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ABSTRACT

Let S (specific statements) and K (knowledge base) be conjunctions of
clauses. The conjunction of clauses G is called a generalization of

S over K if (K A G) oS and G satisfies a number of constraints which
prevent pathologies and trivialities. We shall denote it G > S.

The relation "=" is used to define atomic generalization "b"Kas follows:
Gb S iff G> E and forno L G> 1L >S. The degree of geﬁera]ization
6(2,5) is deﬁined as the length ﬁf tﬁe shortest chain of atomic general-
jzations necessary to reach S from.G. This in turn is used to define
semantic distance D(S],Sz) = mén {¢(6(G,S])) + ¢(6(G,52))} where ¢

is a weighting function. There is an algorithm provided to produce
generalizations, which is based on generating singelton resolvents

of the set K A1$ (in the case where S is a one clause set), and

replacing some of the terms occurring in them by variables.



0 INTRODUCTION

The purpose of this paper is to investigate mechanical aspects
of creating generalizations. Also we present an attempt to use our
definition of generalization to formulate the concept of semantic
distance. In his paper [l ] Plotkin defined the notion of generalization
in the following way: let us have a set of clauses S. We shall call
a clause G a generalization of S if all the clauses of S collapse into
G by replacing some of the terms occurring in them by variables. This
approach provides a useful tool, but it cannot be applied to more
complex situations when our generalization depends not only on S but
also on some accompanying knowledge. Consequently, in such situations
the relations between generalization, knowledge and specific statements

become more complex then in Plotkins case.

In 81 we provide the basic intuitive justification for the definition
which is presented in §2. We show there also that generalizations can be
“partia]]y ordered:/which in turn is used to define a concept of semantic
distance. The last paragraph provides a rather rough description of how to

mechanize the generation of generalizations.

1. Intuitive Definition of generalization

Before we proceed with the formal definition, we shall once more
discuss the meaning of the term: generalization. This approach seems to
be justified by rich, negative experience of people who have introduced
formalizations which eventually had Tittle to do with the original
intuitions giving rise to the formalized ideas. Let us start with some

dictionary definitions. Webster's 3rd New International Dictionary (1971)



says: ‘'generalize' = 'to derive or induce (a general conception or
principle) from particulars' or 'to make general (as by existential

or universal quantification): render applicable to wider class'. The

idea of 'general' seems to be better presented in the Oxford English
Dictionary (1971): 'of a rule, law, principle, formula, description:
Applicable to a variety of cases, true or purporting to be true for all

or most of the cases which come under its terms' . From these definitions
it explicitly follows that: we have a set of specific (particular) statements
S, and from these statements we infer a general one of which the specific
statements are cases. Here we come to a very interesting question: how

do we define 'general' and how do we reason towards it? First Tet us note
the implicit existence of some knowledge which will make it possible to ver-
ify that our general statement really yields the specific ones. This

we shall call the knowledge base and denote K . Now we are ready to

define the generalization G as a statement from which we can deduce each

statement of S, with the help of the knowledge base. The above relation
can be written as follows

(K AG) o S.

This formalization captures the essence of our intuitions, however it
js too liberal and Teaves room for pathologies and trivialities (see the
next paragraph). Therefore we have to approach this definition in a more

technical fashion.



2. Formal definition of generalization

In the following we shall use a clausal formalism. The reason for it
is twofold: the widespread familiarity with such notation and the simplicity
of providing conditions for removing trivial and pathological cases from our
definition. A wff is a conjunction

q A..Acn 1 <n

of clauses Ci 1 < i < n, where a clause is a disjunction

L] V ...V L 0 <m
m

of literals |_1 (1 <1 <m) which are atomic formulae P(t],...,tk),] < k

or their negations, where P is a k-ary predicate symbol and t]""’tk are terms.
A term is a variable, a constant, or an expression f(é],...,éz) where f is a £-ary

function symbol and B s--es8p are terms. In the future we shall often refer
to wffs as sets of clauses, and to clauses as sets of Titerals. We shall say
that a clause C' is a variant of a clause C iff C' 1is obtained from C by re-
naming some of the variables occurring in C. Let K be a wff which represents
the knowledge base. We shall assume that K is satisfiable (it may, however,
be a part of a larger, contradictory knowledge), Def. 2.1. Let us assume
that S is a wff consisting of a single clause. We shall say that a clause

G is a generalization of S over K and denote this G > S iff

G>S iff K
K

(1) (KAG) o8,

(2) K A G is satisfiable,

(3) Let G' and S' denote clauses which result when a literal is removed from

each of G and S, respectively. Let G denote a clause resulting from



G by identifying a pair of occurrences of distinct variables.
(3.1) for any G (K A 5) > S does not hold,
(3.2) for any S' (K A G) >S' does not hold,
(3.3) for any G' there exists S' such that (K A G') > S' holds.
We shall say that G is trivial if it has a variant G' such that G'=S.
When G is not a trivial generalization of S then we shall denote it
G > S. We shall provide a motivation for introducing conditions (1) -

K
(3) after extending our definition to unrestricted S.

Def.2.2. Let S = S]A...ASm, 1 <m. We shall say that G = G]A...AGn

is a generalization of S over K and denote it G > S iff
‘ K

(4) for each i (1 < i <m) exists j such that Gj > Si’

(5) G is minimal in the sense that if we remove any Gj (1 <j <n)
then the condition (4) does not hold.

We shall say that G is not trivial and denote this G > S iff there exists
K
a pair i,J such that G, > S..
J K 1

In the future, if there is no danger of confusion, we shall denote
G > S simply by G > S. We shall call a generalization G unconditional

K
iff G oS. In this terminology, Plotkins [1 ] definition of generalization

is a special case of an unconditional one.

Corollary 2.1. Referring to the Def. 2.2 we have the following:

n<m
and

(K A G) o8S.

Now we shall explain reasons for introducing conditions (1) to

(5).



First of all, the reason for splitting the definition into two parts, is

simply for ease of comprehension.

The condition (1) represents the heart of the whole definition. It becomes

a theorem in the multiclausal case (see Cor. 2.1).

The condition (2) guards against pathological cases where G is totally

unrelated to S but satisfies (1).

The conditions (3) are, perhaps more questionable, but I hope that the
following examples will justify their introduction. First I want to
justify (3.1). Let K= "x is less than 1/2 a year old implies x is

less than 1 meter high", S = 'x is less than 1/2 a year old implies x

does not walk'. A generalization G = 'x is less than 1 meter high implies
x does not walk' may be rather untrue (midgets can walk) but reasonable.
However a statement G' = 'x is less than 1 meter high implies y doesn't
walk' is utterly nonsensical: what does the fact that some x is less than
1 meter high have to do with the fact that some unrelated y does not

walk: Condition (3.2) prevents situations such as that which arises

when for the same knowledge base as in the above example, we could have

a generalization as follows: 'x does not walk' which is hardly acceptable.

Condition (3.3) guards against redundancy of G. For example with K =
{p »q, g »2r} and S = {s >r} we have interesting generalizations
like s oq or s op. What we want to avoid is s > (q v p) which would

be admissible without (3.3).

The condition (4) really provides the basic idea of our definition. It
is important to notice that according to it, each clause of S is generalized
individually which is stronger than just saying that (K A G) >S. The

condition (5) guards against irrelevant clauses which otherwise could

always be added to G.



Now let us illustrate our definition on the following examples

Example 2.1 Let
K = {Saba(x) = Cat(x), Salomon{x) oCat(x), Eat mice(x) o

Eat rodents(x), Eat mice(x) > Eat small animals(x)}

S = {Saba(x) - Eat rodents(x), Salomon(x) > Fat rodents(x)}

The following will be non-trivial generalizations:

[ep]
]

{cat(x) -eat rodents(x)}

o
1]

9 {Saba(x) o eat mice(x), Salomon(x) > eat rodents(x)}

{cat(x) > eat mice(x)}

[ep]
[

G] seems to be the most interesting one since there was no real need to

introduce the predicate Eatmice{x) into the picture.

Example 2.2.

Let us choose K to be the same as in Example 2.1.
If S = {Saba(x) > Fat small animals(x),

Saba(x) > Eat rodents(x)}
then G = {Saba(x) > Eat mice(x)}

is a non-trivial generalization.

Example 2.1 seems to agree with our intuition, since in G] we inferred
from the fact that two particular cats eat rodents, that cats in general
eat rodents. But Example 2.2 may appear different: to eat rodents or
small animals seems to be more general than to eat mice. However, the
following view can help: the more general a statement, the more Tikely
it is to be false in specific cases. In this case, Saba may not eat

mice as inferred, but chipmunks, which are both small animals and rodents.



Exampie 1.3 Let us again choose K as in Example 2.7.
If S = {Saba{x) -Eat small animals(x), Salomon(x) - Fat rodents(x)}

then the only single clause generalization would be
G = {Cat(x) = Eat mice(x)}.

"This is also a generalization for both previous examples, although the
single clause generalizations from the previous examples are not generalizations

in this case".

Example 2.4. Consider the following knowledge base

K = {Canary(x) o Bird{x)},
Sparrow(x) o Bird(x},
Ostrich(x) > Bird(x)}

Now if
S = {Canary(x) > Fly(x),

Sparrow(x) = Fly(x)}

then the clause G = {Bird(x} > Fly{x}} will be a proper generalization.
However if we add to K the following clauses: {Ostrich(x) > ~ Fly(x),

Ix Ostrich(x)} obtaining K', G will not be a generalization of S over K'
because K' A G unsatisfiable. The last example illustrates the situation
which happens often in so called real 1ife, when we make generalizations
which work locally but as a rule contradict some other facts. We often
treat these facts as exceptions to the rule. (See the Oxford definition
in the Introduction). Now we shall investigate some properties of

generalization.

Theorem 2.1 Let K, P.g,P2 and P3 be wffs, If P} > P2 and P2 > P3 then

P, = P Unfortunately, this is not true if '>' is replaced by '>',

1 3
as illustrated in the example below.



Example 2.5 Let K = {P(x) > P(f(x)), P(f(x)) - P(x).} Then the following

holds: P(a) = P(f(a) and P(f(a)) > P(a).
' K K

The property described in the example above may be a source of further
troubles, therefore we shall introduce a special name for it in order to

be able to ban it in some situations.

Def. 2.3. A wff K is called circular iff for some wffs P1 and P2, we

have P, > P, and P, > P .
1K2 ZKJ.

Now we can modify Theorem 2.1 as follows
Theorem 2.2. Let K be noncircular. Then for any wffs P],PZ,P3 we have

P, > P2 and P2 > P3 implies P] > P

1 3
Finally we shall provide an example which will illustrate the relation

'>' on previously discussed material.

Example 2.6. Let K be the knowledge base described in Example 2.1. Then
denoting the predicates: Cat, Saba, Salomon, eat rodents, eat small animals,
eat mice, respectively by

CA, SA, SO, ER, ES, EM we have

CA(L) = EM(x)___

7N

< P ) % ; \_\\ . N . N \ o
SA(X) D BM( '13\ ‘,»SO(fx)sl EM(x) N _CA(X ;? ER() A o Sl
= - { e N
b b I}” T~ — V\o«:i" /, o - o ]
SP{?()DE'Q/OIM Poard E L) Cor) o €R7! P 2 £.

where arrows stand for the sign '>'

N



3. Semantic distance

Now we enter a terrain where our intuitions are much less precise than those
discussed in the previous paragraph. The notion of semantics is vague enough,
~and, combined with the notion of distance, it becomes arbitrary. There-

fore we will try to rely only on the most simple intuitions and try to justify

every step in our definition.

Let us examine the intuition behind the statement: 'these two objects closely
resemble each other'. It usually means that we can discover a considerable
number of features common to both. This obviously depends on our concept
of equality of features, but we take it for granted. The more such features
the objects have in common the more closely they are related. Now let us
come back to our definition of "generalization": we extract common features
of particular cases in order to formulate a rule which will encompass them.
So let us consider the following situation if our objects are 2 texts then
in order to capture their common features we shall attempt to provide a
generalization of both. Now, as we know, it is usually possible to create
many such generalizations, so in order to discover as many common features
as possible, we shall try to obtain a generalization as close as possible

to both texts, and measure the closeness by the minimal number of element-
ary generalizations necessary to reach a common generalization from both

texts.

Let us now try to formalize the above intuitions.

Definition 3.1. We shall say that G is an atomic generalization of S

and denote it G S iff G > S and there is no R such that G > R and R > S.

Example 3.1. Let us take K as in Example 2.1. Then
{cat(x) - eat mice(x)} > {Saba(x) = eat mice(x)} > {Saba(x) »

eat rodents(x)}.



10.

The notion of atomic generalization will be used as a quantitative tool

to describe the notion of the degree of generalization.

Definition 3.2. Let K, S and G be wffs. We shall say that a sequence

RO’R1"“’Rn (1 < n) is a path from G to S iff
R0 = G, Rn = S, and
(1) Ry & Rip (0 < i <n-1),

n is called the length of the path. The length of the shortest path from

G to S is called the degree of generalization of G to S over K and denoted

8 (G,S).

The subscript K will often be omitted if there is no danger of ambiguities.

It is interesting to notice that in spite of the fact that G > S there

might not be a path from G to S. For example consider K to be a knowledge

base from Example 2.5. Then there is no path from P(a) to P(f(a) since there is
no atomic genera]izétion;.thef;i (To see this more clearly let us notice

that each generalization of P(a) is P(f"(a)) where n = 0 and £( )’denotes 7

n times
f(f(...f( )...)). Moreover for each m,n = 0 we have P(fM(a)) > P(f"(a))).

However we can ban this pathology and present the following theorem which

specifies the area of practical application for Def. 3.2.

Theorem 3.1. If K is a noncircular knowledge base then for each G,S such

that G > S there exists a path from G to S and S8(G,S) is determined.

In the future all our discussions will deal with noncircular knowledge
bases. It seems that this restriction is not too severe: circularity is
quite a pathological property from the point of view of natural language

and common sense knowledge.
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To illustrate the idea of the path, let us examine the following example.

Example 3.2. Let K={p oq,p or,q >s,s >t, r o> t}. If G = {p}
and S = {t} then we have 2 possible paths from G to S: pb qgb s b t
and pp> r b t. Obviously 8(G,S) = 2.

Let us now attack the key issue of this paragraph, namely semantic distance.

Definition 3.3. Let K, R and T be wffs. The semantic distance from R to

T over K is denoted DK(R,T) and defined as:

(2) if there exists G such that G > R and G > T then

df
D(R,T) = mén {6(8(G,R)) + ¢(8(G,T))}
G > R,T
or otherwise
df
(3) D(R,T) = + = .

The function ¢ is a weight function. It must be positive and strictly
increasing. Now let us present an example which hopefully will convince the
reader of the usefulness of the above definition. It will be applied to

resolve ambiguities.

Example 3.3. Let us imagine a mechanical analysis of a picture. The purpose
of this analysis is to identify various objects contained in this picture.

The picture represents an office room. There are desks, a table, a telephone,
waste baskets, books, etc. We shall assume the existence of a knowledge base
describing relations among such objects. Specifically it contains information
that desks and tables are furniture, that furniture and floor is made out of
wood (a very unusual office!) We have a description of a telephone as a
medium size, black object and the waste basket has the same attributes. We
also have information that waste baskets usually stand on the floor and
telephones on desks. Now let us imagine that in the process of analysis

there has been discovered a medium size, black object residing on the table.
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So our system is presented with a dilemma: is it a waste basket or a telephone.
In order to resolve it we will try both possibilities and find out how they

fit with the rest of our knowledge. In order to do so, we shall evaluate

the semantic distance of each of the alternatives from the rest of the
knowledge. The one which has a smaller distance will be the one which

better fits the rest, and should be chosen as a more 1ikely interpretation.

Let us now present our problem in a formal way.

K={
(1
(2

o

>

table(x) - on furniture(x),
on desk(x) o> on furniture(x),
(3) on furniture(x) = on wood(x),

on desk(x) o telephone(x),

)
)
)
(4) on floor(x) > on wood(x),
(5)
)

(6) on floor(x) - waste basket(x)}.

One can object to (5) and (6) in that they are not too realistic but let
us remember that our knowledge in this example is very local, and may
be contradictory with some wider knowledge. Now our hypotheses concerning

a black, mid size object on the table are as follows:

(o) on table(x) o telephone(x)
(B) on table(x) > waste basket(x)
In order to evaluate (o) let us choose from K something which seems to be

closest (we shall formalize this later) namely (5), and for (8) it will be
(6).

Now we shall find the distances D(a),(5)) and D((B),(6)). The closest
common generalization for the first pair will be : on furniture(x) »
telephone(x) and for the second pair: on wood{x) -waste basket(x). The

structure of these is presented below:



on furniture(x) > telephone(x)
\\\
on desk(x) > telephone(x) on table(x) - telephone(x)

and
on wood(x) o wastq\?asket(x)
.///“"‘ ™ .
T N
on floor(x) o waste basket(x) on furniture(x) > waste basket(x)

!
:

Y
on table(x) o waste basket(x)

Obviously the distance in the first case is ¢(1) + ¢(1) while in the second
®(1) + ¢(2). Since ¢ is strictly growing, the first alternative is more
promising and finally we decide that it is a telephone on the table, not

a waste basket.

It was implicit in the above example that we have chosen from the knowledge
base some fragments and measured their distances from the alternative state-
ments representing the ambiguity. This really means that we try to find the
distance from the whole knowledge to our alternatives. Therefore we shall

introduce this concept in a formal way.

Definition 3.4 Let K and A be a wffs. We shall define a compatibility

of K with A as follows

def
comp(K,A) = min DK(X,A).
XcK

13.



4. Computing generalizations.

So far the concept of generalization and consequently of semantic distance,
has‘been defined in purely existential terms. Now we shall deal with the
practical aspects of computing. The procedure suggested below is sketched
without details but seems to describe adequately, the basic ideas of the

mechanical production of generalizations.

ALGORITHM. Let K be a wff and S a clause where S = BVee.v S (m=>1).
(1) Let V be a set of variables occurring in S and let A be a set of

constants such that a « A implies a does not occur in K or S. Suppose
there is a 1-1 correspondence between V and A. Let S' = Aiv...VA'm
be a result of replacing in S occurrences of variables from V by correspond-

ing constants from A.

(2) Let

Poovews = {85 . 085 T {P|P is a singleton resolvent of
ok " Tk

K a A% A...Z% (k 2 1) such that each 2% is an ancestor of P}
1 k Jj
where B is the complement of P.

(The sets Pi ...i‘ are generally infinite)
1 k

(3) Let

df
H-= {cc= CqVe .. Ve where Cy e PIj and I],...,Ip is

a partition of {1,...,m}.
Let T(C) be a set of terms defined for any clause C as follows:

df
T(c) = {t1,...,tk} | t, are distinct nonvariable terms occurring
in C and for all a « A if a occurs in c then it occurs in

some ti}‘

14.



Let
df
G (k,s) = {C] for some C' ¢H and {tyseaty} e T(c")

C results from C' by replacing each occurrence in C' of any
t e {t],...,tk} by a variable, providing that these variables are
distinct for different t's and different from variables occurring in
C'}.

The properties of the above algorithm are characterized by the following

theorem

Theorem 2. Let K and S be wffs and S = B R A8 where Si is a clause.
If K is satisfiable then a wff G = G]A...AGm is a generalization of S over
K iff for each S, (1 < i <m) exists j such that Gj € (;(K,Si), and 63

is an alphabetic variant of Gj‘

Since the set P and consequently H and G are generally infinite the
algorithm above has to be equipped with some effective enumeration procedure,
which will ensure the completeness of the process of production of generaliza-

tions. The termination of such a process is, however, undecidable.

We do not attempt here to provide such an enumeration procedure because
the algorithm itself in its present form is rather unsuited to any practical
use. It is provided only as a basis for possible future refinements by intro-

ducing search strategies.

Example 4.1. Let K= {p >t, r o q} and S = p oq. Since there are no

variables in S then S = S' = -p v q.

Denoting -p as 51 and g as S, We have:

P] = {-p,-t}
P, = {q,r}
P1p = ¢

15.



Therefore

H=®>qp>r,toq to>r}

where p » q is trivial.

Example 4.2. Let us now introduce variables and define K = {p(x) > t(x),
r(x) =aq(x), -p(x)va(y) v &(x) S = -p(x) % q(y). Then S' = -p(a) v q(B).
Denoting -p(a), q(B) respectively as 815 4, We have

P, = {-p(a), -t(a)}

P, = {q(B), r(8)}

[

Prp = {-8(a)}

H

-p(x) v q(y), -t{x) v q(y), -p(x) v r(y), -t(x) v r(y),
- 4(x)}

We should note here the necessity of using distinct variables x and y

in some of the elements of the set H. Moreover the set P12 is not empty.

Example 4.3. Let C = P(f(x),a) Q(f(a),b) where a ¢ A. The setT(C)

is as follows:

T(Cc) = {a}, {a,f(a)}, {a,b}, {a,f(a),b}, {a,f(x)} {a,f(a),f(x)}
{a,b,f(x)}, {a,f(a),b,f(x)}

Now if f{= {C} then

= {P(f(X),U) v Q(f(U),b), P(f(X),U) v Q(y’b)s
P(f(x),u) v Q(f(u),z), P(f(x),u) v Qv,2),
P(w,u) v Q(f(u),b), P(w,u) v Q(v,b),

P(w,u) v Q(f(u),z), P(w,u) v Q(v,z)}

16.



17.

5. Concluding remarks

It is clear that this report is a draft. I decided to present it in such
form because in personal discussions, a number of people have expressed their
interest in the idea of generalization as described above. However, I fully
realize that both; the definition of generalizations, and the algorithm

to generate them, may undergo considerable changes. But before such changes
can be made, it is necessary to gain some practical experience in using the
presented concepts. I hope that this report gives sufficient basis for

applying these concepts, and that, as a result, I will get some feed back.
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