
are also. Then by the induction'hypothesis there are proofs of

{R} P(s;) (P} and {P} P(S,) {Q}. Using the concatenation rule

~ there is then a proof of {R} P(S)); P(S,) {Q}, i.e. {R} P(S) {Q}.

O

- 21 -

6. Generalizations

We have shown how to construct verification tableaus for only the
simplest of Hoare's formal theories. Other more complicated language
features can be handled by the axiomatic approach. Can we define classes
of verification tableaus for all these systems?

Some of the things which make the definition of verification tableaus
go so smoothly in this paper are non-essential, for instance, the use of the
{R} S {Q} notation rather than R {S} Q, and the use of if then else fi
rather than if then else. Even the close correspondence between the
grammars for programs and tableaus and the rules of inference is not essen-
tial, though it does simplify the proofs 6f Theorems 1 and 2.

The essential property of a verification tableau is that each
piece of program appears once, so that the fab1eau can represent the proof of only
one property for each piece of program. It happens that, for the_forma1
system presented here, this is also true of proofs. We can prove two proper-
ties of some piece of program, but there is no way to use both these

properties to prove one property of the whole program.

This is no Tonger true if for example we add to the formal system

either of the rules:

Ry} S {Qp}.{Ry} S {Q,}

conjunction:

—— {R] & R2} S {Q] & Qz}
{Ry} S {Q.1,{R,} S {Q,}

disjunction: 1 1 2 2",

Ry v Ry} S 1Q, v Q,}

- 22 -

For such augmented systems Theorem 1 would not apply. These
rules are not necessary since we can show by induction on proof lengths that
for example, if {R;} S {Q]} and {R,} S {Q,} are provable in the formal
system of Section 3 so is {R; v Ry} S {Q; v Q,}.

In a proof of a program P, any property {R} S {Q} that is proved

will be called a basic property (of the given proof) if S is a constituent

of P and the property is not proved using other properties of this constituent S.
(Thus properties derived using the consequence rules are not basic

properties.) Given any Hoare-style axiom system, proofs can be represented

by verification tableaus if

(i) only properties of constituents of programs are needed,

and (ii) only one basic property per constituent is needed.
For example, suppose we add to the programming language the very
useful repeat statement:)
repeat <statementlist>;
exit on <logical expression>;
{statementlist> end.
The statement repeat Sq; exit on B; 5, end is equivalent to 51;
while B do S,; S; end. This statement helps overcome loop initialisation
and exit problems (see Conway and Gries [2], p.54), and can be used
for removing go-to statements from programs without increasing the size of
programs (see Ashcroft and Manna [11]).
A straightforward attempt at formulating a rule of inference for

the repeat statement gives:
{R} S] {Q},{Q&‘B}SZ;S]{Q}
repeat: {R} repeat S,;exit on B;S, end {QaB}

- -23 -

Unfortunately, this rule violates both the above conditions; SZ;S] is not
a program constituent, and also, since proving {Q & “B}SZ;S]{Q} will
involve proving {P} S {Q} for some formula P, we may have to prove two
basic properties of S] to use the rule,

- It can be shown however that the following fu]e is just as
powerful:

RYS; (Q,(Qa8) S, R)
repeat’ TRY remeal S;iexit on B35, end (Q86)

This rule satisfies the conditions and therefore proofs using it can be
represented by verification tableaus. (The necessary modification of the
definition of tableaus, and the‘changes needed in the proofs of Theorems 1

and 2 are straightforwérd exercises.)

References

{11 Ashcroft, E.A., and Manna, Z., "Translating Program Schemas to While
Schemas", SIAM J., Comput., vo].4, No.2, June 1975, pp.125-146.

[2] Conway, R., and Gries, D., "An Introduction to Programming", Second
Edition, Winthrop, 1975.

[3] Floyd, R.M., "Assigning Meaning to Programs", in Proc. Symposia in Appl.
Math. (1966), vol1.19, Amer. Math. Soc. 1967, pp.19-32.

[4] Hoare, C.A.R., "An Axiomatic Basis for Computer Programming", Comm.
ACM 12 (1969), pp.581.

[5] Manna, Z., and Vuillemin, J., "Fixpoint Approach to the Theory of
Computation:, Comm. ACM 15 (1972), pp.528-536.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

