PROGRAMMING WITH RESOLUTION LogIC”
by

M.H. van Emden

Research Report CS-75-30
Department of Computer Science
University of Waterloo

Waterloo, Ontario, Canada
November, 1975

%) preprint for:

van Emden, M. H. Programming with resolution logic. Mschine
Representations of Knowledge (eds. E. W. Elcock and D, Michie).
Dordrecht: D. Reidel Publishing Company (in press).

PROGRAMMING WITH RESOLUTION LOGIC

M.H. van Emden *%*)

0. Introduction

In the late sixties the newly discovered resolution principle for
first-order predicate logic aroused great expectations among workers in Arti-
ficial Intelligence. As it turned out later, research in resolution theorem-
proving did not at that time have a broad enough scope to support the require-
ments of constructing 'intelligent' and 'purposeful' computer programs. By
about 1970 resolution 1ogic had fallen into disrepute and the emphasis in AI
research shifted towards the development of new program languages of very high
level intended to be suitable for programming more directly than hitherto
possible the 'knowledge', reasoning power, and goal—directed behaviour required
by an 'intelligent' computer program.

This development has taken an interesting turn ﬁiﬁh‘the more recent
discovery of a program language within resolution logid. The new program
languages for AI research have many interesting features, but they also give
thé impression of being rather experimental, ad hoc precursors to a single co-
herent language which will supercede all of them., One is tempted to speculate

whether resolution logic might the basis of such a language.

*) address: Department of Computer Science

University of Waterloo

Waterloo, Ontario, Canada N2L 3Gl

-2 -

Whether or not this will be the case, the discovery of resolution
logic as a program language is an important development in several respectsj

a) resolution logic shares with some of the new program languages
for AI research the property of Being more descriaptive, or of higher‘
level, than conventional procedure-oriented program 1anguages,

b) by specifying algorithms in resolution logic one can use to advantage
‘a separation of.an dlgorithm‘specificatibn into two distinct com-—
ponents: the 'logic' component and the 'control' component,

c) resolution logic as a program language has a precisely defined and
simple semantics, |

d) in theoretical studies of computation, resolution logic as a program
language is an attractive alternative to the usual formalisms such
as Kleene's recursion equations, Turing machines, the formal grammars

of the Chomsky hierarchy, and so on.

In this paper I am matmly concerned with aj aﬁd b). As for c), I
will just state é syntax and a semantics, because this does not take much space
anyway. The tempting possibilities in d) have to be left out altogether.

As for a), the first question to addressed is whether it is at all
possible to use resolution logic as a program language. It seemed to me best
to illustrate the affirmatiye answer with an example of a problem typical of
conventional programming: sorting a sequence. The most importaht thing is
to show that a resolution theorem-prover can solve straightforward problems
in a straightforward way. The choice of the example should not suggest that
I consider sorting a proper problem-domain for program languages of wvery high
level.

The second question to be addressed is in what sense resolution
legic is an advance with respect to conventional procedure-oriented program

languages. I argue that all advances in programming, the conventional languages

-3 -

included, can be regarded as steps toward automatic programming. This takes
me into fhe slippery questions of why one program language is of 'higher level’
than another, or more 'descriptive', or less 'imperative'. I shall argue that
this distinction can be made more precise by analyzing specifications of
algorithms into a logic component and a control component and that it is pre-
cisely the possibility of doing this when programming with resolution logic

that contributes to its being an advance in the development of program languages.

1. The r6le of specification language in automatic programming.

‘Automatic programming means the automation of program writing. To
take a specific example, think of writing PL-1 programs, possibly a profitable
target of automation in programming. The result of successful automation

would be a machine (a "PL-1 machine") writing PL-1 (the target language) programs.

Such a machine would still have to be told, no matter how automatic_otherwise,
what the product of its activity is expected to do, for instance in the form
of a specification of inpﬁt—output behaviour. Machines being what they are
(for the time being), such a specification would have to be written in a formal

language (specification language).

This is reminiscent of the existing situation where the writing of
macnine-code programs has been automated. There exist machines which accept
a "specification" in a formal language (for instance PL-1) and produce machine-
code programs that are expected to comply with these specifications. This
shows that, if understood in a certain way, automatic programming has been going
on for a long time already. Its purpose is to produce with less effort better
programs., Would a PL-1 machine.achieve any progress towards this goal ?

The PL-1 machine would operaté in an environmment (schematically shown
in figure 1), which would only make sense if specifications can be better written
in specification laqguége than in PL-1: the PL-1 machine would act as an inter-
face between specification language and machine code. HoweVer, the PL-1 language
was intended (insofar as it deveioPed purposefully at all) as an interface be-
tween a Qgggg_programmer and machine code; why should it be adopted for‘the

other purpose ?

human
problem
solver

specificarion of
v input-output relation

V"PL-l
machine"

v PL-! program

compile;w

v machine-code program

input ——S computer._;;h_ouﬁput

figure 1: Environment of the "PL-1 machine"

Either one needs a language intermediate between specification
language and machine code and then it seems better not to adopt PL-1, but to
start with a clean slate. Or one does not need any intermediate language and
PL-1 is itself a candidate specification language. Again, it seems better to
start from scratch and to look for a language especially suited for this pur-
pose. Of course, these considerations épply not only to PL-1 but also to
other conventional program languages. In either case automatic programming
will not turn out t® be an unprecedented innovation Eut a further step towards

the use of more powerful programming tools as assemblers, interpreters, and

compilers have been in the past.

-6 -

2. Two aspects of algorithm specification.

The preceding observations suggest that there may not exist a clear-
cut distinction between a specification language for autbmatic programming and
a higher-level program language.‘ They also suggest that any step towards
automatic programming will be one in an ongoing evolution towards more powerful
tools for computer—aided problem-solving. Indeed, the pioneers in compiler
design already flew the banner of 'Automatic Programming' [1].

Although no clear-cut distinctions'will emerge here, it is useful
to compare two aspects of algorithm specificatdon: the imperative aspect is
typical'for tﬁe lower level of programming as is the descriptive aspect for
the higher level. In a machine-code program it is spelled out how things are
done, but it is always very hard to see without additional explanations what
is being done. This is an extreme case of an imperative specification of an
.algorithm. At the other extreme, in a specification it is only explainéd what
is to be done and it is the problem of automatic programming to convert this
into commands saying how.

Strictly speaking, a language like PL-1 or Algol 60 is completely
imperative: every statement corresponds to commands to be executed. However,
the value of such a 1anguége lies in the fact that in a well-written program
it is possible to see without additional explanations what is being done: such
a program hasAdescriptive value as well as an imperative effect. Some of the
imperative aspects have disappeared from the program, like the details of
storage allocation and the commands involved in procedure invocation. The ABSYS
language [10, 12; 137] is an interesting experiment that aliows algorithms to
be specified in a more descriptive manner. In this respect it was a forerunner
of some of the new program languages for AI research [6 1.

Predicate logic is usually regarded as a purely descriptive language:

at most able to express what is to be done by a program and not how to do it.

-7 -

Yet, with respect to a given proof ﬁrocedure, a specification in logic has
implications for the imperative aspect, as will become clear by comparing
with each other the two versions of the sorting example below.

Although the descriptive and imperative aspects of algorithm specifi-
cation may be hard to disentangle, I think the distinction is useful for
characterizing what constitutes a higher level program language: one that has
less commitment to the imperative aspects of the algorithms to be epecified
and, by being more descriptive, is easier to write in and to understand for the

human problem-solver.

3. The contributions of Green and of Kowalski

Green [14] has given a very useful definition of four different tasks
in automatic programming by representing them as problems in automatic deduction.
He specified the input-output behaviour of the required program as a set A of
axioms in first-order predicate logic containing a predicate symbol R such that
AE R (s,t) (A logically implies R(s,t)) if and only if the program is to give
output t for input s. Thus, A defines (with respect to the predicate symbol R)

a relation in the mathematical sense between inputs and outputs.

The generality of relations (as compared to functions as usually studied
in mathematics) is suitable here: the required program, as a map from inputs
to outputs, need not be total (an output may not exist for some inputs)»and it
need not be determinate (an input may be followed by any of more than one
possible output). Even if the program computes a total function, there is no
disadvantage in specifying it as a relation.

Green distinguishes checking, simulation, verification, and synthesis

as tasks in automatic programming. He shows that an automatic theorem-prover

can in principle accomplish these (given a suitable set A of axioms, not neces-
sarily the same for each.task) in the process of proving a theorem of a particular
form. Figure 3.1 hows how this form determines which of the four tasks is to be

carried out.

=
Form of theorem to be proved Possible answers Task
R(a,b) yes : checking
no
mx.R(a,x) ' yes, x = t simulation
' ©ono
VXOR(X,g (X)) ‘ yes verification
- no, x = ¢ (of program g)
vx.qay.R(x,¥) yes,y = f(x) synthesis
no, x = ¢ (of program)

Figure 3.1: Green's tasks in automatic programming

Note in ﬁhis figure that only 'synthesis' éorresponds to automatic
programming as described in section 1. The specification language is pre-
dicate logic and f is the synthesised program in a target language embodied
in the function symbols of the specifying axioms. Synthesis appears to be a
difficult problem. Before attacking it, let us pause and consider whether there
is not a way around.

To find such a way, we should ask: what is the purpose of a program,
and can it not be achieved in another way ? The answer is, é program is to
cause computations to‘be done automatically on a computer and, yes, it can
be done in another way: by simulation. As we see in figure3.l,for given input
a, the automatic theorem-prover will produce the output b that would have been
generated by the program synthesised from the axioms A. But then, why would
we need the synthesised program if, for any input, we can get by simulation
the required output without the program ?

The possibility is at least worth investigating, élthough at the time

of Green's work it did not seem to be the most promising approach. In order to

-9 -
make simulation a practically intergsting possibility, both development of
theorem—proving technique and an increased understanding of the pragmatics of
predicate logic were needed. |

These requirements have been met in the meantime. The SL-resolution
proof procedure of Kowalski and Kuehner [25], or each of several relatéd proof
procedures [26, 34], can be adapted to act like a program-language interpreter
for a suitably constructed sentence. The 'procedural interpretation' for re-
solution logic is Kowalski's £21] great contribution to the pragmatics of
first-order predicate logic.

Since several years fhese ideas have been realized in the PROLOG
system developed‘by Colmerauer and his colleagues in the Univeréity of Marseille [9].
The action of the PROLOG system is in principle that of the simulation variety
of automatic programming.according to Green (seé figﬁre 3.1). As will be explained
later, the éysteﬁ can aléo be.regarded as an iﬁterpreter for a‘generalized Algol
With backtracking.

THe use of predicate logic discussed in this paper has some features
in common with that of Hayes [13)], who arrives at a program language by adding
'contﬁol information' to axioms of logic in order to obtain computationally
favourable behaviour from a resolution pfoéf procédure. Thé work of Hayes suggests
a fruitful approach to the study of algorithms: to decompose the specification
A of an algorithm into a 'logic' COmponenf L (to be specified by a sentence‘in
resolution logic) and a 'control' compdnent c, spedified in some other way.
Kowalski [24] has formulated the decomposition as

A=L+¢C

and showed an example of two algorithms whose specificatons Al and A2 are related

as follows:

A1 =L + Cl and A2 =L+ C2

- 10 -

That is, the algorithms specified by Al and A2 are different, but only in the
control component. In this paper we shall see that Al can be a specification
of a éorting algorithm according to the 'quicksort' principle and A2 can be
a specification of a permutation generator. Becuase the control components
Cl and 02 are comparatively inconspicuous we shall see the interesting phenomenon
of a 'quicksort' and a permutation generator with almost the same specification.
The example on sorting has been included to draw attention to the
fact that an autonomous resolution proof procedure is capable of computationally
acceptable behaviour. This is incompatible with widely-held opinions on this
point. To give an example Qf such an epinion, I quote Hayes [15]:
"However, there is every evidence, both practical and
theoretical, that an autonomous resolution theorem-
ptover will never be sufficiently powerful to cope with

complex problems. The practical evidence is abundant

in the literature on computational logic."

I cannot make less abundant‘the practical evidence‘here allu&ed'to. What I
can do is to add some evidence‘for the contrary opinion that autonomous reso~
lution proof procedures can be computationally useful. Of course, the examples
in this paper do not solve complex problems. They sﬁggest, however, that pre-
dicate logic can be used as a high-level program language. Hence an autonomous
resolution proof procédure (for instance, Kowalski's LUSH system to be described
in this paper), acting on a sentence in logic which is pragmatically sound
according to the procedural interpretétion, can cope with problems at least
as complex as can be programmed in a high-level program language.

But, as a program language, resolution logic is of a higher level,
more descriptive, less imperative, than languages like PL-1 or Algol 60. In

fact, the reader may recognize several of the features of the new program languages

- 11 -

for AI research [6]. .Resolution logic remains a natural language for stating
facts and making inferences, in addition to its newly descovered use in effectively
simulating the execution of a program. All these considerations suggest that
in resolution logic as powerful problem-solvers will be programmed as in any
other program language for AI research.

It remains, of course, a requirement that specifications in predicate
logic be pragmatically sound according to the procedural interpretation. That
is part of the art of programming in logic. It need not be a superhuman achieve-
ment to express a complex problem in pragmatically sound axioms. In fact, this
has been done in PROLOG with remarkably little fuss for several ambitioﬁs pro-
gramming taéks. These include natural-language understanding systems [9, 33],
formula-manipulation and symbolichntegration systems [3, 19], and a STRIPS-
style problem—solﬁer [37].‘ A comparison has been published [37] between the
last-mentioned program and the original STRIPS system. In the examples tried,
the PROLOG. problem-solver was considerably faster. A more importantbadvantage
of PROLOG is suggested by the fact that writing and testing the progrém required

about one man-week.

4. Resolution logic as a language for stating problems

In general, a syntax for first-order predicate logic comprises a
laﬁguage expressing sentences, an inference system consisting of axioms and
rules of inference, and a proof procedure relating the use of the inference
system to the sentence to be proved. The usual language and inference system
('classical first-order predicate logic') are found, for instance, in [20].

For the purpose of automatic deduaction a different‘syntax has evolved.
Its language is the 'clauéal form; of firsf—order predicate logic. Its inference
system is the one invented by J.A. Robinson [35], using his 'resolution principle’

and his 'unification algorithm'. T will refer to the language of clausal form

-12 -

together with the resolution rule inference as 'resolution logic'.

Resolution logic has been criticized as being unsuitable for problem-
solving because of an alleged inherent lack of goéludirectedness in its deductions
and fnf the alleged difficulty, or impossibility, of takiﬁg domain-specific
knowledge into account for the control of the course of a deduction. Now the
control is in the domain of the proof procedure. No particular prbof procedure
is by necessity associated with resolution logic. The criticisms mentioned
above are possibly based on a mistaken belief that proof procedures associlated
with resolution logic must be of the 'uniform' or 'saturation' variety.

Several researchers [4,5,21,28,29,36 Jhave realized the rich variety
of possible proof procedures which can be used in resolution logic. They developed
proéedures guided by heuristic principles or by the desirability of a pro-
cedure being guided by domain-specific knowledge.‘ In this paper I will be
‘concerned with one of the approaches mentioned, namely Kowalski's.

Resolution logic can be explained in terms of classical logic, as
is done in [32]. I believe that resolution logic has advantages other than
the one of being suitable for use on a computer: for example its simplicity,
which makes it also suitable for a self-contained definition of language and

semantics. A pragmatics will be given in terms of classical logic.

4.1 A language for resolution logic (see [21])
A senténce is a set of claﬁses. A clause is a set of literals Li
written as
Ll ces Ln
except when the set is empty: it is then called the null clause and is written
as 0
A literal is either a positive literal +A or a negatiﬁe literal -A, where A

is an atomic formula. An atomic formula is written as

P(tla°“stm)a m= 0,1,...,

- 13 -

where P is a predicate symbol and t t are terms. A term is either a

10ty
variable.oran.ekpression f(tl,...,tk), k=0,1,..., where f is a k-place function
symbol and the ti are terms. A constant is a‘O-place function symbol. For

the sets of predicate symbols,function symbols, and variables one is free to

choose any three mutually disjoint sets of symbols.
In the examples of this paper, a predicate symbol is a word starting
with an upper-case letter; a variable is a word starting with a lower-case

letter; a constant symbol is an underlined word.

4.2 A semantics for resolution logic (see [11])

The semantics of a language detefmines the meaning of
a sentence of the laﬁguage: it deals with the relationship between a sentence
of the language and a universe: a set of objects endowed with a structure
which is partially determined by the structure of the language. An interpretation
assigns a meaning to the variable-free terms constructible from the function
symbols in the sentence and to the predicate symbols in the sentence. The re-
maining part of semantics-determines whether the sentenée is true in a given
interpretation.

As a structured set of dbjects to serve as universe I consider here

the so~called Herbrand universe: the set of all wvariable-free terms that can

be constructed from the constants and other function symbols of the sentence.
The set of all atomic formulas P(tl,...,tk) such that the predicate
symbol P occurs in the sentence and such that tys-.,t, are in its Herbrand

A
universe, is called the Herbrand base H of the sentence.

Any subset I of H determines a Herbrand interpretation in the following

way. A variable-free term denotes itself (note that the term occurs itself in
the Herbrand universe). The meaning of an n-place predicate symbol P is the

following n-ary relation over the Herbrand universe

{(tl""’tn) : P(tl,...,tn) € I}

- 14 -

The following rules determine whether the sentence is true in the interpretation
determined by I. If this is the case, then I is said to be a model of the

sentence. A sentence is said to be unsatisfiable if it has no model.

A variable-free literal +A is true iff A € I.

A variable—free literal -A is true iff A ¢ I.

A variable-free clause is true iff at least one of its literals is true.
A clause is true iff every one of its variable—ffee instances is true.

A sentence is true iff each of its clauses is true.

4,3 A pragmatics for resolution logic

Semantics determines meaning in a strict sense only involving a
relationship betweén the language and a universe. The sense of meaning that
also involves the user of the language, for instance in the form of expla-
nations helping her to understand a sentence, belong to the pragmatics of the
language.

The concepts of classical predicate logic are intuitively understood by
many people; it is therefore useful to express the meaning of sentences of
resolution logic in terms of classical logic, as has been done by Kowalski
[21] in the following way.

The meaning of a sentence { CiaeresC } is the conjunction

Cl.and «.. and Cn.
Suppose a clausecontains variables KiseeesXy and suppose it is written such
that no negative literal precedes a positive one. The meaning of the clause
+Bl...+Bm--A1...--An
is a universally quantified implication:

for all XpseoosXy

B1 or ... or Bm is implied by Al and ... and An

- 15 -
It may be helpful to have a special reading for a clause when

m=0orn= 0:

If n = O, read
for all XpseeosXps B1 or...or Bm.
If m = 0, read

for no XiseeesXys A1 and...and An,
or, equivalently, read
for all xl,...,xk, not A1 Or...or not An' |
If n=0 and m = 0 the clause is the null clause and it is to be read as a

contradiction.

Example

Let CAT be a sentence of resolution logic:
car = {+Cat(unil,y,y)
,2*+Cat(cons(u,x),y,cons(u,z))-Cat(x,y,z)
}
According to the above pragmatics the sentence
CATU{-Cat(consg§;gii),cons{b,gi;),cons(g,cons(blgil)))}...(4.1)
is to be read as
for all y, Cat(nil,y,y)
and for all‘u,x,y,z,Cat(cons(u,x),y,cons(u,z)) is implied by

. veo (4.2)
Cat(x,v,2)

and not Cat(cons(ggnil),cons(93nil),cons(§3cons(h3nil)))

- 16 -
The sentence CAT can be used to define the catenation relation among
linear lists.

Let me first explain how to recognize linear lists here. A linear
list I define to be either the empty list or a nonempty list of which the
'head' is an atom and of which the 'tail' is a linear list (possibly
empty). Now consider the Herbrand universe of (4.1). Think of the con-
stant nil as the eméty iist and think of the contants a and b as atoms.
Think of a tefm cons (al,az) in the HErbrand universe as the linear list
of which the head is a‘ and of which the tail is a,, provided that o

1 2°

an atom and a, is a linear list (possibly nil).

1 is

In this way the term

cons(a,cons(b,nil))

is to be tﬁought of as the linear list containing the atoms a and b in that
order. ‘This is an awfuily cumbersome notation. For the benefit of this and
all further examples in the paper I will streamline the notation as follows.
Write '.' instead of 'coms', write it in infix notation instead of in
prefix notation and adopt the comvention that, in the absence of brackets,
pairs associate from the right to the left. That is, instead of cons
(a,cons(b,nil)), I write g,b,gil‘and this means a.(b.nil) rather than
(a.b).nil. This notational simplification comes from PROLOG. Using it,
the sentence (4.1) becomes

{+Cat(nil,y,y)

‘,+Cat(u.x,y,u.z) -Cat(x,vy,2) e (4.3)
,—Cat(a.nil,b.nil,a.b.nil)

}

In order to appreciate the sentence CAT as a way to define the

- 17 -

catenation relation among linear lists, note that a.b.nil is the result of
catenating a.nil and b.nil in that order. The sentence (4.3) is unsatis-
fiable because it denies this fact. This suggests that we can define in
general the catenation relation as the set of friples Gps Gps Og of linear

lists such that
CAIU{*Cat(ul, Gy a3)}

is unsatisfiable.

4.4 The problem of sorting stated in resolution logic

SORI = {+Sort(x,y) -Perm(x,y) -Ord(y)
,Perm(nil,nil)
L, +Perm(x.y,2) -Cat(vl,x.v2,z) -Cat(vl,v2,v) -Perm(y,v)
,H0rd(nil), +0rd(x.nil)
,40rd(x.y.z) ~-Inf(x,y) -0rd(y.z)
}
The sentence SORT will bé used to define the sortedness relation among
linear lists. The clauses of SORT are intended to be read as follows:
1) y is tﬁe sorted version of x if y is a permutation of x and if y is
ordered
2) nil is a permutation of nil
3) z is a permutation of x.y if v is the result of deleting x from z (see
Cat as defined by CAT) and if v is a permutation of y
4) the empty list is ordered
5) any one-element list is ordered
6) a list of at least two atoms is ordered if the first two are in order

(see Inf as defined below) and if the tail of that list is ordered

- 18 -

The basic ordering relation between atoms, as expressed in Inf,
still has to be defined. Such a definition will have to depend on which
atoms there are. For instance, if atoms are letters of the alphabet then

the definition can be a sentence containing a clause for each pair of letters

in the ordering relation:
INF = {+Inf(a,a), +Inf(b,b), +Inf(c,c), ..., +Iﬁf(§)g)
,HInf(a,b), HInf(b,c), ...

,*Inf(a,c), ...

.o o, +1nf(g%§)
ces , +Inf(b,z)
,+Inf (a,z)
)
A part of the data contained in INF can be deduced when the propertiesbof
transitivity and reflexitivity are given as in
INF 1 = {+Inf(x,x) -Letter(x)
,+Inf (x,y) -P(x,y)
©,+P(a,b), +P(b,c),..., ¥ (y,2)
» P (x,2) -P(x,y) -P(y,2)
~Letter(x) -Letter(y) -Letter(z)
,Hletter(a),...,Hetter(z)
}
INF 1 has fewer clauses but a proof precedure will in general have to go
through several steps in order to prove what is required. In INF anything
that can be deduced from it is explicitly present. INF 1 has the dis~

advantage that a long deduction may often be necessary, for instance, if a

~19~
and z have to be compared often. It may be useful in such a case to add re-

dundantly to INF1 the ready-made fact + Inf (a,z).

Such an arrangement would be reminiscent of Michie's 'memo-functions'
[27]. Those familiar with this mechanism will see that it can be used to

produce hybrids of INF and INF1l that adapt advantageously to a given pattern

of usage.

It should be noted that in PROLOG there is no need for the
programmer to give a definition of Inf at all: the system calls instead
a brief FORTRAN subroutine for the comparison of characters or numbers.
Such 'bﬁilt—in' predicateé‘exist for several other generally useful

functions.

The sentence A = SORTUCATUINF defines the relation of sortedness

among linear lists in the following way:

AU{—Sort(al,az)} is unsatisfiable if o, and‘on2 are linear lists and if

o, is the sorted version of Oy - Moreover,
Au {—Sort(ul,y)} oo (4.8

is unsatisfiable for any linear list 0y (made up of atoms accounted for in
INF). Later we shall see that the sentence (4.4) can cause a proof procedure
to construct az, a sorted version of al. For the moment, when we have not

yet discussed proof pfocedures, this construction is best described semantically.

Because (4.4) is unsatisfiable there exists, by a theorem of Hebrand,
an unsatisfiable finite set of variable-free instances of clauses in this
sentence. All that need be said now about the proof procedure is that it will
construct such a set and that this set contains only one instance of
~-Sort (ai,y). The substitution for y in that instance is az, a sorted version

of al.

~20-

This is in fact the realization in resolution logic of Green's
simulation method of automatic programming (see figure 3.1). In the
simulation method one can make a computer sort lists without anyone ever
having to write a program to do it: we only need a program for a complete

resolution proof procedure and the specification A.

Is this an interesting alternativeifo the writing of a sorting
program? I believe it is not. I know of no proof procedure that does any
better with this specification than to generate a permutation of oy until
it ié found to violate order, then to generate the next, and so on until

an ordered permutation is encountered.

Although it will be universally agreed that this application of
simulation is a computational disaster, not everybody will agree on the cause.
Most wofk in automatic resolution theorem-proving prior to about 1970 seems
to be based on the assumption that the causes of such a disappointing result
can be cured by changes to the proof-procedure. The subsequent lack of success
caused most workers in automatic problem-solving to discard resolution logic
altogefher,‘thus throwing away the baby with the bath water. The more immediately
successful ad hoc methods édvocated by ﬁinsky and Papert (see their 'Uniform

Proof Procedures versus Heuristic Knowledge' in [301]) carried the day.

In the problem of sorting, however, there is no need to take recourse
to such methods: the cause of the disappointing result is in the specification.
A good proof procedure is a necessary, not a sufficient, condition for compu-

tational success.

There are often different ways to specify the same relation, and

there are among equivaleit, correct specifications computationally good ones

-21=-

and computationally bad ones (with respect to a given type of proof procedure),
just as there are among equivalent, correct programs efficient ones and inefficient

ones (with respect to a given machine).

I will exhibit a specification of the sortedness relation for which the
gimulation method does give efficient computations. The specification will turn
out to have a very direct relationship to the 'quicksort' algorithm [17], 1In order
to make the discovery of the specification as understandable as possible and
also to introduce the idea of resolution logic as a program language, I will devote
the next section to a transformation of an Algol program for quicksort dinto a
specification in resolution logic for sortédness giVipg‘efficient computations

according to the simulation method with a generally useful proof procedure.

4.5 A specification according to the quicksort principle

In section 2 i have contrasted descriptive against imperative spegifications
of algorithms. Descriptive specifications are mainly concerned with what an
algorithm does and they are characteristic of high~level program languages. .
Imperative specifications are more concerned with how an algorithm does whatever
it does. Such specifications are characteristic of low-level program languages.

A language like Algol 60 is in principle completely imperative: every statement
is a command to be executed. Yet sometimes such a program has descriptive value
as well as an imperative effect: a well-written program can often be under-
stood by a human reader without explicit comments as to what is to be done by

the algorithm.

I start out with an Algol program for the quicksort program written as
descriptively as I can. I then eliminate some of the remaining imperative features
by writing successive versions in hypothetical generalizations of Algol 60. The

end result reads (almost) like a specification in logic of the sortedness

-22-

relation, which I will then also give. In the next secticn we will study
this specification as a'program in resolution logic. This interpretation

will be facilitated by the Algol programs of this section.

In the original formulation of the quicksort algorithm [17] the
sequence to be sorted is represented as an array. This makes an efficient
program possible. Here it is preferable to disregard questions of efficiency
at this level and to choose a data representation that requireé a minimal
distraction from the algorithm; hence the choice of lists as representation
for the sequences to be sorted and for the results of sorting. Howéver,
in Algol 6ollists do not exist and I start therefore with a hypothetical
extension, 'AlgolX', of Algol 60 that has aé data types atom and list,

a constant nil and standard one-place functions '"head' and 'tail' applicable
to a non-empty list with the usual result, and the two-place function'.'
in infix notation, applicable to an atom and a list giving the usual list

as result.

groéedure Sort(x,¥);
begin if x#nil

then begin atom x1; list x2,ul,u2,vl,v2

: x1l:=head(x); x2:=tail(x)

Part(xl,x2,ul,u2)

we

Sort(ul,vl); Sort(u2,v2)

“e

Cat(vl,xl.v2,y)

we

end

H i1f x=nil then y:=nil

Cen

figure 4.1 : Quicksort in AlgolX

-3

In figure 4.1 the main components are calls to procedures without
gide effects, passing their results by means of output parameters. A
non-empty list x is sorted by decomposing it into the first atom x1
(its head) and the remaining list x2 (its tail), poséibly empty. 'Part'
partitions x2 into two lists ul and u2. The union of the sets of their
elements is the set of the elements of x2; ul contains all (if any) of
the elements <x1, u2 contains all (if any) of the elements >x1. Of the
elements =x1 it does not matter in which of ul or u2 they are contained,
as long as it is in exactly one of these. The lists ul and u2 are
sorted by recursive calls to 'Sort', giving vl and v2. The sorted ver-
sion y of x is obtained by catenating (by a call to 'Cat') vl and v2
with x1 in between.

The identity x=head (x).tail (x) for any non-empty list x suggests
that the selectors 'head' and 'tail' are superfluous in the presence of
the constructor'.'. Consider for instance the declaration of 'Sort'

as given in figure 4.2.

procedure Sort (x,vy);

begin atom x1; list x2,ul,u2,vl,v2

H if x=x1.x2

then begin Part (x1,x2,ul,u2)

3 Sort (ul,vl); Sort(u2,v2)
H Cat(vl,xl.v2,y)
end

if x=nil then y:=nil

we

end

figure 4.2: Quicksort in AlgolY
(AlgolX plus pattern matching)

—24-

For the program in figure 4.2 the usual Algol interpreter will give
an error message when attempting to evaluate the Boolean expression x=x1.x2
because the variables x1 and x2 are without value. Suppose, however, that the
interpreter would not be neutral with respect tb truth énd falsity but would
prefer true‘expreSSions to false onés. Then it might notice that even though
the expression is not actually true, it can be made true without violating
any existing values: the as yet undefined variables x1 and x2 can be assigned
the values head(x) and tail(x) respectively and tﬁen the Boolean expression

is true. We then say that x has been 'matched' to x1.x2.

But this can only be done if x#nil. So why not combine the explicit
assignation and the test x#nil into one matching operation? The advantage
is that in this way a low-level, machine-oriented operation like assignation
is avoided. Note that matching is a generalization of equality in Algol 60
because when there are no undefined variables, matching reduces to the usual
evaluation of Boolean equalities in Algol 60. Matching is known aé a feature

of several program languages for AI research [6].

Note that in the program in figure 4.2 the input parameter x seems to
be‘quite unnecessary for communicating the algorithm. If we want to know
whether the actual parameter for x is of the form xl.x2, why not have that form
itself as a formal parameter? This suggests having two procedure declarations
for 'Sort', applicable according to whether the input list is empty. Another
extension of Algol is required, say AlgolZ. The proposal ié to extend AlgolY
to allow more than one’procedure call with the same name. A declaration
responds to a call when the actual parameters of the call match the formal
parameters of the declaration. If the match is successful, the name is replaced

by the body where undefined variables have received the values necessitated by

-25-
the match. If more than one declaration is applicable, it is not determined
which is actually applied: the program is indeterminate. This proposal

follows the PLANNER language for AI research where the feature is called

"procedure invocation by pattern matching'.

procedure Sort (xl.x2,y);

begin list ul,u2,vl,v2

H Part(xl,x2,ul,u2)
3 Sort(ul,vl); Sort(u2,v2)
3 Cat (vl,x1l.v2,y)

énd

; procedure Sort(nil,nil);

.
H

figure 4.3: Quicksort in AlgolZ

I stated that the program in figure 4.1 was as descriptive as I could
make it in AlgolX. This is not quite true: the program requires Sort(gl,vl)
to be executed before Sort(u2,v2). This is an example of what E.W. Dijkstra
calls "sequential overspecification' because in fact the order is irrelevant
and should therefore remain unspecified. All three programs in figures 4.1, 4.2,
and 4.3 suffer from this defect, which is remedied in figure 4.4. DNote tﬁe

disappointing property of Algol that one sometimes has to write more when one

wants to specify less.

-26-

Boolean procedure Sort(xl.x2,y);

begin list ul,u2,vl,v2; Boolean success

3 success:i=Part (x1,x2,ul,u2)

3 success:=successASort (ul ,v1)ASort (u2,v2)
: Sort :=suceessACat (vl ,x1.v2,y)

end

; Boolean procedure Sort(nil,nil); Sort:=true

.
+ s

figure 4.4: A better Quicksort in AlgolZ

In figure 4.4 I suppose that Part and Cat have become Boolean procedures
as well; with the same effect on their parameters as before, but assuming the

Boolean value true if their execution completes successfully.

Note that the effect of the body of Sort(xl.x2,y) in figure 4.4 is not
necessarily the same as when it would have been
Sort:=

<4

Part (x1,%2,ul ,u2)ASort (ul,vl)ASort (u2,v2)ACat (vl,xl.v2,y)

This body does not specify any order between the calls, at least not according
to the definition [31] of Algol 60. This body would be an example of sequential
underspecification: I would have gone too far in eliminating imperative

features. Note that a declaration with this body can be read as:

Sort(x1.x2,y) is true if

Part (xl,x2,ul,u2), Sort(ul,vl), Sort(u2,v2), and Cat(vl,x1.v2,y) are true

This suggests as specification of sorting in first-order predicate

logic:

~27-

le,xZ,y.
f§u1,u2,vl,v2. Part (x1,x2,ul,u2)ASort(ul,vl)ASort(u2,v2)
ACat (vl,x1l.v2,y)
} o Sort(xl.x2,y)

YASort (nil,nil)

The same sentence in resolution logic, together with specifications of Part

and Cat can now be given as follows:

SORT1L = {+Sort(xl.x2,y) —Part(xi,xZ,ul,uZ)
-Sort(ul,vl) -Sort(u2,v2)
-Cat(vl,x1.v2,y)
,+Sort (nil,nil)
,+Part(x1,z.x2,z.ul,u2) -Inf(z,x1) -Part(xl,x2,ul,u?)
,+Part(x1,z;x2,ul,z.u2) -Inf (x1,z) -Part(xl,x2,ul,u?)
,+*Part (x,nil,nil,nil)
,#Cat (u.x,y,u.z) -Cat(x,y,z)

,HCat (nil,y)
}

In subsection 4.4 I.exhibited a sentence SORT as specification for a sorting
algorithm giving a very disappointing behaviour when used for automatic programming
in Green's simulation mode. I claimed that the cause was in the specification
rather than inherent in the method. SORT1l is a specification of the sortedness

relation in the same sense:

INFu SORT1 u {-Sort(al,y)}
is unsatisfiable for any linear list 0y made up of atoms for which the order

is specified in INF. A camplete reselution procedure will construct as

-28—-

substitution for y the sorted version of 0y in the course of proving unsatis-
fiability. In the next section I will discuss Kowalski's proof procedure that will
perform the construction with the same efficiency as an AlgolZ interpreter would

execute the program in figure 4.3.

5. Kowalski's procedural interpretation of resolution logic

5.1 The LUSH system of inference rule and proof procedure

A clause containing one positive lfteral is called a regular clause.

A sentence containing only regular clauses is called a regular sentence.

ne
A clause containingapositive literal is called a goal statement. A goal

statement containing no negative literal is called a halt statement and is

written, as before, as [.

Up till now we have'met with a syntax, a semantics, and a pragmatics
for resolution logic. The procedural interpretation can be regarded as a
supplement to the pragmatics given before. For specifications of relations
we have learned the importance of unsatisfiability of a sentence. It is now
time to consider a procedure for constructing a proof of unsatisfiability
for an unsatisfiable sentence. For this we will only consider sentences
of a special form: containing, aparﬁ from one goal statement, only regular

clauses.

There are two interrelated reasons for dealing only with sentences
with regular clauses and one goal statement. The first is that the LUSH
rule of inference and proof procedure are designed for such sentences.

The other reason is that for regular cléuses and for goal statements there
exists a pragmatics complementary to the one discussed in 4.3, namely the

relevant part of Kowalski's procedural interpretation of resolution logic.

-29-

As can be learned from [23], the procedural interpretation is not restricted

to regular clauses and goal statements.

The LUSH system ic due to Kowalski [21,23]. 1In these papers the system
has not received a name. The mme LUSH was coined by Hill [16], the excuse
being given as: 'Linear resolution with Unrestricted Selection for Horn
clauses'. Clauses contaiﬁing at ﬁost one literal are usually called Horn‘
clauses honouring the poineering investigation [18] of A. Horn of some of
their properties. I prefer to follow A. Colmerauer (unpublished work) and

use the term regular clause, as defined above, to contain exactly one positive

literal.

The LUSH rule of inference infers a new goal statement

(A A, .-B B ~A,"A)0

100 71T T i
from a goél statement

-A

Loremhy g mAAL A

with ~A. as selected literal and a regular clause (if one exists)
1

+A -B B

lcn-"' m

that matches the goal statement in the sense that there exists a

"most general' substitution & of terms for variables (see [327

that makes Ai and A identical. The LUSH rule of inference is a

resolution with a goal statement and a regular clause as parents.
The proof procedure of LUSH determines how the rule of infer-

ence is used to construct a proof. One component of it is the

selection rule; the other component is the search strategy. The rule

of inference and the selection rule determine together with a
sentence 8 U {G} (S a regular sentence, G a goal statement) a tree of

(which the nodes are) goal statements (also called the search space)

in the following way. The root of the tree is G. The descendants
of a node N in the tree are determined by first applying the selec-

tion rule to N, thus obtaining a literal L. There is just one descen-

-30-

dant of N for each different way in which the rule of inference can
be applied to a regular clause in S and the goal statement N with L
as selected literal.

A path in the tree from the root to a halt statement represents
a proof of the unsatisfiability of S u {G}. Suppose the path is the
sequence of goal statements G = Go,Gl,...,Gn = [J. The rule of infer-

ence is such that, for i = n-1,...,0, if Su {G } is unsatisfiable

then so is Su {Gi}. su {0} is unsatisfiable, i;trefore su {G} 1is.

For theoretica! investigations an important property of LUSH is
its completeness [16] which holds when S is regular and G is a goal
statement: if Su {G} is unsatisfiable, then the tree must contain a
halt statement, whatever the selection rule. Completeness in this
sense obviously does not mean that any path from the root ends in a
halt statement. It does not preclude the possibility of infinite
paths in the tree o1 of finite paths not ending in a halt statement.
Completeness is sometimes asserted of a combination of search space
and search strategy meaning that the search spaée always contains a
halt statement and that the search strategy always finds a path to it.

Predicate-logic programming as discussed in this paper is
restricted to application of LUSH to proving the unsatisfiability of
a sentence SU{G}, S a regular sentence, G a goal statement. Neither
Kowalski's procedufal interpretation‘of predicate~logic nor the
PROLOG systeﬁ is thus restricted. Yet LUSH represents, as it were,
the backbone of the PROLOG system. Because PROLOG has been shown to be
a program language of considerable heuristic power, it is interesting
to know what are the possible selection rules and what are the pos-
sible search strategies in that part of PROLOG that cofresponds to
LUSH.

The selection rule of PROLOG is the one that always selects the
leftmost literal. oOnly those search spaces can therefore be imple-
mented which can be obtained by ordering,\once and for all in a given
program, the negative literals of a clause. The search strategy is
a depth-first, leftmost-descendant-first search of the tree determined
by the selection rule just given. To further define the search
strategy an ordering has to be given for the descendahts. The ordering
is determined by the ordering of the regular clauses in S: if clauses

Cl and C2 occur in that order and both match the selected literal in

a goal statement G then the descendant of G, obtained by matching

with C is generated first. Again, note that the search strategy

19
is fixed once and for all by the order of the clauses in S.

5.2 The procedural interpretation

In order to use resolution logic for goal-directed computa-
tions another pragmatics is useful in addition to the one discussed
before. According to Kowalski's procedural interpretation [217] a
regular clause

+A -Bl ce --Bm m=0,1,...

is interpreted as a procedure definition. The positive literal

+A is interpreted as the procedure name. The negative literals

“Bl,..., —Bm are interpreted as procedure calls constituting the

procedure body of the definition. The body may be empty (when m=0);

such a procedure definition is interpreted as an assertion of fact.

A goal statement, that is a clause containing no positive
literal, is interpreted as a set of procedure calls to be executed.
When a goal statement is empty there are no more procedures to be
executed; it is therefore called a halt statement.

The procedﬁral interpetation is based on an analogy between
the inference rule of LUSH and the computation rule for procedure-
oriented program languages that executes a procedure call by
replacing the call by the body of a declaration of which the name
matches the call. This is just what happens in an application of
the LUSH ruie of inference as described in the previous section:

—Ai is the procedure call selected for execution from the goal

gatement, A is the name of a matching declaration, and the body
replacing the call -A; is “Bys--vs-B . The substitution 6 modi-
fies the body in a way that corresponds to replacing formal by
actual parameters. The fact that the other procedure calls in the
original goal statement may also be modified by 6 as a result of
executing —Ai is an interesting generalization of the usual compu-
tation rule for procedure-oriented languages.

Suppose the selection rule of LUSH is the one that always
selects the leftmost literal of the goal statement for execution.
Then the goal statement acts like the stack of procedures called

but not yet executed as used in a typical implementation of the

-32~

computation rule for procedure-oriented languages. The leftmost
literal-corresponds to the top of the stack. Other selection rules
correspond to departures from the stack-disciplined implementation,
such as, for instance,lthe use of co-routines.

It may be verified that LUSH (with the selection rule that

always selects the leftmost literal) acting on the sentence.

SORT1 u {-Sort (ocl,Y)}

produces the sorted version of 0. with approximately the same

number of procedure calls as an ilgol Z interpreter would require
for sorting 0y with the program in figure 4.3. This comparison
asgumes that Part and Cat would also be programmed in Algol Z using
procedure calls only. For this to be achleved it is necessary that
the tree of goal statements contains essentially only one path and,
of course, that this path terminates and that itlterminates in the
halt statement. A selection rule that causes the tree to have this
form is the one that always selects the leftmost ldteral with the

literals ordered as in the listing of SORT.

Example.
The list c¢.a.b.nil may be sorted by demonstrating the unsatisfi-

ability of the sentence SORT1. U INFuU {-Sort (c.a.b.nil,y)}}. Given
that the selection rule always selects the leftmost literal, an

initial part of the search space is:

1
8’2
C
2
g, 8, ,
Cq 4
%{

o5
0

figure 5.1

-33-

In figure 5.1 there are the following goal statements:

€, = {-sort (c.a.b.nil,y)}
c, = {-Part (c,a.b.nil,pl,p2)} ucC
Cy = {-Inf(a,c) -Part(c,b.nil,ul,u2)} ucC 6,5

(@]
Il

, = {-Inf(c,a) -Part(c,b.nil,ul,u2)} ucC 8,4

(@]
Il

{~Part(g)§:nil,ul,u2)} uc 923 635

where

C = {~-Sort(pl,ql) -Sort(p2,q2) -Cat(ql,c.q2,y)}

In figure 5.1 there are the follwoing substitutions:

912 = (x1,x2:=c,a.b.nil)

0

I
~~
M
-
N
»
N
o
faety
o
N
Il
5
[V}
A d
o
=]
[
[y
A d
]
[=
=
[~
»o
~

23 ===
924 = (xl,z;x2,p1,p2:=c,§_,§_.n ISUISE_'UZ)

835

identity

In figure 5.1 the tree of goal statements has more than one
path. Wherever a branch occurs (when Part is the predicate of
the selected 1iteral),‘it has two arms, one of which ends at the
next goal statement. Notice the important rdle played by the selec-
tion rule. Suppose that in the goal statement 04 any literal
would have been selected other than -Inf(c,a), the leftmost. Then
the goal statement would have had at least one descendant, and that
one perhaps again, and so on,Whereas the presence of -Inf(c,a) makes
it impossible for the halt statement to be an ultimate descendant.
The selection -Inf(c,a) ensures that the fact, that the wrong turn
has been taken at the branch, is detected before time is wasted on
other goals.

That this happens depends on the fact that the search space
for INFu {—Inf(g,g)} is finite. A‘terminating seargh reports the
absence of a halt statement. The search space for INFlu {-Inf(c,a)}
is infinite and does not contain a halt Statement either. A search

for a halt statement will not terminate. Therefore a LUSH proof

procedure selecting the leftmost literal and using a depth-first
search strategy will not in general succeed in sorting by proving

the unsatisfiability of

SORT1 u INF1 u {-Sort(ul,y)}

where Oq is a linear list containg only atoms occurring in INF 1.
This in spite of the fact that INF and INF 1 are equivalent in the
sense that

INFu {~Inf (ocl,oaz)}

is unsatisfiable if and only if

INF1 u {~Inf (0L1,0L2)}

is unsatisfiable, for any variable-free terms oy and Oy e

What happens at branches in the tree of figure 5.1 illustrates
how "tonditionals" can be handled in predicate-logic programming.
Where an Algol-like language would have a conditional statement,

a specification in logic will have two declarations with the same
name, say +P. In general, with a selected literal -P, the goal
statement has two descendants, one for each deelaration with name
+P. Sometimes the call matches only one name, as in the goal state-
ment C1 of figure 5.1: procedure call by pattern matching has
carried out the test whether the input list is empty. Sometimes

the <call matches both names, as in the goal statement C The

test is then deferred one step because in the deScendantzgoal
statements the selected literals represent mutually disjoint con-
tingencies. One of the descendants must remain without issue.
When both descendants continue on to a halt statement, we have the
analogue of an indeterminate algorithm. |

The specification SORT 1 is not only a specification for

gquicksort, because, for instance, the sentence
SORT 1u INFu {~Sort(x,a.b.c.nil)}

is unsatisfiable. LUSH is able to prove it is, and will substitute

c.a.b.nil, and c.b.a.nil of which the sorted version is a.b.c.nil.

The specification SORT 1 can apparently also be used as a permutation

algorithm, provided that LUSH used a different selection rule.

-35-

Let us see what happens if the selection rule is not changed, that
is, if the leftmost literal is always selected, which worked so
well for sorting. The tree of goal statements would begin as shown

in figure 5.2. o

/N
AT

s
.

In figure 5.2 the clauses are

‘C1 = {-Sort(x,a.b.c.nil)}

c, = {-Part (x1,w2,pl,p2)}u C

Cy = {-Tnf(z,x1) -Part (x1,x2,ul,u2)}u C 6,4

c, = {-;nf(xl,z) —Part (x1l,x2,ul,u2)}uC 8,

¢, = {-Sort(nil,vl) -Sort(nil,v2) ~Cat(vl,x .v2,a.b.c.nil)}
where

¢ = {~Sort(pl,vl) -Sort(p2,v2) -Cat (v1,x1.v2,a.b.c.nil)}

In figure 5.2 the substitutions are

810 = (x,y:=xl.w2,a.b.c.nil)

923 = (w2,pl, p2:=z.x2,z.ul,u2)
624 = (w2,pl,p2:=z.x2,ul,z.u2) |
B, = (xl,w2,pl,p2:=x,2}ljgilﬁgil)

25

-36-

We now have a very large search space, C5 has one descendant
clause only, but no halt statement as ultimate descendant. C3 and
C4 have hundreds of immediate descendants each. Rather than to

try and follow in detail the search space, let us try to get an
overview of what happesn in it. It will be useful to extend the
, in a

clause C2 is a descendant of a literal Ll in a clause Cl if'C2 is

a descendant of C1 and Ll is the selected literal in C1 and if L2

is in the procedure body that replaces L; in C; to give C, Also

if L3 is a descendant of L2 and if L2 is a descendant of L

notion of '"descendant" to literals, as follows. A literal L

then L

1 3

is a descendant of Ll.

When the leftmost literal is always selected, descendants of
-Part (x1,w2,pl,u2) will be selected as long as there are any. By
the time there are no more such descendants, x1,w2,pl,u2 will have
been substituted by any terms that happen to fit in the partition
relation. The input list a.b.c.nil has not been taken into account
at all. We see that with a wrong selection rule LUSH behaves as
"blindly" as has often been observed with earlier, faulty appnlica-

tions of resolution theorem-proving.

A good selection rule should select for execution a proce~

dure call containing the input data, in this case

~Cat (vl,xl.v2,a.b.c.nil)

The outputs of this procedure call can act as input to the calls

to Sort and after finishing those there are data for executing Part.
With a selection rule that imposes this ordering on calls, the tree
of goal statements is quite different: it may be verified that in
that case all substantial branches lead to success; a different
success each time: each path to a halt statement builds a substi-
tution that gives the x in the original goal statement a different
permutation as value. We have obtained an adequate permutation
generator. We have just seen an example of the possibility in per-
dicate-logic programming, pointed out by Kowalski [21] » of computing
different functions from the same relational specification by

using different combinations of arguments for input and output.

The selection rule required to achieve successful use as
permugationgenerator is again one that éan easily be specified in
PROLOG by ordering the literals in such a way that the PROLOG rule
of selecting the leftmost literal executes the right one every time.

A correct ordering is achieved by interchanging the literals

w37

-Part (xl,x2,ul,u2) and ~Cat(vl,xl.v2,y) in SORT 1. The interchange
has been carried out in PERM, shown below, where also a clause has
been added which causes the permutations to be printed. The predicate
Print can be defined in such a way that in this case all permuta-
tions are printed rather than just the first one found.

As a result of having PROLOG execute the sentence

PERMuU INFu {—Perm(g,bfg,nil)}

all permutations of the list a.b.c.nil are printed out.

PERM = {+Sort (x1.x2,¥) -Cat (vl,x1.v2,y)
~Sort{(ul,vl) -Sort(u2,v2)
-Part (x1,x2,ul,u2)

»+Sort (nil,nil)

,+Part(xl,z;x2,z;ul,u2) ~Inf(z,x1) ~Part(xl,x2,ul,u2)
,2+*Part (x1,z.x2,ul,z.u2) -Inf(xl,z) -Part (x1,x2,ul,u2)
,+Part(x,§il)gilﬂgil)

,*Cat (usx,y,u.z) -Cat(x,y,z)

,+Cat (nil,y,y) |

,2*Perm(y) -Sort(x,y) -Print (x)

}

If one would just be interested in obtaining a permutation
generator, INF and the calls -Inf(...) would be deleted. THey only
restrict the program as a permutation generator by making it nec-—
essary to give the list in sorted order. But here I want to keep

the connection with sorting as simple as possible.

38~

6. Predicate-logic programs for syntactical analysis

6.1 Left-recursivity, search space, and search stratcgy

‘I will first explain the method of Colmerauer and Kowalski
[8,23] for representing strings and grammafs in predicate logic.
Strings are represented by lists. Whepever it has tb‘be asserted
that a substring is adjacent to another, the substrings are re-
presented by 'differences' of lists. Two lists x and y are defined
to have a difference if there exists a iist z such that x is the
result of catemating z and y, in that order. The difference is the
string of the atoms in z. For instance, a.b.c.nil and c.nil have
a difference which is the string of the atoms a and b.

Let usvconsider a formal grammar G = (VN,VT,P,S) where VN
is the set of nonterminals, VT the set of terminals, P the set of
productions and S the start symbol. Take for example a context-

—-free left-recursive grammar for 'unsigned integers'

G = (Vy={Ui,D}
»V=10,1,2,3,4,5,6,7,8,9}

,P ={Ui-»D
,Ui—=Ui D
s D—=0,D-51,D-52,D—23,D—>4
,D—75,D—»6,D-»7 ,D-38 ,D-»9
}

,S = Ui

)

According to the method of Colmerauer and Kowalski the production:

rules are represented by the following sentence of resolution logic:

UIL = {+Ui(x,y) -D(x,y)
,HUi(x,z) -Ui(x,y) -D(y,z)
»+D(0.y,y),+D(L.y,¥) ,#D(2.y,¥) ,#D(3.y,y) , D (4.7,¥)
s¥D(5.y,y),4D(6.y,y) ,+D(7.y,y) ,#D(8.y,y) ,+D(9.v,y)
} .

The formula +Ui(x,z) asserts that the substring represented
by the difference of lists x and z is of the syntactic category Ui.
The second clause reads: the difference between x and z is a Ui if
there exists a y such that the difference between x.and vy is a Ui

and the difference between y and z is a D.

~39-

The grammar G is left-recursive. It is interesting to see

how this fact 1s reflected in the search space of LUSH selecting

the leftmost literal for the sentence

In showing this sentence to be unsatlsfiable, LUSH recognizes in
effect the difference between 3.9.2.nil and nil as an unsigned

integer.

! -Ui(3.9.2.nil,nil)
l

-D(9.2.nil,nil)

-Ui(3.9.2.nil1,y3) -D(y3,y2) -D(y2,nil)

@2z

™-D(3.9.2.nil,y3) -D(y3, y2) -D (y2,nil)
-D(9.2.nil,y2) -D(y2,nil)
ad inf, -D(2.nil,nil)
0
figure 6.1:

Search space for a left-recursive grammar

-40-~

The combination of left-recursivity and the rule selecting
the leftmost literal for the LUSH rule of inference results in the
search space of figure 6.1 which has an infinite branch. Whether
LUSH will find the parse depends on the search strategy. For in-
stance, PROLOG's depth-first search strategy will find the parse
when the first two clauses are ordered as shown in UIL, but not
when they would have been ordered in the other way.

' The right-recursive version of the grammar UIL is represented

by the following sentemce:

UIR = {+Ui(x,y) -D(x,y)

,2HUi(x,z) -D(x,y) -Ui(y,z)

4D (0.y,y),+D(L.y,y) ,#D(2.y,y),+D(3.y,¥) ,#D(4.y,¥)
»2*D(5.v,y),+D(6.y,y),+D(7.y,y),+D(8.y,y) ,+D(9.y,¥y)
I | |
In figure 6.2 we find the search space for LUSH selecting the left-

most literal for the sentence

-Ui(3.9.2.nil1,nil)

-D(3.9.2.nil,y) -Ui(y,nil) -D(3.9.2.nil,nil)
|
~Ui(9.2.nil,nil)
—_—= A
-D(9.2.nil,y) —Ui(y,ﬂzij‘h‘_—h““-'—D(9.gfnil,n 1)

~U1(2.nil,nil)
=
—ﬁ(g,nil,y) -Ui(y,nil) T -D(2.nil,nil)

-Ui(nil,nil)

-IL(g_iL y) “Ui(y,mil) T -D(nil,nil)

figure 6.2

Search space for a right-recursive grammar

41—

Here the search space is finite: any search strategy will
find the parse. 1In PROLOG one can handle the left-recursive gram-
mar, but only by choosing the fight ordering of clauses. The right-
recursive grammar is easier in the sense that ordering of clauses
does not matter a great deal.

A. Colmerauer (unpublished work) has given a formal definition
of formal grammars and of the parsing problem in resolution logic
according to the method of Colmerauer and Kowalski and has proved
that there exists a LUSH derivation if and only if a parse exists.,
The parse can be reconstructed from the successive resolutions
performéd during the parse. A 'safe' search strategy, like breadth-
first search of the tree of goal statements is guaranteed to find a

parse if one exists; this cannot be said in general of PROLOG.

6.2 The regular sentences of resolution logic as generalized grammars

For the syntactical analysis of natural language context-
free grammars are not suitable. For example, the necessity to ex-
press agreement in number (singular or plural) between a noun phrase
and the corresponding verb phrase gives rise to an unmanageable
proliferation of productions. The problem is discussed by Winograd
[38], who goes on to argue that context-sensitive grammars, although
an improvement in this respect, are not satisfactory either. He
prefers tb define a language not by a grammar, but as the set of
strings successfully analysed by a program in a program language
named PROGRAMMAR.,

I do not think one should leave it at this: besides having
a program, it is also useful to have a machine-independent descrip-
tion of the language and an easy method to convince oneself of the
correctness of the program, that is, that the program indeed per-
forms according to the descriptioﬁ. According to the method of
Colmerauer and Kowalski one can describe in resolution logic a lan-
guage in a machine-independent way. With respect to a given (suitable)
proof procedure, the machine-independent description becomes a (use-
ful) program.

I will illustrate some of the distinctive features of predicate~-
logic programming by an application to syntactic analysis and especially
by comparing it to the PROGRAMMAR approach. In this section I will

give descriptions in predicate-logic (that can be run as PROLOG

42

programs) based on two of Winograd's example PROGRAMMAR programs,
namely, his 'Grammar 2' and 'Grammar 3'. ‘

In his first example, Winograd gives both an explicit machine-
independent description as a context-free grammar ('Grammar 1') and
the corresponding PROGRAMMAR program ('Grammar 2'). To obtain a
PROLOG program, all we have to do is to transcribe Grammar 1 systema-
tically according to the representation of Colmerauer and Kowalski
for strings and productions. The trénscription,is in fact so systema-
tic that PROLOG has a facility, 'SuperQ', that allows direct input
of grammars in a notatibn similar to the one of Colmerauer's Q-
systems [7]. But for just the two examples here it is not worth in-
troducing a new notation. The remaining examples are therefore also
in the language of resolution logic as defined in this paper.

The grammar Gl includes Winograd's Grammar 1:

GL = (VN={ Seht ,Np,Vp,Det ,Moun,Iverb,Tverb}
' ,VT={the,giraffe, apple, dreams,eats}
,P ={Sent-¥Np Vp

,prﬁDeﬁ Noun

,Vp-vIﬁerb,praTverb Np

,Dét~~>the, Noun -ogiraffe,Noun-sapple
s Iverb -»dreams,Tverb-—ydreams, Tverb-jeats
} .
»S = Sent
)

According to the method of Colmerauer and Kowalski the produc-

tions of this grammar are represented by the following sentence of

of resolution logic:

G2 = {+Sent(x,y) -Np(x,u) -Vp(u,y)
,2HNp (x,y) 4Det(x,u) -Noun (u,y)
,4Vp(x,y) -Iverb(x,y)
»+Vp (x,y) -Tverb(x,u) -Np(u,y)
,+tDet (the.y,y),+Noun(giraffe.y,y)
,*Noun (apple.y,y),+Iverb(dreams.y,y)
,2*Tverb(dreams.y,y) ,+Tverb(eats.y,y)

}

In order to analyze 'the giraffe dreams'" LUSH is set to work on

the sentence

G2 u {=Sent (the.giraffe.dreams.nil,nil)}
With the rule selecting leftmost literals we find the search space
of figure 6.3,

-Sent (the.giraffe.dreams,.nil,nil)

l

-Np(the.giraffe.dreams.nil,u) -Vp{u,nil)

-Det (the.giraffe.dreams.nil,v) -Noun{(v,u) -Vp(u,nil)

| .
-Noun (giraffe.dreams.nil,u) -Vp(u,nil)
l
-Vp(dreams.nil ,nil)
TTT—

i

TT=Iverb(dreams,nil,nil)

i
|
I

} 0
-Tverb(dreams.nil,u) -Np(u,nil)
i

-Np(nil,nil)
|

-Det (nil,u) -Noun(u,nil)

figure 6.3:
The search space for 'the giraffe dreams'
The sentence G2 is a direct representation in predicate-logic

of the facts expressed in Gl. These facts are what has been called
in section 3 the logic component of an algorithm for analysing
sentences‘produced by Gl. What has been called the control component
determines, for instance, that a parser is‘top~down rather than bot-
tom-up. When the control component is provided by a LUSH proof proce-
dure, the resulting algorithm will be a top-down parser. In the
PROGRAMMAR program 'Grammar 2' logic and control are not clearly se-

parated.

44—

The advantage of separating the logic and control components
is that programs become more understandable, easier to get right,
and to modify. Perhaps a useful way to make more precise the dis-
tinction between 'descriptive' versus 'imperative', or 'high-level'
versus 'low-level' algorithm specification is to identify both
distinctions with whether the logic and control components are
separated.

When the logic and control c0mponents are separated, it can
be recognized easily when two algorithms are the same except for
the control component. For example, in the previous section we saw
almost identical algorithms for quicksort and for a permutation
generator differing only in their control components. For example,
two parsers, one top—down and another bottbm-up, for the same for-
mal languagé.should, according to the principle of separating logic
from control, have a clearly recognizable and easily readable part
in common, namely some machine-independent representation of a
grammar for the language. This is achieved in predicate-logic
programming, but not in PROGRAMMAR.

‘ For pérsers, the separation of logic and control is not new.
It has been achieved in compiler-generators, which contain a pro-
gram that takes a grammar as input to 'compile' it into a program
that parses according to that grammar. LUSH takes both a grammar
and a string (combined in one unsatisfiable sentence) as input to
produce a parse, working in 'interpreter' rather than in 'compiler'
mode. Another difference is that the program in é compiler-gen-
erator that produces a parser will not do anything else. PROLOG
not only accepts prediéate—logic programs specifying any context-
free grammar (and certain nonrestrictive classes of type-0 and
type~l grammars as well, within the framework of method of Colmer-
auer and Kowalski) but also programs for anything else that fits
the paradigm of predicate-logic programming. LUSH may be regarded
as a generalized top-down parser and the regular sentences of
resolution logic may be regarded as generalized context-free gram-
mars which turn out to be convenient for programming a great vari-
ety of problems; like the sorting and permuting algorithms shown
in this paper, or the problems arising in the large application

programs mentioned earlier [3,8,9,19,33,371.

45—

The sentence G2 can be interpreted as a logic component con-
veying no control informatiom. In that case the selection rule and
the search strategy will have to be stated explicitly when using
LUSH. Or one can make use of the fact that one cannot avoid writing
down an unordered set of literals or of clauses in some order. In
PROLOG a LUSH proof procedure interprets the order of the literals
as a selection rule apd the order of the clauses as a particular
choice of depth-first search strategy. PROLOG makes it possible to
provide explicit control information by means of two system—défined
predicates. It may be surprising to find how useful such limited
possibilities for supplying control information can be.

As far as I can see, there is nothing in resolution logic
that makes it more difficult to supply control information than in,
say, PLANNER-like languages. There is no need to supply this in-
formation in logic or to cameuflage it as logic, as is done in

VPROLOG. A more elaborate control language, as‘used in MICROPLANNER
or CONNIVER, could‘be applied to direct LUSH, or other proof-pro-
c¢edures, which can combine top-down and bottom-up deductions, or
those which, like the comnnection~graph theorem-prover [227, trans—
cend the distinctton between top-down and bottom-up.

Let ué now continue with Winograd's examples and see how
context-sensitiﬁe aspects can be intswduced in his Gfammar 1. 1
will use the language of the regular clauses of resolution logic
as a generalized grammar of great expressive power, rather than try
to fit into the formal grammars of the Chomsky hierarchy. The advan-
tage of separating logic from control will become much more appér—
ent here, because in PROGRAMMAR the context-sensitive aspects are
handled by explicit instructions for moving a pointer about in
the parse tree as it exists at the moment of execution of the in-
stfuction. In order to be able to understand Winograd's Grammar 3
in PROGRAMMAR one has to have a mental picture of the parse tree,
and the position of the pointer, as it changes during execution.

It is therefore not easy to discover what the grammar is in
Grammar 3. TFollowing Winograd's comments, I assume it is Grammar. L

with the following elaborations:

46—

1) the number of a noun phrase agrees with that of the corresponding
verb phrase '

2) the number of a noun phrase need not be determined by the noun
only (this fish - these fish) and not by the 'th-word' only
(the giraffe ~ the giraffes), but number is a feature of the
entire noun phrase

3) a noun phrase need not have a determiner (giraffes dream),

presumably provided that the noun phrase is plural

G3 = {+Sent(x,y) -Np(n,x,u) -Vp(n,u,y)
,Hp(n,x,y) ~-Th(n,x,u) —Noun(n,u,y)
,*Np (pl,x,y) -Noun(pl,x,y)
»2*Vp(n,x,y) -Verb(i,n,x,y)
»Hp(n,x,y) -Verb(t,n,x,u) -Np(m,u,y)
) .

INTERFACE = {+Noun(sg,u.y,y) -Npr(u,v)

‘ ,*Noun(pl,v.y,y) -Npr(u,v)
;+Verb(tty{§g,u.y,y) ~-Conj (tty,u,v)
,+Verb(tty,pl,v.y,y) -Conj(tty,u,v)
; .

LEXICON = {+Npr(giraffe,giraffes),+Npr(fish,fish),

,+Npr (dream,dreams)

,+Conj (tty,dreams,dream),+Conj (tty,eats,eat)
,»4#Th(n, the.y,y)

,*Th(sg,this.y,y),+Th(pl,these.y,y)
}

Differences between G2 and G3 are the following. The predicates
have received extra parameters for transmitting information about
number (variables n and m, taking as possible values the constants
sg for singular or pl for plural) or about whether or not a verb is
transitive (variabl% tty, taking as possible values the constants i
or t). Thé last two parameters of literals in G3 are, as before,

" lists indicating where the substring under consideration begins and
ends (variables u,x,and y). Lexical information has been removed

from G3.

47 -

Lexical information has been placed in a separate sentence,
LEXICON, giving pairs (Npr) with the singular and plural form of
some nouns. At a further level of refinement the description will
have to analyse the structﬁre of the words themselves, for instance,
to be able to say that, apart from exceptions, the plural is formed
by appending an s. As it stands, the words in LEXICON are constants
and have therefore no internal structure. Similarly, verbs are
given by simply listing (with Conj) various conjugations; in the
example these are restricted to the singular and plural of the third
person, present, indicative. Finally, singular and plural forms of

the 'th-words' the and this are listed. Many, quite different, ad

hoc or more systematic, representations of the lexicon are usable
with the same grammar G3, if a suitable interface is provided.

As the final example, I show the search space for LUSH with the
rule selecting the leftmost literal for the unsolvable parsing pro-

blem reﬁresented by the satisfiable sentence

G3u INTERFACEuU LEXICONu {-Sent (giraffes.dreams.nil,nil)}

" The search space is finite; LUSH will terminate, whatever the search

strategy, without having found a halt statement.

7 Acknowledgements

This paper grew out of an earlier attempt ('First-order predicate
logic as a high-level program language',‘Report MIP-R-106, Dept. of
Machine Intelligence, University of Edinburgh, 1974) at a tutorial
exposition of programming with resolution‘logic. The discussions with
Robert Kowalski and the encouragement of Donald Michie have helped me

very much with the writing of MIP-R-106, which was supported by the U.K.

Science Research Council. Additional support was’ PrOVided by a

research grant from the University of Waterloo.

~48-

~Sent (giraffes.dreams.nil,nil)

-Np(n,giraffes.dreams.nil,u) -Vp(n,u,nil)

AN

—N$un(2l,giraffes.dreams.nil,u) -Vp(pl,u,nil)

-Th(n,giraffes.dreams.nil,v) -Noun(n,v,u) -Vp(n,u,nil)

-Npr (u,giraffes)-Vp(pl,dreams.nil,nil)

—Vp(Bl)dreams.nil,nil)

\\\\‘—Verb(EARL

—-Conj (t,u,dreams) -Np(m,nil,nil)

,dreams.nil,u) -Np(m,u,nil)

~Verb(i,pl,dreams.nil,nil)

-Conj(i,u,dreams)

figure 6.4:

The search space for 'giraffes dreams”

—49-

8 References to the literature

1.

2,

10.

11,

12.

Annual review in automatic programming. Pergamon Press,
1(1960-6(1970).

G. Battani and H. Meloni: Interpreteur du langage de pro-
grammation PROLOG. Groupe diIntellignece Artificielle, U.E.R.
de Luminy, Marseille, 1973.

M. Bergman and H. Kanoui : Application of mechanical theorem proving

symbolic calculus. Groupe d'Intelligence Artificielle, U.E.R.
de Luminy, Marseille, 1973.

W. W. Bledsoe: Splitting and reduction heuristics in automatic
theorem—proving. Artificial Intelligence 2 (1971), 55-77.

W. W. Bledsoe, R. Boyer, W. H. Henneman: Computer proofs of
limit theorems. Artificial Intelligence 3 (1972), 27-60.

D. Bobrow and B. Raphael: New programming languages for AI
research. Computing Surveys 6 (1974), 153-174.

A. Colmerauer: Les systémes—Q, ou un formalisme pour analyser
et synthetiser des phrases sur ordinateur. Publication interne
no 43, Dépt., d'Informatique, Faculté des Sciences, Université
de Montréal.

A. Colmerauer: Programmation en langue naturelle. Groupe d'In-
telligence Artificielle, U.E.R. de Luminy, Marseille, 1974.

A. Colmerauer, H. Kanoui, R. Paséro, and P. Roussel: Un
systémé de communication homme-machine en frangais. Groupe
d'Intelligence Artificielle, U.E.R. de Luminy, Marseille, 1972,
E. W. Elcock: Descriptions. Machine Intelligence 3, B. Melt-

‘zer and D. Michie (eds), Edinburgh University Press, 1968.

pp. 173-179.

M. H. van Emden and R. A. Kowalski: The semantics of predicate-
logic as a programming language. Report MIP-R-103, Dept. of
Machine Intelligence, University of Edinburgh, 1974.

J. M. Foster: Assertions: programs written without specifying
unnecessary order. Machine Intelligence 3, B. Meltzer and

D. Michie (eds), Edinburgh University Press, 1968, pp 387-391,

References (continued)

13.

14,

15.

16.

17.

18.

19.

20.
21.

22,

23.

24,

25.

26,

J. M. Foster and E. W. Elcock: Absys 1: an incremental com-
piler for assertions. Machine Intelligence 4, B. Meltzer and

D, Michie (eds), Edinburgh University Press, 1969, pp 423-429.
C. Green: The application of theorem—proving to question-
answering systems. Technical note 8, Artificial Intelligence
Group, Stanford Research Institute, 1969.

P, J. Hayes: Computation and deduction. Proc. 1973 MFCS
Conference, Czechoslovakian Academy of Sciences. ‘

R. Hill: LUSH resolution and its completeness. DCL Memo 78
(1974), Dept. of Artificial Intelligence, University of Edin-
burgh. ‘

C. A. R. Hoare: Algorithm 64: quicksort. Comm. ACM, 4 (1961),
321-321.

A, Horn: On éentences which are true of direct unions of alge-
bras. J. Symbolic Logic, 16 (1951), 14-21.

H. Kanoui: Application de la demonstration automatique aux
manipulations algébriques et 2 1{integration formelle sur
ordinateur. Groupe d'Intelligence Artificielle, U.E.R. de
Luminy, Marseille, 1973.

S. C. Kleene: Mathematical Logic. Wiley, 1967.

R. A. Kowalski: Predicate logic as programming language. Proc.
IFIP74, 569-574, North Holland, 1974. ‘

R. A. Kowalski: A proof procedure using connection graphs.

DCL Memo 74, ﬁniversity of Edinburgh, 1974, (To appear in the
J. ATM.) | ‘

R. A. Kowalski: Logic for problem-solving. DCL Memo 75,

Dept. of Artificial Intelligence, University of Edinburgh, 1974.
R. A. Kowalski: Inaugural Lecture, Imperial College, London,
May 2, 1975.

R. A. Kowalski and D. Kuehner: Lineér resolution with selection:
function. Artificial Intelligence 2 (1971), 227-260.

D. W. Loveland: A simplified format for the model~elimination
theorém—proving'procedure. J. ACM, 16 (1969), 349-363.

-51-

References (continued)

27. D. Michie: Memo functions and machine learning. Nature 218
(1968), 19-22.

28. D. Michie, R. Ross, G. J. Shannan: G-deduction. Machine Intel=-
ligence 7, B. Meltzer and D. Michie (eds), Edinburgh Universit§
Press/Wiley, 1972.

29. D. Michie and E. Sibert: Some binary derivation systems. J. ACM
21 (1974), 175-190,

30, M. Minsky and S. Papert: Progress Report. Memo 252, Artificial
Intelligeﬁce Laboratory, Massachusetts Institute of Technology,
1972.

31. P. Naur (ed): Revised Report on the Algorithmic Language
Algol60. Comm. ACM 6 (1963), 1-17; Comp. J. 5 (1962/1963)
349~367; Num. Math. 4 (1963), 420-453.

32, N. J. Nilsson: Problem-solving Methods‘in Artificial Intel-
ligence, MecGraw-Hill, 1971.

33. R. Pasero: Representation du frangais en logique du premier
ordre en vue de dialoguer avec un ordinateur. Groupe d'Intel-
ligence Artificielle, U.E.R. de Luminy, Marseille, 1973.

34. R. Reiter: Two results on ordering for resolution with mer-
ging and linear format. J. ACM 15 (1968), 630-646.

35. J. A. Robinson: A machine-oriented logic based on the resol-
ution principle. J. ACM 12 (1965), 23-44.

36, J. A. Robinson: Heuristic and complete processes in the
mechanization of theorem-proving. . Systems and Computer Science,
J. F., Hart and $. Takasu (eds), University of Toronto Press,
1967.

37. D. Warren: WARPLAN: a system for generating plans. DCL Memo

| 76, Dept. of Artificial Intelligence, University of Edinburgh.

38. T, Winograd: Understanding Natural Language. Academic Press

and Edinburgh University Press, 1972.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

