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Abstract. A property, called smoothness, of a family of DOL-systems is
introduced. It is shown that the sequence equivalence problem is decidable

for every smooth family of DOL-systems. Then a large sub-family of DOL-

systems, called simple DOL-systems is shown to be smooth.

0. Introduction

Shortly after the introduction of OL-systems by A. Lindenmayer

in [7], the question was asked whether the equivalence problem 1is decidable
for these systems [12]. The undecidability of the equivalence problem for
(nondeterministic) OL-systems was shown, e.g. in [1]. The same question
for deterministic OL-systems (DOL-systems) is conjectured to be decidable
but remains open; according to the survey paper [11] it is "without any
doubt, the most intriguing open mathematical problem around L-systems".

| The equivalence problem was shown decidable for some épecia1 sub-
classes of DOL-systems, e.g. [6]. The growth-equivalence probtem for DOL -
systems was shown to be decidable in [9] as well as the equivalence problem
for other types of weak equivalences [8]. It was also shown in [8] that the
language equivalence problem for DOL-systems is recursively decidable iff
the sequence equivalence problem is recursively decidable and that to

resolve the latter it is enough to consider DOL-systems in certain normal forn.

* part of this work was done during author's stay at the University of Utrecht
in April 1975. It was also supported by Hational Research Council of Canada,

Grant ilo.A7403.



The main goal of this paper is to show a sufficient condition
for a subfamily of DOL-systems to have recursively decidable the sequence
equivalence problem. Our approach is based on the notion of the balance of
a string. Consider two DOL-systems G, = (Z,hi,o) for i = 1,2. The balance
of a string w in I* is the difference of lengths of h](w) and hz(w). We
say that a pair of DOL-systems has bounded balance if there exists a constant
¢ > 0 such that no prefix of any string generated by these systems has the
balance larger than c. Finally, a subfamily of DOL-systems is called smooth
if every pair of sequence equivalent systems from the subfamily has bounded
balance. MWe close section 2 by showing that smoothness is a sufficient
condition for d=cidability of the sequence equivalence problem.

In the next section we exhibit an example of a smooth subfamily
of DOL-systems, called simple DOL-systems. Intuitively, a DOL-system is
simple if every symbol of its alphabet can be obtained (possibly in severa}
steps) from every other symbd] of the alphabet. To show that the family of
simple DOL-systems is smooth we first demonstrate that for every pair of
sequence equivalent simple DOL-systems the balance of a long prefix of a
string generated by such systems is "very small" compared with the length
of the prefix. Then we strengthen this result by showing that the pair has
bounded balance.

We have strong reasons to conjecture that the above approach can be

extended to show the decidability of sequence equivalence problem for the

family of (all) DOL-systems.



1. Prerequisites

The set of non-negative integers is denoted by N. Given an alphabet
I, I* is the free monoid generated by I with the unit e (empty string);
£ = px-{e}.

For we Z* and a ¢ %, #a(w) js the number of occurrences of symbol

a in the stringw. IfZ = {a],...,a } then the vector (#. (w),#_ (w),....#. (w))
n ay ay a,

is called the Parikh vector of w and is denoted by [w].

For an integer i let |i| denote the absolute value of i. For w

. . k
in z*, |wl denotes the 1eng£h of w; in particular |e| = 0. For ae N7,

wap ) let || =§; las |, thus [[w]] = |w | forwe t*. For a set

o = (01,... .i='l

£ let |z| be the cardinality of I.

For w ¢ &*, min{w) = {a € Z: a occurs in w}.
A DOL-system is a 3-tuple G = (Z,h,0) where I is an alphabet, h
is a homomorphism on £* and axiom ¢ is in 5t

For DOL=system G = (Z,h,o) the language generated by G is defined

as L(G) = {h"(c):n = 0}.
Two DOL-systems G, = (zi’hi’oi) for i = 1,2 are called (sequence)
equivalent if h?(ol) = hg(oz) for all n in N; we write G] = 6,. They are

language equivalent if L(G]) = L(G,) .

For the definition of the growth matrix of a DOL-system we refer

to [9].
For DOL-system G = (Z,h,0) we say that w in Z+ is a G-prefix

(G-substring) if w is a prefix (substring) of h"(¢) for some n = 0.



2. A sufficient condition for decidability of sequence equivalence

Let Gi = (Z,hi,o) for i = 1,2, be two DOL-systems, and let w be

in I*. The balance of w with respect to (G]’GZ) is denoted by B(w) and

defined as
B(w) = [[h ()] - [hy(w)]]

We say shortly balance of w if a pair (G],Gz) is understood.
Let Gi = (Z,hi,c) for i = 1,2 be two equivalent DOL-systems and

c 2 0, We say that the pair (G]’GZ) has c-bounded balance if B(w) < c

for every G -prefix w. We say that (G],Gz) has bounded balance if it has
c-bounded balance for some ¢ 2 0.
We say that a family F of DOL-systems is smooth if every pair of
sequence equivalent systems from F has bounded balance.
Theorem 2.1 The (sequence) equivalence problem is recursively decidab]e'
for every smooth family F of DOL-systems.
Proof Clearly, we can restrict ourselves to DOL-systems from F with
jdentical alphabets and identical axioms.
We will exhibit two semidecision procedures, one for non-
equivalence and the other for equivalence.
1. The semidecision procedure for non;equiva1ence is trivial,
we compute h?(o) and hg(c) for n = 0,1,2,... and stop with
answer "non-equivalent" if hq(c) # hg(c) for some n.
2. Our semiprocedure for equivalence is based on the assumption that

F is smooth, i.e. that a pair of equivalent systems from F has

bounded balance.



Clearly, (o) = () for n > 0 iff hj(o) = h,(h171(0)) for

n>0 iff h](w) = h2(w) for each w in L(G]). L(G]) is a DOL-language and
therefore also an EOL-language [10].

Now we design a semiprocedure which will check successively for
k =1,2,... whether the pair (Gl’GZ) has k-bounded balance and whether G1
and GZaTe sequence equivalent. e already know that to check the seguence
equivalence it is enough to check whether h](w) = hz(w) for each w e/L(G1).
The checking of these two properties for a particular k is done as follows:

Let Mk be a deterministic g.s.m. [13] with a "buffer" of length k

in its finite control which for any input string w in * attempts to check
(from left to right when reading w) whether h](w) = h2(w). It is obviousiy
possible to do this if G] and G, have k-bounded balance since we have
available a "buffer" of length k (i.e. a buffer able to contain k symbols

14

from £). Given input w, our g.s.m. Mk will produce its output as foliows:
(i) If the buffer of Mk does not overflow and h](w) = hz(w), then

no output is produced (Mk goes into a non-accepting state).

(ii) If M, finds that h](v) # hz(v) for some prefix v of w before its
buffer overflows, it stops (in an accepting state) and produces "0".

(iii) Otherwise (buffer overflows) M, stops (in an accepting state)
and produces output "1".
ote: The different outputs in (ii) and (iii) are used to describe an
alternative procedure below. Let Tk be the translation defined by Mk'

Clearly, T, (L(6))) = ¢ iff the pair(G;,6,) has k-bounded balance and

hy(w) = h,(w) for all we L(G). By [4] or [3] we can construct an EOL-system

s, such that L(S,) = T,(G;). Finally, it is recursively decidable [2,10]

k
whether the EOL-Tanguage L(Sk) is emnty.



Our semiprocedure must eventually stop if G, = G,

F is smooth,there exists ¢ > 0 so that G] and G2 have c-bounded balance. ]

since because

Alternative proof of Theorem 2.1. We can drop the first semi-
procedure and modify the second into an algorithm (always halts) as

follows:

e again construct the EOL-system Sk successively for k= 1,2, ..
For every X, if L(Sk) = ¢ then stop with answer “G] = 62". Otherwise, if

0e L(Sk),then stop with answer "G] # GZ“. Otherwise, increase k and repeat.

We are able to check whether 0 ¢ L(Sk) since the membership problem

is decidable for EOL-languages [2,10].

If G] = G2 then the algorithm halts for the same reason as the

second procedure above.

”

If G, # G,, even if the balance is not bounded, there exists a
shortest G]-prefix u such that h](u) # hz(u). We need at most buffer of
length |u] to establish G]$ G, so the algorithm would stop, at the latest,
at system Sk.

O



3. Simple DOL-systems

. Let G be a DOL-system over at least two letter alphabet with
growth matrix M, We say that G is simple DOL-system (SDOL-system) if there
exists k = 1 so that all elements of Mk are nonzero.

Lemma 3.1 Let G = (Z,h,0) be an SDOL-system. Then G is exponentially
0

growing [9]. Moreover, there exist no,d,c],c2 > 0 so that for all n 2 n

and every w in I*
c]dnlwl < 1AM (W) = czd"lwl.

Proof It follows from results in [9]. O

Lemma 3.2 Let Gi = (z,hi,c) be two sequence equivalent SDOL-systems. For

each a in £ and each € > 0 there exists Ny e SO that B(hq(a)) < e[h?(a)l

for all n 2 Na,e )
Proof (version due to J. Hammerum). Let M] and M, be the growth
matrices of G] and GZ’ respectively. Let k be the smallest k such that M?
has all nonzero-elements, for i = 1,2. Such k exists since G] and G, are
simple. |

Then for all vectors v and all ¢ > O there exists m0 so that

. for m> Mg there is a vector tm and a number dm so that

k

VM]

m _
= dmu + tm

where |tm| <e [vM§m| and u is the characteristic vector with the largest

eigenvalue for M%.



It is easy to establish that M] has the same property. From
this follows that for all a € £ and € > 0 there exists no, so that for alil

n > n0 there exists a vector tn and a number dn so that

1]

[h](a)] = [alH]

1

dnu + tn’

where ltnl <e Ih?(a)l and u is the characteristic vector with the largest
eigenvalue for M].

We can prove that

B(w) < |[w](M]-M2)l
because ’
B(w) = [Ihy(w)] - [hy(w)]]
< aZzl#a(h](w)) - #a(hz(w))l .

| Lw] (M4 -1,) |

(one may notice that equality occurs when one of words h](w) and hz(w)

is a subword of the other.)

Noting that u is a characteristic vector for M2 as G] and G, are

equivalent the following inequality holds
n
B(hy(a)) s [(djurt ) (M-M,)]
< ldnu(M]—Mz)l + Itn(M]-Mz)I
- Itn(Ml’MZ)|

which proves the lemma. | O



Lemma 3.3 Let Gi = (Z,hi,c) for i = 1,2 be two sequence equivalent SDOL-
systems. For each e > 0 there is n. > 0 so that for every w in 5" and

all nzn_ we have $(h?(w)).s alh?(w)l.

Proof By Lemma 3.2 for each a in Z and each € > 0 there is N, ¢ SO that
n n -
for n = Ny /2 we have B(h](a)) < elh](a)l. Let n_ = gzg{na,e} and let

w=a ...a,. Forn = n_ we have
1323k g Weh

k
B(h?(ai)) < E_E]Ih?(ai)l = EIh?(w)|-
1:

-1

B () =

.

i=1

0
Theorem 3.1 Let G, = (Z,hi,o)-for i = 1,2 be two sequence equivalent SDOL-
systems. For each € > O there exists K_> 0 so that 8(w) < e]w] for every

G]—prefix w such that |w| = K_.

. n .
Proof Let w be a prefix of h](o). We define t > 0 and Uy Vi Uy 15V 7>+

u],v] in £* as follows: .

(1) Let t be the maximal integer such that h?(b) is a prefix of w
where b is the first symbol of h?'t(o).

(i1) Let u, = hn't(o) and let v, be the longest prefix of hn't(o)
1 1

t t
such that h%(vt) is a prefix of w.
(ii1) For i = t-1,...,0 u; is obtained from h?'i(o) by removing its
. t-1 t-i-1 .
prefix h, (Vt)hl (Wt_])...h](ui+]), and.vi is the longest
prefix of u, such that h%(\@)ht"](vt_])...h‘ﬁpi) js a prefix of w

(h?(x) = x for each x in I*).

R . -
Let w, = h (Vi) for i = 0,1,...,t. Clearly, w = W, q...W,.

Note that W, may be empty for some k.
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Given € » 0 there exists, by Lemma 3.3, "e/2 so that

p(hi(v.)) 5 5 [hylvy)] forn s 15ty e plwy) s % lw;| for
£

n .. <i<tand, therefore, Blwyw, ,...w ) s = [ww woo |
2 - - * 8 . .
e/ tit-1 ne/2 2 1Tt t-1 ne/2
Let Q = max B(a). We have B(w LoWq) < Qlw ...w.| and we, clearly,
ack L N1 71 Y

: €
can choose K_ sO thgt if |w| 2 K, then |wne 2_]...w]I < >7 lw|; and

thus B(w W) s 5wl
n€/2-1 1 ?'l I

Together, we have for w such that |w| = K_

B) € Blug. oy )+ Bl g-e) < (5+ Dlul = elul.
€ £
O

Note that only a weaker equivalence than sequence equivalence is
used in proofs of Lemma 3.2, Lemma 3.3 and Theorem 3.1, namely so called

Parikh equivalence, see [8].

A derivation forest of a string w with respect to a DOL-system

G is an obvious modification of the well-known notion of derivation tree
for a context-free grammar, we have an axiom (string of symbols) rather

than one starting symbol of a context-free grammar.

Let F be derivation forest of hn(c) for some n > 0 with respect
to SDOL-system G = (£,h,o). A path inF from a node on the lowest level

(of o) to a node x on level n is called the chain of a. Formally, a chain

q is a string in (X x N)* such that if
g= (ao,ko)...(an,kn), then

(1) 15 kg s lol s
(i) sk < |h (31_1)‘ for 1< 1 < n;

(iii) IR is the ki+]-th» symbol in h(ai) for 0 ¢ i< n-1.
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Intuitively, ko is the position of ag in o, and for i = 1,'ki
determines which of possibly several branches is taken. First components

of pairs are clearly redundant but they allow us to state easily the condition
(iid).

The string CIRRRL is called the trace of chain q.

A chain q is said to be periodic with period bp and prefix(initial

co n . . :
segnent) qq if o = qyp g, for some ne 2 and q, is 2 prefix of v,

Chain q is leftmost (rightmost) on level i if ki = 1 (ki = [h(ai)]).

Chain q is fully leftmost (fully rightmost) if it is leftmost (rightmost)

on all levels,

For a node a of derivation forest F and a specific occurrence
of G-substring w, we say that w contains o if a is one of the nodes labeled
by symbols from w.

Let q be a periodic chain with prefix r and period p. Then there
are cyclically repeating (after each p steps) common G-substrings on at
least one side of q (see [5; Theorem 11.3 and 11.4]).

Theorem 3,2 AIf Gi = (Z,hi,o) for i = 1,2 are two seguence equivalent
SDOL-systems, then the pair (G],Gz) has bounded balance.
Proof Assume that the pair (G],Gz) does nof have bounded balance
(Assumption 1). Therefore, for every ng > 0 there must exist n, n 2 L
and u,v in * so that h?(o) = uv and the following conditions hold:
(1) B(u)
(i) B(u)
(iii) 8(u)

v

B(w]) for any prefix Wy of h;(o) where 0 < j < n.

B(wz) for any prefix w, of hq(o).

[\

v

5(w3) for any prefix w3 of u.
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Let F be the derivation forest of G] and o be the node in F at
the last symbol of prefix u at level n. Let q be the chain of a in F and
let a; and o, be the first two nodes of chain g (from top) such that the
label of a is the same as that of Cg > the label of the left neighbor of
oy is the same as that of the left neighbor of a, and the same also holds
for the right neighbors. Let the common labels be a, b, ¢ from the Tleft,
they, of course, are not necessarily different.

Let the levels of a, and a, in the derivation forest of G, (from
top) be r and r+t, respectively. Clearly, given an SDOL system G, there
exists a constant C so that rtt < C independently on Ny We only note that
first we have the constant C; = |£]+1 with the property that on levels higher
than C] there is at least one neighbor both to the left and to the right of

the node of chain q. This is so since otherwise q would have a fully leftmost

[

(rightmost) initial segment with some symbol occurring at least twice in its trace;

therefore, u would be a prefix (v would be a suffix) of h%(c) for some j < n,

which would be in contradiction with condition (i) implied by Assumption 1.
Let q = 949,03 where q, is the section of g between nodes a, and a,, .

Let q' be the periodical chain defined by q' q1q2q4 where j > 0 and q,

is a proper prefix of q,, j and a4 chosen so that the length of q' is the seame

as the length of q. Informally, we have chosen q' so that it coincides

with q up to the second occurrence of abc and then continues periodicallye E

Therefore, there are cycllca]]y repeating longer and longer substrings on

both sides of q' specifically h] n-t- ~T(abc) is a common substring of h] ( )

and h?(o) which on level n contains node a since chain q goes through node o,

Moreover, node o is not close to either end of the common substring since s
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is labeled by the widdle symbol b in ahc and both |hT(a)[ and lh?(c)[
are exponentially growing (for growing m) by Lemma 3.1.

How, let h?_t

UpX = U and YVo= Vs i.e. the node o on level n is at the last symbol of x.
We write u's= Uyx and v'l = yVy. Clearly, h?'r"t(a) is a prefix of x and
h?”r—t(c) is a suffix of y, therefore from Leiwna 3.1. and discussion above it

follows that the length of both x and y for growing n is linearly proportio-
nal to the length of the whole string h?(c), i.e. there exists constant K,
dependent on G; only, such that Kix] 2 !h?(o)]and Kly| 2 lh?(o)!. Therefore,
it follows from Theorem 3.1 that for each ¢ > 0 there exists ng SO that

6(u) < ¢ |x]| and g(u) < e |y| where u,x and y are determined by n,.

Now, we explain first the following step in the proof informally
and then we will give the details. Both h?(o) and h?'t(o) have y as a substring
with node o at the last symbol preceding y on level n. Since the two systems are
equivalent both hy(y) and hz(y) are substrings of h?+](c) and of h?'t+](o).

We recall that both g(u') and g(u) are “"very small" with respect to lhi(Y)1' By
Assumption 1 8(u') < 8(u), and therefore the relative position of h1(y) and

hy(y) as substrings of h?—tﬂ

(o) is by a "small" shift (with respect to the
leng th of h?+1(o) and also of hT(y)) different than the relative position of
the same strings as substrings of hn+](c). Therefore h](y) has to have "long"
identical prefix ans suffix and consequently must be periodic with a period

arbitrarily short with respect to its length for large enough n.

Formally, using the notation introduced above, we have.

(1) 1) o) = wyv;  and  hi(e) = uyy,

(0) = Upxyvy and hg(a) = YXyv, vhere xy= h?‘r“t(abc),

RS e L
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where p(u) is strictly maximal up to the level n. Since the systems G]

and G2 are equivalent we obtain from (1)

(2) h](u')h](Y)h](V]) = hz(ul)hz(Y)hz(V1)

and

(3) by (M (V) = () (¥ )y (V)

Without Toss of generality we may assume that [hy(u 9 2 [h (u')]| »
h](u‘) = hz(u‘) z' for some z' in z . Therefore by removing prefix

hz(u') on both sides of (2) we have

(4) Z'h](Y)h](Vj) = hz(Y)hg(V])~

Now we have to consider two cases.

Case A. Let | hy (u)} z‘lhz(u)l, i.e. h](u) = hz(u)z for some
*
zin £ . By Assumption 1, B(u) > B (u!) and thus lz| > |z*| . By removing
prefix h2(u) on both sides of (3) we get

(5) Zh](y)h](v]) = hz(Y) hz(vz)'

Since lz| > |z'| and z is "very small" with respect to h 1 (¥) it follows
by comparing (4) and (5) that there exists p in z so that z=z'p and

h](y) = J d where both p and d are "very small" with respect to h (y)

Case B. Let |h1(u)[< |h2(u)] , i.e. h1(u)z = hz(u) for some

*
2 in §, wherasagain |z| is "very small" with respect to lh](y)l . By
removing the prefix hz(u) from both sides of (3) we obtain

gy s IR BT
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(6) 8nq(v,) = hy(y)hy(vy)

where 8§ is ohtained from h1(y) by removing prefix z, i.e. h](y) =z8.

By comparing (4) and (6), we see that & is prefix of z’h](y) and therefore
the string h](y) has an identical "very long" prefix and suffix and thus
must be periodic, i.e. the form h](y) = pjd, where both |p| and |d | are

"yery small" with respect to |h1(y)i.

Thus in both case A and case B YH(y) has to be of the form
de where by choosing o large enough we can make p arbitrarily short

with respect to h](y) and therefore j arbitrarily large.

So far we have used only the fact that g(u) is strictly maximal
up to the level n (condition (i)) not yet the condition (ii) and (iii). So
we can use the above arguments also symetrically for the common substring x.
Therefore also x must be periodical amd by taking the common period we see
that whole substring xy must be periodical. In the following p will de-

k k
note the period of xy, i.e. x =dp 1 andy =1p 2 d, where p,d, and d,

are “"short" and k],kz “large" in the sense used above.
Now, we will consider again two cases.
Case I: Let g(p) = 0. Since p is arbitrarily shorter than h](y) but

nonempty and since K|x]| 2 h? (o) 2 |x| and Kly] > h?(c) > |y| we also have

lpl < I (x) ]

- -— — 3 * - el
So we can write u = UGp for some U in I and since g(p) = 0, we have g{u)=p(u)

which is in contradiction with condition (iii) implied by Assumption 1.
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Case II: Let g(p) > 0. ‘'le already know that Ipj| < [h](x)] and [p! < [h](x){.
Therefore, we can write h?(o) = Gp?V for u,v in £ such that Gp= u and pv - v.
Since g(p) > 0, clearly either g(u) > a(u) or ﬂ(ﬁp”) > (u) which is in con-
tradiction with condition (ii) implied by Assumption 1. []

Corollary The sequence equivalence problem is decidable for the family of

SDOL-systems.

Proof By Theorem 3.2 and Theorem 2.1. []
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