RIEMANN'S HYPOTHESIS AND TESTS FOR PRIMALITY
by |
, Gary L. Miller + * I
Research Report CS-75-27

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

October 1975

+Research sponsored by NSF GJ-35604X1 -

*
A preliminary version of this paper was presented at the 7th ACM
symposium on the theory of computing.

Ph.D. Dissertation submitted to University of California, Berkeley.

(abbreviated title)
TESTS FOR PRIMALITY

Department of Computer Science

University of Waterloo

ABSTRACT

In this paper we present two algorithms for testing primality
of an integer. The first algorithm runs in 0(n1/7) steps; while, the
second runs in 0(1og4n) step but assumes the Extended Reimann Hypothesis.
We also show that a class of functions which includes the Euler phi

function are computationally equivalent to factoring integers.

INTRODUCTION

Two classic computational problems are finding efficient algo-
rithms for: 1) testing primality (deciding whether an integer is prime
or composite), 2) factoring integers. The best upper bounds on the number
of steps needed by algorithms for 1) or 2) are due to Pollard {14].

Pollard proves an upper bound of O(n(1/8)+s) steps for testing primality
and an upper bound of 9(n(1/4+€) steps for factoring, where ¢ is any
constant > 0. We give an algorithm which tests primality and runs in
O(n]/7) steps. By slightly modifying this algorithm and assuming the
Extended Riemann Hypothesis (ERH) we produce an a1gorifhm which tests
primality and runs in 0(Iog4n) steps. Thus we show primality is testable
in time polynomial in the length of the binary representation of n.

Using the terminology of Cook [6] and Karp [9], we say primality is
testable in polynomial time on the ERH.

One of the values of having a fast algorithm for factoring integers
is that then many other computational problems could be done quickly. For
example, the Euler phi function can obviously be computed quickiy given
the prime factorization of n.

As a by-product of the work on tests for primality we show that in
fact the converse is true, assuming the ERH. Thus, computing the Euler phi
function is computationally equivalent to factoring, assuming the ERH.

In the last section we discuss the relationship between recognition
probTems and computational problems. We show that a class of functions which
includes prime factorization and the Euler phi function has the property
that the graph of each function in this class is recognizable in polynomial

time on the ERH.

Tests for Primality

Our main goal in this section is Theorem 2 but first we make precise

the notion of a test for primality in O{f(n)) steps.

Definition. We say an algorithm tests primality in 0(f(n)) stéps

if there exists a deterministic Turing machine which implements this
algorithm, and this machine correctly indicates whether n is prime or

composite in less than Kef(n) steps, for some constant K.
Using this definition we can state Theorem 1:

Theorem 1. There exists an algorithm which tests primaiity in

O(n']34) steps.

If we then assume the Extended Riemann Hypothesis (see Appendix),
Theorem 1 can be vastly improﬁed. Since the running time is small it
seems more convenient to state the running time in terms of the length
of the binary rebresentation. Thus, let lgl_ denote the length of the

binary representation of n. Using this notation the main theorem is:

Theorem 2 (ERH). There exists an algorithm which tests primality

in’ 0(|n|41og Tog|n|) steps.

The difficult step in the proof of the above two theorems is in
demonstrating that there is a "small" quadratic nonresidue. In
Theorem 1, we appeal to the work of Burgess who uses Weil's proof of
‘Riemann Hypothesis over finite fields, while in Theorem 2 we use Ankeny's
reduction of the size of the first quadratic nonresidue to the Extended

Riemann Hypothesis.

Throughout the paper we will use the following conventions or nota-

tions:

Notation. We will assume that n, the number to be factored or
tested for primality, is odd, for the even case easily can be reduced
to the odd case. We let p, q vary over odd primes, and (a,b) denote
the greatest common divisor of a and b. The number of 2's in n will

be denoted by #z(n), ie., #Z(n) = max{K: 2K|n},

We will also need the following functions:

v v
Definition. Let n = p]]u-pmm be the prime factorization of the
odd number n. We let "prime factorization" denote the function from

the natural numbers to some fixed appropriate coding of the prime factors

and their exponents. We also consider the following three functions:
v,-1 v -1

i) oln) = p,’ (p1;1)°°-pmm (p.-1) (Euler's o-function),
V- v -1
ii) A(n) = 1cm{p]] (p]-l),...,pmm (pm—T)} (The Carmichael

- a-function),

iii) A'(n) = 1cm{p1-1,...,pm-1}.

Motivation of Proofs

Fermat proved that for p prime
"1 = 1modp if (a,p) =1
Therefore, if for some a, 1< a <n,
A" 1 modn, ‘ (1)

then n must be composite. Now, a" mod n can be computed in

AO(lmlM(Inl)) steps (where M(|n|) denotes the cost of multiplying two

numbers of length |n|) using standard techniques described in [7]. A
possible technique for recognizing composite numbers might be to systema-
tically search for an a satisfying (1). This technique could fail for
composite n for two reasons:

a) There could be composite n which satisfies Fermat's Congruence.

That is,

an—1

1

1 mod n for all {a,n) =1.

b) The first a satisfying (1) could be very large which would
give us an inefficient method,

The rest of this section will be devoted to handling these two
problems. We start by showing that in fact some composite numbers

satisfy Fermat's Congruence.

Theorem (Carmichael [5]). n satisfies Fermat's Congruence if and

only if A(n)|n-1.

For example, the composite number 561 = 3+11-17 is such that
A(n) = 1em(2,10,16) = 80, and 80 divides 560. It follows that

a560 = 1 mod 561 for all natural numbers a.

(a,561) = 1 implies
Thus there are composite numbers which satisfy Fermat's Congruence. At
first these numbers seem more difficult to recognize as composite. Not
only will Y& recognize them as composite, but we will quickly find a
divisor. By what we have done it would seem that the obvious approach
would be to use Fermat's test to recognize composite n such that
A(n){n-1 and some other test for n such that A(n)|n-1. Instead we

shall separate the composite numbers into sets according to whether

A'(n)fn-1 or A'(n)|n-1.

Since the algorithms used in Theorems 1 and 2 are essentially the

same we shall define the following class of algorithms:

Definition of A.. Let f be a computable function on the natural

numbers. We define Af on input n as follows:
| 1) Check if n is a perfect power, i.e. n=m> where s > 2.
If n 1is a perfect power then output "composite" and halt,
2} Carry out steps i)-iii) for each a < f(n). If at any stage
i), ii) or iii) holds output "composite" and halt:
i} aln

i1) a"™' 1 mod n

3) Output "prime" and halt.

Note. Af as defined above is a simplified version of the algorithm
needed to get Theorem 2, Af will give an algorithm for testing primality

in O(lnlslogzlhl) steps.

Before we prove Theorems 1 and 2 we must develop the technical
hardware to deffne f and to show that there is an a g;f(n) which
“works".

We start by considering those composite numbers n which satisfy
A'(n}n-1. In the following lemma we give a characterization of some

of the a's which satisfy A" 3 1 mod n.

Lemma 1. If A'(n)/n-1 then there exist primes p and q so
that:

1} pln, p-1/n-1, qmlp—1, and q"fn-1 for some integer m > 1.

h

2) If a is any qt nonresidue mod p then an'] $ 1 mod n.

h

See the Appendix for the definition of qt nonresidue mod p and

the definition of index of a mod p which we will denote by indpa.

Proof of Lemma 1. Let Gyseers, be the distinct prime divisors

of n. Thus A'{(n) = 1cm{q]-1,...,qn-1}!n-1 which implies qi-lln-l
for some 1i. By setting p =gq, we have pln and p-1fn-1. Since
p-1fn-1, there must exist a prime q and an integer m > 1 so that
q"|p-1 and q"fn-1. Thus p and q satisfy condition 1). We next
show that p, q satisfy condition 2).

Suppose the lemma is false, i.e. a™' = 1 mod n. Since pln we

have

a" 1 = 1 mod p . (2)

: (ind_a){n-1)
Let b be a generator mod p; then by (2) we have b P =

1 mod p. Since b" = 1 mod p ‘implies p-1|m we have

p-]l(indpa)(n-l) . (3)
Now a is a qth nonresidue implies qundpa. Thus
q!indpa and q"|p-1 . (4)
Applying (4) to (3) gives qm[n-l which is a contradiction. a

th

Lemma 1 motivates the definition of the first q nonresidue

mod p.

Definition. Let N(p,q) be the least a so that a is a qth

nonresidue mod p defined only when q|p-1. Using index arguments it

js not hard to show that N(p,q) is prime.

10

Theorem (Ankeny [11) (ERH). N{(p,q) = 0(|p|®)

Using Ankeny's Theorem and Lemma 1 we have that if A'(n)fn-1 then
there exists an a 5'0(|n|2) such that a""! £ 1 mod n,

We now return to a discussion of composite numbers n which have
the property that A'(n)|n-1. Let Apseeesly be the distinct prime
divisors of n; then by the definition of A' we know that #Z(A'(n))
= max(#z‘q]-l),...,#z(qm-l)). Thus for some 1 <1 <m, #,(x'(n)) =
#2(q1—1). We next make a distinction between two types of numbers as

follows:

Definition. Let I FRRRTL be the distinct prime divisors of n.
We say n 1is of type A if for some 1< j <m, #z(k'(n)) > #z(qj-]).
On the other hand, we say n 1is of type B if #z(k'(n)) = #2{q1-1)=---
= #Z(qm"]).

Digressing for a moment to motivate the next three lemmas, suppose
we have a composite number n = pq. Suppose further that we have a

number m so that
m=1modq and m = -1 mod p . (5)

The first of the restrictions in (5) implies gq|m-1 and the second
implies m % 1 mod n. Thus g = (m-1,n). If we could quickly compute
some m satisfying (5), we would quickly know a divisor of n. In
the following lemmas we develop a method for finding m satisfying (5).

We say b has a non-trivial GCD with n if {byn}) #1 or n,

11

Lemma 2A. Let n be a composite number of type A where, say, p
and q|n, and #z(k'(n)) = #2(p~1) > #z(q-l). Assume further that
‘0<a<n is so that (%J = -1 where (%) is the Jacobi symbol
(cf. Appendix),‘then either a or (a)\l(n)/2 mod n) -1 has a nontri-

vial GCD with n.

Proof. Suppose a has a trivial GCD with n. Since 1<a<n
it must be that (a,n) = 1. Since gq-1]a'(n) and #z(q-1) < #Z(A'(n)),
we have q-lIA—%nla thus

R q . (1)

| » o .
Since (;A (n)/%) = 1 mod p then aA (n)/2 = +#1 mod p. Suppose

A (n)/2 - = 1 mod p then p- l|{1nd a)(A (n)) which implies that indpa
is even. On the other hand, (5) = -1 implies indpa is odd (see

Appendix). So

A (n)/2 -1 mod p . (2)

A'(n)/2

By (1), gql(a mod n) -1. By (2), p,{'(a)‘l(n)/2 mod n) -1 since

p is an odd prime. Thus ((a}‘i(n)/2 mod n) -1, n) # 1,n. O

Lemma 2B. Let n be a composite number with at least two distinct
prime divisors, say P and q. Further suppose n is of type B and
x'(n)/2

1<a<n is so that (é%J.= -1. Then, either a or (a mod n) -1

has a nontrivial divisor with n.

Proof. As in the proof of Lemma 2A we assume that a has a trivial
GCD with n, thus (a,n) = 1. Without loss of generality we assume

that (%) = -1 and (%J = 1. Using techniques similar to above we

12

show aA (n)/2 = -1 mod p and aA (n)/2 = 1 mod q. The rest of the

argument follows from the above proof. [

Lemma 3. If pln, A'(n)|m, and k= #2[XT?HTJ*'] then

A(n)
2 2
a = a mod p.

Proof. Since (M =1 od p it follows that a* (M/2

x'(n)/2
k

= 1 mod p, since by our
choice of k and the fact that A'(n)|{m we have A é") J%.

. 2
-1 mod p we note that:

= *1 mod p.

- We consider the two possible values of a separately:

1) 16 o (M/2 n/2

=1 mod p then a

2) If, on the other hand, a* (/2

m
m A'(n) A (n)2X! m
k 2 t k"‘-i
al = (a) = (-])A (n)2 mod p .
| k-1 my 2K
Since m/x* (n}2 is odd, a = -1 mod p.

Using Lemmas 2A and 3 we see that: if n is a'type A composite

N(p,2) then either aln or

il

number, A'(n)|n-1, and a
((a(n'])/2 mod n) -1, n) # 1,n. For type B numbers we will need the

following definition.

Definition. Let N(pq) be the minimum a so that (g%) 1
where (g%) is the Jacobi symbol and N{pg) is defined only when
p # q. Note again that N(pq) is prime.

Theorem {Ankeny [1]) (ERH}. N(pq) = 0(|pq|2)

Ankeny doesn't actually state the case N{pg) but it follows

without any change in his argument. We only need to use the stronger

13

form of Selberg's Theorem 6 [16] referred to as Lemma 2(c) in [1]. Also

see [12] for the statement and proof of Ankeny's theorem,

Proof of Theorem 2 (weak form). By Theorems of Ankeny we can pick

an integer ¢ > 1 so that

N(p,q) iC!pI2 and N(pq) iCIpq!2 .

Consider A where f(n) = clnl2

Analysis of Running Time

1) Af must first check to see if ﬁ is a perfect power which
will take O(|n|%) steps. We leave it to the reader to verify this
bound.

2) A, must check i), ii) and iii) for f(n) different a's.

B

Check i) takes say 0(|n|2) steps.

Check ii) takes O(|n|M(|n])) steps.

Check iii) takes 0((|n|M(|n|)-+|n|2)|n|) steps since GCD can be
computed in 0(|n|2) steps, see [7], and 1 < k < |n|. Now multipli-
cation takes at least |n| steps thus check ii) takes at most
o(jn|?M(In})) steps.

So Ac runs in 0(|n]4M(|nl)) steps. If we use the Schonhage-
Strassen algorithm ([18]) for multiplying binary numbers, M(|n|) =

0(fn{log|n|log Tog|n|} and we have O(Inlslog[nllog Tog|n]) steps.

Proof of Correctness of Af. If n dis prime Af will indicate

correctly that n is prime so we need only show that Af recognizes
composite n. If n s composite n it will fall into one of the

following three cases.

14

1) n dis a prime power.

2) A(n)fn-1

3) A'(n)|n-1 and n ds not a prime power.

Case 1. If n is a prime power then n is a perfect power and
in this case Af will indicate that Af is composite.

Case 2. If A'(n){n-1 then by Lemma 1 we have a p and g such
that if a = N(p,q) then a"! % 1 mod n. Thus we need only note that
N(p,q) < f(n), which follows by our choice of f.

Case 3. If A'(n){n-1 and n is not a prime power:

A} Suppose n is of type A then by Lemmas 2A and 3 we can choose
p and k (k< #,(n-1) such that if a = N(p,2) then either aln or
((a(“‘”/2k mod n)-1, n) # T,n. Since N(p,2) < f(n), n will be
recognized as composite by either step i) or ii).

B) Suppose n is of type B. Then by Lemmas 2B and 3 and the
assumption that n is not a perfect ﬁower, we can choose p, q and
k 5_#2(n-1) so that if a = N(pq) then either ajn or
((a("'”/2k mod n)-1, n) # 1,n. Since N(pqg) < f(n), A will indicate

that n is composite. O
To prove Theorem 1 we need the following results of Burgess.

Theorem (Burgess) [2,3,5].

op(VARE) any e s

]/4@)4’6)

N(p.q)
N(pq)

{]

0((pq) any € >0

Proof of Theorem 1. By the Theorem of Burgess we can pick an

integer ¢ > 1 so that

M) < /7T and N(pg) < clpg) /AT

15

‘ 1

Set & = 4/2.71 . Consider Ag where f(n) = [cniiﬁi 5.rtn‘]33]. Since
Af runs in O(n‘]34)‘ steps we need only show that Af tests primality.
If n is prime then Af will indicate that n is prime.

Suppose that n is composite. Then n must lie in at Teast one
of the following four cases.

Case 1. n 1is a prime power.

§g§g_g. n has a divisor < f(n).

Case 3. A'(n)/n-1, n has no divisor < f(n).

By Lemma 1 there exist primes p, q such that if a = N(p,gq) then

a"! 3 1 mod n. So we need only show that a = N(p,q) < f(n). We have
£
a < [ep'/" (5)

from above. Since n is composite and for all a < f(n) implies af n,

we have

P FRy -+ e pgf]gnu(“”] . (6)

Substituting (6) into (5) we have
a i'fn1/(2+1}] < f(n) since ¢> 1.

Case 4. A'(n)|n-1 and n has no divisor < f(n) and n is
not a prime power.

A} Suppose n is of type A. Then as in Case 3A of Theorem 1
we need only show a = N(p,2) < f(n) where p|n. Since in this case
(5) and (6) hold we get a < f(n). |

B) Suppose n is of type B. Since n is not a prime power
n has at least two distinct prime divisors, say p, q. We need to

show that N(pg) < f(n) which will follow if we show pq 5_?%%7n

16

Claim. n # pq (see [5]).

Suppose n = pq where p < q. Now g-1|pg-1, since X'(n)|n-1.
But this implies q-llp-]. Hence q < p which contradicts the assump-
tion that p < q.

By claim n = pqr where r # 1. Since r|n we have r > f(n).

Thus pq < 'f—(nﬁy : O

Modification to Algorithm Af

First note that a in step 2) of A, need not vary over all

£
numbers < f(n) but only prime numbers < f(n). Since the number of
prime < f(n) is O(TEEL%%ETJ’ by the prime number theorem, we have
the upper. bound for Theorem 2 of 0([n15log login|) steps.

We amend Af as follows:

1) If n is perfect power output composite.

2) Compute PyseeeaPy where Ps is the i-th prime number and
m is so that p_ < f(n) < Pt Compute Q, S so that n-1 = QZS
and Q is odd. Let i=1 and ﬁroceed to ii) (let a denote Ps
throughout).

i) If i<m set i to i+l, If i =m then output "prime"
and hait.

ii) If a|n then output "composite" and halt,

S
Compute aQ mod n, aQZ mod N, ..., an mod n.
S

qi1) If an mod n # 1 then output “"composite" and halt.

iv) If aQ mod n =1 go to i).
q2?

Set J = max{(J: a mod n # 1).

aQZJ

v) If mod n = n-1 go to i).

vi) Output “composite" and halt.

17

The running time A, is 0(|n!4log Tog|n}). To show that Ap tests

primality we need only reconsider Case 3:

- Case 3. A'(n)|n-1 and n 1is not a prime power.
A) Suppose n is of type A with #Z(A'(n)) = #Z(p-1) > #z(q-l)
and p,q|n. Let a = N{(p,2) (tﬁus a is prime). Thus we need only

show that either step ii), iii) or vi) outputs "composite" for this a.
n-1

So suppose afn and a 1 mod n. We show that Af reaches step vi).

If as = 1mod p then 2|S, since (%J = -1 and p 1is odd. Since

p|n we have aQ $ 1 mod n. Thus Af will reach step v). By Lemmas 2A

P

Q2 = 1 mod q and
02 g2 g2

a = -1 mod p. Suppose a = -Tmod n then a £ -1 mod p and q.

k
Q2" - a

and 3, we know there exists a k so that a

1

@ - mod p implies k = J, On the other hand,
J
Q2

Now a
k
Q2 = 1mod g and a

: QZJ)
diction a % -1 mod n, Hence Af reaches step vi).

th

a -1 mod q implies Kk > J. Thus by contra-

B) Suppose n 1is of type B. The proof in this case follows

the argument in Case A,

18

Relative Computationa? Complexity

In this section we discuss the relative computational complexity
of certain functions from number theory,

To begin, consider the following example: The Euler phi function,
¢(n), 1is defined to equal the number of integers between 1 and n
which are relatively prime to n. Computing ¢(n) via this definition,
checking each number less than n and seeing if it is relatively prime
to n, requires at least n steps. Thus this method requires an
exponential number of steps in terms of |n|. Now given the prime
factorization of n say p:]~ g:“ we can evaluate ¢(n) via the
product

v.-1 v -1

¢{n) = 91] (py=1) = " (py-1)

in at most 1092n multiplications, thus, in time at most a polynomial
in terms of |n|. We can restate the product formula from a complexity
point of view as: If the prime factorization of n could be computed
"quickly" then ¢(n) could be computed "quickly". We now proceed to
formalize the above statement and prove its converse assuming the ERH,
"Definitions for reducibility amongst recognition problems (sets)
have been introduced by many authors, see in particular Cook [6] and
Karp [9]. Since we are primarily concerned with functions, we intro-

duce the notation of functional reducibility.

Definition. Given functions f and g we say that f 1is poly-

nomial time reducible to g denoted f < g, if there exists a Turing

p
machine which on inputs n and g{n) computes f(n) in O(Inlk)

steps for some constant k. We say f 1is polynomial time equivalent

19

to g if f<g and g < f and denote this relation by f ; g.
P P

The above definition of polynomial time reducible is very strong.
It says that if two functions are polynomial time equivalent then upper
(Tower) bounds on their running time differ by at most an additive
.polynomial uniformly. In a later example we shall make a definition
of polynomial time reducibility which need only preserve the asymptotic
running times.

We now formalize our statement about Euler's function.

Lemma 4. The functions ¢, A, A' are all polynomial time reducible

to "prime factorization", i.e., ¢, A, A' < p ‘'prime factorization".

Proof. ¢ < p '"prime factorization" follows by our discussion
in the introduction of this section. To show that X, X' are reducible
to prime factorization we note the following two facts about the LCM
function: |

1) lem(a,b) = a-b/(a,b) |

2} lem(a,b,c) = lem{1em(a,b),c) ' .

By Lemma 4 we have that if the Euler ¢ function cannot be computed
in polynomial time then neither can we factor integers in polynomial
time. But it may be the case that computing ¢{n) can be done quickly
while factoring is difficult. The next lemma shows that all functions
from a certain class which includes ¢ are no easier to compute fhan

prime factorization, assuming the ERH.

Lemma 5 (ERH). Let g be any function such that
1) a'(n)lg{n)

20

2) lg(n)] = O(In]k) for some constant K.

Then "prime factorization" < g.
: p

Proof. Consider the following procedure on n and m.
1) Check if n 1is a perfect power,
2). Carry out steps i) and ii) for each a < f(n) (where f is
as in the proof of Theorem 1):
i) aln
k
ii) ((am/2 mod n)-1, n) # 1 for some a < k 5_#2(m).
If A'(n)lm then we know by arguments similar to Case 3 of the
proof of Theorem 2 that this procedure will produce a divisor of n
if n is composite. If we set m = g(n) then in 0(lg(n)l]n|3M(|ni))
steps we will either know that n is prime or that n' dis a divisor
of n, for some n'. If in the above procedure we replace n by n'
then A'(n')]g(n) since n'|n implies A'(n')}{r'(n). Thus in
0(|g(n)||n'|3M(n')) steps we will either know n' is prime or n"
is a factor of n'. Iterating this procedure at most |n| times we
will have alil prime factors of n, Thus, we get a prime factorization
of n in 0(|g(n){|nl™M(In])) steps. Since |g(n)| = 0(|n}¥) it
runs in 0(ln|k+4M(|n|)) steps. O

Thus we have the following theorem.

Theorem 3 (ERH). The functions ¢, A, A' and "prime factorization"

are all polynomial time equivalent, i.e. "prime factorization" = ¢ S A

P
Another problem related to factoring numbers is finding the period
of a rational number. We know that every rational number is periodic

in any base. Thus the function "Period"(a,b) = the minimum period of

21

1/a base b is well defined. It does not seem possible to prove equiva-
lence between “period" and "prime factorization" using the previous
definition of reducibility. Thus we introduce a weaker definition of

reducibility similar to Turing reducibility from recursion theory.

Definition. Given functions f and g we say that f 1is polynomial

time Turing reducible to g denoted f 5; g if there exists a

Turing machine with the following properties:
1} The machine has a distinguished tape on which it can call for
values of g, where the cost of calling for g(m) is |m]+|g(n)| steps.
2) The machine computes f(n) in O(InIK) steps for some

constant K.
T

We say f and g are polynomial time Turing equivalent if f 5p g
T T
and < f denoted by f = .
9 *p Y p g A

In Lenma 5 we made certain restrictions on the growth of the function
g. MWe required that the length of g grow by at most a polynomial in
terms of the length of its argument. We shall say that such a function

has syntactic polynomial growth.

Lemma 6, Over the class of functions with syntactic polynomial

. T T . .
th the relations <, =, < and =x_ have the following properties:
growth the relations <,, x,, <, P 9P PT
1} < and- <T are transitive relations. Thus =_ and =
mY - p p
are equivalence relations.
. . T
2 f < lies f < g.
) 259 imp < 9
3) The class of functions computabie in polynomial time forms
an equivalence class mod :p and. mod :;.

Using our second definition of reducibility we can now prove

22

equivalence between period and prime factorization.

Theorem 4 (ERH). ‘"period" is polynomial time Turing equivalent to

“prime factorization’, i.e. "period"zg "prime factorization".

Proof. By a standard theorem in number theory, see Hardy and
Wright [8], we have if a = uv where (v,b) =1 and u consists only

of primes which divide b then Period(a,b) = min{m: b™ 1 mod v} .

H

That is, the Period(a,b) equals the order of b mod v .

We start by showing that "period" 5; “prime factorization". Assume
the input is [a,b]. The machine first computes u,v as above by
successive applications of GCD. For completeness Qe give a possibie
method. Consider the éequences UgsUps--- and Vor Yy defined by
g = 1T, Vg =@, Uiy
and u, consists only of primes dividing b . If u; # u then

= (Vi’b)ui and v, = afus, . Now a = ugv,

2u; < u;,y . Therefore when i = |a] then u; = u and v, =v. The

machine now calls for the prime factorization of v from which it

computes A(v) . It now calls for the prime factorization of Alv) , say

T
P ...pmm . We know by Carmichael's Theorem, see [5], that the order of

b mod v divides A(v). Thus we need only determine which of the pi‘s

to discard. This can be done by computing the minimum hi satisfying
TN B I I B

b 1 1-1 71 T4 M =1 modv foreach i between 1 and m .

' . h h

It follows that the order b mod v equais p11...pmm

To prove “prime factorization" f; "period" , let f be as in the
proof of Theorem 2 and let the number to be factored by n . Assume that

n has no factors between 2 and f(n), otherwise just factor them out.

23

Claim (ERH). Let h{n) = lim{Period(n,2),,..,Period(n,f(n))}.
Then h(n) < A{n) and X'(n)|h(n).

Since Period(n,i)|A{n) for 2 < i < f(n} we have h(n)|x{n)
hence h(n) < A(n). Suppose qmlh'(n). Then qmlp-l for some pln.
Let a be the minimum gq-th nonresidue mod p, i.e., a = N(p,q).

Then we have the following:

1) By the Extended Riemann Hypothesis a < f(p). Thus a < f(n),

2) qm|order of amod p since a is a g-th nonresidue mod p
and q"|p-1. Since (a,n) =1 by 1) q"|order of a mod n.

From these two facts q"|h(n). Thus the claim follows.

Since h satisfies the hypothesis of Lemma 5, "prime factorization"

TII
g_ph. h <

for Period{(n,2),...,Period(n,f(n)) and computes their LCM. This

period" since we can define a machine which simply calls

machine runs in polynomial time since f(n) = 0(1ogzn). Finally by

Lemma 6 we have '"prime factorization" 5; "period". O

24

Factoring and P-NP

Probably the most interesting open question in computational.
complexity theory is the P-NP guestion. Cook [6] and Karp [9] showed
that a surprising number of recognition problems were NP-complete. One
recognition problem which was not shown to be NP-complete was the éet
of composite numbers, {composites}. Pratt [15] showed that the set of
prime numbers, {primes}, is in NP. Thus it seems unlikely that
{composites} are NP-complete, for this would imply that NP = NP, where
NP consists of those sets whose complements are in NP, Furfher, by
Theorem 2 we have that {composites} € P on the ERH. These two facts
to a certain extent settle the relation of {composites} to the P-NP
question. The complexity of factoring seems more elusive.

In 1ight of Pratt's work it seems natural to view factoring in
terms of nondeterminism, not as a recognition problem, but rather as
a function which is nondeterministically computed. In the next defi-

nition we introduce the notion of deterministic (nondeterministic)

polynomial time computable functions.

Definition. Let P* denote those total functions over the natural
numbers computable in polynomial time. We say a nondeterministic machine
computes f in T steps if the machine on input n has some path
which halts and any path which halts must output f(n) in 0(T(n))
steps. Using this definition, we Tet NP* denote those total functions

over the natural numbers computable in nondeterministic polynomial time.

As in the introduction of this section, we let P (NP) denote
those subsets of the natural numbers recognizable in deterministic

(nondeterministic) polynomial time. It is clear that the set of

25

composite numbers is contained in NP, i.e. {composites} e NP. Pratt

proved the following surprising result:
Theorem (Pratt) [15]. {primes} e NP
Using Pratt's result we get the following corollaries:
Corollary 1. ‘“prime factorization" e Np*

Proof. The machine simply guesses a prime factorization, recognizes
each of the factors as prime and then outputs the "prime factorization”.
Since there are at most log n factors the machine runs in polynomial

time. ' O
Corollary 2. ‘“period", ¢, A, X' € NP*

Proof. Since all four functions are polynomial time Turing
reducible to the function ‘“prime factorization" and ‘“prime factori-

zation" is in NP* we need only show the fo]lowing lemma :
Lemma 7. f g; g and g e NP* then f e NP*,

Proof. Let M be a machine which computes f via the method
given by f 5; g. Let M' be a machine which computes g nondeter-
ministically in polynomial time. To construct a machine which computes
f ‘we simply replace the calls for values 6f g in M by computations
using M'. Now the new machine runs in polynomial time since M can
call for at most a polynomial number of values of ¢ each of which can

be computed in polynomial time. ' O

At this time we introduce two different constructions for producing

26

recognition problems from functions and examine their properties in light
‘of the results of the preceding sections, Let <a,b> be some encoding
of the ordered pair a,b as a natural number which is “efficient", that

is, we can encode and decode in polynomial time.

Definition. If f 1is a total function over the natural numbers,

we let the graph of f be
Ge = {<n,f(n)>] n is a natural number}
and the projection of f be

Pe = {<n,m>| f(n) < m} .

Using these two definitions we get the following lemmas. (We Tet

SPG denote those total functions with syntactic polynomial growth,

defined in the previous section.)

Lemma 8. If f e SPG then the following statements are equivalent:

1) Ge € NP NINP

2) G, e NP

f
3) f e NP¥

4) Pce NP NNP

Proof. The cases 1) = 2) = 3} = 4) and 3} = 1) are straightforward.
We prove the case 4) = 3). Since Pf ¢ NPNNP there exists a nondeter-
ministic machine which computes ihe characteristic function of Pf in
polynomial time. Since f s in SPG there exist constants k and c
such that |f(n)] 5_C|nlk. The value of f(n) 1lies between 0 and

k .
_chnl . Thus, using a binary search we need only compute clnlk values

of the characteristic function of Pf. O

227

Lemma 9. If f, g € SPG then the following hold:
1) PeeP ifandonly if f e P*
2) If f 2, g and Gg e P then G e P.

Proof. 1) feP* = Pe e P is clear whereas P e P = fe p*
follows by the same argument used to show that Pg e NPNNP = f e NP*.
2) Consider the following machine, say M, on input <n,m>:

i} M decodes <n,m> into n and m and attempts to compute
g(n) by the algorithm given by g gpf on inputs n and m. If it
halts with a possible value for g(n), say h, M continues to step ii).
If the algorithm uses more than some cln]k steps it rejects <n,m>,
where c, k are given by the reduction,
ii) M computes <n,h> and checks if <n,h> e Gg by the algorithm
given by Gg e P. If <n,h> ¢ Gg then M rejects <n,m> otherwise
it continues to iii) and we know h = g(n).
iii) M computes f(n) using n, g(n} by the algorithm given by
Af fp g. If f(n) =m then M accepts <n,m> otherwise it rejects
<n,m>.
It should be clear that M runs in polynomial time and that it

accepts precisely Gf. 0

Using the last two lemmas and the reudctions of the last section

we get:

Theorem 5 (ERH). The graphs of ¢, A, A' and "prime factoriza-

tion" are recognizable in polynomial time.

Proof. By Lemma 9 we need only show that the graph of "prime

factorization" is in P since by Theorem 3 all four functions are

28

polynomial time equivalent. But, the graph of prime factorization is

in P by Theorem 2. ()

Theorem 6, The projections of "period", ¢, A, A' and "prime
factorization" are members of NPNNP and if any of these projections

are membérs of P 'then all the functions are in P*,

Proof. The first part of Theorem 6 follows from Corollary 2 and

Lemma 8 while the second part follows from Lemma 9 part 1). O

These results permit us to maké a distinction between our two
methods of constructing recognition problems from functions. Theorem 5
suggests that the graph of a fuﬁction may be easy to recognize while
the function may be difficult to compute. Lemmas 8 and 9 show that
projection is a natural complexity preserving map from functions to
relations. Theorem 6 exhibits possible candidates for recognition

problems in (NPNNP) - P.

29

Appendix
Let Zn denote the ring of integers mod n. Let Z: denote
the integers relatively prime to n under multiplication mod n. Z:
is a group and if p 1is a prime then Z; is a cyclic group of order
p-1. Thus, the only solutions to the equation x2 =1 mod p are =lI.
We may pick a generator of the cyclic group Z;, say b; then we define
indpa = min{m: b™ = a mod p}. We note that indpa is dependent on our

choice of a generator. We say a 1is a q-th residue mod p if there

exists b (bq = a mod p).

Note. If p, q are primes and q|p-1 then a is a g-th residue

mod p if and only if qlindpa.

Definition. The Legendre symbol (%) is defined by:

1 if a is a quadratic residue mod p and {a,p) = 1;
(%J =<{-1 if a 1is a quadratic nonresidue mod p and (a,p) = 1;

0 if (a,p) # 1.
The Jacobi symbol (é%) is devined by:
2y - (8y.(2
CRECRE
where (%J and (%J are the Legendre symbols.

The above two symbols for fixed denominators define functions
which fall into a general class of functions called characters. We

define one more character as follows:

e(zni(indpa)/q) if (a,p) =1

a) - if (a,p) #1

30

where qlp-1 and e(} is the exponential function.

Dirichlet's L functions are defined by:

co

L(sa) = I x(n)/n®
n-1

where x 1is a character,

Extended Riemann's Hypothesis (ERH). The zeros of L(S,x) in

the critical strip, 0 < (real part of S) < 1 all lie on the line

‘ (real part of 5) = %3 where ¥ 1is any of the three characters above.

(1]

[2]

(3]

(4]

(5]

- Congruence aP~

(6]

31

References

N.C. Ankeny, "The Least Quadratic Non-Residue," Annals of
Mathematics 55 (1952) 65-72,

D.A. Burgess, "The Distribution of Quadratic Residues and Non-
Residues," Mathematika 4 (1957) 106-112.

D.A. Burgess, "On Character Sums and Primitive Roots," Proc. London
Mathematical Society 12 (3) (1962) 179-192,

D.A. Burgess, "On Character Sums and L-series," Proc. London
Mathematical Society 12 (3) (1962) 193-206.

R.D. Carmichae], "On Composite Numbers p Which Satisfy the Fermat
= p," American Mathematical Monthly 19 (1912)
22-27.

S.A. Cook, "The Complexity of Thoerem-proving Procedures,"
Conference Record of Third ACM Symposium on Theory of Computing

- (1970) 151-158.

(7]

(8]

[9]

[10]

[l

[12]

H. Davenport and P. Erdds, "The Distribution of Quadratic and
Higher Residues," Publ. Math. Debreien 2 (1952) 252-265.

G. Hardy and E. Wright, An Introduction to the Theory of Numbers,
Oxford Press (1968) 111.

R.M. Karp, "Reducibility Among Combinatorial Problems," Complexity
of Computer Computations, R.E. Miller and J.W. Thatcher, eds.,
Plenum Press, New York (1972) 85-103.

D. Knuth, The Art of Combuter Programming, Vol. 2: Seminumerical
Algorithms, Addison-Wesley, Reading, Mass, (1969).

G.L. Miller, "Riemann's Hypothesis and Tests for Primality,"
Proceedings of Seventh Annual ACM Symposium on Theory of Computing
(1975) 234-239.

H. Montgomery, Topics in Multiplicative Number Theory, Springer-
Verlag Lecture Notes #227, 120.

[13] 4. Pollérd, "An Algorithm for Testing the Primality of Any Integer,"

Bulletin of the London Mathematical Society 3 (1971) 337-340.

[14] J. Pollard, "Theorems on Factorization and Primality Testing,"

Proceedings of Camp. Philosophical Society 76 (1974) 521-528.

[15] V. Pratt, "Every Prime Has a Succinct Certificate," to appear,

[16] A. Selberg, "Contributions to the Theory of Dirichlet L Functions,"

Avhandlinger utgett av Det Norske Videnskops, Akademi i Oslo (1934).

[17] D. Shanks, "Class Number, A Theory of Factorization and Genera,"
Proceedings of Symposia in Pure Mathematics 20 (1969) Number
Theory Institute, American Mathematical Society (1971) 415-440.

[18] A. Schtnhage and V. Strassen, "Schnelle Multiplikation Grosser
Zahlen,"” Computing 7 (1971) 281-292.

32

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

