A DESIGN FOR A PORTABLE PROGRAMMING
SYSTEM

by

R. Braga
M. A. Malcolm
G. R. Sager

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

Research Report CS-75-29
November 1975

o P A L L i g e B AR m B S i e TR £ K A R 4

A Design for a Portable Programming System

R. Braga
M. A, Malcolm
G. R. Sager

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

abstract: Our goal 1is to implement a complete system
which can be ported easily to a new set of hardware.
Whereas many components of the system can be implemented
‘in a machine independent fashion, some of the most basic
components (compiler, input/output controel and file
system) are necessarily machine dependent and must be
ported. We therefore abstract these components and
provide a set of tools to aid in the port. With the
proper choice of abstractions and tools, the amount of
work required to port the system is far less than that
required to re-implement it. In this discussion, we focus
mainly on the design of the compiler, loader and
input/output components, and consider how they can be
ported to an arbitrary machine.

1, dintroduction

AsAminicomputer hardware continues to decrease in cost and
increase in speed and reliability, and software production costs
remain relatively constant, software portability becomes
increasingly important. Portability is a measure of the effort
}required to move a plece of software from omne environment to
another. A plece of software is said to be portable over a set of
machine environments if it is significantly easier to port to a new
environment than to reimplement. To be practical, it should not
require much more effort to initially implement a portable version
of a program than it takes to implement it in a highly machine-
dependent form; and the‘portable version should not be prohibkitively

less efficient. TFor many programs, it is desirable to have

November, 1975 ' -1 - University of Waterloo

Minicomputers Portability

portability-in-time as well as portability-in-space; that is, it 1is

important to be able to port programs to new machines as they become
announced, as well as to dissimilar existing machines. A machine-
independent program is a portable program which requires no effort
to port except that required to physically move the program to the
new machine (which may be nontrivial, see Waite (1975)).

All existing techniques for writing portable programs entail
programming in some abstraction of the machine enviromnments over
which portability d1s desired. A widely practiced technique, for
example, is to program in a restricted suhset of Fortran, often
called PFORT (see Ryder (1974)), which is closely related to ANSI
Standard Fortran. PFORT is a generally-available ahstraction of
medium to large-scale machines which is suitable for many applica-
tions. Another well-known technique is to devise an '"abstract
machine" appropriate for the application which can te implemented on
a variety of machines. The abstract machine code may be executed
interpretively to conserve core memory on small machines, or
translated to the target computer's machine language using a
portable macro processor or vendor-supplied macro assembler (see
Colin, Shorey and Teasdale (1975)). These methods have been
exploited by Waite and Poole (1973), Griswold (1972), and others.

Although the various methods for acheiving portability differ
in approach, they share common shortcomings: The programming often
has to be done in an awkward language; implementation of a portable
program requires a great deal of skill; porting is often a task for

the original implementor, if not for a highly skilled programmer;

University of Waterloo -2~ November, 1975

Minicomputers Portability

the interface between the program and the various operating systems
it must run under is usually crude at best, severely limiting the
applications for which portable programming is possible.

Ideally, one would like to be able to write efficient programs
in a mnicely designed high-level language and have them be highly
portable as a matter of coincidence. It should not require a
herculean intellectual effort to produce a portable, or even
machine-independent, program; rather, it should be difficult to
avoid portability and easy to achieve machine independence. In this
paper we present a design for a programming system which attempts to
achieve such an ideal iﬁ the context of minicomputer applications.

Qur system is based on a high-level language. We avoid the
problems of interfacing with different operating systems bty
developing a complete portable system. In this way, only the
compiler and part of the system need to be ported; most of the
system and user programs will be machine independent. (Technically,
the compiler is mnearly maéhine—independent; but it must he
bootstrapped from one machine environment to anothet.)

In the next section, we briefly discuss some of the reasons
we've chosen to develop an entire system instead of (say)
interfacing a portable compiler with various operating systems. In
Section 3 we discuss the dimplementation language, and and its
compiler. Section 4 contains a description of our highly portable
linking loader whose major component is a machine-independent
linking relocator which converts the relocatable compiler output to

absolute executable format. In Section 5 we discuss environmental

November, 1975 -3 - University of Waterloo

Minicomputers Portahility

considerations, such as input/output, which are necessairly machine-
dependent. Section 6 contains a description of the steps involved
in wvarious alternative ways of bootstrapping the system to a new
machine; a new notation for describing such bootstraps is introduced

and used in the discussion.

2. vwhy port the entire system?

We have found considerable advantages in assuming there may be
no pre-existing software for the target machine, in addition to the
fact that some machines are marketed with essentially no software.

Inconsistencies in the kinds of operating system services
available is a major motivation for producing a complete system.
Tor example, a service as simple as receiving input from a terminal
varies considerably from one system to the next. On some systems,
input lines are padded with blank characters to make them a fixed
length. On other systems, line delimiter characters are wused. - On
some systems the input is automatically echoed back to the terminalj
on others the user program must do the echo explicitly. Of course,
even the character set and its internal representation varies from
one system to another, and from one system release to another, and
even within different parts of some systems. lore complicated
operating system services like tape or disc I1/0 or memory allocation
have more serious inconsistencies involving character size vs. byte
size, logical and physical blocking of records, etec.

One of the more difficult éspects of porting a compiler to

various machines is its relationship to the pre-existing assembler

University of Waterloo - 4 - Hovember, 1975

Minicomputers Portahility

and/or relocatable loader. Different systems have different
restrictions on external symbols and linkage conventions. Library
search rules and capabilities differ from one system to the next.
lience, serious development of portable libraries which must be wused
in a variety of operating environments is difficult since one cannot
insure that external names remain unique, and that libraries are
searched in the proper order.

Many of these standard problems of portable software can he
avoided if one 1is willing to port the operating system along with
language processors and user programs. That dis, dif much of a
program's environment is ported with it, then many aspects of
programs which are normally regarded as "machine-dependent”
automatically become machine-independent. 0f course, porting a
system presents a number of new problems, many of whiech are
difficult to solve. However, these problems must be addressed only
by the persons who port the system, not by every user programmer who

wants to write a portable program.

3. the systems implementation language

We have chosen the language B as a systems implementation
language for a variety of reasons. Foremost among these is the faét
that we have no desire to be sidetracked into the domain of language
design at this point in the research. B was developed at Bell
Laboratories. Along with its predecessor, BCPL (Richards (1969)),
and successor, C (Ritchie (1974)), B has been extensively used as a

systems implementation language. B 1is a simple block-structured

November, 1975 -5 - University of Waterloo

Minicomputers Portability

language, well suited to systems programming. Like BCPL, B is a
stack based language in which a program must be written as a collec~—
tion of functions. The functions are dynamically nested, so that
all program variables are either global to the whole program, or
local to a particular function and dynamically allocated in the
stack. B is typeless and word oriented; it contains a powerful set
of operators. Functions can be recursive or reentrant.

The B compiler is well suited for our preliminary experimenta-
tion with portability because it is nicely structured and therefore
easily modified to generate code for other machines. This is
largely due to the fact that it is a syntax directed compiler for-a
language which has a simple and compact syntax, The one-pass
compiler is implemented in B.

On the other hand, we feel there are several shortcomings to
the language and compiler which need to be overcome in the future.
Fortunately, it will be fairly easy to extend the syntax of B when
the need arises.

One of the major defects we see in most languages is that they
do not encourage the writing of machine-independent programs; most,
in fact, seem to encourage machine dependence. Although we do not
feel that it is possible to design a language which will prevent
machine—depéndeﬁt programming, we think it is possible to encourage
it, both with the features of the language, and wit£ a "verifier"
which will scan a program for possible machine dependencies. Since
we have control over both the system and the language, we hope to

reduce the opportunities for machine dependence, and also provide a

University of Waterloo -6 - November, 1975

Minicomputers Portability

verifier which has a high probability of being able to detect it.

A question of prime importance is how to design the code
generation modules of the compiler to make porting to a new machine
relatively easy and the generated code very efficient, without
assuming too much about the set of target machines. Our approach is
to provide primitive functions in the compiler for emitting
relocatable load code {(discussed in the next section)§ and in the
semantic routines, elementary machine-specific functions are called
which use the code emitting functions. Coding these machine-
specific functions is a major portion of the work involved in
porting the system. They can be thought of as an abstract machine,
which we call lowB; the semantic routines of the B compiler can be
thought of as generating lowB which is mapped into relocatable load
code by the machine-specific functions. Writing the lowB functions
is entirely analogous to writing macros to map intermediate abstract
machine language into machine language for the target machine. The
amount of coding and debugging time required to write the lowB func-
tions is roughly comparable to that required to implement the
abstract machine SIL when porting SNOBOL (Griswold (1972)).

It is important to observe that although the lowPE code genera-
tion functions are machine-specific, they are not machine-dependent.
The compiler can execute on any machine to generate code for the
target machine. In this way it can function as either a compiler on

the target, or as a cross compiler on some other host machine.

November, 1975 -7 = University of Waterloo

Minicomputers A ' Portability

4, the linking loader

A linking loader has three major functions: (1) the linking of
modules via external symbols, (2) the relocation of addresses within
modules, and (3) loading (and perhaps initiating) the executable
module into memory. The relocation and loading steps may be
combined, depending on the machine architecture. The three func-
tions may be accomplished by one or more programs. The latter func-
tion is typically quite machine dependent.

If the 1loader is an abstract machine which takes the language
processor output (load code) and executes it as a set of directives
to build an absolute form of the executable program, then, with the
proper set of directives, the loader could load for any machine
architecture. These load code direectives must describe to the
loader the addressing structure and relocation procedures to bhe
followed; this machine-specific information can be included as a
standard "prelude" to each load code module generated by the
compiler.

We have implemented the Universal Loader as two distinct

phases; first, the linking relocator performs all linking and
relocation, then outputs an absolute executable module which 1is

loaded by the second phase, or absolute loader. This two-phase

operation is motivated largely by our desire for ease of
portability: during a port, we must communicate executable programs
to the target machine. This final communication step is easily
accomplished by an absolute loader which can usually be coded in

20-40 instructions.

University of Waterloo -8 - November, 1975

Minicomputers Portability

The 1linking relocator is written in B and forms the heart of
the Universal Loader; we shall henceforth refer to it as "ULD". ULD
makes two passes over the load code before generating the absolute
module. This means that ULD need not reside in the same storage as
the module 1t is building, and therefore does not impose any size
restrictions. In the first pass, symbol tables are formed and the
sizes of program modules are computed. In the second pass, external
references are resolved, relocations are performed, and the absolute
module i1s generated. The two pass operation avoids the problem of
forming linked lists of unresolved references.

An absolute executable module is generated by ULD instead of a
core image for two reasons: (1) The device used to loa& the program
may be unreliable, therefore checksums are used for error detection;
(2) the B compiler relies on a backplugging capability during code
generation, and ULD doesn't resolve them since it is much easier to
take care of with an absolute loader.

Another design feature of ULD i1is that it works with 8-bit
bytes. In cases where the target machine has a word size which 1is
not an even multiple of 8 bits, ULD will "waste' the extra bits of
data bytes corresponding to the high order bits of words in the
target.

The abstract machine which defines ULD has a directive register
which will hold a l- or 2-byte load directive and a working register
which can bhold up to 32 bytes of data. The load directives are used
to:

- define an external symbol
~ indicate a reference to an external symbol
~ load data into the working register

November, 1975 -9 - University of Waterloo

Minicomputers Portability

- relocate flelds in the working register
- alter descriptors to define fields to be relocated

During the first pass, only those directives which indicate the
defining occurrence of an external'symbol and those which write the
working register need be interpreted. (The latter will indicate the
number of bytes being written.) During the second pass, the direc-
tives which indiqate the defining occurrence of an external symbol
are ignored. Relocation is accomplished by first leading tﬁe
working register, then issuing the directive to relocate. The
relocate directive operates on data in the working register, a
descriptor and a relocation constant. The descriptor contains the
field size in bytes, the offset of the rightmost bit of the field
relative to the rightmost bit in the byte, and a string of bytes
used to mask out inVariant‘bits within the affected bytes. Up to 8
different descriptors can be defined at any time. If more are
needed, the compiler can redefine descriptors as many times as
necessary during a load. The relocation constants are kept in the
symbol table as strings of bytes, with the value right justified.
In each module, up to 255 different relocation constants can be
referenced. Relocation addition is performed as a byte-serial
operation.

In order to clarify the role of the working register,
descriptors and relocation constants, we will describe the reloca-
tion directive in more detail. The relocation directive (issued
after a load working register directive) contains, for each reloca-
tion field, the following information:

1- the byte position of the leftmost bit of the field, relative to
the beginning of the working register
2- the descriptor id

University of Waterloo - 10 - . November, 1975

Minicomputers Portahility
3- the relocation constant id
This information is encoded in a 2-byte field.

The task of defining descriptors is simple; we will show one
example: if the target machine has a word size of 20 bits, and the
address is located in the lower 10 bits, a target machine word would
be defined as 3 bytes with the first byte having data only in the
lowver 4 bits. The descriptor for relocating such addresses
contains:

- gize: 2 bytes (the address will be in 2 adjacent bytes)
~ mask bytes: 003 377 (cctal notation)

If the address is in the upper 10 bits, then the descriptor
"would contain:

- size: 2 bytes
- mask: 017 374

Using the information in the relocation directive, we pinpoint
the bytes in the working register which contain the address to be
relocated, then from the descriptor determine the exact bits within
the field which must be modified. The relocation constant id tells
us which symbol table entry to use for the relocation. The write
working register directive is issued after the data in the working
register has been relocated; it causes the output of one record of
data in absolute load code form:

1, leader of null bytes

2. rubout character

3. address bytes (typically 2 or 3)

4. byte count

5. data bytes

6. checksum or parity byte(s)

The exact form is varied to allow for ease of coding of the ahsolute

loader and for the device characteristiecs. The leader and rubcut

November, 1975 - 11 - University of Waterleco

Minicomputers Portahility

are provided for ease of locating and positioning of the records in
a paper tape reader. In the cases of magnetic tape or disc
peripheral devices, the code for the write working register direc-
tive may be rewritten so that only parts 3 through 5 of the record

are output.

5. envirommental considerations

There are several important considerations for the port to the
target machine: (1) we must certify that the appropriate parts of
the compiler are properly recoded, (2) we must make provisions for
the dinput/output requirements of the ported system components and
(3) we must decide how much of the work is to be done on the host,
and how much on the target.

In order to certify the implementation of the compiler, we
intend to develop a set of diagnostic programs which test the
machine independent features of the compiler required for successful
operation of the system. These diégnostics will help locate tugs iq
freshly ported compilers and will aid the systems impiementor in the
correcting problems. They will be similar to a set of hardware
diagnostics.

The diagnostic programs must be designed to be successively
more complicated, since .the more sophisticated diagnostics will
require that a certain amount of the compiler be working properly.
The first diagnostics will be so simple as to be compilable by an
incomplete version of the compiler, thereby allowing the testing

procedure to begin at an early stage.

" University of Waterloo - 12 - November, 1975

Minicomputers Portability

Perhaps the most difficult environmental problems occur in
input/output, At the highest level of abstraction, the programmer
will see the input/output as completely byte oriented. The
input/output routines will be much 1like those described in '"The
portable € 1library (on TUHIX)", Lesk (1975). The programmmer is
responsible for defining his own record blocking; as long as his
routines are designed to agree on blocking, he will have no problems
since the system will treat all data as binary bytes. Thus, the
basic system does little for the programmmer, and (hopefully)
nothing against him,

At the next lower level of abstraction, we must define the
translations which make block devices behave like character devices.
The routines which do this are easily written.in B. Going lowver
still in the abstraction, we define procesées which connect to the
actual devices through some logical/physical mapping of files to
devices, much as in UNIX (see Ritchie and Thompson (1974)). And at
the lowest level, we need small machine-dependent modules to execute
the input/output instructions and dispatch the processes connected
to devices when interrupts occur. These routines would correspond
to low.s, mch.s and conf.c In UNIX. Currently we have only primi-
tive interaétive tools for aiding the system implementer in creating
load code modules for thesé routines. We are working on more
convenient methods of preparing and wmaintaining these low-level

modules.

November, 1975 - 13 - University of Waterlco

Minicomputers Portability

6. bootstrapping notation

Before discussing the sequnce of events necessary to port the
prograrming system to another machine, we introduce some notation to
describe the operations involved. We may think of the Important
components of the system as transformations on their inputs. As an
example, the operation of the compiler may be expressed:

CyEy: XS5 => XLy
where Cy is the compiler for machine y, with the suffix Ey to
indicate that this version executes on machine v; X is an arbitrary
program, with suffix S to indicate source and Ly to dindicate load
code for machine y. A cross compilation would be expressed as:
CtEh: X5 => XLt
where the letters t and h indicate the target and host machines,
respectively. In general, we may represent the operation of the
compiller as:
CyEz: XS => XLy
where y=z for on site operation and y#z for cross operation.

Tor ULD there is no need to indicate the orientation of the
source, since it will load for any machine as 1t stands. However,
the compiled and loaded version will execute only on a specific
machine, thus:

UEh: XLy => XEy
where y=h for on site loading and y#h for cross loads. We must
stress that ULD will do both the on site and cross loads; the
determining factor is the description of the target machine which is

built in to the load code itself. 1In actuality, XEy is not directly

University of Waterloo - 14 - November, 1975

Minicomputers Portability

executable, but must be initiated by the absolute loader described

above. Since the absolute loader is a trivial transformation on its

input, we do not consider it in our notation.
Continuing with the above development, we may consider a simple
bootstrap sequence:

1. The source and object versions of system components exist on the
host machine (k). In particular, the compiler (ChEh and ChS) and
loader (UEh and US) must be ported to the target machine (t).
The ‘first step is to develop a description of t for ULD and
design the load code to output for t by rewriting ChS to obtain
CtS. |

2. Compile CtS using ChEh; that is:

ChEh(CtS) = CtLh.
3, Load the new version of the compiler:
UEh(CtLh) = CtEh.
We now have a cross compiler.
4. Continuing the port, we can recompile the compiler:
CtEh(CtS) = CtLt
and cross load it using ULD:
UEh(CtLt) = CtLt.
, Alternativeiy, we could compile the loader, cross load it and
load the compiler on site:

CtER (US)

]

ULt,

UEh(ULt)

i

URt,
UEt(CtLt) = CtEt.

Obviously, the compiler is the most machine specific part of

November, 1975 - 15 -~ University of Waterlco

Minicomputers Yortability

the system, and rewriting it will be the most time consuming part of
the port. But we must also note that the other system components
are not machlne-specific, as is reflectéd in the notation: only the
compiler requires two descriptors to indicate the machines involved.
Once the compiler code generators have been rewritten, the possihle
paths by which we can move software to the target machine yield a
large degree of flexibility.

We have neglected one important aspect of the problem; namely
the support software required on the target machine. HMost
importantly, we must provide for the input/output necessary to
operate ULD if we axre to do on site loading. It is necessary to
supply a certain amount of the support in the ported version itself.
For the first test of the port, we have hand compiled, inte load
code, the two most primitive input/output operations needed by B
as "busy-wait" dinput/output subroutines. For more sophisticated
versions of the system, we are building a 1library of onrimitive
operations on the input/output devices. A minor detail of the ini-
tial port i1s the implementation of an absolute lcader. An example
of one such absolute loader (for the Data General NOVA computer) is

included in the Appendix.

7. conclusion

Our experiments in the development of a portable programming
system have so far focused on the compiler and loader for the
system. In this area, we have (1) adapted a local version of the B

compiler to genmerate ULD code for +he Microdata 1600/30 and (2)

University of Waterloo ~ 16 - November, 1975

{inicomputers Portability

written ULD in B. As a cross-compiler for the Microdata 1600/30,
the B compiler requires approximately 14,000 3é~bit words of memory
on the Honeywell 6050; we estimate that it will require a little
less than 30,000 bytes of memory on the Microdata 1600/30 when it is
bootstranped there. The ULD program reQuires 3,000 36-hit words on
the Honeywell, and 10,000 bytes on the Microdata. We have tested
ULD - by loading programs for the Honeywell 6050, Data General NOVA 2
and Microdata 1600/30. All test loads were performed using the
6050; load code for the 6050 and NOVA was generated by hand, while
load code for the Microdata was generated by compilations of small B
programs. The absolute modules for the HNOVA and Microdata Lave been
executed on those machines.
The internal structure of the three machines we have loaded
shows a great deal of variation:
(1) Honeywell 6050: 36 bit word, word addressing, 18 bit address,
the address may appear in the left or right half of the word
(2) NOVA: 16 bit word, word addressing, 8 or 15 bit address
(3) Microdata: 16 bit word, byte addressing, 8 or 15 bit address,
variable~length instructions
In o;der to run programs on the NOVA and Microdata, it has been
necessary to hand code modules to perform simple input/output func-
tions and include these with the modules submitted to ULD. We have
also developed a primitive interactive program which aids in
constructing these load modules for a large class of computers.
However,‘ we believe there is much work to be done on software tools
for developing input/output primitives for target machines.

In the near future, we plan to port a number of programs,

including ULD, to the Microdata; this requires the implementation of

November, 1975 - 17 - Upiversity of Vaterloo

Minicomputers Portability

a small "stand alone" operating system which will simulate the
richer environment of a file system and a pgeneral input/output
facility. The stand alone system will support a number of programs
during the initial phase of the port while the system for the target
machine is being configured.

Work is currently underway to (1) iImplement a library file
editor for maintenance of load code librariés, (2) remove remaning
machine dependencies from the B compiler for the Microdata and port
it to the Microdata, (3) develop a general strategy for implementa-
tion of interrupt handling to form the basis for a portable
input/output system, (4) design and implement a small portable
operating system kernel in B, and (5) design a file system and its
access mechanisms which can be ported to a large variety of machines

and devices.

8. acknowledgements

We wish to thank Gary Stafford, Lawrence Melen and Manfred
Young for their contributions to the design and construction of part
of the software described above. This work has been supported in

part by the National Research Council of Canada.

9. bibliography

Colin, A.J.T., ¥. Shorey and W. Teasdale (1975), The translation and
interpretation of STAB-12. Software Practice and Experience,
vol, 5, 123-138,

Griswold, R.E. (1972), The Macro Implementation of SNOBOL4. W.H.
Freeman & Co., San Francisco.

Lesk, M.E. (1975), The portable C library (on UNIX). Documents for
use with the UNIX time-sharing system, sixth edition, Bell
Laboratories, Murray Hill, New Jersey.

Universitonf Waterloo - 18 - November, 1975

Minicomputers _ Portability

Richards, M. (1969), BCPL: a tool for compiler writing and system
programming. Proc. Spring Joint Computer Conf., 557-566.

Ritchie, D.M. (1974), C reference manual. Bell Laboratories
TM=-74-1273-1.

Poole, P.C. and W.M. Waite (1973), Portability and adaptability.
Lecture Notes on Econ. and Mathematical Systems, no. 8l:
Advanced Course on Software Engineering, Springer-Verlag,
183-277. '

Ritchie, D.M. and K. Thompson (1974), The UNIX time~sharing system.
Comm. A.C.M., vol 17, no 7, 365-375.

Ryder, B.G., (1974), The PFORT verifier. Software Practice and
Lxperience, vol 4, no 4, 359-377.

Waite, W.M. (1975), Hints on distributing portable software.
Software Practice and Experience, vol. 5, 295-308.

November, 1975 - 19 - University of Waterloo

Minicomputers Portability
10. appendix: Absolute loader for the NOVA computer

The following NOVA program will read the output of ULD from a
teletype and load it into memory. The format of the records is
decribed in Section 4. The program dedicates register 1 to
accumulate the sum of bytes, 2 to return input words, and 3 for
subroutine linkage.

3 ABSOLUTE LOADER FOR ULD OUTPUT

.NREL

NIOS TTIL ; START THE INPUT

NEXT: JSR GETBY ; BURN INTFR-RECORD NULLS
MOV 0,0,SNR
JMP NEXT
SUB 1,1 ; ZERO AC1 (BYTE SUM)
JSR GETWD ; GET THE LOAD ADDRESS
STA 0,LOCN ; SAVE FOR STUFFING DATA
JSR GETBY 3 GET BYTE COUNT
MOVR 0,0,SNR 3 CONVERT TO WORD COUNT (START ADDRESS?)
JMP @LOCN ; START THE PROGRAM
STA 0,WDCNT ; ELSE SAVE COUNT

READ: - JSR GETWD ; GET A DATA VORD
STA 0,@LOCN ; STUFF THE DATA WORD
ISZ LOCN ; BUMP LOAD ADDRESS
DSZ WDCNT 3 DECREMENT WORD COUNT (LAST?)
JIMP READ 3 DO IT SOME MORE
STA 1,WDCNT ; SAVE THE SUM OF BYTES
JSR GEIWD ; GET CHECKSUM
LDA 1,WDCNT ; COMPARE THE RESULTS
SUB 0,1,SNR
JMP NEXT 3 GET NEXT RECORD
HALT 3 CHECKSUM ERROR

~ skkk GET A WORD OF DATA *%* :

GETWD: STA 3,RTRN ; SAVE RETURN ADDRES
JSR GETBY ; GET FIRST BYTE
MOVS 0,2 s SWAP HALVES INTO AC2
JSR GETBY 3 GET SECOND BYTE
ADD 2,0 3 STICK BYTES TOGETHER
JMP @RTRN

;%%% GET A BYTE OF DATA #*%
GETBY: SKPDN TTI

JMP —1 ; WAIT FOR COMPLETION
DIAS 0,TTI 3 GET THIS CONE AND START NEXT
ADD 0,1 3 ACCUMULATE BYTE SUM
JMP 0,3 ; RETURN
WDCNT: 0
RTRN: O
LOCN: O
.END

University of Waterloo - 20 - November, 1975

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

