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Abstract

In this paper we explore an analogy between the family B] of
finite/cofinite languages and the family Y, of Tanguages whose syntactic
monoids are J-trivial. It is shown that (a) J-trivial monoids, (b) L-trivial
monoids, (c) R-trivial monoids, and (d} (the recently studied) aperiodic
I-monoids are natural generalizations of the families of syntactic semi-
groups of (a) finite/cofinite languages, (b) definite languages, (c) reverse
definite languages, and (d) generalized definite languages, respectively.

In the case of alphabets of one and two letters, the languages corres-
ponding to aperiodic I-monoids are characterized, illustrating the above-

mentioned analogy explicitly.



1. Introduction

Let A be a finite, non-empty alphabet and A" the free monoid
generated by A, with unit element 1. For any family X of languages over A
(i.e. subsets of A¥) let XM be the smallest family of languages over A
containing Xu {1} and closed under concatenation. Similarly Tet XB be
the smallest family containing X and closed under finite unions and
complementation with respect to A¥. Thus XM and XB are the monoid and Boolean
algebra (respectively) generated by X.

Define L = {{a}|a € A}, W = IM, F = {L < A*|L is finite} and
¢ ={L c A*|L ¢ F}, where L = A™-L. One easily verifies [CO-BR] that
IMB = Fu C. Let 8] be the family Fu C = LMB.

One can generalize B, as follows. Let L = ij{a+|a e A}; let
W= LM Tet Foo={L < A*|L is a finite union of languages in Wt
and let C@ = {L|[ € F@}. Again it can be shown that L@yB = F®Ll Co [BRZ]
Furthermore, if card A (the cardinality of A) is < 2, the family L MB
coincides with the family Yq of languages over A whose syntactic monoids
are J-trivial,

The analogy between 81 = [MB and Yq = LQMB for a two-letters

alphabet is generalized in this paper.



2. Syntactic Semigroups and Monoids

For L < A* the syntactic congruence = is defined by x =y iff

for all u,v € A*,

Uxv € L < uyv ¢ L.

The quotient monoid ML é=A*/EL is called the syntactic monoid of L.

With each syntactic monoid My we associate the syntactic morphism

pL:A* > ML; this is the natural morphism of A" onto ML that assigns to each
word in A* its syntactic congruence cliass. For brevity we will say that
"ML is a monoid over A with morphism uL".

- The syntactic semigroup SL of L is the quotient semigroup

S, A A+/EL' For certain purposes it is necessary to use SL rather than
ML" The basic difference is that, if SL has a unit element 15, then there
exists a non-empty word x such that Xy = 15. This information is not avail-
able in ML’ since one always has 1uL = 1M' When discussing properties of
languages that are reflected in syntactic semigroups but not in syntactic
monoids, we assume that each language is a subset of A+, and that complementa-
tion is with respect to A" and not A%,

For terminology and notation not defined in this paper refer to

[CL-PR].



3. Generalized Definite Languages

Generalized definite languages were introduced in [GIN] and the
characterization of their syntactic semigroups was found by several authors
[BR-SI,PER,ZAL]. In this section we provide a brief summary of these
results.

Definition 1 Let X c A",

(a) X is finite/cofinite iff either X ¢ F or X e F.

(b) X is definite iff X = Eu A"F, for some E,F ¢ F.

(c) X is reverse definite iff X = Eu FA*, for some E,F ¢ F.
(d) X is generalized definite iff X = Eu y GiA*Hi’ for some
iel

Eef and Gi’Hi e F for all i € I, where I is a finite index

set,

These languages are related to certain congruences about to be
defined. Denote the length of a word w « A* by |w|. For n = 0 define
fn(w) as follows: If |w] < n then fn(w) = w; otherwise fn(w) is the
prefix of length n of w. Similarly, t (w) =w if w < n, and tn(w) is the

n
suffix of length n of w otherwise. Note that fo(w)

tO(w) = 1 for all

WEA*.
Definition 2  For w,w' ¢ A+, n =0 define:
(a) Wo- W' iff (1) w=w' if |w] < n.

n
(i) |w'l =z n if [w| = n.

(b) W W iff tn(w) tn(w').

fn(w').

(c) W W' iff fn(w)

(d) W w! iffwe w'oand wo w.



Each of these four relations {s a congruence of finite index
+
on A .

Definition 3 Define the families B], BZL’ BZR and 82 as follows:

(a) By=FucC.

(b) By = (F°u CF u C)B.
(c)  Byg = (FFuFC ucCB.
(@) 8, = (FuQ)s.

The three definitions above are related in the following theorems.

In all cases X c A+, and S is its syntactic semigroup.

Theorem L A R The following are equivalent:

(x1) X is finite/cofinite.

(x2) X is a union of congruence classes of 0 for some n = 0,
(X3) X e Bq.

(s1) S is finite, and for all e = e® ¢ S, eS v Se = e.

(Every idempotent is a zero, i.e. there is only one idempotent e = 0.

Theorem L (respective]y R) The following are equivalent:

(x1) X is definite (respectively reverse definite).

(X2) X is a union of congruence classes of “n (respectively +n) for
some n 2 0,

(X3) X e By (respectively BZR)'

(S1) S is finite, and for all e = e® ¢ S, Se = e (respectively e$ = e).

(Every idempotent is a right (respectively left) zero.)



Theorem L v R The following are equivalent:

(x1)
(x2)
- (x3)
(s1)

X 1s generalized definite.

X 1s a union of congruence classes of e for some n = 0,
XEBZ.

S is finite, and for all e = e2 € S, eS nSe = eSe = e,

(Every idempotent is a "middle zero".)

The proofs of these theorems can be found in [BR-SI,PER,ZAL]J.

Also a comprehensive discussion of these problems is given in [EIL].



4. The Family Yy and J-trivial Monoids

Define the shuffle operator [ as follows. For w = aq...a, € A,

[w A A*a]A*az...anA*. Further, let [W = {[w]|w ¢ A*} and let Y A ([w)B.

This family of languages was studied in [SIM1,SIM2].

Forn =0, ww' ¢ A*, define w ~n w!' iffwe [x <=w'e [x,
for all x « A such that x| <n. One easily verifies that ~, 1s a
congruence of finite index on A",

A monoid M is J-trivial iff MoM = Mm'M implies m = m' for all
m,m' € M. The correspondence between Y1 and J-trivial monoids was established
by Simon as in the theorem below, except for the observation that (M1) is
equivalent to (M2) which is our contribution.

For any monoid M and m < M define P A {m'|m e Mn'M}, and M_A P”.
We can view Pm as the "alphabet" of m in M, i.e. the set of all elements of M
with which m "can be written". Note that Pm is "prime" in the sense of
Schiitzenberger [SCH2]1, i.e. that mafy € Pm implies My, & Pm.

Below X < A* is a language and M is its syntactic monoid.

Theorem L A R (Simon) The following are equivalent:

(X2) X is a union of congruence classes of ~,» for some n = 0,
(X3) X ey
(MT) M is finite, and for all e = e2 e M, eMe u Me = e.

(Every idempotent is a "local zero", over its "alphabet" Pe.)

(M2) M is finite and J-trivial.

The equivalence of (M1) and (M2) will become evident in the next

section.



5. L-trivial and R-trivial monoids

A monoid M is L-trivial (respectively R-trivial) iff Mm = Mm'

(respectively mM = m'M) implies m = m', for all m,m' ¢ M.

Theorem L (respectively R} The following are equivalent.

(M1) M is finite and for all e = e? M, Mee = e (respectively eM, = e).
(Every idempotent is a "local right (respectively left) zero".)

(M2) M is finite and L-trivial (respectively R-trivial).

Proof (M1) = (M2) Suppose Mm = Mm'. Then m = u'm' and m' = um for

some u,u’ ¢ M. Thus m = (u'u)m = (u'w)™m for all n = 1. Since M is
finite we can choose n so that (u'u)" A e is an idempotent. Now m = em
and m' = uem. Clearly, u e M, and by (M1) ue = e. Thus m' = m and (M1)
implies (M2). |

(M2) => (M1) Conversely, we first show that (M2) implies (M2)':

(M2)' M is finite and mymyny = mq implies momy = msy, for all

My My ,Mg € M.
If m1m2m3.= my then Mm3 = Mm1m2m3 c Mmzms. Since Mm2m3 c Mm3

we have Mmomgy = M. Since M is L-trivial, m,m, = and (M2) implies (M2)'.

m3
Finally, let e = e? e Mand Tet me M . Ifm=1 then le = .

o’ mi € Pe,
UssVy € M for each 1. Now e = ee = (uimi)vie. By (M2)',e = vie, and now

e = upme. Again by (M2)' we conclude e = m.e. Since this is true for

allmg, 1<1<p,we find e = fly. . M@ = me. Hence (M2)' implies (M1).

Otherwise, m = My...m 1 <1<p. Hencee-= Usmsvs for some

This concludes the proof of Theorem L. Theorem R follows by left-

right duality. t



Since M is J-trivial iff it is L-trivial and R-trivial, the

equivalence of (M1) and (M2) in Theorem L a R is now obvious.
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6. Aperiodic I-monoids

The family of I-monoids was recently studied and characterized

by Schiitzenberger [SCH2]. For a given monoid M let = be the smallest
congruence such that m = m2 and mm' = m'm for all m,m' « M, A monoid
is an I-monoid iff for all idempotents e,f e M, e = f implies MeM = MfM.
M is aperiodic [SCH1,EIL] 1iff each subgroup of M is trivial, i.e. consists
of one element only. M is H-trivial iff mM = m'M and Mm = Mn' implies m = m'.
It is well known that for finite M, M is aperijodic iff it is H-trivial
[SCH1,EIL].

Following [SCH2], for D < M we define D“]D = {me M[Dm n D # o}.

Lemma 1 (Schiitzenberger)
Let D be a non-empty subset of a monoid M. Then the following two
conditions are equivalent:
(a) D is the minimum ideal of a prime submonoid of M.
(b) D is a J-class and a semigroup.
These conditions imply:

1

(c) PAD'D is the prime submonoid whose minimum ideal is D.

Theorem 1 (Schiitzenberger)

Let M be a finite monoid. Then M is an I-monoid 1ff the J-class
of each idempotent in M is a semigroup.

We apply these results below.
Lemma 2 Let M be a finite monold, e = e2 e M and let D be the J-class of e.

If D is a semigroup then D is the minimum ideal of Mg -
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1 1

Proof We will first prove that D°'D = Po. If me D''D then there exist

dm and d in D such that dmm = d, Since e,d ¢ D, we have e ¢ MdM = MdmmM c MmM.

Hence m « P, and D']D < Py. Conversely, let m ¢ Pe- Then e = umv = eumy

for some u,v e Pe' Thus eu,eum ¢ D. Now (eum) = (eu)m shows that Dm n D # ¢

and m e D'1D. Thus Pe c D'1

D and our claim follows. Since D is a Jf-class

1

and a semigroup, D is the minimum ideal of D" D by Lemma 1. Since D™D is

. -1, pk
a monoid, we have D" 'D = Pe = Pe = Me. O

Theorem L v R The following are equivalent:

ee = eMee = e,

(Every idempotent is a "local middle zero".)

(M1) M is finite and for all e = e2 e M, eMe nM

(M2) M is a finite aperiodic I-monoid.

Proof Let e = e2 e M and let D be the J-class of e. Note that me D

implies Mm = Me. If mym'" € D, then e = UMy, M = V.ev,, e = uim'ué,

m' = vievé, for some u1,u2,v],v2,ui,ué,vi,vé € Me. Now
e = ee = u]muzuim'ué==u]v}e(vzuzuivi)evéué
= u]v1e(v2vi)evéué = u]mm'ué,

if (M1) holds. Hence e ¢ Mum'M and mm' ¢ D, showing that D is a semigroup.

By Theorem 1, M is an I-monoid. Suppose G is a subgroup of M with identity e.
For every g « G, 99“1 = e showing that g € D. However, each element m of D
.. . 2

is idempotent since m~ = v,ev,viev, = v4ev, =m, by (M1). Hence

92 =g =ge = ggg“1 = gg'1 = e and M is aperiodic. Altogether (M1)

implies (M2}.
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Conversely, let e = e2 e M and let D be the J-class of e.
By Theorem 1, D {s a semigroup. By Lemma 2, D is the minimum ideal of Mg -
Thus D = MeeM . Let m e Me; then eme ¢ MeeMy = D. Since M is finite, D
is a D-class of Me and the elements e and eme are in the same L-class and
in the same R-class contained in D, i.e. e and eme are in the same H-class.
Since M is aperiodic, i.e. H-trjvial, e = eme. Hence e = eMee, and (M2)

implies (M1). 0

The analogy between Section 3 and Sections 4, 5, 6 is not
quite complete, since we lack the analogous results concerning the languages
corresponding to these monoids. These results can be obtained for an

alphabet of two letters, as is shown next.
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7. The Two-Letter Case

As has been mentioned before, if card A < 2, the family Yy
coincides with F$ U C09 = L@MB, the family of run languages discussed in

[BRZ]. We now explore this coincidence further.

vV

Each w € A+ can be written in the form w = Wye. W5 P 2 1, where

p’
y

Wi = a5 53¢ A,-n.i z1for1=<1<p,and a; # 341 for T < i < p-1.
We call this the run form of w and [jw|| = p is the run length of w.
Define |I1]] = 0.

For w « A* define wo &4 {a ¢ Alw = xax' for some x,x' e A*},

Definition 4 Let w,w' ¢ A" and n = 1. We define w &

Case 1: wl| = 1.
(a) lw| <n. Theh W ow! 1ff»w =w',
(b) w| = n. Thenw -, W' iff wa = w'o and |w'| = n,
Case 2:  [jw| > 1.
(a) iwll < n. Thenw -~ w' iff [w = |w'l| and, if w = Wyee W
w' = wi...wﬁ are the run forms of w and w', then Wi w%,
1 <1 <p.
(b) lwi| > n, Then w i w' iff |w'll > n.

One verifies that 4 is a congruence relation of finite index

on A*. Note that for card A <2, w @ w' implies wa = w's. This follows

n
because |w|| > 1 implies wa = A, This is obviously false for card A > 2.

Forwe A, n=1, define fo(W) as follows. If | < n then

f@n(w) w. Otherwise, let wy...w  be the run form of w, p > n; then

p

f@n(w) = Wy W Similarly, t_(w) = w if |w]| < n, and t&n(w) =W (1)t

@n
otherwise. For all n = 1, define f@n(1) = t@n(i) =1,
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%*

Definition 5 For ww' € A*, n = 1, define:

(a) W w' as in Def.4,

(b) W w' iff t@n(w) & t@n(w').
(c) W e w' iff f&n(w) @ f@n(wl)'

(d) W w' iff w “o- W' oand w @ W',

Again, one verifies that each of these relations is a congruence
of finite index on A*.
From here on we restrict our attention to the case card A < 2.

Definition 6 Define the families B@ﬂ, BSQL’ B@QR and B@Q:

(a) Bd)-l = FbB u C@ﬁ .
(b) Q&L=(F®u CoFe U qgs.

(c) Bupr™ (F® U FCp U C@)B.

(d) Bap = (Fgu c@)ZB.

We now state theorems analogous to Theorems L A R, L, R and L v R,
for card A < 2. For conciseness we only prove the most general case.

Theorem (L v R), For card A < 2, the following are equivalent:

(X1) X is egeneralized definite, i.e. X = E u 1%& GiA*Hi’ for some
E’Gi’Hi € F® and a finite index set I.
(x2) X is a union of congruence classes of “h for some n 2 1,

(x3) X e 8@2'

(M1) M is finite and for all e = e® ¢ M, eM_ o Me = eMe = e.
(M2) M is a finite aperiodic I-monoid.

We first prove some preliminary results.
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Lemma 3 Let M be a finite aperiodic I-monoid over A with morphism y.

1
>

Let n = card M and let x ¢ A*, x = Xq..Xps P 2 M, be such that xjo = ...

Then m A xu is an idempotent in the minimum ideal of M.

Proof Let x5 = 1. The elements XO“’(XOX1)“”"’(XO" )u cannot all be

X
P
distinct since p = card M. Hence there exist i, 0 < i <p, and j, i <J =p

such that (XO"'Xi)” = (xo...xj)u. Let m, = (XO"'xi)“’ my = (x1+1...x.)u

J
- k . .
and mg = (xj+1...xp)u. Let k be such that e A m, is an idempotent. Then
= = K = = i = = =
My S mgmy = mymy = mye and m = m.em,. Since (x1+}...xj)a A, M, Mm2 =M,
because M is generated by {au|a ¢ A}. Now m2 = M emsmiems = m.emg = m
by (M1) of Theorem L v R. By Theorem 1, the J-class D of e is a semigroup.

By Lemma 2,D is the minimum ideal of M. a

Corollary Let M be as in Lemma 3 and let card A = 2. Then x ¢ A,

Ixf =2 2card M = 2n implies m A xp is an idempotent in the minimum ideal of M.

Proof We can write x in 1ts run form Xl"‘xp’

Wi = Xoi _1%o4s 1T <1 <n-1 and Wy = xzn_]x2n...xp. Then the decomposition

p=2n. Let

X = Wi, satisfies the conditions of Lemma 3. 0

Proposition 1 Let n > 2 and let w « A* have run length [jw| < n.

Tan+@hw’hmﬁesw—$-wh

n
Proof If |lwl] < n then f&n(w) = w. Noww+# w' implies f@n(w')-@—n W
and Hf&n(w')ﬂ = [w]l < n. It follows that [w']] = Hf@n(w’)n and f&n(w') =w',

Thus w 0 w'. 0
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Proposition 2 Let w ¢ A*, wa = B, x e B*, n=1. Then whxuw" & W',

Proof This is trivial if |w|l = 0. If {w] = 1, then w = a' for some

. n n . . .
aecAhA,i21andw" =a"a", where n+m = ni = n. The claim is easily

verified. For |w| > 1, we have Jw"] > n and £ (w") = f_ (w"xw") for all
“n @n

x ¢ A*. Similarly, t@n(wn) = t&n(wnan), and the claim follows. 0

Proof of Theorem (L v R),
(M1) <=>(M2) follows by Theorem L v R
(M2) implies (X2)

We want to show that if M is a finite aperiodic I-monoid, then

there exists an n = 1 such that w AR w' implies wp = w'y.

(1) Let n = 2card M. For |wl| < n, w W' implies w h w',
by Proposition 1,
(2) For |||

A

1, w < w' implies that either w = w' (and wy = w'u)
or [w| >n, |w'l >nandwo = w'a =aeA. Since M is aperiodic and n = 2card

n+ .
we must have a"y = a" 1y, Hence w - W' implies wy = w'y.

A

(3) Now suppose 1 < |lw]] < n. Then w @ W' iffw = Wy W

p’

V<1 <p<n. Foreach i, w.a=wioec A,

By (2) wyn = w%u and wu = (w]u)...(wpu) = (w{u)...(wéu) = w'u. Again

[ J— t 1 . ; !
W w1...wp and W ~ﬁ+n w],

W w!oimplies wy = w'a.

Altogether we have shown that |lwi] < n and w o w' implies wu = w'y.

(4) If [lwl = n, then w <= w' implies f_(w) -8 f%n(w'). Then

IF p (W) = Qe = noand, by (3), (F (Wi = (F (W), Let wic = m,
w'u = m', (fﬁn(w))u g:e],A(t@n(w))u Ae,. By the corollary to Lemma 3,
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mand m' are idempotents in the minimum ideal D of M as are e, and e,.
Further m = e u = ve, for some u,v ¢ M and m = e me,. Similarly, m' = e]m'ez.
Thus mm' = (e1me2e])m'e2 = e]m’e2 =m' by (M1) and also mm' = elm(eze}m‘ez) =

eme, = m, Hence m = m', 0

(X2) implies (M1)

Let X be a union of congruence classes of “@, let M be the

2 i

syntactic monoid of X and e = e M. If ey” =1 then M, = 1 and (M1) holds.

Hence assume Me = B*J for some non-empty B < A. Choose w ¢ A* so that wo = B
and wy = e, This can always be done since e is an idempotent. By Proposition

W i w" for alln = 1, x e B, By (X2) w™u = (wu) (xu) (W"n) or e

e{xu)e

Since for each m ¢ Me there exists x « B*-such that xu = m, we have eme = e
and eMee = e holds. Since @ is of finite index, M is finite.

We have now proved the equivalence of (X2), (M1} and (M2).
The proof of the equivalence of (X1), (X2) and (X3) is a straightforward

extension of the corresponding proof in Theorem L v R, d|
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