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Al.STRACT

Numerical procedures for solving systems of ordinary
differential equations in which a small parameter multiplies some of the
derivatives are discussed. Three existing procedures based on asymptotic
expansions are discussed and then a method based on interpolation is
presented. An error analysis is given for the interpolation scheme and
then a discussion on numerical cons derations follows. A description
of the actual imp]emenfation of the interpolation scheme is then given
followed by the results of applying this implementation to several examples.
Finally another method based on an asymptotic approximation is presented
along with an error analysis for this method and some implications when
applied to linear systems with constant coefficients. Some numerical

results illustrating the asymptotic nature of the method are also given.
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CHAPTER I

INTRODUCTION

1. The Basic Problem

Our basic problem will be the numerical solution of the system

of ordinary differential equations

dx

'd_.E' f(X,Yat)

fl

(1.1.1)

dy
ngr = 9(x.y,t)

1

with initial conditions

Here x, f and o are m-dimensional vectors, y, g and 8 are n-dimensional
vectors and u is a small positive parameter. Systems of the form (1.1.1)
may be found in several areas such as chemical kinetics, missile guidance
and nuclear reactor kinetics. Although (1.1.1) is written as a singular
perturbation problem, oftentimes systems of ordinary differential equations
that contain large numbers on the right side may be put in the form

{1.1.1) by dividing some of the equitions by the large numbers. Hence

for purposes of approximations we nay consider them to be written in the

form (1.1.1) and apply some of the singular perturbation theory.



2. The Problem of Stiffness

Since (1.1.1) is an example of a stiff system of ordinary
differential equations we first describe the problem of stiffness with

the initial value problem
dz _ _
ac = plz,t), z(0) = v (1.2.1)

where z, p and y are k-dimensional vectors. Generally explicit methods for

solving (1.2.1) numerically require that the step size h satisfy the

relation

hL < ¢

where L is the Lipschitz constant, and ¢ is some positive constant dependent
on the method. But if the Jacobian %g-has eigenvalues with large negative
real parts the quantity L is very 1.rge requiring h to be very small.
However, the initial trensients assiciated with these eigenvalues with
large negative real parts quickly d e out at which point we would like the
step size based on the time scale a sociated with the other eigenvalues
and not the time scale of the large negative eigenvalues.

The system (1.1.1) has the property of stiffincss since the

Jacobian

sl 1%
e

=|



generally has some eigenvalues with large negative real parts if p is

small as long as %g.has eigenvalues with negative real parts. The exampie

dx _
ac = Y
(1.2.2)
dy _ _
Pag T XY

illustrates this point. The eigenvalues of the Jacobian of the system

(1.2.2) are given by

L
o o1-(0+4u)”
1 “*'i?ﬁ—_m‘

_ -1+(1+4y)
2 2u ’

Xy

From the limits

-0

1im X
=0

1
—_—

Tim X

>0 2

we see that for very small u we have extreme stiffness since the time scale

associated with A] is very much smaller than the time scale associated

with AZ'

3. Outline of Thesis

Many authors, for example [1], [2], [6], [9], [12], have dealt
with the problem (1.2.1). However, we are interested here with the problem
as written in (1.1.1). In Chapter II we describe methods by Vasileva [15]

and Wasow [16], MacMillan [1C} and Miranker [11]. In Chapter III we present



a new method based on an interpolation scheme. A discussion of this method
may also be found in Finden [3]. We also give an error analysis along with
a discussion on some of the implications made evident by these results.

In Chapter IV we present some of the actual procedures used to implement
the interpolation scheme and some of the numerical considerations involved
with these procedures. We also give a brief discussion of the computer
subroutine here and give a listing ¢f the subroutine in Appendix C. In
Chapter V we give some numerical recults of applying the interpolation
scheme, showing some of the benefits discussed in previous chapters. In
Chapter VI we present another method for solving (1.1.1) based on an
asymptotic approximation. Here we also discuss the accuracy of the solutions
and give a discussion concerning the application of the method to linear
systems with constant coefficients. We then give some numerical results
that illustrate the asymptotic nature of the errors in the solutions. 1In

Chapter VII we present some conclusions.

4. Notation

A note on some notational conventions used is in order here. If

F is an m-dimensional function of an n-dimensional variuble x, then FX is

used to denote the mxn-dimensional matrix %g—. If we consider F as a first
Ny
order tensor and FX as a second order tensor then we can consider F (r) * EL{;
X X

as an (r+1)st order tensor with dimensions mxnxnxnx... to (r+1) factors.
Also just as FXx denotes a matrix-vector product whose result is an
m-dimensional vector, we use F (r)xr to denote a tensor product whose result

X
is an m-dimensional vector. The order of calculations is given by



F o = G

)-x)-x)...)-x (1.4.1:
X X

r

where the process is done r times. In tensor notation, letting F; denote

the components of F , F x =y means F;xJ = y'. Similarly (1.4.1) means

x’

. Jy J J .
F! X 1x 2...x r= G1

J1sdgsee sy

where G is an m-dimensional vector.

5. Asymptotic Expansions

Since we will use asymptotic expansions in several places we
give a definition for it here. Let the function s(u) be defined on an

interval 0 < u < p. Then the series

.l (1.5.1)

0 1

0~ 8

.i

is said to represent s(u) asymptotically, as u - O+, if

m i
s(u)- ] a,u
1i i=0 _
im = 0
u0t M
for all m =2 0. We write
o i + .
s(u) ~ ) a;u as u >0 (1.5.2)

i=0
to mean that s(u) can be represented asymptotically by (1.5.1) as u + o',
Of course the relation (1.5.2) does not imply that the series (1.5.1)
converges. The advantage of (1.5.2) is that the first few terms of (1.5.1)

are usually a good approximation to s(u) if u is small enough.



CHAPTER 11

A SURVEY OF METHODS

Three methods are examined for the solution of the initial value

problem
dx _
"‘t_" f(xs.Y9t)
dy _
ugE = 9(x,y,t)
(2.0.1)

X = o

t=0
y =B

t=0

1. Asymptotic Expansions of Vasileva

Vasileva [15] makes the following definitions and these shall be
used throughout.

If we formally set u = 0 in (2.0.1) we obtain the degenerate

system
dx0
g = Flxgsy,,t)
(2.1.1)
0= g(xo,yo,t)
Ggr
dx0
g = F(x st
(2.1.2)

d(x_,t)

~<
o
it
o



with the initial condition

Xolt=0 -

where y = ¢(x,t), defined on a bounded closed set D, is a root of the
equation g(x,y,t) = 0.

The adjoined system is defined by

L~ glx*,y,t%). (2.1.3)

The root y = ¢(x,t) is positively stable in D if for all points
(x*,t*) ¢ D, where t* ¢ (0,T) the points y = ¢(x*,t*) are asymptotically
stable stationary points, in the sense of Lyapunov, of the adjoined
system (2.1.3), as T » ». The root is negatively stable in D if the same
conditions hold as © -+ -«. In what follows we will only discuss the positive
~case. Obvious adjustments can be made for the negative case.

We define the domain of influence of a stable root y = ¢(x,t)
as the set of points (x*,y*,t*) such that the solution of the adjoined
system (2.1.3) with the initial conditions y|T=O = y* tends to ¢(x*,t*) as
T > o,

We call the root y = ¢(x,t) isolated on the set D if there exists
an ¢ > 0 such that the equation g(x,y,t) = 0 has no solution other than
d(x,t) for |y-o(x,t)| < e.

We now assume throughout that:

A) The root y = ¢(x,t) of the equation g(x,y,t) = 0 is an isolated,

positively stable voot in some bounded closed domain D.



B) The initial point (a,B8,0) belongs to the domain of influence
of this root;

C) The solution xo(t) of the degenerate system (2.1.2) belongs to D
for 0 <t <T;

D) The systems (2.0.1) and (2.1.2) have unique solutions in the
interval 0 < t < T;

E) The functions f and g have continuous partial derivatives

of all orders.

Using these definitions, Vasileva [15] draws a comparison between

the system (2.0.1) and the system

[

a‘%= h(p,t,u), pltzo I (214)

where h depends regulariy on u. Whereas

lim p(t,u) = p,(t)
u>0

‘uniformly in t where po(t) is the sonlution of

o _ -
a h(po,t,O) pOIt=O = Yo

we have

Tim x(t,u) = xo(t) uniformly in 0 < t < 7T
>0

1

Tim y(t,u)

y (t) uniformly in 0 <ty <t <T
0 1
>0

where xo(t) and yo(t) are solutions to the system (2.1.1). Notice the
loss of initial conditions on y in (2.1.1) and also that y(t,u) is

discontinuous at t = 0, u = 0 and that we have uniform convergence only



in the interval t] «t « T. Here t] may be chosen arbitrarily close to 0
but must remain fixed as p > 0.

Vasileva [15] gives a method for obtaining an asymptotic series
in u for the solutions x(t,u) and y(t,u) of the system (2.0.1). It should
be pointed out that the usual way of obtaining such a series say for the
system (2.1.4), would be as follows. We would form the series

n
- U
P(tall) - Po(t)+upu(t,0)+---+ 'th (n)(tso>+Rn+] (2]-5)

U

by formally substituting (2.1.5) in (2.1.4) and equating Tike powers of u.
This gives us the variational equations for p (k)" Then using the initial

u
conditions

(2.1.€)
=0

we can solve for the p (k) and hence form (2.1.5). But this is not

possible for the syste; (2.0.1) since the corresponding Xu(k) and yu(k)

are undefined at t = 0, p = 0 since y(t,n) is discontinuous there.

Hence we may not use the initial conditions similar to (2.1.6). Even if

we had the correct initial conditions, our series woul: only be valid in

some range t] <t < T where t] > 0.

Vasileva forms an expansion of the form

) o+ (X). - (), + "R

X(t>U) = (5Z r r r+1 (2]‘7)

y(t.u) = (¥)



where (i)r and (y)r are series of the form

r ) r .
(). = ) X'y )= T yu, (2.1.8)
U R E VR
(i)r and (;)r are series of the form
~ vos i ~ v
(x), = 2 X', ), = 1 F;u (2.1.9)
i=0 i=0
and (x)._ and (§) are series of the form
G, = I At @)= 1 gl )
X) = XoU y) = ) y.po. (2.1.10
N E L =

The last series has the effect of cancelling the second series in the
boundary layer where it is bad and cancelling the first series outside
the boundary layer where it is bad. |

To form these_series,.we need a slightly more restrictive condi-

tion on the stability of the root y = ¢(x,t). We assume that

Re[; (53 (x0(x,),t)] < 0. (2.1.11)

Using assumptions A-E and (2.1.11) it can then be shown that

the quantities Rr+1 and Sr+] in (2.7.7) can be bounded for 0 < t < T and

0 <y < p. Of course, this implies that we may write

~

x(t,u) ~ (x), + (x), - (

x>

)OO
) ~ . (2.1.12)
y(t,u) ~ )+ (y), - (¥),.



The first series

t =ty in (2.0.1) to obtain

%— = u fx,y,ut)

S%= g(x,y,ut).

We then formally substitute
powers in p and solve the ¢

using as initial conditions

x1
—_—
o
~——
i
Q
-

and

1

For example the first two s

dio

o -0

dy

O _ - -

ac - Q(XO,YO,O)
and

d—-' - _'

‘d_jf— = f(XO,yosO)

47, o

7 = 9,(X,5¥,50)
vielding

XO(T) = q

dyo _

& - Q(Q,YO,O)

is obtained by making the change of variable

(2.1.13)

(2.1.8) into the system (2.1.13), equate like

orresponding sets of differential equations

x.(0) = y.(0) = 0 for i > 0.

ets of equations are

(2.1.14)

Ry 4, (g 750071404 (Rg 57 0)

(2.1.15)

» Yo(0) =8



and

dxy
dr - f(a,y ,0)
(2.7.16)
dy . - - - -
i gx(@syo70)X1+9y(“’yo’O)y1+9t(”’yo’G)T"
In general, we have the differential equations
dx ) - - - -
= fx(u,yO,O)xi_]+fy(d,y0>0)yi_]+Pi_Z(T)
5 (2.137;

T gx(u,yo,o)x1+gy(a,yo,O)yi+q1_](T).

Here ﬁi—z is a polynomial function of ij, yj, j < 1-2 and 1 and
éi_] is a polynomial function of ij, yj, j <i-1 and .

In this series, the functions f, g and their partials are evaluated

at (cx,yo ,0).

The second series is obtained by formally substituting (2.1.9)
into the system (2.0.1), equating like powers of i and solving the
corresponding sets of differential equations. However, the initial condi-
tions of ;1 and 91 for i > 0 are not as simple and will be given after the
third series if given. The first set of equations is " vstem (2.1.1)
with initial conditions ;0(0) = a,yo(O) = ¢{a,0). The second set of

equations 1is

dx
1 ~ o~ ~ o~ ~ -
= £ "
= F (XY st)xy + -y(xo,yo,t)y1 (2.1.18a)
ay,, Y - ‘
T = 9 (XsY s t)Xy + 9, (X,5Y s t)yy - (2.1.18b)



In general, we have the system of differential and algebraic equations

dx

i ~ o~ ~ ~ o~ ~ -
at fx(xo’yo’t)xi * fy(xo,yo,t)yi t Di_](t) (2.1.19a)
T = 9 (Ko oYgat)Xg + g (Kpuygst)yy + a5 (t) (2.1.19b)

Here Bi—] and 51-1 are functions of ;j’ yj, j < i-1 and t. For the second

series the functions f, g and their partials are evaluated at

The third series is obtained by expanding each of ;1 and Y; in

(2.1.9) as a Taylor expansion in t, with r terms, about t = 0. MWe obtain
, ~ r k
x.(t) = ) X it s y.(t) = kZO Yt - (2.1.20)

We then substitute these in (2.1.9) to obtain

T gt TT oyt
Xp = X T W s Yp = Yis
A 20 k2o K A 420 k2o K

k.1, (2.1.21)
or keeping only some of the terms such that for the subscripts i and k

in (2.1.21), i+k < r, we have
r i R r i K i-1

~ k i-k
(X).= 7 ¥ xp.tw t )= ) T oy sty
r 20 k=0 k,i-k r 50 k20 k,i-k

We may put (2.1.21) into a different form by substituting

t = yt to obtain



vl ki vl K i
W = L kZO Sk Bt kgo Y-kt
or
ro R roL
(x),. = 120 X;hs o (V). = 120 yiH (2.1.22)
where
- : k 4 L k
Xs = kZO Xk, ikt > Vi © kZO Vi, i-kT (2.1.23)

Instead of calculating the Taylor series (2.1.20), Wasow [16]
derives each of the quantities Qi and §1 by another method. Here (2.1.22)
is formally substituted into (2.1.13). Equating like powers of u and
solving the corresponding differential equations, we obtain the quantities
X, and §i. The initial conditions for these sets of differential equations

1’
are the same as those for the second term (;)r and (y)r. Hence 20(0) = o,

¥,(0) = #(a,0). For i >0, X;(0) and y;(0) must still be specified.

dx0
aw =0
~ (2.1.24)
dyo ) R R )
a?_'— g(xoayoso) YO(O) = ¢(G,O)
ovr
£ (1) = a, y (1) = ¢(a,0). (2.1.25)



Also the second set of differential equations is

dx;
F = f(@,q)(dao)so)
R (2.1.26)
d ] ’N ~
T = 9y (@,9(a,0),0)x; + gy(u,dJ(oc,O),O)y] + 9, (a,9(a,0),0)T.
In general, we have the differential equations
in R R n
g = f (0,0(e,0),0)x, 4 + fy(oc,¢(oc,0),0)y,-_1 +ps_o(T)
d§i A A ) (2.1.27)
a?_= gy(usd)(u'ao)so)x-i + gy(o{'a(b(u')o)ao)y-l + q-i__] (T)
Here 61_2 is a polynomial function of Qj’ §j, j < i-2 and T and 81_1 is a
polynomial function of ;j’ Qj, j <£1i-1and t. For ()?)r and (§)r, the

functions f, g and their partials are evaluated at (wo,¢(c,0),0).
We now give the initial conditions ;1(0) and ii(O), i > 0.
Vasileva gives them in the form

o]

%,(0) = %,(0) = i [F,_y(1)-F, (1) ]de (2.1.28)

where f(1) is the i-th coefficient in the expansion of #{x,y,t) of the

type (2.1.8), that is
- L - o
f(x0+ux1+...,y0+uy]+...,uT) = f0+pf]+u f2+...

Also %1(T) is the i-th coefficient in the expansion of f(x,y,t) of the

type (2.1.22), that is



and

~ ~ ~ ~ -"’ ~ 2"’
f(xo+ux]+...,yo+uy]+...,t) = f0+uf1+u f2+... .

In order to obtain the third series, the quantities §1(0) are
needed. These can be obtained by setting §i(0) = yi(o). The yi(o)
are obtained by solving the algebraic equations (2.1.19b) having first
obtained the %i(o).

Wasow [16] defines the in-tial conditions §1(0) and 21(0), i>0

differently but equivalently as
N R ® dx; dxi
%.(0) = %, (0) = f () - ). (2.1.29)

The condition (2.1.11) guarantees the convergence of (2.1.28)
and (2.1.29).

Notice that because of (2.1.17) and (2.1.27) the integrand in
(2.1.29) involves functions that have already been obtained.

Vasileva's method has the advantage of providing z(t,u) =
as a function of u and as such has important theoretical value. We

shall make use of this in material presented later. Each of the sets of



differential equations that must be solved to form (2.1.7) are not subject
to the stiffness caused by the prescnce of p in (2.0.1). However, even 7
only answers outside the pboundary layer are required, it is still necessary
to solve the equations associated with (2.1.8) and (2.1.10) in order to
solve for the initial conditions (2.1.29) for (;)r and <§)r' Note we are

also required to approximate the integral (2.1.29). These expansions alsc

require extensive preparation befora they can be used.

2. An Asymptotic Method by MacMillan

MacMillan [10] denotes an approximate solution to {2.0.1} by u

and v. Here only v is expanded formally as
4 i
V=) v.u. (2.2.1)

Once we have obtained the Vi 0 <i<vr, as functions of u and t, we may

solve

sy f(U,V,t) (2.2.2)

for u.
In order to obtain the Vi, we first expand “fu,v,t) and g{u,v,t)

as Taylor expansions in v about v = Vo - Hence, we have

r

flu,v,t) = Flu,v ,t) + ) Viui) .
Y =1
+ ] s jyr-1 o
r-1 f_fy(r~1)(iglviu ) + U, (2.2.3)

and



r .
glu,v,t) = gluv sty + g (T van') + ...

] L,
+ 7T 9 (r\( Z v.u1)r + ¥ (2.2.4)

y

In this section f, g and their partials are evaluated at (u,vo,t} uniess
otherwise specified.

By (2.2.1), we have

Since the v; are functions of u and t, we have

oV, oV - oV .

i_ _idu . i i i
1. Tt 3 = g FUsvat) + 5 (2.2.6)

r . r s
R R FTTRRS S St L (2.2.7)

Ud_f = g(U,V,t)

and use (2.2.3) to obtain



v le i+l " i
(2 gy v LRF () vy )t
‘i::O( E
. ~AV. .-
1 L el . ! 1 i+
+ Y"‘] '!—' fy(r_—')(.ié]v_iﬁl ) + UY'] T_!_ZO —8~1—:—-——
r . r
=g+g (Tvau'+ +F],~g(\(§vy’)‘”+v (2.2.

0= g(u,vo,t) (2.2.
v av

0 0
TR 9,¥q (2.2
oV v v

[P 1 0 - 1 2 ,
s 5 * 5 fyv] =9,y * o5 gy(z)v} (2.2
v oV . -

r-1. r-i _ 2

TR 9V + ... (2.2.

The method is implemented by solving the system (2.0.1) for t
in the range 0 = t < to and then soiving the system {2.2.2) by first
using (2.2.1). The Vi i=0,1,2,...,r are obtained 2, solving the
algebraic equations (2.2.9). The value ¢f to depends on the particular
value of u and so may vary from problem to problem. One suggestion is to
ocbtain v from time to time and let to be the first value of t for which

lv(t)-y(t,u)| is within a certain tolerance.



MacMillan's method provides a solution for a particular value
of 1 and requires the solution of only one set of differential equations.
However, it does require a certain amount of preparation before implemen-
tation and requires the solving of algebraic equations at each step of
‘the integration. Also it may only be implemented outside the boundary
layer and requires some other method to integrate a stiff system through

the boundary layer to provide starting values.

3. Methods due to Miranker

Miranker [11] suggests two methods. The first method called
the hybrid method must be applied to problems that can be written in the
form of (2.0.1). The second method, called the purely numerical method
may also be applied to stiff systems where the small parameter u may not
be identified. Both methods use Vasileva's expansions (2.1.7) with
r=1.

Actually only (2.1.9) is ised to approximate the true solution

since, as is shown in Wasow [16],

lik(T) - Qk(T)I + ka(r) - ﬁk(r)l < ce k= 0,1,2,...

where ¢ > 0 and k > 0 are constants independent of t and u. Hence,

outside the boundary layer we may nealect (2.1.8) and (2.1.70).

Both methods, however, require the initial condition I](O).

For the hybrid method we have from (2.1.29), (2;1.16) and (2.1.26)



1
O O\
| |
.
P
Q
“
<1
o
b m—
~
S
[
Semo”

Hence it is necessary to calculate yO(T) on a sufficiently fine grid

in order toc approximate (2.3.1).

The hybrid method may be stated as follows. Solve the system

(2.1.1) for y (0) = ¢(x,0), X (h) and y (h). Now solve (2.1.15) for
9O(T) for several values of 1, say 0, k, 2k, ..., Mk, so that we may
approximate ;](0) in (2.3.1) by some quadrature formula. Using the
initial approximation, solve (2.1.18) for il(h) and 91(h). We may now
solve (2.1.1) for §O(t) and yo(t) and (2.1.18) for ;](t) and ;](t) for

t = 2h,3h,4h,... . The approximation is then given by

x(t,p) = X (t) + X

0 ](t)

y(tou) =y (t) + u§1(t)-

For the purely numerical method, since we regard u as un-

identifiable, we write (2.0.1) as

dz
It b(z,t,u)

Zl4eg = ¥

- fla,d(o,0),0) ] dt. (2.:



g) have dimension m+n. We then obtain z(h) by

where z = (;) and y = {
some self-starting method and test the following inequality component-

wise:

|z.(h)-v.]

W< $ (2.3.2)

where § is a prescribed tolerance Tavel. If (2.3.2) is satisfied for

all components of z we repeat this last step for the next value of t.
Otherwise, we place the components of z that fail (2.3.2) in the vector y
and the rest in the vector x and reject this last integration step.

Instead, we examine the system
dx _ .
af - f(X,.Y,t,U)

4 = G(x,y,t5u).

dt

Here f is assumed to be analytic ir u in a neighbourhood of p = 0 and
G to have a simple pol= at ;1 = 0.
Using the above assumptica we obtain
q = flxgsyg,tsm), x (0) =
0 = G(Xogyost;U)

which corresponds to (2.1.1) and also



F = 6,0 + 6 () (2.3.35)

which corresponds to {2.1.18). Notice that since 1 is unidentifiable,
5 v e ) Rlcr
f, 6, f fy, G, and Gy are all evaluated at (xo,)o,t,u,. Aso we
solve (2.3.3) for “;T and uy] which are well defined quantities as soon
as we specify the initial condition UI](O). If we solve (2.3.3b) for uy}

and substitute in (2.3.3a) we obtain

d(U;(' ) -1 ~ ")
L = - -
e (F,-F,6, 6,0 (uxy) ~ £ G (G +G, f)
Wy = <6206 (uX) - G2(G,+G,f)
1 y x 7 y Ut x

The Tatter uses the fact that

dy
Y0 -1
I C —Gy (6, F+6, ).

In order to specify the initial condition u;]{ﬁ), we must obtain

an approximation to

[ee]

53 0) = [ TR (9),00) = Flaay, (),0i) e (2.3.4)
0.

which corresponds to (2.3.1). MNot: that yo(r) is the solution of

dy, ) _
g7 = HGloLy 05,

which corresponds to (2.1.15).
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Using the information

¥o(0) =8 . ¥,(0) = ¥,(0)
dy d§ (2.3.5)

T20) = uG(a,8,050), —g¢ =0

we may use a linear apprbximation for the integrand in (2.3.4) and

obtain the approximation

| [F(08.050)-F (0,7, (0),031)1°

ux](O) =5 fy(a,B,O;u)G(a,B,OQU)

(2.3.6)

by integrating from O to the positive root. Instead, we may use the
information (2.3.5) to fit an exponential to the integrand in (2.3.4)

and obtain the approximation

f(a,yo(O),O;u)—f(a,B,O;u)

i (0) = f, (e,8,051)6(a,8,05u) (2.3.7.

In both cases the arithmetic is done component-wise except for the matrix
vector product in the denominator.

Miranker's method then provides answers outside the boundary
layer and requires some initial preparation before implementation. It
also requires, as do the other methods already mentioned, the evaluation
of the partial derivatives of f and g with respect to x and y at each
step in the integration. The equations defining ;1 and §1 also require

the inversion of Gy at each step. The problem of obtaining the quantity



;1 involves solving the set of differential equations defining &O(r)
or in the second case of evaluating (2.3.6) or (2.3.7).

The purely numerical method provides an interesting way of
applying asymptotic methods associated with singular perturbation

problems to problems that are not easily written in the form (2.0.1).



CHAPTER I1I

INTERPOLATION PROCEDURE

1. Description

We define the auxiliary systems as

dx _
a._t—" f(xs.y’t)
i=1,2,3,....9 (3.1.1)
d
i g = 906y,t)

with the initial conditions

X(O,Ui)

It
Q

i=1,2,3,...,9.

il
™

y(0,u;)

The solutions to these systems, called the auxiliary solutions, are

X
.' - =
y.) where x. = xj(t,ui) and y. yi(t’“i)’ The

denoted by z; = (
i

procedure is to choose various values of i i=1,2,3,...,q9 and integrate
(3.1.1) for each value and obtain the z, at the values of t for whicg W?,O)
desire a solution to (2.0.1). We also obtain the values zo(t,O) = (;O(t,O))
from (3.1.1) by setting H, = 0. This of course is just the solution °

to the degenerate system (2.7.2). We then use Lagrange interpolation

with the variable u on the values Zi(t’ui)’ i=20,1,2,...,9 to obtain

an approximation to z(t,u), the true solution. Diagram 3.1 shows a case

withm=1,n=1.



ooy = 6(x,t)

y AN
} A" . 77 true solution
R & o .
» J ~._ auxiliary
- solutions

Mmoo

(a,8)

Diagram 3.1

If u is very small we have a stiff system. Hence, we pick
the Mo i=1,2,3,...,9 large enough so that the auxiliary systems
are not too stiff but small enough so that we get a good approximation.
The problem is to pick the value q and decide on the distribution of the
., 1=1,2,3,...,9. A look at the error expression is necessary to

i
make these decisions.

2. Error Analysis

An examination of the errors involved will hei; us to choose

the His i=1,2,3,...,q9. For convenience, we let
0<u]<p2<u3<,,,<pq,

As before z(t,u) is the true solution to (2.0.1) and Zi(t’“i)

i=0,1,2,...,q9 are the true solutions to (2.1.2) and (3.1.1). We let



A

w(t,u) be the approximation we are seeking and Wi(t’“i’ be the numerical

approximations to zi(t’“i) for i = 0,1,2,...,q. Also Tet

e(t,u) = w(t,u) - z(t,u) (3.2.1)

and
ei(t,ui) =Wy - 2g, 1= 6,1,2,...,q. (3.2.7;
Using (3.2.1) and applying Lagrange interpolation we have
e(t,u) = ? Lo (uwy - z(t,u) (3.2.3)
i=0
where
{u-n.)

]

1‘U

q .
L. (n) on Iu_J_-) , i=0,1,2,...,9. (3.2.4)

J#i

J

Substituting (3.2.2) in (3.2.3) we obtain

L.

e(t,u) = ;
0

I ~1.0

.i

which becomes

(n)

[e1+zi]—z(t,u)

q q
e(t,u) = Z L.(u)e, + Z LiGwzy - z(t,u)

e(t,u) = LoeO

+.
.i

qtl

9 g+l
L(n) 91 'z .
ZLi(u)ei “ T (3.2.5)

1

Z is evaluated at t and in general different

where each component of 9
ou

values of § but where each n satisfies 0 < 1 < y_.

qt1

q



]
o
i
(l :

i

L(n) (u~uo)iu—u1)(u-uz)...(w~u()

!

= u(u-u])(u—uz)--.(u—uq)- (3.2.6)

The last term in (3.2.5) is the error term in applying Lagrange inter-
polation assuming exact values for the auxiliary solutions. The first
two terms of (3.2.5) are the errors associated with the numerical
approximations to the degenerate system (2.1.2) and the auxiliary systems
(3.1.1) respectively.

Examining the first factor of (3.2.6) we see that (3.2.5)
implies this method provides us with at Teast a first order approximation
and that the stiffer the system (the smaller p is) the more accurate our
approximation is (as is the case with most methods that handle stiff
systems). We also see from (3.2.6) that the error caused by using My
in the interpolation formula is 0(11). Hence, decreasing M decreases
the error but it increases the stiffness of the auxiliary system and
hence the cost of integrating it. FEach auxiliary solution then should

provide an additional correction tc our approximation.

q+1
The quantity é—ai%f in (3.2.5) has significe~ze. It mignht
au
seemthat we may make e(t,u) arbitrarily small by picking g large enough.
qtl
However, in general, the quantity é—a;%-becomes arbitrarily large as q - <.
ou

Hence, the same type of asymptotic characteristic is shown here as q - «
as for Vasileva's expansions (2.1.7) as r » . That is, in general,

the expansions (2.1.7) diverge as r - =« although they give a good



approximation for r and u small. In examples run using the interpolation

scheme a value of q > 5 has given no further advantage.

q+1
An estimation of the derivative q+% in (3.2.5) is necessary
au :
here. To do this we obtain an asymptotic expansion first for %ﬁ-and
S :
then for Q—é—for any s. From Vasileva's expansions (2.1.12) we may write
ol
z(t,u) ~ (2), + (2), - (2).. (3.2.7)

It may be shown that gﬁ(t,u) exists for 0 <y <y and 0 < t] <t T
for some 1 and T (see Appendix A or Vasileva [14]). Hence, %ﬁ-may be
represented asymptotically in this region by formally differentiating

the right side of (3.2.7). Using (2.1.8), (2.1.9) and (2.1.10) we

obtain
9 S irs .~ 2ol
47 M) ()2 (3.2.8)
i£0 |

where 1 = t/u, 2(])(T) means dz/dt and 2(])(T) means dz/dt. In fact,

q -
Vasileva [14] has shown that é—é-exists on 0 < u < u and any interval
ou

q
] S t < T and therefore we may represent §_§_ asymptotically by
oU

repeatedly differentiating (3.2.8). Doing this we obtain

0 <t

9 o0 N .
-3—%~ T ii-1). . (i-g+1)Z, (e
ou i=q
q e . NE . (s
e e 3y @ 00 (3.2.9)
j=0 i=0 "



where the Vij are polynomials in i and E(J)(T) neans "~%%Cr), 2(3)(w)
jn
means ——E{T).
dr9 q
We get a first approximation to,a—é-by taking the first term
ou

for i in each of the sums in (3.2.9). We have

q ~ . e A 3 NE
3Z = q17 (t)+ E (-t)Jv .[Z(J)(T)—Z(J)(T)]U (J+q). (3.2.10)
3,0 kg 0]
M J
Let M; = max qt]z_(t)]. We are assured M; exists since z (t) is the
O<t<T 9 q
solution of (2.1.19) with i = q. Let M, = max [(—t)JV .. Using (3.2.10)
O<t<T 0J
0<j=<q
we have
2%z Va0 oy 20E) oy (3*a)
| = <My +# M, J |2V (1) - 2V (1) ]u . (3.2.11)
Buq 1 2 j=0

We may show 'zgj)(T)-ggJ)(T) < ce K/ (see Appendix B) where ¢ > 0 and

k > 0 are constants independent of t and u. For g finite we may also
consider ¢ and k independent of j. Using (3.2.11) we have

|8 L < My + M2ce°'<t/U % u"(j+q)
ou Jj=0



To a first approximation we have

q - -
2] <M+ MgV mEa (3.2.12)
a9
U
For this expression to be bounded by some quantity M4 we have
My o+ Mge < 8
Solving for t we have

M
2
t > —%-u[lnu| + u—g

Mg-M
where M. = -an( ) and M, is chosen so that
5 M3 4
M,-M
0 < 4M 1 < 1
3
Hence, we have
t > Mﬁpllnul + uM7 (3.2.13)

where M6 and M7 are positive constants independent of u.
The result (3.2.13) shows that t must be outside the boundary

layer, that is t given by (3.2.13), before a reasonable approximation can

3a+1,
q+l

be expected. In fact, since in (3.2.5) is evaluated at u, where

au
0 <pu < uq, this implies we may or may not have a reasonabie approximation

til t is O A .
unti is (uq] nuql)



A comment about the accuracy of the degenerate and auxiliavy
solutions is necessary. In equation (3.2.5) we have separated the
error introduced by soiving the degenerate system (2.1.2) numerically
from the error jintroduced by solving the auxiliary systems (3.1.1;

numerically. Looking at (3.2.4) we have with My = 0 that

since ”j >>u, j = 1,2,3,...,q9. This implies that the degenerate system
must be solved as accurately as we wish our approximation w{t.,u) to be.

However, looking at (3.2.4) again we have

U"Uj
—= . i =1,2,3,....9
1 Ui Uj

L.(p) = Ej- A
#1i

and :his implies that we may tolerate much larger errors e, in the

auxiliary solutions. The errors e; may be specified by
Me g Hi-Hs
e, = ﬂl-'w ;_ q €y i=1,2,3,....q.
SEL R

J#i
We may also see that making the M smaller implies we must make e;
smaller if we are to keep e(t,nu) within a specified tolerance.

In what follows we will be concerned with the relative error and

we will be using the L_ norm. Therefore, using (3.2.5) we write



e
s

]e(t 1)] . |; ile (t)i + 3 IL Il@ I + [L(n)] IUQ+?4!
sl m(;l 4] /j 1 i (q-{»] )! qy]
1= au
This gives us
e, ( | W]z—*’
z{(t, )] = ILof z(t,u ) E IL | ( J)[+}q+])!.lz(t u\l. (3.2.14;

Since zo(t) is a first approximation to z(t,u) for t > M6u]2nu§+uM7

then for sufficiently smali p, we write {3.2.14) in the more useful form

q ;
et = o tegl T islie )+ fElifpfiyy - .25,

where
't)
e, (E)] = [:‘ﬁit | (3.2.16)
o
and
les ()] i
i= 1 (3.2.17)

!L](t)l :T—Z—'c')—(v—m,'l— ,2,3,...,q,



CHAPTER 1V

NUMERICAL CONSIDERATIONS AND IMPLEMENTATION

In the following implementation we assume that a specified relative
error tolerance ¢ is given. The algorithm proposed strives to provide
answers within ¢ or failing that gives an estimate of the error incurred.

The L norm is used throughout. For convenience, we use

le (t)]
_'7o
Igo(t)I - Z
and
le; (t)]
’81(t), = **—7?——' N i= ],2,3,...,q

instead of (3.2.16) and (3.2.17), where
— o
L= max(],](¢(u,0))|)

~We note here that the fourth-order classical Runge-Kutta method

has been used to integrate the degenerate and auxiliary systems.

1. Methods used to Integrate the Degenerate and Auxi!’ary Systems

Our first consideration is obtaining the solution to the
degenerate system (2.1.2). We have assumed that there are no problems
concerning stiffness with the system (2.1.2) and that we may obtain the

correct solution y = ¢(x,t) of g(x,y,t) = 0 easily. In this case we have



used the classical fourth-order Runge-Kutta method in a one-step, two-
step manner so that we expect to be within a specified error tolerance.
We have already noted that this error tolerance €5 must be at least as
small as the error tolerance e for the over all problem.

The one-step, two-step procedure is done the following way.
If we assume we have the values of zo(t*) and that the current step size
in the integration is h, then we calculate zg(t*+kh) and zg/z(t*+kh)
where the superscript denotes the step size used and k is an integer

set at the start. We then test

| h(t*+kh)—zg/2(t*+kh)l

yA
= v < g (4.1.1)

If (4.1.1) is not satisfied we test

i PR TS
|22 (terkh)-z0/ 7 (txekh) |
7 SEO

for i = 1,2,3,... until it is satisfied and we accept the value of

i+1
22/2 (t*+kh) as zo(t*+kh) and reapply the procedure. If (4.1.1) is

satisfied then we accept zgfz(t*+kh) as zo(t*+kh) and test

12N (t*ekn) -2 2 (t74kh) | e
0 0 o .
7 < 106 (4.1.2)



If (4.1.2) is satisfied we double h before reapplying the procedure.

If z, (t ) is the value we are interested in and if t*+kh > ty, then we
t,-t*
] and apply the procedure. If in this

temporarily redefine k = [
case k = 0 we redefine h = t]—t* and apply the procedure with k = 1.

The solution of (2.1.2) is more difficult if ¢(x,t) is not easily
obtained. In this case consideration should be given to using a method
that minimizes the number of function evaluations since using a fourth
order Runge-Kutta method for example would involve four calculations
of f(x,d(x,t),t) and hence four calculations of ¢(x,t) at each step.

An explicit multi-step method would require only one calculation of
¢(x,t) as long as we saved previous values.

If for any reason an implicit multi-step method were chosen
the following should be considered. Let the r-step formula be given by
]aix(p~i)+hi§0bif(x(p—i),y(p—i),t(p-i)).

Then applying this to (2.1.1) we have

xép)—hbof(xép),yép),tép)) = R (4.1.3)
g(x{P)y{P ) lP)y < g (4.1.4)

where R contains only values that are known. The normal procedure might
be to use the Newton-Raphson method to solve (4.1.4) for y (p) - = ¢(x (p) t)
and then Newton-Raphson on (4.1.3). But note that (4.1.4) must be solved

for each iteration in (4.1.3) and that in addition the quantity %%—is also



needed at each iteration in (4.1.3). The other procedure might be to
solve (4.1.3) and (4.1.4) simultaneously, introducing a large algebraic
system with m+n unknowns. In particular cases we should examine the
algebraic structure of {4.1.3) and {4.1.4) and consult Ortega and
Rheinboldt [13] for example.

Hull, Enright, Fellen and Sedgwick [7] have collected statistics
in comparing various methods applied to various problems using different
tolerance levels. They suggest that a method by Bulirsch ard Stoer fis
best when function evaluations are not expensive. However, if function
evaluations are expensive a method due to Krogh is recommended. Krogh's
method is an implementation «f a variable order Adams method. In general,
Runge-Kutta methods are not —ecomme 1ded especially for stringent
tolerances.

As far as the auxiliary systems (3.1.1) are concerned we have
used the same one-step, two-step method used for the degenerate system.

In relation to the full system (2.0.1) these systems are moderately stiff.
As we have mentioned Hull, Enright, Fellen and Sedgwick [7] do not
recommend the use of a Runge-Kutta method. However, we have selected a
Runge-Kutta method for the following reasons. As we have pointed out in
Chapter III, the auxiliary systems need only be solved with a much more
relaxad error tolerance. Hence, as soon as we have found a step size

that integrates the system stably, we are probably very close to a value

of h that satisfies our error tolerance.
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Diagram 4.1

In Diagram 4.1 we have shown the stability regions for the Adams-
Bashforth method of order 5 (AB5), Adams-Moulton method of order 5 (AM5},
the classical Runge-Kutta m2thod of order 4 (RK4) and a fifth order
Runge-Kutta method (RK5) du2 to Lawson [8]. These graphs were obtained
from Gear [5] and Lawson [8]. We note that the stability regions for
}RungemKutta methods are usually larger than for multi-step methods.
For example, using AB5 and one correction with AM5 increases the stability
region as shown roughly by the dotted line in Diagrem 4.1. This means
we have about two function evaluations for one unit as compared to the
RK5 process which requires six function evaluations giving approximately

one function evaluation for one unit.



The increased region of stability either allows a larger value
of the step size or a smaller value for the auxiliary parameter (or
some combination of both), since as noted earlier a smaller value of M
causes a larger value for the Lipschitz constant. This is important since
smaller values of Uy either allow q to be smaller or allow smaller
values of & for a specific amount of computing.

We have not investigated any other methods except the classical
fourth order Runge-Kutta method but the fifth order Runge-Kutta method
due to Lawson seems particularly suited because of its extended stability
region as seen in Diagram 4.1. The multistep methods recommended in
Hull, Enright, Fellen and Sedgwick [7] would not appear to be of advantage
here for the same reasons as discussed with the Adams methods. The
extrapolation procedures of Bulirsch and Stoer have not been examined.
It should be noted that the conclusions given in this paper were for

nonstiff systems.

2. Implementation of the Interpolation Scheme

At this point, we assume we are given the parameters Hs s
i=1,2,3,...,9. We then use Aitken's interpolation in the following

manner. For convenience we define

z,.(t) = Zi(t)’ i=20,1,2,...,q.

The degenerate solution zoo(t) and the first auxiliary solution are then

used to form 211(t) as



g

(4.2.1)

If the test

< e (4.2.2}

is satisfied we accept z]](t). Note that in this case we expect only

that the degenerate solution which satisfies

2(t.) = 2, () + O(u)

outside the boundary layer also has a relative error of ¢ for this

particular pu.

If (4.2.2) is not satisfied we form

) (Ui—U)Zj-—] ’J-__]‘(U 'U)

Z. .

i,-1 . _ - 24
z.. s J=1,2,3,..., 4.2.3
ij T J i ( 3)

j-1
J-1

for each value of i = 2,3,4,... until the relation

IZ' (t)—z"l—] ,'i—] (t)l

1] 2 < e (4.2.4)

is satisfied. We then accept the value of Zii(t)'

The advantage of using Aitken interpolation here is that we
simply integrate and apply each auxiliary system as necessary and we do
not integrate those auxiliary systems that are not necessary. This
becomes important for many examples where for larger values of t we are

able to drop off some of the auxiliary parameters.



In implementing this procedure we simply accept the value of

Zii(t) for which the quantity

|z..(t)-z,
1] i=1,2,3,...,9

Z b

is a minimum if (4.2.4) is not satisfied for i = 1,2,3,...,q0.

3. Selection of the Auxiliary Parameters

The efficiency of the interpolation scheme depends on the
selection of the auxiliary parameters i i=1,2,3,...,9. Using the
error expression (3.2.15) we may assume that we may make €5 i=240,1,2,...
as small as we like. If the auxiliary parameters are chosen too large
then the Tast term of (3.2.15) may be too large to satisfy the error
tolerance €. This could happen two ways. The first obviously is that
L(u) may be too large. The second is that the effective boundary layer,
that is for t < M6u|2nul + uM,, may be pushed beyond a value of t for
which we desire a solution.

If the auxiliary parameters are chosen too small then the
auxiliary systems will become too stiff to integrate ¢ificiently and the
error tolerances €i5 i=1,2,3,...,q9 become smaller,

The value of q must also be chosen. 1If q is too small, then

the auxiliary parameters must be smaller so that L(p) is small enough.

q
If q is too large the quantity é—é—may be too large.
ou



The implementation of this method allows for the auxiliary

parameters to be chosen by the user or to be chosen for the user. The
approach taken for the selection of the parameters for the user is to
: q
find some rough approximation to the quantity !§~é-l. To do this
ou

we use the relation (3.2.12) as

q, e
;sl_q_ < M+ 3_2_~._ (4.3.1)
oy ned

to describe the behaviour.

We would Tike to choose the auxiliary parameters so that the
effects of the second term in (4.3.1) have been reduced. For any parti-
cular example we choose a starting, trial set of auxiliary parameters
Vi i=1,2,3,...,9. A way of choosing these will be explained later but

we may assume that v, =

; 2v1_1, i=2,3,4,...,q. We then form the Lagrange

jnterpolation approximation w(1)(t,u), i =qg,q9-1,9-2, to z(t,u) where

w(1)(t,u) uses the auxiliary solutions z, (t, v ) and 21—1(t’vi-1) and

the degenerate solution zo(t). Since vq > vq 1
w (e )-2(t.0)

> Vg-2 vq_3 we may

may be

assume that the relative error e(1)(t,u) =

approximated roughly by

el () = ¥ i , i 7 0,9-1.

Using the error formula for Lagrange interpolation we may calculate an

33, (1)
approximation for the quantities ————3——\ by



332(i)

i 3 (1))
(i) _ o> 3ile’] o
! Z azu-vi)(u—vi_])’ 1 q,q-1.
If the test
..])
min (1) ° (4.3.2)
i=q,q-1

where § is some preassigned tolerance level, is satisfied then we may
assume that for this set of Vi i =1,2,3,...,q the effects of the second
term of (4.3.1) have been eliminated. If (4.3.2) is not satisfied then
we divide each Vi i =1,2,3,...,9 by 2 and reapply the procedure. Note
that in the latter case we need only integrate one more auxiliary system
corresponding to vq_3, form one more Lagrange interpolation using vq_2
and Vg-3 form the error e(q—])(t,u) and form the quantity Y(q_]).

A1l the other quantities are available from the previous iteration.

Assuming we have a set of v., i = 1,2,3,...,q such that the

-i’

-kt/6
1
effects of g~———6————have been eliminated, where 0 =< 6] < vq, we now assume
6] -Kt/62
that the effects of 9~—§a——-have also been eliminated where 0 < 6, < vq—l’
6 .
2

This is certainly true for a sufficiently large value of t since 6, is
1ikely to be smaller than 6y - Even in the examples where a slight problem
is encountered and the tolerance e is not qiite réached at this value of
t, this might be considered a small price to pay for a superior set of

auxiliary parameters when applied at larger values of t.



With this assumption we form the table zij’ i=0,1,2,...,q
and j = 0,1,2,...,i as in Aitken interpolation using the equations
(4.2.1) and (4.2.3) with the parameters Vs instead of His 1= 1,2,3,....q.
The relative error € using q-1 auxiliary parameters can be estimated

roughly by

Z -Z
s - 9-1,9-1 7q,q
€ 7

and this may be used in the error expression for Lagrange interpolation
I_?_?_Z_I

q
to estimate the quantity ——Q%————by the equation

oy

= tarlé| (4.3.3)
where

L) = ujzﬁ:(u-vi). (4.3.0)

2%

We now use this rough approximation for ~§%~w to obtain a

suitable range [u ] for the auxiliary parameters His 1= 1,2,3,... 50

min *Mmax
that will be used in the actual solution to (2.0.1). Any of the quantities

< v, €1 will be kept since we

vis 1= 1,2,3,...,q that satisfy Hnin j

max
already have the solutions for these parameters. It would be a waste to
discard anyacceptab1e-vi especially since we have integrated its system

through the most expensive range of t.



u ] as ifu

We calculate is r . . :
ulate this range [“m1n’ nax min and Mgy Were

X
the first and last values of His i=1,2,3,...,q such that the s are
equally spaced. Also we should pick these M such that the ervror
expression for Lagrange interpolation is the same as the error tolerance

e. Hence, we have

222,
L) e
q! Z £ (4.3.5)
where L(p) is given by
q-1
L{n) = u.H](u-ui). (4.3.6)
'l:

Using (4.3.3) and (4.3.5) and solving for |L(u)| we have

EIL-‘ (U)l
()| = —— (4.3.7)
e

Since the y; are equally spaced we have from (4.3.6)

q-1
ILGOT = T u,
i=1
.1 9o
= uufﬂ ] T
i=1
= w3 g-1)1, (4.3.8)



We may use (4.3.8) along with (4.3.4) and (4.3.7) to solve for lmin PY

the equation

We then have Mnax = (q_])“min'

As we have stated we keep the Vi i=1,2,3,...,q such that
Pmin = Vi © Hmax-
still need to find His i=s+l,s+2,...,q if s # q. However, the My

We will call these values i i=1,2,3,...,5. We

must still satisfy (4.3.7) and therefore we have

q-1 e[l (W]
(umpg)e T () = ——
1 i=s+]

= wun

.

i le]

which we may write approximat2ly as

CI‘] EIL] (U)I

I 1 My T S

st &) T (u-u;)
i=]

If we assume that the u., i = s+1,s+2,...,q9 are equally spaced we have
i

using (4.3.4) again that

q-1 1
E_H (U_\)i) q_s-l
- 1=
1JS“{“‘I N _ S
e(q-s-1)! 1_(u-u.)
i=1 1



We also have
= 1 7= 2 -
ey 1 Mo 42 i 2.3,...,50-5.
0f course, if any of the y,, i = s+1,5%2,...,9 are chosen close to any

of the Mo i=1,2,3,...5 we adjust the former siightly.

It only remains to find a way to choose the starting, trial

set of auxiliary parameters, Vi i=1,2,3,...,9. They should be chosen

so that 6] satisfies

-Kt/G]

e . 2 9)
N A {(4.3.9}
O]

where 0 < 0] < vq, and A is ome tolerance level. The relation (4.3.9)

may be rearranged as

‘ wn A Kt
2ri 6]4- 3 91 -——6-> 0.

9

The function

P(67) = 078n 0y + = 07 + ¢
is strictly positive if t is large enough and in this .ase we arbitrarily

set Uq = T%ﬁn We should not= that vq should be small enough that the

asymptotic nature of (3.2.9) is preserved.
if t is small enou:h the function P(e]) has two roots, 8 and s

such that if r] < r2 then

>0 if0 < By <1y

P(G]) <0 if ry < By <1y

3

>0 if rs < 6]



23 e ~ = - kS ! . l._ SIS
We therefore solve P(Ol) 0 for r and let vq ry - If ry Y0 e set

\)q = m‘ . We then let
v,
i+l .
v = 5 1 = q-1,9-2,...,1

A note on the solution of P(e]) = 0 is in order here. Since

-1+ 2R

the minimum value of P(e]) occurs at p, = e and ry <Pp< Ty

we choose Py @S @ starting value and form

. = i=1,2,3,...

until we have P(pi-1) < 0 and P(pi) > 0. If Newton's method is guaranteed
to converge using p; as a starting value we then use Newton's method. If

convergence is not guaranteed we form
SRt T (4.3.10)

If P(p) > 0 we let p; =P and reapply the test to use Newton's method.
If P(p) < 0 we let Py = P and recalculate p using (4.3.10). This procedure

is guaranteed to find ry-

4. Comments on the Actual Subroutine that Implements the Procedure

A listing of the subroutine, written in FORTRAN, that implements
this interpolation scheme may be found in Appendix C. The purpose of the

subroutine is to allow the user to give starting values of z at to and to



50

obtain approximations to Z(ti,u) at values of ti’ i=1,2,3,... . For
each value of ti’ the user must reference the subroutine again. As the
explanation of the procedures used has shown, a maximum error tolerance ¢
should be given and the subroutine will try to give answers within that
error tolerance. If it cannot, it will return an estimate of what error
was made. In this case, the user should reset ¢ for the next step because
it is quite possible to obtain satisfactory answers at the next value
of t. However, ¢ should never be made smaller than the initial value
since this value is used to calculate an error tolerance for the degenerate
system and the auxiliary systems. It would be impossible to use a
smaller value of € during subsequent steps without recalculating the
auxiliary solutions from the start or suffering a boundary layer effect
in an interval of t for which there should be none. The cause for the
latter case will be explained later.

On the first call on the subroutine the user has the option
of choosing the auxiliary parameters or allowing the subroutine to choose
the auxiliary parameters by setting a flag in the parameter list. For subsequent
calls this flagwill already have been set on the previous call so that all
the preliminary routines may be avoided. Also for subsequent calls the
subroutine saves the values of the degenerate solution and the auxiliary
solutions plus the values of t for each of the auxiliary solutions. The
latter is necessary since nothing is done to an auxiliary solution unless
it is needed and it might be possible, although not probable, that more

auxiliary solutions would be necessary at later steps.



The user may use this procedure to obtain highly accurate

~t

L

answers for values of T such that the effects of the quantity !§%7E;—4
p—;

have been eliminated. If answers for smaller values of t are desired
first, the user must be content with using smaller auxiliary parameters.
However, it is possible to change the selection of quxiliary parameters

for larger values of t and this might be quite desirable. Doing this atter
obtaining answers at some value t] would effectively mean restarting the

whole procedure at t], including all the initialization. Unfortunately.

this also involves a boundary layer effect. To see this we examine Diagram

4.2 which shows an example with n = 1.

\n s L ;‘A k~degenerate solution

§Erw%’ ' I - - tyrue solution

. an auxiliary solution
used from t = 0

R

e

i |

4 o a new auxiliary solution started at t,

~ and using the *true solution as an
initial conditicus

Diagram 4.2



For convenience we have used the same value of M for each of the auxiliary
parameters. The solution being started at ty using the true solution for
a starting value experiences a boundary layer effect in the interval
ty < t < t2. This effect although much smaller than the original boundary
layer effect still causes problems in the quantity gﬂg-.
u
An illustration of this effect may be seen by looking at the

system (2.0.1) but using the initial conditions

t=0

¢(a,0).

<
i

t=0

1]

We might expect no boundary layer effect by starting on the degenerate
solution. However, a look at Vasileva's expansions (2.1.7) shows

differently. Solving the equations (2.1.15) and (2.1.24) we find

and

Looking at (2.1.29) we also find ;](O) = 0 and therefore looking at (2.1.16)

and (2.1.26) we also have

)_('I (T) - ;(\-l (T) = 0.



However, from (2.71.18a) we have

-1 dyo
gy (O(',(i)(OLsO) 30) a—t——(o)

§<
—
Pl
o
o
1t
<>
m—cd
——~
o
S
1

and

Jolt) - y.(t) #0, i=2,3,4,...

and hence we have a boundary layer effect.

These last statements also show that in order to pick a set of
auxiliary parameters, it is necessary to integrate a set of auxiliary
parameters through the boundary Tayer instead of pérhaps trying to avoid
the boundary layer by starting on the degenerate solution for test

purposes.



CHAPTER V

NUMERICAL RESULTS OF THE INTERPOLATION SCHEME

1. Some Sample Problems

In this chapter we present some numerical results showing
various features of using the intsrpolation scheme. Some comparisons are
made with a subroutine package due to Gear recognized as a veryv efficient
routine for handling stiff systems. The following sample initial vaiue
problems are used.

Problem 5.1 m=1,n =1

1
O

d

gt = x-y, y(0)
The stable root ¢(x,t) is given by

b(x,t) = x.

The degenerate solution is given by

t
e

t
e

I

X, (t)

¥, (t)

n

and we see that this linear system does not have an asymptotically stable
null solution. The true solution is easily obtained for this example

and is used for comparison purposes.



The stable root ¢(x,t) for these initial conditions 1is given by

o(x,t) = x.

Again, the degenerate solution is given by

x (t) = et

t
y (t) = e
and we see that the solution to this system with a quadratic function
g(x,y,t) grows exponentially also. This example is taken from Wasow

[16], p.275.

Progblem 5.3 m=1,n=2

(ai%z —(x—3y(])~y( )_])(_X+y(])+y(2)+2), x(0) = 2
gy (1),.(2) m @, y Mo =1
udp— = (x#3y Tty Y(x-2y* -y TT),

(2)
ugat - = (2x-y(])-y(2))(X+3y(])+2y(2)),\ y oy = .

The stable root ¢(x,t) for these initial conditions is given by

b(x,t) = (53).



The degenerate solution is stable at the point

Problem 5.4 m=3,n=2

D20, (3, (D (8) (g -

ti
i

(2)_,, (3),

X ,()43,(2) (2

ax3) (1) (@) 3,3),(1),5,(2),(3) g

1]
Ny

dy- © o 5y (1)4,(2) g, (3) (])-ZY(Z):Y(])(O)

il
i
NS

dy " _ x(])—2x(2)+3x(3)+y(])—4y(2), y(2)(0) -3

The stable root ¢(x,t) is given by

2)

53 4 ay3x(2) Cqg3x(3)

(x) =

h=a

176x) 2 176x(2) _ 564 (3)

The eigenvalues of the matrix %§~are -2 and -3. The system has an

asymptotically stable null solutijon.



Problem 5.5 m=7,n =3

%Slz S
dQEZ) -y
d§i3) = X(3) -y
SUNNCI
ol o),
SR
dgi7) 2,2



2. The Resuits

The results for these problems are civen in Tables 5.1 to
5 22 The columns headed "error in" are absolute arrors. For
Problem 5.1 the interpolation scheme 1s compared to the true solu
For Problems 5.2 to 5.5 the interpolation scheme is compared to results
obtained by using a.subroutine package due to fear. The column headed
"max error expected' is the value of € used in the interpolation
scheme unless ¢ is not satisfied. [n this case an estimate of the
relative ervor incurred is given.

The columns headed CPUG are the times in milliseconds taken
to intearate the systems from the previous value of t to the current
value of t using Gear's subroutine. The columns headed CPUI are
the corresponding times 1in milliseconds taken by the interpolaticn
scheme. Because of the difference in the error criteria for the two
methods it should be remembered that we used an error tolerance in
fear's subroutine small enough so that € was satisfied for the whole
range of t. 1t should also be remembered that the timing function used
may be in error by as mucn as 10%.

Tables 5.1 to 5.5 give some numerical results far Problem 5.1.
Table 5.1 shows results for values of t = a2 3 e .o 1. As

16° 16” 16 ’

indicated the auxiliary parameters were selected by the subroutine. In
Tanje 5.2 the interpolation scheme selected small values of U for the
sipst value of t which was small. Me then had the scheme s=2iect a new
set of auxiliary parameters for the larger values of t using results
obtained at the first value of t. Tables 5.3, 5.4 and 5.5 show results

for large values of t. The maximum error expected is consistent with



the results since the errors given for x and v are absolute errors and
¢ is a relative error.

Tables 5.6 to 5.10 give results for Problem 5.2. In Table
5.6 the parameters were selected by the subroutine. The results compare
favourably with Gear's method. In Table 5.7 a smaller set of auxiliary
parameters were selected by the user and produced worse results. Tables
5.8 and 5.9 show that with larger values of Hys Wy and Ha than in |
Table 5.6 we get better results. However it was found that with larger
values of My than this, the error tolerance e was not satisfied. In
Table 5.10 we have used a more relaxed error tolerance € and have
allowed the subroutine to select the parameters. Ye note that the
jnterpolation scheme compares well in this case.

Tables 5.11 to 5.17 show results for Problem 5.3. In Tables
5.11 and 5.12 we have let the subroutine select the parameters. ‘hen
the first value of t is larger a more efficient selection of auxiliary
parameters occurs when applied at larger values of t(t=1 for example).
Table 5.13 shows results in which a smaller selection of auxiliary
parameters than Table 5.12 was chosen by the user producing more
inefficient times. Tables 5.14, 5.15, 5.16 and 5.17 show results in
which increasinaly larger selections of auxiliary parameters than in
Table 5.12 were chosen by the user producing increasingly better times.
Notice in Table 5.17 that e was not achieved at t = .0625 and an
estimate was given of the actual relative error., However, we notice
that ¢ was achieved at larger values of t and the subroutine predicted
this.

Tables 5.18 to 5.21 cive results for Problem 5.4. In Table 5.18



the auxiliary parameters were selected by the subvroutine. In Table
5.19 a smaller selection of parameters selected by the user produced
more inefficient times. Table 5.20 shows that a larger selection of
parameters produces more efficient times. wWotice however that e was
not achieved at t = .2500 and t = .3125 although for Targer € the
error tolerance was once again achiaved. 1In Table 5.27 a more relaxed
error tolerance was used.

Table 5.22 shows results for Problem 5.5. The error

tolerance was not satisfied at t = .0625 but was satisfied at larger €.

This was successfully predicted by the subroutine.



1

Dproblem 5.1 with 1

I
b

e S o ey
? error in Ioomax l
{ e aryer |
1 {
L expected,
; -

! £.100-08

ﬁ 0,125¢€ J.81D~Thj-0.950-71 0.100~03

- ?m
!
i
| 0. 100-09

% 9.187> ~0.110-12 1 GB.200-77
1 6.2500 | -0.22D-101-0. 17012 | 0.100-0%
0.3145 -0.319b~12¢ 0,%00-17 i 0.160-09

¥

S 0.375C | -0.47D-121-0.255-12 | 0.10D-00
0.4375 | =0.460-12:-0.250-17 1 0.130-09

g.5¢c0 ~0.61D-121~0,310~12 0.10D-09

0.50625 -0.110-11;-0.82D=-12 6.1°D~09 !

6.6250 -C.170~111-0.1U4D~-11 0.100-03 ¢

$8.6875 -0.21D-11;-0.180-11 0.10D0-09 ¢

[9.7500 | -0.31011|-0.250-11 | 0.100-09 |
68125 | =0.360-17|-0.33D-11 ;0.109-095
%0‘375C ~0.h50=-171-n. 59011 ;9.393—092
;0'9375 P -0.550-11[=0.510-1" 10.100-00 |
;{alicce g ~9.f30-11:-0. 62017 §O=7OD~0Q?

The error toclerance e:]OW1G.

The auxiliary parameters selecte” Tor
the user by the subroutine were
.00107, .00142, .00190, .(00253, .00337.

Table 5.1



Problem 5.1 with pu=10"

6

f error in max

i t X y error

? expected
6.0010 | 0.14p-14 [ 0.280-14 | G.10D-09
0.1010 | -0.¢€p-17] n.79p=-12 | 0.107=-09
0.2010 | -0.78p-12 |-n.13n=12 | n 10R-00 1
0.3010 | -n.9¢D-12 |-n.92n=12 | £,10P-0¢
|0.4010 | -0.22P-11 0.250-11 ; 0.100-09 |
0.5010 | ~0.25n-11{-0,25n-11 § r.100-09 ;
0.6010 | -0.37n=11{-0.19p=-17 f 6.100-09
[0.7010 | -0.5D-11] 0.720-73 E‘O.IOD—OQ
10,8010 | -0.C3p-11{-n.630-11 | 0.100-09
t0.3010 | -0.81D-11}-0.80D-11 % 0.10P-09
1.0010 -0.110—103 £.30n-10 é 0.101=09
1.1010 | -0.12n-10/-0.120-70 1 0.10p=09
§1.2010 -0.150-10§-n.15n-10 % 0.100-09
;1.3010 -o.zon—1o% nL12n-00 E 0.10D-09
1.8010 | ~0.22p-10i-0.22n-17 % 0.10D-09
;1.5010 | -n.27p-30(-0.26D-10 E 6.10D-69

-10

The error tolerance £=10

The auxiliary parameters selected for
the user at the first value of t ranged
from .00001 to .00005.
The auxiliary parameters selected for
each t thereafter were

.00262,.00349,.00466,.00621,.00828

Table 5.2



problem 5.1 with 1=107°

error in ~ max

t TTTTTeryo

X Y exggczed ﬁ
1.0080 0.670-11 ] 6.52D-77] ~".100-39 !
2.G000 0.300-1 0.790—1?‘ ﬁ.]Oﬁ*Ogé
3.0¢C00 fL3650-00 0.35D'07§ G.100~09
4,000 0.13D-C2 | o.1zn-aq§ 6.100-09
5.000¢ | 0.u5D-C3 %o.u7u-nx 0.100-29
6.C600 C.14D-C7  0.145-07  0.10D-09
7.0000 o.uuu-o7§fo.uuo-o7 0.10D-09
3.CL00C ¢, 1uD=-36 ‘O.lhD—OG 0.10D-09
9.6C00 | 0.43D-C5 i 0.45D-06] 0.100-09

.130D-05| 0.12D-09

116, 3540 £.13D-35

11.GLGo .380-05 .38D-05 0.120-08

L11D=-2h 0.12D-08

Qo O o o ©O

0
12.000C 0.711D-0L
0

13.¢000 L34D-30 1 0.3uD-0k 0.1-.D0-09

16,0CCC 0.99D-Ch {0.10D-0C3 0.12D-09

15.000C | C.200-03 |€.290-0% ¢ 0.10D-09

16.6605 | ¢.84D-03 10.850-03 | 0.210-09

The error tolerance e=10'10
The auxiliary parameters selected for
the user by the subroutine were
.00422, .00563, .00750, .01000, .01333.

TabTe 5.3



Problem 5.1 with p=10"°

¢ | _errorin 1 max
X y error

expected

1.500. | -0.870-12)-0.20,0-17 | G.130-11
2.0068 § ~0.57D-11} -0.5°0=-11 | ©.210-11
3,0006 { -0.250-10}-0.250-10 | ¢.320-11
4,0000 L -0.040-101 -0.93D-10 | G.45D-11
5.¢0060 -0.320-04; -0.320-09 0.520-11
6,6000 | -0.110-00)-0.10D~02 | 0.82D-11
7.066C | -0.330-03{-0.33D-03 | 0.110-10
8.00JC | -0.100-067{-0.160-07 { 0.11D-10
9.0066 | -0.310-07{ -0.300-07 ] ©0.170-10
15.6202¢ -0.93D-07, -0.910D-07 { 0.210~10
11.¢000 1 -0.27D-051-0.270-06 | 0.260-10
12.620C | -0.800-06}-0.77D-06 | 0.333-10
13.cc00¢ -0.23D-051-0.22D-95 | @.nuON-10
14,3000 | ~0.65D-05{-0.63D-05 | O.48D-10
15.cc¢c | -6.190-041-0.13D-06 | 0.580~10
16.00¢¢ ~0.520-Q4 | -0, LID=0k 0.700-10

-12

The error tolerance e=10

The auxiliary parameters selected for
the user by the subroutine were

.00316, .00422, .00563, .004u7, .01000.

Tahle 5.4



5.1 with 121070

Problem
I errb%“%h— e

+ = efror

’ X ¥ expected
1.0008 0.02D0-1%31 0.,20-13 § 0.,105-11
2.0¢000 0.350-121 0.%0-12 | o.130-11 )
3.0000 0.14D=114 0.160=1Y | ©0.100-11
b.0000 0.550-111 0.62D-11 { 0.160-11
5.0CCC 0.170-124 9.17D-10 § 0.10D-11
6.00CC 0.550-121 0.55D-10 | 0.10D-11
7.0C00 0.180-29} 0.19D-69 | 0.10D-11
8.000¢ G.550-091 D.55D-07 F 0.10D-11
9,037 0.170-031 0.170-07 | G.10D-11
10,000 §.520-08§ 0,54D-07

11,8000

)

.17D-07

G.’.OD*I]2

{

¢.100-11

12.6350¢ 2.48D-C7{ 0.480-07 | 0.730-11
i
13.¢0¢C8 0.14D-3G] 0.15D-06 | 0.18D-11
14,0000 C.420-u01 0.83D~06 | 0.24D-11
15.0062 0.12D-235) ¢.1%p-0° ! 9.31D-11
16.¢338 0.37D-:51 0.320-05 | 0. xoD-11
18

The error tolerance =10
The auxiliary parameters selected hy
the user were

.00100, .00200, .00300, .00400, .20500.

Table 5.5



Problem 5.2 with u=10"°

U I - §
. o error §CPUG
X y expected;

0.0625 | ~0.31D-12}-0.320-12 | 6.300-99 | 3731
0.1250 | =0.86D~12;~0.790-12 [ 0.10L-79 | 2438

' 0.1875 | -c.1uD-11}-0.100-11 | 5.70u-00 1 203
i 0.250C | -0.20D-211-5.260~11 {0.100-00F 279
| 0.3125 -0.260b-111-0.230-13 §0.100-09} 2t1
" 0.3750 -o.szu-llé-o.zsumll 0.100-05 ¢ 252
S 0.4375 —o.uou~11§»u,uouw11 {0.100-09 ) 261
' 0.5000 | -0.480-11) -0.260-11 §0.100-39 | 214
- 0.5625 ~o.59u—11%-o~59u~11 5. 100-09 Lo27s
5'0.5250 —0,730~11§»o.73u~11 0.100-09 ] 277
' 0.6875 —0.830—11§—u.32u—11 0.100-69 ! 248
E 0.7500 Fo.95u~13%-o.11uM10 0.100-09 § 290
é 0.8125 -u.11u-10%~u.11u-1@ 10.10L-09 | 304
f 0.8750 | -0.13D-10%-0.130U~10 10.10U-09 | 249
J 0.9375 »0ﬁ15u~1o;—0.1su~10 50010U~09 f 269
1.,0000 | -0.170-20:-0,175-10 6. 100-02 1o

FOREPE SO

2 gt

-10

The error tolerance e=10
The auxiliary parameters selected for
user by the subroutine were

.00253, .00337, .00449, .00828, .0165¢.

Table 5.6



Problem 5.2 with p=

107

érror in g

B e -

S R S

'0,0625 | -0.340-128-0.700L-12 %

0.1250 | ~0.890-17} -0.120-11 °

0.1875 | -0.150-11}-0.81u-11 E

0.2500 | -0.21L-11)-9.210-11 %

0.3125 | ~0.260-11}-0.26D~11 |

0.3750 | -0.320-11}-0.240-11 !
{0.4375 | -0.400-11! ~0.810-11
io.sooo ;'O.MQU-II‘-O.MBU-ll

{0.5025 | -0.600-11}=0.570-11 |
10,6250 ~0.7uu-111 0.120-10
;0.6875 —0.sup-11] 0.u00-10
10.7500 [-0.960-11%-0.970-11
10.8125 §-0.110-10f-0.115-10
©0.8750 :-0.130-10}-0.140-10
109375 | -0.150-10}-0.150-10
[1.0000 |-0.170-10§-0.220-10

The error tolerance =10

10

max | 'E A}
error |CPU,  CPU, ;
expected | i
0.100-09 §3751 ¢ 1500
6.100-00 | 259 170
0, 100=-0¢ 265 1 165
0.10U-09 | 240 174
0.10D-09 § 253 | 161
0.100-09 & 256 T
- 0.100-09 { 265 195
0.100-09 | 245 ? 211
0.10L-09 | 275 { 21b
0.100-0G } 277 ; 200
0.10u 09 | 2u8 E 230
6.100-09 2u9§ 266 ¢
0.100-09 zoai‘ 309 |
0.100-09 | 250 { 321
0.101-09 2763 360 -
0.200L-00 § 290 | szzj

The auxiliary parameters selected by “he user

were

.00200, .00300, .00400, .00500,

Table 5.7
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Problem 5.2 with p=10"

6

! error in i4 max ; i

. - T 7 error (CPUL | CPUL
I— LS Yo iexpected 3 ;
00625 §-0.270-32] £.11v-12 z’o.zom;cg 3734 :Ehss 1
0.1250 |-0.810-12,-5.660-12 | 0.100-09 | 259 | 118 |
0.1875 | -0.14D-11]-0.140-13 ; 0.10D-09 | 266 Po1o3 ;

| 0.2500 §-0.200-11/-0.20u-11 L o.1op-09 | 239 ! *zzé
0.3125 |} -0.25b-11 ~0.250-11 i 0.100-09 251 | 22u |
0.3750 —3.310—115»0.320«11 i 0.100-09 ! 252 ;zzi

L 0.4375 | -0.390-11} -D.39D-11 % 0.100-09 ] 263 i 157 |
£ 0.5000 ~o.u8u—11%-o.u90—11 | 6.100-00 | 247 | 1312
0.5625 -0.599-11§~o.ezon11 L o.10D0-094 277 % 1eu |
?0.6250 —o.720—11%-o.soa—11 é 0.100-09 | 277 EEITE
0.6875 -o.szu~1i;—o.1oun10 % 0.100-05 | 219 152%
.7500 —o.95u-11§_o.osu~11 E D.100-03 | 249 % 13&%
0.8125 |-0.110-10{-0.110-10 L 0.100-00| 304 . 207
0.8750 «omlsu—1o§-o.110-1c i 0.300-09; 249 | 223
0.9575 1 -0.150-101-0.,150-10 ! G.}UUWU9§ 268 | 252 |
1.0000 |-0.17L-19{=0. 170710 Mg‘“ag e 260

The error tolerance =10

-10

The auxiliary parameters sel

were

<

cted by t"» user

.00300, .00400, .00500, .00600, .00700.

Table 5
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Problem 5.2 with u=10"

error in

6

max

t erroyr CPUG CPUI
- X Y expected
0.0625 0.210-12{-6.400-10 | 0.100-09 {3737 | 2116
0.1250 |-0.450-12%-9.35p-12 | 0.100-09 ] 258 96
0.1875 1-0.110-127{-0.110-11 ! 0.100-09 § 205 85
0.2500 |-0.160-11}-0.17D-11 0.1ou~09‘f 23§ 87
0.3125 |-0.210-11{-0.230-11 | 0.100-09 | 251 35
0.3750 |-0.260-11}-0.34D-11 | 0.100-09 | 252 86
0.4375 |-0.34U-11]-0.31D-11 | 0.100-09 | 260 97
0.5000 |-0.420-11}-0.140-11 | 0.100-00} 245 96
0.5625 |-0.530-11{-0.260-11 { 0.100-09} 275 108
0.6250 }-0.660-11}-0.64D-11 §{ 0.100L-09 | 277 114
0.6875 |-0.76L-11}-0.76D-11 | 0.100-00 | 248 122
0.7500 {-0.88D-11{-0.85D-11 | 0.10D-0% | 248 137
0.8125 }-0.110-101-0.10D-10 | 0.10D-09 | 304 159
0.8750 {-0.120-10{-0.66D-11 | 0.100-09 | 249 164
0.9375 §-0.14D-10{-0.14D-10 | 0.105-09; 271 177
1.0000 }-0.16Db-10{-0.16D-10 | 0.100-07; 291 168

The error tolerance
The auxiliary parame
were

€=1O_]O

ters selected by the user

.00500, .00600, .00700, .00800, .00900.

Table

5.9




Problem 5.2 with p=10"

6

error in “max 0
t error ‘CPUG 1 CPu
: X y expected !
0.0625 0.61D-05]1-0.130-05 J0.270-06 § 1309 | 1596
0.1250 0.42D-10} 0.920-09 -] 0.25D-07 1 1u% 181
0.1875 |=-0.73D-09{-0.12u-08 | 0.10D-07{ 176 59
0.2500 |-0.10D-08}-0.100-08 {0.10D-07] 156 ; 59
0.3125 §-0.14D-068}1-0.14D-08 {o.100-071 159 33
0.3750 | -0.190-08{-0.15L-08 { 0.10D-07} 172 b
0.4375 | -0.21D-08}-0.21D-08 § 0.100-07§ 16¢ 4
0.5000 | -0.270-08{-0.230-08 | 0.100-07! 161 30 |
0.5625 | -0.330-08{-0.32D-08 | 0.10D-07 ] 163 58
0.6250 | -0.390-08{-0 22D-03 0.100-07 | 150 34
0.6875 | -0.480-08/-0.48D-08 §0.100-07{ 173 58
0.7500 | -0.53D-08}-0.53D-08 |0.100L-07 | 167 45
0.8125 1-0.64D-08{-0.64D-08 {0.10D-07 ] 174k 41
0.8750 | -0.71D-08|=0.71D-02 |0.100-07 | 1hb 81
6.9375 | -0.79D-08}-0.79D-08 |{0.100-07} 137 56
1.0000 | -0.88D-08]-0.88b-08 Yo.100-07 ) 137 67

The error tolerance =108 .
The auxiliary parameters selected for tne user
by the subroutine were -

01147, .02294,

03441, .04588, .05735.

Table 5.10




Problem 5.3 with pu=10"

0

o error in
i S AL DA
!'o.5000 | 0.200-10{-0.120-10} 0.560-10
0.5625 | -0.14D-11{ 0.880-12{-6.300~11
0.6250 | -0.110-11] 0.66D-12{-0.59D-11
0.6375 | -0.70D-121 0.950-12{-0.4uD-11
0.7500 | -0.380-12{ 0.26D-11: 0.310-11
0.8125 0.630-11{ -0.11D-10§ 0.250-10
0.8750 0.43D-111 -0. 83D-11{ 0.17D-10
0.9375 0.26D-11{-0.63D-11} 0.110-10
1.0000 0.13D-11}-0.390-11] 0.850-11
1.0625 0.990-12-0.34D-11] 0.5u4D-11
1.1250 0.79D-12} -0.26D-11] 0.620-11
1.1875 p.10D-1 0.360-11} 0.120-10
1.2500 0.120-1c1-0.270-111 0.180-10
1.3125 0.13D-1C{-0.51D-11§ 0.28D-10
1.3750 | 0.61D-12{-0.18D-11{-0.11D-11
1.4375 0.63D-12§ 0.51D-12{ 0.61D-11

The error tolerance =10

-10

max
error CPU CPU
expected] "} T
0.100-09) 12634 | 13421
0.100-00] 022 ] 2857
0.10D-09) 10321 679
l 6.100-09! 995 656
0.100-09{ 855 | 597
0.100-09] 851} 525
- 0.100-09] 352 48y
' 0.100-09] 938 436
io.100-09 911 398
RO.lOD-OSv 855 | 347
0.100-09 ) 888 | 337
10.10D-09 | 803 290
16.100-09] 915 | 31u
%0.100-09i 712 | 33w
{0.100-09 { 730 | w96
19,100—09 674 . 398

The auxiliary parameters selected for the uzer by
the subroutine were
.00316, .00422, .00563, .00725, .01000.

Table 5.11




Problem 5.3 with u=10"

6

error 1in - max CPU TCPU
t (1) (2) error G I
. X y Y expected .
9.9625 |-0.650-11] 0.11D-10{-0.250-10 } 0.100-09110715 | 7591
L 0.1250 | -0.790-11{ 0.64D-11}-0.130=10 | ©.100-08] 1221 1660
' 0.1875 | -0.95D-12 0.360-71}-0.560-17 | 0.100-09{ 1073 ! 1510
F 0.2500 0.31p-11 0.780-12} 0.130-11 | 0.100-091 1057 | 1338 ?
. 0.3125 |~0.66D-11{-0.14D~10 0.580-11 | ©.100-03] 1093 | 1133 ;
0.3750 0.260-11/-0.18D-11, 0.64D-11 | 0.10ND-09{ 1009 | 1452
G437 0.260-111-9.210-11] 0.74D-11 | ©.100-09] 1061 12215
0.5000 0.260-111-0.260-111 0.870-11 | 0.100-09] 941 11uo§
0.5625 0.240-11]-0. 260-17) 0.690-11 | 0.10r-09} 1032 | 1204 |
0.6.50 0.210-11}-0.220-11} 0.63D~11 | C.30D-00} 809 1005%
0.6G87% 0.190-11)-0.19D-11' ©.59D-11 ¢ 0.100-09}. 8&0 959;
1 0.7500 0.160-11}-0.180~111 0.47D-11 | 6.100-09] 940 358
;0.8d25 0.14D-11}-0.565D-12] ©.7iD~11 [ 0.100-09} 75 806
f 0.8750 0.120-11} 0.32D-1%] ©0.329-11 1} 0.100-09| 885 741
' 0.9375 0.960-12]-0.730-12} 0.42D-11 | 0.300-09] 892 718
;~1.0000 0.960-13 0.200«11;~a.250~11 v.16L-09) 850 | 810
The error tolerance e=10"10.

The auxiliary parameters selected for the user by
the subroutine were
.00142, .00190, .00253, .00337, .00449.

Table 5.12



Problem 5.3 with u=10‘6

i

_error in o WAX  epy o gpy,
t N I A
R R y oy oy~ lexpected . |
'0.0625 | -0.450-11] 0.760-11]-0.170-10 | 0.10v-09710955 g 6557 |
0.1250 | -0.20D-11} 0.425-11}-0.93D-11 0.1ou—09g 1265 § 1837
0.1875 | -0.54D-12| 0.230-11/-0.41b-11 o.1uu-ou§ 1091 ; 1862
0.2500 | 0.12p-11}-0.600-12]-0.290-12 ' 6.100-001 1072 f 1522
0.3125 | -0.39p-11 -o.99u—11§ 0.570-11 | 0.100-09] 1108 g 1279:
0.3750 | 0.2uD=11 -o.1su—11§ 0.6ku-11 | 0.10D-09 1327§ 1595
0.6375 | 0.26D-11;-0.220-11) 0.67u-11] 9.10u-09] 1073 1321
0.5000 | 0.24p-11 —0.270—113 0.540-11 | 5.100-09] 9u3§ 1261
0.5625 | 0.20D-11]-0.230-11] 0.630-11 | 0.100-08! 1035 | 1241
0.6250 0.19D-11 -0.180*11% 0.640-11 | 0.10UDB-09] 80k | 11u9%
0.6875 | 0.170-11]-0.180-11, 0.54b-11 | 0.10u=09, 385§ 1078 |
0.7500 | 0.15D-11;-0.16D-11} 0.46L-11 | 0.10U-09 950§ 1303
0.8125 | 0.13D-11|-0.700-11}-0.160-10 | 0.100-09] 764 102G
0.8750 | 0.120-11}-u.12D-11} 0.370-11 | 0.100-09 896 | 1003
0.9575 | =0.12D-12] 0.15D-11]-0.320-11 | 0.100-09 9025 935§
1.0000 | 0.509-12 0.11D-11!-0.11p-11 | 0.10u-099| 891} 913é

The error tolerance ¢=10

-10

The auxiliary parameters selected by the user

were

.00100,

Table 5.13

.00180, .00260, .00350, .00400.



Problem 5.3 with pu=10"°

r ' error in L max
¢ . e y(] ) § _‘y(zr) eiggggedi CPUG CPUI
0.0625 0.17D-11 o.z7u~12g 0.540-11 | 0.10b-69]10805 | 636U |
0.1250 | ©0.110-11} 0.220-11' 0.154-10 | 0.100-091 1232 | 1747 !
0.1875 ) -0 29U—11§ 0.93D—11E-0.13u—1o 0.100-09} 1072 | 1207 |
0.2500 0.66D-12] 0.420-11-0.180-11 | 0.100-09; 1054 | 1085}
0.3125 0.25D-11) 0.y5D-12° 0.470-11 | 0.10D-09] 1091 | 1084 ]
0.3750 0 330-11%—0 110-11% 0.81D-11 | 0.10D-09} 1036 | 1091
0.4375 0.550-11i-o 27u—11§ 0.74D-11 | 0.10D-09} 1049 | 1060 ,
0.5000 0.35D-11¢-0 310-11% 0.870-11 | 0.1005-09} 921 | 1003
0.5625 0.31p-11} 0 680-112 0.420-10 | 0.100-031 1049 952 |
0.6250 0.27D-11} -0 u30~11% 0.350-11 | 0.100-09; 798 305
0.6875 0.24D-11}-0.280-11 0.700-11 o.1ou-092 B7¢ 806
0.7500 0.190-11} -0 22u—11% 0.67D-11 o.1ou—09§ 938 720
0.8125 0.16D-11;~(.23u=11 0.420-11 | 0.10u-09 L 759 692
0.8750 0.130-112—0 97u-12§ 0.68u-11 { 0.100-09 § 892 631
0.9375 0.100-111 0.95U-12 ¢ 0.115-10 | 0.10U=09 (290 583
1.0000 O.78D-12E—O.61b-13§ 0.590-11 | 0.10L-09 | 876 593
s o

The error tolerance =10

The auxiliary parameters selected by the user were
.00200, .00250, .00300, .00350, .00400.

Table 5.14



Problem 5.3 with u=10_6

error in [ max

R

|
LT e o e
D.0625 ! 0.2u0—11] 0415b~1o§—o.cuu—lI“"“Ef€53f3§T75§3§“?WE?$n
0.1250°  0.17D-171-0.38D-111-0.360-11 | 0.108-09, 1260 | 1566
0.187“% -0.49D=11, 0.15p10 ~0.290-10 0.1ou~09§ 102k : 1158 |
| 0.2500§ 0.170-12 o.suu~11§»o.91u-11 1.100-09] 1053 § 973
| 0.3125 1 0.280-11; 0.180-11; 0.180~11 0.1on—o9§ 1095 | 995
0.3750| 0.400-11}-0.100-11] 0.780-11 0.10D—UU§ 1034 | 972
0.4375 0.uuu~11§—o.25n—11% 0.11D-10 0.100-093 1071 ; 967
| 0.5000 1  0.430-11 -0.490-11| 0.530-11 o.1oo~09§ 9n7 . 949
‘0.5625& 0.390-11-0.370-11} 0.110~10 | 0.100-¢9 1051 | 902
o.szsné ohsuu—11;-0.51u-113 0.570-11 | 0.100-09) 803 839
0.6875 | 0.2au-11§—o.110—11 0.17u-10 | 0.100-00° 503 777
0.7500 | 0.240-117-0.690-11 |-0.580-11 0.100-09; 952 633
0.8125| 0.190-11/-0.390-12| 0.13D-10 0.100—09§ 775 . 621
0.8750 |  0.150-11[-0.220-11] 0.430-11 0.100~09§ 902 587
0.9375 | 0.11u—112~0,u9u~12; 0.76D-11 | 0.100-09f 900 537
L0000 0.8&U-12E~0.25D"11;-0.120—11 0.100-09 887 51
R i ! e e enrn ranas e s A

The error tolerance e=10"10.

The auxiliary parameters selected by the user were
.00230,..00280, .00330, .00380, .00430.

Table 5.15
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Problem 5.3 with u=10"°

t

|

|
5? -0, >zu 11
0.1250 !  0.430-11:
0.1875% 0.23u-11
0.2500 =-0.19u-11
0.3125] 0.40U-11
0.3750 0.680-11
0.4375 0.780-11

0,5000 0.770-11

0.5625: 0.700L-11
0.6250 0.53u-11
0.6875 0.450-11

i

0.7500 0.330-11
0.8125 0.300-11
0.8750 6.210L-11

0.9375 0.14D-11

1.0000 0.920-12

1
o

The error tolerance e=10"

=

error 1n max :
- -~ error |CP
y @ expecgedL? UGHWMW
0.430-091-0.530-09 | 0.100-09] 10756
-(.49D-11] 0.40D-10 | 0.10D-09}f 1230
-0.750-111-0.11D-10 | 0.100-09} 1061
¢.190-10]-0.29D-10 | 0.100-09! 1053 |
0.76D-111{-0.35D-11 | 0.100-09] 1089
0.730-12| ©.10D-10 | 0.10L-09} 1013
-0.330-111 0.17D-10 | 0.100-09f 1054 |
-0.560-111 0.20D-10 | 0.100-09F 957
-0.640L-111 0.20D~10 o.lou—ogé 1053
-0.620-11| 0.12Db-~10 0.10u—09§ 802
-0.330-11} 0.25D-10 0.10u-09% 330
-0.706-111 9.58D-11 § 0.10Db-09% 9LG
-0.120-101-0.15D-10 | 0.10u-09 764
-0.120-11§ 0.16L-10 | 0.100-09 ¢ 894
-0. xs~-1u§ 0.145-10 | 0.100-091 900
0.230- 111 0.110-10 | 0.100-09 872

»

791
759

702

-10

The auxiliary parameters se1ected by the user were
.00300, .00350,

.00400,

Table 5.16

.00450, .00500.
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Problem 5.3 with u=10"

6

s

error in max :
: - ‘"'“W"”'<}) - (2) error CPUG %CPUI
Y Yy expected (
“u.0625 '“40n125109§~o°isu~68' 0.170-08 | ©6.c30-09] 10820 | 5909
0.1250 0.1u0~10§~0.50&ﬂ10 0.520-16 | 0.100-09) 1275 | 1519
0.1875 o.720~11§wo.500—11 0.100-23 } 0.100-29% 1027 ! 1366
0.2500 0.580~11?-0.650~11 0.11D-11 | 0.100-09] 1064 | 1096
0.3125 0.74D-111 0.210-101-0.390-10 | 0.100-09] 1104 716
0.3750 0.15D-10 0.36D-11{ 0.68D-11 { 0.10D-09% 1037 657
0.4375 0.650~12§m0.1u0«10 -0.395~10 | 0.10D-C9 1065 [ 1134
0.5000 o.u70-123~n.92u~11 -0.27D-10 | 0.10D-69{ 949 | 751
0.5645 ; 0.u15-]2§»o,580-11 -0.18D-10 | 0.10D-09% 1042 756
0.6250 ! 0.u10—123~o,370~11f«0,120~10 0.10D-09¢ 824 773
0.6875 § 0.559~1z§n0.200»11‘—0“790—11 0.100~09{ 390 754
,0.7500 0.22D~12{ 0.260-10} 0.97D-1C | 0.10P-08] 953 697
0.8125 0.60D-114-0.120L-10| 0.14D-10 | 0.100-09] 766 516
0.8750 0.40D-11(-0.350-11{ 0.30D-10 ! 0.30D-09{ 903 451
0.9375 0.300-111-0.335-10§-0.80D-10 | ¢.100L-091{ 3292 395
1.0000 9.120-111 0.320-11} 0.%10-10 | 0.100-09 ' 803 364
o ‘ =10 ‘

The ervror tolerance =10 ",
The auxiliary parameters selected by the user were
.00400, .00450, .00500, .00550, .00600.

Table 5.17



Prob]em 5 4 w1th H= 10

-6

The error to]erance r—10

; ! error in
! t e ] , max
| * (1 @2 ¢+ (3) | error
! X X 3 X {
i (-I) i (?\) ! i E‘Xpected
'o.0625% -0.23p-100-0.72p-11] 0.18n-10 g 0.1060-09
; -0.210-10} -0.11D-10
f : :
£ 0.1250°  -0.4LD=10; ~0.1LN=101 0. 1(P~10 @ 0.10P-09
g -0.94D-10{ -0,21D-10! ;
0.1875'  =0.12D-00)-0.7 P70 0. 7TP-12 | 0.100-09
0.13D-09} ©.29n-1n;
| 0.2500 -0.91P-10]-0.57P=10 -0.%7P-10 | 0.100-n0
i i 0.33p-09} 0.75D-10 a
[ H |
! it {
0.3125 -0.25p-11!-0,13P=10: =0, 29p=10 ; 0.10D-09
© 0.19D-05] 0.35D-70. !
0.3750 . 0.43P=10{ 0.29D-11i-0.44D-10 | 0.10D-09
0.210-99} 0.30n-10,
0.4375({ 0.64D-10| 0.22P-70 -0.19P-10 | 0.16N-09
"0.u9n=-10f 0,35p-118
‘ |
0.5000 = ©0.70P-10! 0.33Dp-10 0.97n-12 | 0.101-09
. =0.76D=10{-0.18D-10; ~
0.5625 ' 0.92P-11} 0.92p-11] 0.12D-10 ' 0.10r-09
! -0.87D-10{-0.17D-10]
x' bt
0.6250 1 0.94D-11{ N.15P-10 0.2fN-10 ; 0.10D-09
| -0.1ED-09!-0.26D-10, i
; o j ‘
0.6875 =-0.26p-10'-0.36P-11] 0.20P-10 ¢ 0.10P-09
| =0.91D-10:-0.12DP-10
0.7500 . =0.41D-10/-0.15n-10! 0.02P-11 | 6.100-09
i =0.11P-10 6.12p-11 !
0.8125 . -0.26D=10,-0.11P~10/=0,20N-11 _ 0.150-09
© 0.44D-10 0.9GP-71
: _ ! ! i
0.8750 § =-0.38D-10{-0.21p-101-0,12P-10 | 0.107-¢.
0.17P-09 | 0.1GD-10 !
0.93751 =0.470-111-0.610-11!-0.17D-"0 | 0.10"-09 |
0.110-09{ 0.17D-20] ;
; i i
1.0n00 0.1CD-10| 0.3&P-17:-0,14D-70 | 0.100-09
0.67D-10 o.f"h-11% §
10W | |

The auxiliary parameters se]ected for the user by
the subroutine were

.00142,

Takle 5. 78

.00190,

.00253,

.00337,

CP
UG CPUI
Fs902 | 7001
1227 1607
i
1232 | 1264
1158 | 11u0
1250 | 1054
3
i
1185 | 13Lu
| 1100 | 1223
!
1103 | 17127
1040 i 1025
1100 | 1296
1066 | 1211
{
L 972 | 1178
| 998 ! 10L°
f !
f1001 1261
i %
g
slo* | 1210
3
on |
f 976 | 117
[ j
.00449,




Problem 5.4 with 1=107°

1
i

. efrbr in ‘ _
tob kM x(?) (31 max ey epy |
(]) : (2) error § iy H I;
Yy .. expected ;L |

0.0625°  -0.630-12] 0.150-121 0.12p-11 | g.1np=-no §e702 § 77cy
-0.52D-11}-0.F2p-12

0.1250 -0.311p=-10;~-0.21P=11 1 0.75DP=11 0.30D-09 § 1217
~0.780=3C0;-0.21INn-10

P —
b
()
(&Y ]
fea)

0.1875| =0.30P=11{-0.130-11 0.82D-"% | 0.10N-pg | 1717
0.P3N=-117 0.1.37-11;

i

L120-120-0.11P=114-0.29D-71 © 0.1GD-09 | 11K4 * 1373

0.2500{ -0 , § ,
0.17P=10: O.Zﬂﬂ~1?§ ; :

0.3125} 0.47P-11}-0.17P-111-0.°5D-11 | 0.10N-09 { 1265 | 1265
0.750-10f 0.15n-70] g

0.3750{ 0.11P-10! 0.34P-11{-p.uen-11 | B.100-04 ! 1184 | 15086

0.14D-10: 0,.R1p-12

0.4375 | 0.1tp-101 0.73n-11! p.12p-11 | ¢.10P-05 ! 1138 ! 1070
-0.24D-10} -0.55n-11"

o
9
[£a]

0.5000 0.77P-11] 0.G5M=11] 0.6&P-11 | 0.100-09- 127 § 1
~0.h7N=10{ -0.78N=11 ’ ; ;

0.5625 ; =-0.¢LD-111 0.14DP-11] n,10D-10 : 0.70P=-09 ; 1079 | 171¢
. -0.650-10!-0,12DP~10

0.6250 | =0.21D-1n{=-0.62P=71, p.700-11 | 0.10D-08 {1070 | 1%09
| -0.23DP=10i-0.18P-11

0.6875 1 =-0.2fD-10{-0.11n-70; 0.1:D-11 { 0.10D-09 | 1001 | 13§2
i 0.z0p-10) 0..1n-11 '

0.7500 | -0.20p-10{-0.11P-10{-0.27D-11 | 0.70P-p9 ;| 9r9 | 1325

0.55D-10! 0.1rD-10

n.8125 -0."4D-10!-0.55D~-111-0,72D-11 0.10D-09 : 1006 1198
0.CkD-10¢ 0.12D0-10

0.8750 -0.24D=-2111-0.53n-"1{-0.230D-"0 0.1067-57 986 1365
‘ 0.70n-104 0.12D-70
60,8378 0.18p-10} 0.:7D-71{-0.120-70 0.10r-09 g4 1317
0.5°D-107 0.77D~112
1.0000 0.35D-10f 0.1uP-70f-0.58D-11 0.100-09 B4 1701
0

L10D-11:-0.20D-"7
t

The error tolerance e=]0“10. The auxiliary parameters
selected by the user were .00100, .00208, .00300, .0G400, .00500.

Table 5.19



ProbTlen

o+

y

. . -f
5.4 with 10010
ervor in
T ORI .
L (@ (3)

- 0 N j)
y(') ;,gff)

vt e T s e

S

6. 1375

V. 2500

v.3125

@.2125

w:.zsu~10¥*3unou—y
0.60D-1T8 0. un-104

=0.200-110 -0,
0.180-10: G.HG0-

0.150-09:
~0.13%305-097

D.100=59. 0.670~107 0.760-1¢
=G 310-09 -0, 560-18
,

L200-16) 6.420-10
LLoDp-18

~0.240-100 0.710-121 0.290-10

~0.165=09:-0,25D-161

~0.350-121~0.930-11. 0.17)-10
-0.710-12! -0.100-10!

-0.%2D-18,-0.110-10' ¢.83D-11
=0.150-101 -0, buD=12"

=C.27D=1€¢~p.11D~10} §.250-11
0.19B-120 §.62D-11,

10 =0, 110=16" -0, 720-13
-17. 0.790-11

~0.21D-12 ~0.11P=10, -0, h5p-11
0.9380-11"

=0.10D=10  -5,790-11 =5, 050-11
0.05D-10¢ 6.110-10"

LG20=117=0.370=921-p. 100-1"
.51D-10° 0.G7D-11,
0.7460-11 =0.90D=71
0.130-11;

C.150-30 -4, 190-11
=0.710-11"

D.2PD=-101 D.17d 0.660-1"
D.17

-0.050=-1"

5 o et st et

g X

error

[s)

T

fa)

[543

<y

<

Q9

s

expected

LITG

L130-09
.185~-09
.16D-09
.100~09
L130-09
.100-03

L1gh-09

10

The error tolerance e=10"'",

The auxiliary parameters selected by the user were

.00200, .00300, 00400, .0NS00, .00600.

Terle 5,20

Py

f1205

127

1174

cry,

H
6636
1653

992

107%

1133

1182

1741

17%g

11nn



Problem

0.2500

0.31:5

0.3750 ¢

0. 4375 -

(.5000

0.62:0

0.RPTS

0.7500

n.e125

0.8750

1.0000

!

D Q

LE9n-08t

.T9D-10"
L775-08

.755-09
L LOD-0F

L16D-Dg
J1ED-09° 0.

L130-08
LIBED-0E

REEEY
LE0D-08

Lt1rens !
L29D-08 0 0.

.11p-07
.B8706-06

.160-038
.11Dh-08

= bif“ﬁ
QOPMG‘% 0
i
19p-081 0
21r-08¢ 0
100-601 O
L7D-003 0

Arp-06; O
15007 -0

-0,

-3

-0,

.28D=00 0,
L26D-0¢8

i

L1ep-ng: 0.
.155~08 -0,

1

0.
0.

oo

L7080,
LTEP-09]

RELNE IS
cror-o9

B LR
L720-10

L1En-08" 6.
L2nN=08

.1en-08f 0.
.13n-08!

L3D-100 0.
.31D-0¢,

.61D-09 O.

L710-09

.[50-00¢-0.

.71D-00
L1ED-09 ¢

32D-09
r

o=
71D-09
57P-19

750~09

fon-09: 0.130-08

.12n-08:

g0D-69

zep-00
c2D-10

|
73D=09 1~G.11D-09
F£2D-09 !

|

~0.4%30-09

700-09

|+60_n('~
7ED-09
-0,

2210-09 57009

0.34D-D5

350-00 -G,
1LD-0% |

4.70-09

LEp~0C 7D~

110-16

...0_

-0.34D-00

nax
error
expected

,?zrw09§:5iLOD;5§mrM&.?99»07
PELES:

¥

Loa.

H

Lcpy, cPu

1G6P-437

0.10M-07

0.100-07

! p.18D-07
i

L 0.10D0-87
% 0,.100-07

.100-07
?0.103—@7
_10D~07
. 10D-07
6.76Du

0.102-07

i P A AR e Y 1

6."00-07

L18D-07 .

[T —

Livn
5498

665

798

718
229

648

I

W
P
e
(%3]

i
[l
=

675

41

667

R

592

662

§71L

c0"

- s

The error tolerance

The auxiliary parameters selected for the user

e=10"8 |

by the

subroutine were .00253, .00337, .00449, .01018, .02035.

Table 5.21



broblem 5.5 with p=10"°

: error in z  max

[t using L error  CPU.  CPU,

i ©novm expected ? .

[ 0.0625] ©0.380-09 | 0.46D-02{2537G3 [ 1261¢

i i t V :

1 t ; ; : '

b 0.12500 0.250-10 | 0.1005-00} 3124 . 5687

] : : ¢ !

1 B & H i

1 0.1875:  0.110-10 | 0.100-09] 3309 | 5614

@ | ; z
£0.100-09, 3119 & 5617

. 0.2500 -0.150-10
0.3125, -0.380-10 0,100-09§ 3031 | 5017

5 0.37502 -0.29D-10 o.zoumogé 3205 | 5007
04375 -0.180-10 0.100-09) 3263 . 5008 -
: o.sooo% -0.140-10 | o.1ou-oa§ 3146 5015
|

i

10.5625  -0.200-10 § 0.100D-09] 3019 @ 5017
[ {
1 0.6250  =-C.300D-10 | 0.100-09i 2677 | 5024

| G.6875: -0.370L-10 0.10D-09{ 3069 ' 4849

i
1

2977 . k394

0 0.75007 -0.43D-10 | 0.10D-09

0.8125 -0.530-10  0.100-09

3627 4131

i

0.8750 -0.560-10  0.10p-791 3008 L4040

0.3375{ -0.26D-10  0.10D-09' 2620 | L1KG |

1.0000] -0.320-10 0.100-00 2732 | 4137 |

The error tolerance ==10"10.
The auxiliary parameters selected by the

useyr were
.00100, .00200, .00300, .00400, .00500.

Table 5.22



CHAPTER VI

ANOTHER ASYMPTOTIC METHOD

1. Motivation

With this method we try to replace the system

dx _
dy _ g(x,y,t)
dt u

x(0,u) = a, y(0,a) = B
by the system

dx _
'af - f(XaY>t)

(6.1.1)

dy _
IF h(x,y,t,u)

for some function h. We have not specified any initial conditions on

x and y in {6.1.1) yet. For the solution to (6.1.1) to be an approximation
to (2.0.1) we would certainly need h(x,y,t,u) to be a good approximation to
giﬁi%iil-. But to be able to obtain the solution to (6.1.1) without any
stiffness problems we would hope that h depends continuously on u for

0 <u <. vFor t in the boundary layer this is too much to hope for but
for t outside the boundary layer we have |g(x,y,t)] = O(u). This implies
that we should solve the full system (2.0.1) for t in the interval

0=t =t obtaining x(t1,u) and y(t],u) and then use these values as

starting values for the system (6.1.1).



o ooglx,y,t) .
The approximation h for the quantity h‘~3kf~~-we shall obtain

will be given by

9_(.)(_’{.’_1:_)_ = h(xby’tyu) + O(UZ) (6.].2)

and we will show that the resulting approximations we obtain by solving

(6.1.1) will be second order approximations also.

2. Preliminary Results

In the derivation of the function h(x,y,t,n) we will need the

following lemmas.

Lemma 6.1 We arne given the square matrnices A, B, and C such that

A =B+ yuC+ 0(u%) (6.2.1)
whene B 45 nonsingularn. Then we also have

~1 -1 1

Al = s uetles! x o(d). (5.2.2)

Proof If B is nonsingular then for u small enough, A'1 exists. Using

(6.2.1) and (6.2.2) we have

1 1

a1 = (B+uc+0(19)) (B -8 eB ™ +0(1%))

fi

I+ u(CB']-BB'ch']) - UZ(CB‘ICB‘]) + O(LZ)

1

Simplifying we have

which proves the Temma.



Lemma 6.2  Given the square matnix N = A(t) such that d%A(t) exists and

A"] exists on some interval a = t = b, then

doa-1y o -1  d
a{{A ) = -A a%(A)A

The proof is trivial.

Lemma 6.3 Suppose a, b, ¢ are n dimensionak column vectors and D {5 an n x n

matrix such that

a=>b+ uc+ uba + 0(u2). (6;2-3)
Then we also have

a=b+yuc+ b+ 0(ud). (6.2.4)
Proof From (6.2.3) we have

?
b + uc + uba + 0(p”)

QU
il

H

b + uc + uD(b+pctuDa) + O(UZ)

b + uc + wbb + 0(1%)

it

which gives us (6.2.4).

Lemma 6.4  Suppose we are given the n vecton function g = g(x,y) where x
As an m veetorn and y &5 an n vector. Also suppose a and b are n vectons.

14 g has continuous second partial derivatives with respect to y then we have



32
9 ap = 29 4
oy ay
v . i .
Proof Using tensor notation we have g = (g'), %%-: (ggjd = (g}) and
. : ) Yy .
2 2 i . . .
9 g = 9.9 1() = (g}k) where in the last case g1k = q;. since g has
Sy 3 yJ y J J
continuous second partials with respect to y. The i-th component of the
82
product —~%—ab is given by
oy
i_ 1 _k.J
c = gjk ab
S TR B
gkj bYa

2
and this is the i-th component of a—%-ba.
oy

Lemma 6.5 Let A(t) be an n x n continuous matriix for a <t < b and Let the
neal parts of Ats characteristic rnoots all be Less than -2« on a <t <b
forn some « > 0. Let w(t,to,u) be the principal matrnix solution of

d

>

A(t)x

u

Ql
o+

with initiokd condition at t = to such that a < t0 <t < n. Then there

ex(sts a constant ¢ such

~<(t-t )/u

lw(t,to,u)l < ce

The proof of this lemma is given by Flatto and Levinson [4].



3. The Approximation

Expanding g(x,y,t) in a Taylor series about y = ¢(x,t) we have

g(x,y,t) = g{x,0(x,t),t) + gy(x,<1>(x,t),t)(y—<b(x,t))

(x50 (x,£) ) (y-0 (x,£))% + g (y-0(x,1))”  (6.3.1)

g
2%yy yyy

where the y value of each component of gyyy is in the interval spanned by

y(t,u) and ¢(x,t). Let
w(t,u) = y(t,u)-¢(x{t,u),t) .
u

(6.3.2)
Using (6.3.1) and (6.3.2) and noting that g(x,4(x,t),t) = 0 we have
QUGYLE) — g (x,0(x,t) ,thw + dug . (b (x,t)  t)w
u y 277yy
1 2 3
v gule, W (6.3.3)
Using (6.3.2) we may write
dy _ -
dw _ dt - 0%
dt u
o f+
_glay.t) T (6.3.4)
112 H

The last step follows using (2.0.1). Using Taylor's theorem and (6.3.2)

we have

g(x,y,t) = ugyw3 (6.3.5)

where gy is evaluated at x(t,u) and t and



38

where the y value of each component of gy is in the interval spanned by
y(t,u) and ¢(x,t). Returning to (6.3.4) we have

W f
dw _ I e (6.3.6)
¥ T

e

The solution to (6.3.6) may be expressed as

w(t,u) = w(t,t uw(t,,u)

. ‘ -1 ¢xf+¢t -
“wlestgon) [0 (st (6.3.7)
t
0

where w(t,to,u) is the principal matrix solution to the system

gy
ap _ Zy°
dt u (6.3.8)
with initial condition at t = to' Note that from (6.3.5) gy here may be
considered a function of t.

We make the slightly more restrictive assumption than (2.1.11)

that

Re[3; (53) |

ay (X,t)] < 2K where ¢ > 0.

y=¢

Therefore, we may apply Lemma 6.5 since we have lim y(t,u) = ¢(§O,t)

=0
and therefore for u small enough we have
Re[xi(%%)] < 2K where %§~is evaluated as in (6.3.5)

This gives us

(-t )/
lw(t,t u)] = ce ) (6.3.9)



We may therefore neglect the first term of {6.3.7) for t > ZtO say 1f we
are interested in an asymptotic representation of w(t,u). We therefore

rewrite (6.3.7) as

(r ] l;bxf—*—d)t
u) = -plt,t Lo [ —lds . .3.10]
w(t,u) = -u(t,t ,.u) ;o (s, s1)[—p——lds (6.3.10)
Now if ¢ is the principal matrix solution to (6.3.8} then we
also have as the adjoint equaticn
dif} _ 0y (6.3.11°
Y T
or rearranging (6.3.11) we have
I)—] = - g_(_‘.’):_lﬁ ‘] (6 3 12\
{ M dt gy N N A

where g;] is evaluated at the same arguments as gy is in (6.3.5). Substitutinc

(6.3.12) in {6.3.10) we obtain

[ N o+ Gy - . . .
wit,u) = plt,t .u) J g9y (9, fra, )ds. (6.3.13)
t
0
Integrating (6.3.13) by parts we obtain
| -1 -1 s=t
W(tnp) = w(t9L09U)[w (SstDsU)gy (¢Xf+¢t)]szt0
, oy .
- wltatgn) vy (e Faey )} ds
t
0
IS P DU
gy (f)xf“ﬁi’t) - «P(tstgm){gy (¢xfT®tI}t=to
£
- 9t ) j ! f;;‘{¢xf+¢t)}'ds (6.3.14)

%%



where "'" means differentiation with respect to t. Using (6.3.9) we

may neglect the second term in (6.3.14) and obtain

t
wltan) = 0, 0 Fr) = 0t |07y (o Frag)y ds.

%

We again substitute for w'] using (6.3.12) and obtain

t -]
-1 dp™ -1, -1, . :
wit,u) =g, (0, f+o ) + wplt,t u) J —%g—gy fg, (o fro )} ds.
t

0

Using integration by parts again we obtain

[t}

-1
w(tu) = 071 (6,F+0,)

IR IR CR ST R O ST IO b NN
I DS .
wieatg) [ o g (o, Fro, ) s

%

1

9, (9gFre) + ug, (o (6, Fr0,))"

F (st anle) oy (o, Fre ) Dy

t
B [ —
uw(t,to,u) f [ {gy {gy (¢, Fre ) 3 s, (6.3.15)
t
We use (6.3.9) again and neglect the third term of (6.3.15). We also

substitute for w'] using (6.3.12) and obtain

1 i
w(t,u) = 9 (¢Xf+¢t) + Ugy]{g;1(¢xf+¢t>}'
£,
oty | G ot o o, o) 1 s

Lu



which we write as

-1y

- "], ﬂ].xm‘iz’ 4 1t “2
w(tan) = o)t fro) + uos ar e Fre )+ 00%).

We must note however that g;} i evaluated such that the y values
are in the interval spanned by y and ¢(x,t). However, using (6.3.3) and

(6.3.5) we may write

g ,
(' s(b(x t)sb/ + L"'%X'(Xa(b<xat)at)w + O(UZ)

gy "j/ 2

Using Lemma 6.1 we may write

g = gj(x,m,t),t)

(

S| o .
- ug, 0000 ),8) F g7 OGo(x,0) 00007 (6.3.17)

If we substitute (6.3.17) into (6.3.16) we need only substitute in the
first term since we are only concerned with a second order approximation.

We then obtain

- ‘i R A ] ] .
wlt,n) = g (4, F40, 0 - 5o tg (9, F4dy)

+ ug;]{g;]((bxf*@t)}' + Of'.'uz) (6.3.18)

where now g;] and gyy are evaluated at (x,o(x,t),t). This will be the case

in what follows.

Since the quantity gyv is symmetric in the lower indices we

may use Lemma 6.4 to rewrite (6.3.18) as



"l % ¥ “i -1
- («'; 4! ] - 81 ! J Sty
W(L ﬂl) {IY v Xf“')t’ ?{]\/ Jyy gy (")fo‘ i L)W

T 2 o he
+ ugy {gy {¢xf+wa)} + 0(u"). {(6.3.14)
We may then use Lemma 6.3 to solve (6.3.19) for wit,u) resulting in

_ -1 ;‘(__—'i - -1 \12
w(t,i) = g, (0, fro) - 5 "o L9 Lo, Fri )l

* ug;]{9;1(¢xf+¢t)}' + 0(1). (6.3.20)

We now substitute (6.3.29) in (6.3.3), keeping only second

order terms. This gives us

glx,y.t) _ .2
1 (¢xf+¢t) yy[gy ( )J
+ulg (o, 740,))" + Bg. Lg7 (0, F49,)1° + 00,7
g, (&, F+oy gg g, (0o, !
= (¢, f+o,) + u{g;1(¢xf+¢t)}' + 0(u%). (6.3.21)

~

Expanding the second term in (6.3.21) using Lemma 6.2 we have

QOGIE) oy fag,) + ug, TLo Fo426  T+0,F F+0 Firoy

0. )+ Vo fr0.9] + 24 02
Hay, oy (o, o dvg g (6,0 )] - gy @Xfy 5 00T

ising Lemma 6.3 we have our result

- 2. . PR
h(x,y,tyu) = (¢, fro,) + ugy][¢xxf w20 F v b FE b f

s

d;' - f L ¢ V4 _1 h
Pt (Q‘y}( +gyy(¢\xf+\4)t;+g.yt)gy (q)xfi—q,t)

-+

P S {(6.3.
¢Xfyk'x’°"}J {6.3.22)



where we are applying (6.1.2).

have

P"(X,Y:t 9U> = '\pr + ;‘g;} Eff)xxfz'i‘(prxf

+ ¢Xfy¢xf].

(g,

yxTHa

Of course for the autonomous case we

\
-1,

yy$xf)gy @Xf

In the formulas (6.3.22; and (6.3.23) the functions £, f,  and

fy are evaluated at (x,y,t) and the functicns g;i,

evaluated at (x,o(x,t).t).

g

yx

s qyy and gyt are

4. Accuracy of the Solutions and a Note on Implementation

given (6.1.2).

We now ask how the solutions of (2.0.1) and (6.1.1) compare

Here we let the solution to (2.0.1) be denoted by

-

z = (;) and the solution to (6.1.1) be denoted by 7= (?). We also

let u =

- = f(x,y,t) - f{x,y,t)
d Yt by
dv 9_@1%__)_ - h(X,7, ).

We assume that we may write (6.1.2) as

L) eyt + Pk (Es)

where k(t,u) is bounded for 0 = = 1 and 0 < t

in (6.4.1) we have

<

t

<

x-X and v = y-y. Using (2.0.1) and (6.1.1), we have

(6.4.1;

(6.4.2)

T. Using (6.4.2)



af = f(xay:t) - f()zs.)—’,t)
- hlxayatu) - hELTtw) + ulk(E).

Using Taylor's Theorem on the functions f and h, we have

Q.

u _ +
fxu fyv

&

(6.4.3)
2
= hxu + hyv + uk(t,u)

Qi
&2

where the x and y values in each of the components of fx,fy,hx and hy

are in the intervals spanned by x and X, and y and y respectively.

For 0 < t1 <t <Tand 0 <u <y we certainly have the functions
x(t,u) and y(t,u) boundéd. The same may also be said for x and y since
they are solutions to (6.1.1) and the function h is made up of continuous
functions of X and y and depends continuously on u. Since the functions

£, f , h and hy are continuous functions of their arguments we may

X> 'y’ X%
conclude that the system (6.4.3) may be written in the form

g%—= A(t,u)u + WK (t,p) (6.4.4)
_qu _ 0 | .
where U = (v), K(t,u) = (k,(t,u)) and the matrix A(t,uj is bounded on
0 <tys t <Tand 0 <y <. The solution to (6.4.4) may be written as
2 ' |
U= pt,tyu)ly +u p(t,ty,u) J v (s, tysu)K(s,u)ds (6.4.5)
t
1

where Uy = U(t]) and w(t,t],u) is the principal matrix solution for the

system



g—% = A(t,un)U

with initial conditions at t].

If we assume U] = 0 then it is clear from (6.4.5) that we have a
second order approximation. In practice of course U] # 0 but we may control
Uy simply by solving the full system (2.0.1) accurately enough.

In any particular application u is fixed. This means that we
must take t] large enough so that we are not bothered by any boundary
layer effects. One suggestion for implementation then would be to integrate
the full system (2.0.1) and make periodic calculations on the system (6.1.1)
using initial values obtained from (2.0.1) until the two systems agree
within a specified tolerance. From this point, we solve only the system

(6.1.1).

5. A Note on Using Linear Systems with Constant Coefficients

For the case of linear systems with constant coefficients we

may write (2.0.1) as

g%-= Ax + By
) (6.5.1)
dy . G, D

where A, B, C and D are constant matrices of order m x m, m x n, n x m and

n x n respectively. Assumption (2.1.11) implies
Re[Ai(D)] < 0.

We also assume here that D has only linear elementary divisors.



‘{ 95.#

We also have ¢{x,t) = MU"]CX arid ¢y(x,t) = «D”]C‘ Using (6.3.23) we

may write the approximating system (6:1.1) as

dx _
Fra Ax + By
(6.5.2)
dy _
qt R(Ax + By)
where
_ -l . -1 -
R=-D""[C+ p D 'C(A-BD” 'C)1]. (6.5.3)
We realize that the eigenvalues of the matrix
A B
(6.5.4)
¢ D
¥ u

cause the system (6.5.1) to be stiff because of the presence of u. We
also realize that the system (6.5.2) is not stiff as a result of the

eigenvalues of the matrix

A B
(0 055
RA RB

In fact, we may show the following propositions.
(A) Fon the matrnix (6.5.5), n eigenvalues are zero and m elaenvalues

are the eigenvalues of the matrnix A + BR.

1

(B) The eigenvalfues of A + BR approach the eigenvalues of A-BD'C

as u ~+ 0.

(C) Forn the matrix (6.5.4), n eigenvalues approach -» as u - 0.



(D) Forn the same matrix, m eigenvalues remain finite as y > 0

and these may be approximated by the eigenvalues of the matrix

A -BD7'C.
These statements show that using (6.5.2) instead of (6.5.1) effectively
replaces the large negative eigenvalues associated with (6.5.1) by zero
while leaving the other eigenvalues almost the same. Of course, if the
eigenvalues of D are all negative as we have assumed then the contribution
of the components in the solution from these large negative eigenvalues
is negligible anyway.

Proposition A may be shown as follows. We may factor the matrix

(6.5.5) as

<A B . (I 0) (A B
RA RB) R 0 0 0 ) .
But the eigenvalues of the product of two matrices XY are the same as the

eigenvalues of the product YX. (See for example Wilkinson [17], page 54).

Therefore, the eigenvalues o° (6.5.5) are the same as the eigenvalues of
(A B (I 0) <A+BR 0)
0 0 ) R 0 0 0
and the result follows immediately.

The proof of Proposition B follows directly from the following

lemma discussed for example in Wilkinson [17], pp.66-77.



Lemma 6.6 The eigenvalucs 0f the s x s matrnix ¥ + WY approach the

eLgen

valucs of X as p ~ 0. In addition A6 X has Linean elementany divisons

then the eigenvalues Py T=1,2,...,8 0f X + nY are related to the

elgenvalues qi 1=1,2,...,5 0f X as

4; = P; +0(u), i= 1,2,...,s.

Using this Temma and (6.5.3) we have Proposition B.
Proposition C may be shown as follows. The eigenvalues ;

i=1,2,...,mn of (6.5.4) satisfy

1 (Au Bu)vi "

or

where Vi’ i=1,2,...,mtn are the corresponding eigenvectors. This

that 61 = uki, i=1,2,...,mn are eigenvalues of the matrix

But we claim that

and

[og}
il

-~

+
[
-
T
S

i = m+l ,m+2, ... ,m+n

implies

(6.5.6)

(6.5.7)



where rys i = ml,m+2,...,mtn are eigenvaliues of the matrix D. We may
show this claim by examining the matrix
(O Oj
\C D/. (6.5.8)

Since D has only linear elementary divisors, it is clear that (6.5.8) has only

linear elementary divisors by looking at the similarity transformation

(I O><0 O)(I 0 ) (0 0 )
wle w/\c p/\p e wl/ ‘oo wow!

where WDW_] is a diagonal matrix. Applying Lemma 6.6 we obtain (6.5.6) and

(6.5.7). This implies that

uki = 0(p), i=1,2,...,m (6.5.9)

and

[

A = r; + 0(u), 1= mEl,mt2,...,mn. (6.5.10)

1 1

Proposition C follows immediately from {(6.5.10) by dividing by u.
Proposition D may be shown as follows. Using (6.5.9) we have
that m eigenvalues remain finite as u > 0. The eigenv.'ues of (6.5.4) may

be obtained by solving the determinantal equation

A-x1 B

or

A-Al B

-y (6.5.11)
c D-pAl | |



This may be written as

A 1-B(D-uI) Ve 0
= (6,5.12)

C D-pAl
where we have added linear combinations of the last n rows of (6.5.11)
to the first m rows. For the eigenvalues that remain finite as u > O,
we may approximate them by solving the equation obtained by setting,

u =0 1in (6.5.12) giving us

1

A-BD™ C-Al G
= 0. (6.5.13)
C D
Equation (6.5.13) has m roots and these are the eigenvalues of A-BD']C,
proving Proposition D.
6. Comments on the Method
Dahlquist [2] examines the system
dx _ \
g = floyst) (6.6.1)
d .
Y= glxy.t) - Ay (6.6.2)

x(0) = a, y(0) = 8,

in which the Lipschitz constants of f and g are much smaller than the
moduli of the eigenvalues of the matrix A. In this paper he uses the SAPS
(Smooth Approximate Particular Solution) technique on (6.6.2) and a

conventional step by step technigue to (6.6.1).



If we may isolate the parameter ;1 in {(6.6.2) that causes the
large eigenvalues of A then the asymptotic method described in this chapter
is very applicable to (6.6.1) and (6.6.2). The two methods are guite
similar with respect to the amcunt of work necessary in that both require
the evaluation of partial derivatives with respect to x and y. The SAPS
technique requires the solution of certain algebraic equations while the
asymptotic method described here requires the evaluaticn of some second
partial derivatives. The SAPS technique simplifies considerably when we are
dealing with a Tinear system with constant coefficients and this is certainly
true with the asymptotic method also. We should note that the SAPS technique
is a second order method with respect to the step size used while the asymptotic
method is a second order method with respect to the small parameter .
Examining (6.3.22) and (6.3.23) we should note that the asymptotic
method described here would for arbitrary functions f and g be expensive
as far as the calculation of the function h is concerned. However, in
certain cases h simplifies considerably. We have already examined the
case of Tinear systems with constant coefficients given by (6.5.2) and
(6.5.3). Here we see that the quantity R in (6.5.3) may be calculated
once and for all at the beginning and we need only calculate the quantity
Ax + By and the muTtiplication R(Ax + By) for each function evaluation.
The case in which f is nonlinear and g is linear wmay also be
handled rather inexpensively since the second partial derivatives in
(6.3.22) disappear. If g is independent of t then g;] may be evaluated

once and for ali at the beginning.



In the case where f is arbitrary and g is quadratic we certainly
have partials of f and g to evaluate and 9;1 to find at each stage.
However, the second partials in (6.3.22) may be evaluated once and for all
at the beginning. Hence, we obtain good approximations to (2.0.1) without
any stiffness considerations and with a reasonable increase in the

complexity of the functions.

7. Numerical Results for the Asymptotic Method

To emphasize the O(uz) error for this method we have used this
method on Problem 5.1, Problem 5.2, Problem 5.3 and Problem 5.4 for various

values of wu.

For Problem 5.1 we find the fUnction h-is given by

h(x,y,t,n) = y{1-u).

For this problem we may find the exact solutions to both (2.0.1) and
(6.1.1) as functions of t and p. Table 6.1 shows the results for various

-5 4

values t and u = 10‘6, 107 and 107",

For Problem 5.2 we find the function h is given by

h(xzv)/at:U) = .Y(]+ '2’1';({‘(’)% "]))

Since we are interested‘on1y in the error due to the asymptotic nature of
our approximation we solved (2.0.1) and (6.1.1) such that the errors due
to the numerical integration of these systems was much smaller. We used
Gear's subroutine package on (2.0.1) and the classical fourth order Runge-
Kutta method on (6.1.1). Tahle 6.2 shows the results for various values

of t and u = 1072, 107% and 1073,



For Problem 5.3 we find the function h is given by the

following (we define X Tirst):

ZyU)‘]_ T(x,y,t)

X = &y .
hT) = (7 xy )
n(2) = a0 Fix,y,t).

Again we used Gear's package on (2.0.1) and the classical fourth order
Runge-Kutta method on (6.1.1) such that the errors due to the numerical

integrations were much smaller than the errors due to the asymptotic error.

- N
Table 6.3 shows the results for various values of t and u = 10 6, 107°

and 1077,

For probiem 5.4 we calculate R in (6.5.3) in order to calculate
h. MWe repeat the same procedure as in the last two examples. Table 5.4

shows the results for various values of t and py = 10_6, 10"5 and 10_4.
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CHAPTER VII

CONCLUSIONS

There are certain advantages to using the interpolation scheme.
As opposed to using other asymptotic methods, the interpolation scheme
does not require much analytic preparation before use. MacMillan's
method, the asymptotic method presented in Chapter VI and especially
Vasileva's method all require some analytic preparation. Another advantage
js that it avoids handling large algebraic systems when m and/or n are
large (except possibly in obtaining the degenerate system if ¢(x,t) is not
easily attainable). Most methods that handle stiff systems are implicit
methods, requiring the solution of algebraic equations.

One of the main advantages of the interpolation scheme is that
we may obtain answers outside the boundary layer on the time scale of the
slowly varying components without having to integrate the full system
(2.0.1) through the boundary layer. With other methods that have this
characteristic we often are not sure whether we have the solution to our
initial value problem or whether we have another solution with a slightly
different initial value for t. It is clear from the error expression
(3.2.5) that the 1nterpo1atibn scheme does not have this problem.

We have taken the point of view here, perhaps different than
many cases, that we are always striving to provide answers with a relative
error no greater than a given tolerance €. Indeed it is quite possible to

obtain highly accurate answers for values of t outside the boundary Tlayer

quite efficiently.



The error tolerance here is not just a local error tolerance but a
global one and in examples run is very reliable. Even when it fails it
often picks up again for larger t and is reliable at these larger values
of t. This fail-safe aspect is possible because of the nature of the inter-
polation scheme.

We have found on examples run that the difference in function
evaluations when the interpolation scheme is run versus the classical fourth
order Runge-Kutta is about a factor of 100 or more.

In comparing the interpolation scheme to Gear's subroutine we
find that the interpolation scheme compares favourably in many cases.

For the values of t that we‘have used we find that the first stage is
sometimes substantially better but for subsequent stages it levels off more
sTowly.

The routine that picks the auxiliary parameters does not pick the
absolute optimum but does pick an efficient set in the examples tested.

A disadvantage of the interpolation scheme is that the boundary
layer effects_are somewhat extended as far as the effects on the numerical
calculations are concerned.

As far as the asymptotic method presented in Chapter VI is
concerned, we should note that it is necessary to integrate the full system
through the boundary layer in order to apply the approximation. However,
we certainly obtain a good advantage by letting the system (6.1.1) take
over outside the boundary layer. The examples run in Chapter VI certainly

illustrate the O(uz) accuracy of the approximation.



APPENDIX A

It is necessary to show the existence of the quantity gﬁ(t,u)
on the set D defined by the points (t,u) such that 0 < t1 <t <T for

any tq > 0 and 0 < u < 1 where for our purposes p = max u,. Vasileva [14]
q T<isq |
has shown the existence of g——Z—-(t,u) on the same interval but the techniques

. du
used are different and in my opinion more involved. We have not shown

the results for q > 1 here but the method would be similar.

—

Theornem Let z(t,u) = (;EE’E ) denote the solution to the system

d |
ugt = g0Gyst)s ¥l = 8

and Let Assumptions A to E of Chaptern 11 be satisgied. Then the quantity

q : ) _
é——é—(t,u) exists on the interval 0 < p < p and 0 < t] <t < T for any
ou
t] > 0.

Proof It is clear that the theorem holds for p > 0. We must show
that
: t,LH'h)'X(t “)
11m{[x( = .
h>0 h k=0
and

ey (Euth) -y (t,u)

exist on the interval 0 <ty sts< T. This is equivalent to showing that



and

Tim
0

exist on the same interval.

Let
X(t,u)—io(t)
u(t,n) = "
and
y(t,u)-y, (t)
v(t,u) =

We will actually show that

Tim u(t,u) = Q](t)
>0

and

tim v(t,u) = y,(t)
10

where i], y] are the solutions to the system (2.1.18) with initial

(A.2)

condition i](O) given by (2.1.29). We will also show that convergence

in {A.2) is uniform on the expanding interval T, < t

We now obtain an expression for the quantity u{t,u).

using (2.0.1) and (2.1.2)

We have
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du d
it = gt 1
i f(X(t,u),y(t,u),t)-f(io(t),§o(t),t)
) U
x(t,u)-x (t)
= fl . 1
y(t,u)—yo(t)1
+'Fy[——-————u————_.. (A3)

The last step follows after applying Taylor's Theorem. Note that the x
and y values of the components of fx and fy are in the interval spanned
by x(t,n) and zo(t), and y(t,u) and yo(t) respectively. Simplifying

(A.3) we have

du _
FORR RS - (A.4)

Applying Taylor's Theorem on g(x,y,t) as we did to f in (A.3), we have

g(x{t,u),y(t,u),t)
u

= gu + g,V (A.5)

where we say the same for 9y and gy as we did for fx and fy. Solving

(A.5) for v and substituting in (A.4) we have

== a(t,u)u + b(t,y (A.6)

where

and
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-1 gQX(t 9U) ,Y(tsU) ,t)
Yy H

b(t, = f
(t,u) 49

Vasileva [[15] has shown

~

1im x(t,u) = xo(t) uniformly on 0 < t < T
>0
and

b

Tim y(t,u) = yé(t) uniformly on the expanding interval yt =t =T
u-0

and therefore the 1imit as u » 0 of the x values of fx’ fy, 9y and gy is
§O(t) uniformly on 0 < t < T, and the limit as pu » 0 of the y values of

fo fy, 9y and 9, 1s yo(t) uniformly on the expanding interval yt <t <T.

We have therefore that

lim a(t,u) = a_(t)

u>0 0
and

Tim b(t,u) = bo(t)

u>0

uniformly on the expanding interval ut, < t < T, where

~ o~ ~ o~ 1~ o~ ~ o~ ‘
ao(t) = £, (x5Y0st) = L (xyost)ay (Xgaygat)g, (Xg,y,st) (A.7)
and N
dy
PPN, o 0
bo(t) = £ (R;¥g0t)g, " (X,.5,0t) g -



In (A.7) we used the fact that

~

g(x(ty),y(ta),t) - Yo
u dt -

1im
>0

We may show this by examining (6.3.22). We see that

: g(x(t3U)9.y(tsU)st) - i o AV k o
llna y ¢x(x0,t)f(xo,y0,t) + <bt(xo,t).

But differentiating yo(t) in (2.1.2) we also see that

d}“o

If we solve for y] in (2.1.18b) and substitute in {2.1.18a)

we have

o
> 2
—r

|

= a (t)%; + b (t). (A.8)

Q.
~

This implies that the right-hand side of (A.6) approaches the right-hand
side of (A.8) uniformly on the interval uT, < t < T. Therefore, if the
jnitial condition of u(t,u) of (A.6) approaches the initial condition i](O)

as u > 0 we have that

Tim u(t,u) = ;(](t)
>0

by appealing to the theorem on the continuous dependence of the solutions

of differential equations on the data. The result

Tim v(t,) = §(8)
0

follows immediately by examining (A.5) and (2.1.18b).



It only remains to show that

Timfu(t,u)],_ = X;(0).
-0

To do this we construct using (A.1)

X (ut 1) =X, (1)

u(pt,u) = " (A.9)
The quantity x(ut,u) is the solution x(t,u) of the system
- Wf(Rgour), R(0) =
a’?‘ HTAX,Y,HT) X =0
) (A.10)
Yo gzya),  700) -8
obtained by making the change of variable t = ut in the system (2.0.1).
The quantity ;o(”T) is the solution Xx(t,u) of the system
9 (xgan)s x(0) = o
dt »YUT )/,
(A.11)

~AA

g(x,y,nt)

[an]
I

obtained by making the change of variable t = ut in the system (2.1.1).
Using (A.9), (A.10) and (A.11) we have

T — - T Fa SN
oty [ F(X,y,u0)do-o-u [ £(X,y,uo)do
u

u(pt,u)

I

f [£(X,5,u0)-F(X,y,10)]do. (A.12)
0



Since the right side of (A.10) depends continuously on u, we have

Tim x(o,u) = X (o) = «
u~>0

and ’ (A.13)

lim y(o,u) = y (o)
u>0

uniformly on 0 < o < 1. Here the quantities io(r) and yO(T) are the
solutions to (2.1.14) obtained by setting u = 0 in (A.10). We also have
Tim x(o,u) = X (o) = @
u-0
and (A.14)

¢(a,0)

Tim y(o,u) = y, (o)
u~+0

uniformly on 0 < o < 1 since the right side of (A.13) depends continuously

on u. The quantities QO(T) and §O(T) are the solutions to (2.1.24)

0 in (A.11). Using (A.12), (A.13) and (A.14)

obtained by setting u

we have
' T
Hin uGutn) = [ [F(,5,(0),0) - f(0,8(0.,0),0)1do (A.15)
w0 ©
0
since f is continuous and we have uniform convergence in (A.13) and (A.14),

Let the integral in (A.15) be denoted by R(t). Also let

Tim R(t) be denoted by R(x) (A.16)

T>0

and we are assured that this limit exists since from Wasow [16]

19(0) - ¢(2,0)] < ce™°

and fy is bounded.
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From the limit (A.16) we can choose 1, so large that the point
(O,R(TO)) in the (t,x) - plane has distance < ¢/2 from (0,R{x)). From
the limit (A.15) we can choose uo(e) so small that for u < po(e), the

point (UTO,U(UTO,U)) has distance < ¢/2 from (O,R(TO)). Hence

(UTO,U(UTO,U)) has distance < <  from (Q,R(«))} and = can be made as small

as we please by taking T sufficiently large and then o sufficiently

small. Note that R(«) = 21(0) in (2.1.29).

The interpretation of the limit taken in this way may be

explained as follows.

’ } 1/ / ,/f

£
/

’; }A' /
e
/ i Fi, with slope T.
,’ ‘l>f<

—

’ ' ~ successive lines t = pt
Diagram A

v

In Diagram A we evaluate u(t,u) along successive lines t = ut with t

increasing. With each of these lines we then allow p -~ J. The Timiting
case of this procedure is justi the expression
Tim
0 u(taﬂ)]tzo.
U

This complietes the proof.
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APPENDIX B-

Using the notacion and assumptions of Chapters II and I1I

we are interested in showing that the relation

2000y < 28 ()] - e
holds for ¢ and « positive corstants independent of ©. Wasow [16] uses
the description "of boundary layer type" to refer to a function H(t)

such that
[H(T)| < ce™ T
Here and in what follows ¢ and k are used as géneric constants only and

no attempt will be made to distinguish different values.

We first prove the following lemma.

Lemma B Given the function F(x,y,t) where the partial derivative Fy A4

continuous Ain y, then using the notation of Chapter 11 we have the relation

[F (07 (1),0) - Fla,(0,0),0)| < ce™ T, | (8.1)
Proof Using Taylor's Theorem we have
F(0,9450) = Fla,9(a,0),0) = F (¥,-0(as0)) (8.2)

where the y values in each of the components of Fy are in the interval spanned

by yo(r) and ¢(a,0). Since io(r) is bounded and Fy is continuous
Vi

leil < K (B.3)

for some positive constant K. Also from Wasow [16] we have



il

15, (1) - 0(a,0)] < ce™" . (8.4)

The relations (B.2), (B.3) and (B.4) establish (B.1).

We now move on to the main result here.

Theorem B  The relfations

I

7)) - x{3) ()] < ce™T  (8.5)

and

IA

I9§j)(T) - y8N )] s ce™ (B.6)

hotd forn ¢ and x positive comstants independent of v and for all i and j.

The constants ¢ and « may depend on i and j. As 4in Chaptern 11T the notation

437, (4 dj21
and Z1.J (t) means .
dTJ drJ

Zgj)(T) means

Remark Wasow [16] has shown (B.5) and (B.6) for j = 0,1 and all i. The
first step is to show (B.5), and (B.6) for all j and i = 0,1 (since

these are special cases).

~

Proof For i = 0 we have io(r) = xo(r) = o from (2.1.15) and (2.1.25)

and therefore (B.5) follows trivially for all j. Also from (2.1.15) we have
_(]) _ -
Yo ! = 9(osy,,0) (B.7)
and using Taylor's Thoerem

3(0,7,50) = 9(0,0(a,0),0) + gy, (7,-(,0))

9, (7,-6(c,0))



where the y values of cach of the components in gy are in the interval
spanned by yo(m) and ¢(x,0). Since yO(I) is bounded and gy is continuous

we may assume gy is bounded by K. Therefore

1
—
—t
~—

i

= ,g(asyo’o),

K|y0'¢(aa0)l

ce ™1, (B.8)

A

From (2.1.25) we have

dy
o _
aw -0
and therefore
SRRl IR (8.9)

Using (B.7), (B.8) and (B.9) we have

ly£2)—§52), = [gy(a,yoo)yé]),
< 1o, (750017
< ce T,

- (1)
Since higher derivatives of Y, all contain factors of yél’ (from (B.7)), we

have (B.6) with i = 0 and all j.

For i = 1 we have been_using (2.1.16) and (2.1.26)

A2 2 0,3 ,0) - $(0,6(a,0),0).



Therefore using arguments as before

N M R AR

M

i

A
O
4]

Again, higher derivatives all contain factors of y£1) and we have
(B.5) for i =1 and all j.

In what follows f ard g and their partials when evaluated at
(a,iO,O) will be denoted by f, g etc. and when evaluated at (o,dé(a,0),0)
will be denoted by f, g etc. Then using (2.1;]6) and (2.1.26) again,

we have

— ] "~ ] — - - - - AN ~ ”~ ~ e
- 9X T 9yYy 9T 0Ky m 9y T 9T

=
. i
=
il

Therefore, we have

-(2)  ~(2) _ - =(1): - =(1)- - =(1) - =(1)
YU 7 7Y T Yo K T 9o Y T Gy T 9k
~ ~(] - - ~ (] . N
- gxx'f ) + gyy‘i - gyy‘l( ) + gt - qi» . (B]O)

2) _o~2) _ - -0 v 1 = (1)
y( - y§ : gxyycg )X1 gyyyé )y1 gtyyé )T T 94
- éx;§]) * §X§§]) B axgg]) * éyy§])
M) L= () 2 c() s a



giving

_(2)  ~2)) = s =01 - = =0 - (1
e I A P R A I T IR AR TR
- (1) 201 D= A - =01 ~(1),
15 R -2 D 16,0+ 15, 135
W) ggs A
i3, 0, + 1643 (8.11)
Now X5 and y; are polynomials in t (see (2.1.23)) and lgx—gx|, !gyngyg and
|§t—§tl are of boundary layer type (using Lemma B). Therefore, the
fifth, seventh and eightn terms of (B.11) are of boundary layer type.
For the quantities |X1] and [yq| we may write
5yl < gl + o™
and ‘ (B.12)

KT

’5’] = IJA/]l +ce
using the inequalities

~-KT
ce

IN

IA

%] - 15| = R %; |
and

~KT
ce .

IA
i

5,1 = 15,1 = 1575, =

This combined with the fact that |g

y ,léyy( and [étyl are bounded and

|§é‘)| is of boundary laver type implies that the first, seccnd and third

terms of (B.11) are of boundary layer type. Since |g, | and Iﬁyi are



bounded and we know ii§])~§§1)[ and I§§])-§§1)] are of boundary layer type
we have the fourth and sixth terms of boundary layer type. Hence
|§§2)-§§2)| is of boundary type.

Looking again at (B.10) we may use induction along with similar
arguments to show (B.6) with i = 1 and all j.

We now show (B.5) and (8;5) for i > 2 and j > 2. We use an

induction argument by assuming

|Z‘SS)-A(S)| -KT

z, ce T, r<i,s < j-i {B.13)

IA

and then show (B.5) and (B.6) for r = i and s = j.

Using (2.1.17) and (2.1.27) we have

§1])—£§]) - 12x;(1-1 ¥ 1-:y;/i—] ¥ 51—2
- Fxia - i - P (B.14)
and
&g]) B ?gl) B §x§1 ¥ gyyi * 51—1
- 9% - 0¥ - Gy (8.15)

Here 51_2 and 61_2 are polynomial functions of 1 and of Rk’ yk, k < i-2
and Qk’ 9k’ k < i-2 respectively. Also g;_; and 61_1 are polynomial

functions of T and of ik’ }k, k < i-1 and Qk’ §k, k < i-1 respectively.



Using (B.14) we have

=(2) _2) _ ¢ -00); z =(1):
X004 T Yo K- ¥ fyyyo Vi
= =(1) 2 o(1) oz (b)) 2 o(1)
+ fxx1_1 - fxx1_] + yy1—1 - fryyh1
e B DI A E 10
1 oax,  © k1 sk, K
k k
L i ) TR Az o) 51
k=1 3y, k k=1 a§k k

Adding and subtracting appropriate terms in (B.16) and using the triangle

inequality we have

y vy
i-2 p. i-2 3p
-(1 -2 aPicgy  TREP (1) Al
o f R L gy () ),
k=1 axk 8xk k=1 9°
i-2 p p i=2 3p
-(1 - -2 i-2.,=(1 (1
A 7R e e C AR R S

The quantities lfxyl,lfyyi,lfxl and ['y] are all bounded. The quantities

~(1 ~ 3. 5 .
Xg_%, ygl%, ~p1‘2 and Efl;g_are all volynomials in © {see {2.1.23)).
QXk aﬁ}k

Also we have the relations.



< IQi_]l + ce™"

x
p—l
1
—_—

A

n A
I.yi_] I < lyi_]l + ce '

1
—_——~
—
~—
A

|§£])| +ce™, ko<i-2

500+ ce™, &

i
P
i
~—
IN

These can be shown as (B.12) was shown and by assuming (B.13) holds. The

9 (1)

quantities 21-1’ Yire X¢ o and §é]) are all polynomials in T.

Using these facts we can show that the first two terms are of
boundary layer type since ]ié])| is of boundary layer type. Also the third
and fifth terms and the second and fourth sums are of boundary layer type
since we are assuming (B.13). The fourth and sixth terms are of.boundary
layer type using Lemma B. The first and third sums are of boundary layer
Mig g

9z

| is of boundary layer type. This last statement

type since |
ko 9% |
is true since 5i-2 is made up of the same combinations of ik’ yk, k < i-2

- as 6142 is of ik’ §k, k < i-2 and we are assuming (B.13) hclds.

Using (B.15) and assuming (B.13) we may show

57 - 98] < ce™

by similar arguments.

Again using (B.14) and (B.15) and assuming (B.13) we may use similar

arguments to show (B.5) and (B.6). This completes the proof.



APPENDTY C
Listing of Subroutine for the Interpolation Scheme

SUBROUTINE INTE(X,M,M,MPN, T, TFINAL,U,UU,NP,K,H,TA,XDEG, XA,C,D,
& CC,DD,HZ,TOL,L, Z)

c********************* r*******#*****************************************

ICe
Ce
Ce
C»
Cw
Ce
C»
Cw
Cw
Cw
Co
Cw
iCw
ICw
ICe
iCe
\c.
Ce
Cw
Ce
Ce

Ce
Ce

Cw
C»
Cw»
Ce

Cr

Ce
Cw
Ce
Ce
C»
Cw»
C»
Cr»
C»
Cw
Ce
Ce
Cw
Ce
Cw
Cw
Cw
G
Cw
.C*

This subroutine inteprates a system of 0.D.E.'s of the form
dx/dt=f(x,y,t)
udy/dt=r(x,v,t)
where u Is a small parameter. Startlny values of X at T are given
and the answer at TFINAL is pgiven back in X. Each succeeding call

should have only a new TFINAL. A method of interpolation on a set .

of auxiliary solutlons is used. An exnlanation of the
parameters follows.

X -A vector of size M+N that contains the starting values for

the system. The first M positions correspond to x, the last
N positions correspond to vy,

M -The dimension of the vector x(at least 1).

N -The dimension of the vector y(at least 1).

MPN -The auantity M+N,

T -The starting value of t for this sten., It contains TFINAL at

the exit of the subroutine.

TFINAL -The value of t at which an answer Is desired.

U -The small parameter.

UU -An array of size NP, The subroutine requires a set of
auxlltary parameters much larper than U to avoid severe
stiffness but small enough to provide accurate approximations.

NP -The maximum number of auxiliary parameters allowed (5 is
usually an upper bound but at least 1 is needed).

K -A parameter that can have 3 possible values: :

(a) 1 If the user wants to provide the array UU and does not
want the subroutine to try to find it.
(b) 2 If the user wants the subroutine to try to find

a good set of UU on its own. If this value is used, then NP

should be set at '+ or 5.
(c) 3 If this is the second or greater reference to this
subroutine during this run. During the first reference
the subroutine will automatically set K to 3, 5
The parameter K and the array UU should not be changed’ after

1.";5}3,

R R N Y EEEE R N I arasan

L]

*
*
*
L
'.

g
»

the first reference to this subroutine unless it Is desired to set a+
new set of auxllliary parameters. If this Is done K should be set at *

1 or 2 again depending on the option desired.

H,TA,XDEG,XA ~Arrays of size NP, NP,MPN, and NPxMPN respectively
used as working storage. They should not be altered by the
main progsram.

¢,b,CC,DD,HZ -Variables used as working storaye. They should

. - not be altered by the main program.

TOL -Maximum error allowed in the answer,

L -A parameter indicating the success of this stare. The
nossible values are as follows:

(a) 1 If the stare was successful within the maximum error.
(b) 2 if the stare was not successful within the maximum error
pgiven but successful within a Yarrer error. The larger

error may be found by examining TOL., Note that TOL in this

LI IR TR IR N TS tt‘#



'|C*
C»
L
Cw
iCw
ICw
1Cw
1Cw
iCw
C»
Cw
C»
Cw
C»
C»
Ce
Ce
Cw
C»
C»
1Cw
yC*
C*
iCw
\c*
iCw
1Cw

Tod 3

C»
Cw
C»
Ce
.c*
Ce
Ce

Ce

Ce
o
Ce
Cw
Cw
C»
Cw

case should be reset bv the main program because it is still
quite possible to obtain better answers in later steps I[f
desired. The user should always use the same value of TOL.
c) 3 If K has an Impossible value.
d) b if the array Ul has an element with an unexpected value
less than or equal to 0.
) 5 if the small parameter U is less than or equal to 0.
) 6 If NP is less than 1 or sreater than 5. :
) 7 1f the subroutine Is not able to find a set of
parameters UU.
(h) 8 if K Is 2 and NP is not 4 or 5.
Z -A varlable used by the subroutine in checking error tolerances.

S

—~ o~
q h

-

Note that all real variables should be declared as DOUBLE
PRECISICN. In additlion the following 3 subroutines should be
provided by the user and all real variables should be declared as
DOUBLE PRECISICON here also.

FNEVAL(X,T,U) ,

This subroutine should evaluate the functions f and g/u placing
the results in an array F declared as COMMON /FUNCT/F(10). The first
M elements of F correspond to f and the last N elements correspond
to g/u.X should be an array of size 10 whose first M elements
correspond to x and whose last N elements correspond to y. U is the
small parameter. This subroutine is used by INTF to calculate the

auxillary solutions.

PHI(X,M,N,T)

This subroutine should use some procedure to solve the function
g(x,y,t)=0 for v=p(x,t). This solution p should be a stable solutionw
such that the Initial conditions of our system are in its domain of =
influence. X Is an array of size MPN=M+N whose first M positions *
correspond to x and whose last N positions correspond to y. T Is thes
value of t. Lo e

IS E SN EEENEENEEEREEEE EENEENENEEN

*
EVAL(X,M,N,T) : -
This subroutine 1s used by INTE to evaluate the derenerate. o

system, It should evaluate the function f(x,p(x,t),t) where p(x,t) =*

is described In subroutine PHI. The results shci:1d be placed iIn »*

an array F declared as COMMON /FUNCT/F(10). Cnly the first M 24

elements of F need be calculated. All arguments here are as in the "«

subroutine PHI. The values of p(x,t) should be obtained by the -

statement CALL PHI(X,M,N,T). d

»

C*********'***********************************************************‘

IMPLICIT DOUBLE PRECISIMN(A-H,C-1)

DIMENSION X(MPN),UU(NP),H(NP),TACNP),XDEG(IMPN)Y, XA(NP, MPN)
DIMENSION ER(5,10),E(5),TAB(5,5,10),XAA(5,10)

DIMENSION XM(10),XP(10),UV(5),HA(5),TAA(S),XD(10)

Cx#xCalculate Z used for checking error tolerances.

7=1.00 .
pe afg 1=1,M
90 XR(I)=X(T1)



CALL PHT(XD, (M), {(N),T)
D91 I=1,"PHN
IF(DABS(XR(I)).GT.Z)Z=DABS(XR(I))
91 CONTIMUE
'Ce*2Store the startine values of X.
Do 1 I=1,MPN0
I XA(1)=X(1)
CxexCheck the parameters for possible errors.
IF(K.NE, 2) GO T 45
IF(NP,EO. 5 .0R, NP.EN., 4) GO TC 45
L=8
RETURN
b5 TF(K.GE. 1 (AND.K.LE. 3) GO TO 2
L=3
RETURN
2 IF(NP,LE. 5 AND. NP.GE. 1) GO TO u0
L=6
RETURN
Lo IF(K,EN, 2) GO TO 38
DO 37 J=1,NP
IF(UUCJ).GT. 0.D0) GO T 37
L=k
RETURN
37 CONTINUE
! 38 IF(U,GT, 0.D0) GO TO 39
‘ L=5
; RETURN
! 39 GO TO (1000,2000,3000),K
'ICeewCalculate the error tolerances for the auxiliary so]utions
1000 DO 77 J=1,HP
’ 77 UV(J)= UU(J)
NN=npD _
CALL ERRTOL(UV,U,NN,C,D,TCL)
CexxAssign upper and lnwer tolerances for the degenerate so]ution
, CC=TCOL=»,1D0
r DD=CC#,01D0
‘CexxCalculate the starting step sizes for the auxi]rary solutlons
Ceexif necessary,
- IF(K.EQ. 2)60 TO 3000
CALL AUXSTP{XO,M,N,T,UV,NN,C,HA,Z)
Do 78 J=1,NP
78 H(J)=HA(J)
CewxCalculate the starting step size for the derenerate system,
CALL DEGSTP(XO,M,N,T,CC,HZ,7)
CexxStore the values oF XF In AD[F and XA and the value of T in TA,
.25 DO 24 I=1,HPN
XDFG(I)=Xﬂ(I)
DO 24 J=) NP
l 2 XACD, 1) =X0(T)
| DO 23 J=1,NP
23 TA(U) =T
CxxxAdvance the derenerate solution to T=TFINAL if necessary.




3000 IF(T.OE.TFTINALY GO TO 250
I cALL DECEN(XDEC,M,N,T,HZ,TFINAL;CC,DD,Z)
iICx#*xAdvance the first auxiliary solution to T=TFINAL € necessary.
250 IF(TA(L1).GE.TFINALYGO T6f 281
DO 22 I=1,MPN
22 XR(I)=XA(1,1)
CALL AUXFUL(XR,MfN,TA(I),UU(l),H(l),TFINAL,C,D,Z)
DY 260 I=1,MPN
260 XA(1,I)=XR(I)
Ce2xStart the table for Aitken's Interpolation.
261 DM 26 1=1,MPN
26 TAB(1,1,I)=((UUCI)-U)*XDEG(I)+U'»XA(1,1))/UUC1)
C*»xCheck whether we have apreerment within error tolerance.
JS=1
IND=0
DO 60 I=1,MPN
ER(1,I)=DABS(TAB(1,1,I)-XDFG(I))}/7
IF(ER(Y,I) . .GT.TOL+,8D0) IMND=1
A0 CONTINUE
IFCIND.EN, 0)GO TO 31
IF(NP.EQ. 1)GO TO 61
CewxKeep using more auxiliary solutions until agreement within
Cewrerror tolerance is reachzd. ‘ .
DO 27 J=2,NP
IND=0
JS =y
Ce#+xAdvance each succeeding auxiliary solution when needed
Cowx[f necessary.
TF(TACJY .GE.TFINAL)GO TO 291
DO 28 I=1,MPN
28 YR(I)=XA(J, 1)
CALL AUXSCL(XR,M,N,TA(J),UU(J),H(J),TFINAL,C,D,Z)
DO 290 I=1,MPN
290 XA(J,I)=XR(I)
CessiMake the next row in the table for Aitken's Interpolation.
291 DO 29 I=1,MPN
TAB(J,1, D) =((UU(JI-U)*XDEGCT)+U=XA(J, 1)) /UUCJ) ‘
DO 29 Jd=2,4
29 TAB(J,Jd, I)=((UUCI)=U)*TAB(JJ=1,Jd=1, I)=-(UUCSJ- y=U) s
& *TAB(\,’\,\,-I,I))/(UU(\])-UU((JL"’I))
DO 30 I=1,MPN
iss+«Make the test to see if we have avreement within error
UCsextolerance
ER(J,TI=DABS(TAR(J!,d, 1)-TAB(I=1,0=1,1))/7
TFCER(J, 1) .GT.TOL%.8D0) IND=1
30 CONTINUE
IFCIND.EO. '0) GO T 3]
27 CONTIMUE
Cexxlle have not obtalned the requested accuracv after using
CrexlP values, so we determine what accuracy we do have,
Cwvswset the parameter L and return with our best answers,
61 DO 32 J=1,HP



32

35
33

34

E(IY=ERCI,T)

DY 32 I=2,MPN

IF(ERCS, I).GT.ECJ)) ECJI=ER(J,T)
CONTINUE

Je=1

EMIN=F(1)

IF(NP.LE. 1)G6f TO 33

DO 35 J=2,NP
IF(ECJ).GCLEMIN) GO TO 35
EMIN=E(J)

JS=4

CONTINUE

L=2

TOL=EMIN+,2D0*TOL

DO 34 I=1,MPN
X(1)=TAB(JS,JS, 1)

K=3

RETURN

Ceexlle are within the specified error tolerance, so we
Cenvset the parameter L and return with the proper values.

31
36

2000

2002

2003

c
c

2001
2004

L=1

DO 36 I=1,MPN
X(1)=TAR(JS,Js,I)

K=3

RETURN

NS=NP

CALL PARAM(XO,M,N,T,TFINAL,,UV,NS,TOL, LL,
& XAA,HA,TAA,XD,TD,HZ,2)
IF(LL.EQ., 0) GO TO 2002
L=7

RETURN
- DO 2001 J=1,NP

DO 2003 I=1,MPN

XACJ, I)=XAA(Y, 1)
H(J)=HA(J)

TA(J)=TAA(J)
Uu(J)=Uv(dJ)

DO 2004 I=1,MPN
XDEG(I)=XD(I)

T=TD

GO TO 1000

END

Cex*PARAM Is a subroutine that chooses a set of auxillary parameters
Ce+erbased on the first value of t for which answers are desired and
Ce»+the error tolerance.

SUBRAUTINE PARAM(XO,M, N, TO,TLIM,U,UU, NP, TCL,K,
& XALHA,TA,XD,TFINAL,HD,Z)

IMPLICIT DOUBLE PRECISICON(A-H,0-7)

DIMENSION X((10),XD(10),XA(5,10),XR(10),X1(10),X1(10),XK(10)
DIMENSINM UU(5),HA(S),TAR(5,5,10),E2(10)



DIMENSION TA(S),VV(5),UTEMP(5),HTEMP(5)
1MPH=14+N
Cewxk |s used to denote the success or failure of the subroutine,
CeexK=0 denotes success, K=1 denotes failure.
K=0 ‘
I\_"—'n
N=.1D0
RR=2.D0
A=100.D0
$=2.D0
Cwax1f the value of t is too large for the efficliency of this
Cxexspybroutine we run it at a value of .3.
CHK=,3D0
TFINAL=TLIM
TDEL=TFINAL-TO
IF(TDEL.LE.CHK)GO TO 25
TDEL=CHK
TFINAL=TO+TDEL _
C#xxPick a starting auxillary parameter.
25. CALL SOLVE(TDEL,2,S,A,UU(NP))
NPM1=NP-1
Ce**Calculate the other starting parameters.
Do 1 J=1,NPM1
1 UU(NP-J)=UU(NP-J+1)*,75D0
CC=TOL*,1D0O
DD=CC+.01D0
Ce+*xCalculate the starting step size for the degenerate system,
CALL DEGSTP(XO,M,N,T0,CC,HD,Z)
DO 2 I=1,MPN
2 XD(1)=X0(1)
TT=T0
C**xCalculate the desenerate solutlon,
e CALL DEGEN(XD,M,N,TT,PD,TFINAL,CC,DD,Z)
Ce#*Calculate the error tolerances for the auxiliary systems.
CALL ERRTOL(UU,U,NP,C,D,TCL)
C'**Ca1cu1ate the startfny step sizes for the auxiliary systems.
CALL AUXSTP(XO,M,N,TO,UU,NP,C,HA,Z)
C***Calculate NP auxiliary solutions.
DO '3 =], NP
DO 4 I=1,MPN
b XR(I)=Xﬂ(I)
TA(J)=TO
CALL AUXSNL(XR,M,N,TA(J),UU(J),HA(J),TFINAL,C,D,Z)
DO 5 I=1,MPN
5 XA(J,I)=XR(I)
3 CONTINUE
Ce*+Check that the effects »f EXP(-S*TDEL/UU(NP)) in the
Ceaxthird derivative with r spect to u have been elininated.
Cx#*xThis 1s done by forming the apnproximations XI,Xd and XK
C++*xin order to obtain two cstimates for the error involved
Cx*x506 that an estimate for the third derivative with resnect
Crextn u may be roughly approximated.

o




10

CO=(U=UUNP=1)) *(/=UUINP)) /ULLHP=T1) JUU(HD)
Cl=U»(U=UUCNPY) JULINP=-1)/(NMUINP=1)=UU(IND))
C2=Ux(U=UU{HP=1))/UULINP)/(UU(NP)=UU(NP=1))

DO 6 I=1,MPN

XI(I)=CO#*XD(I)+CY*xXA(NP-1, TY+C2*XA(NP,T)
CO=(U=-UL(NP=2))*(U~UU(NP- 1))/UU(NP 7)/U((N“ 1)
Cl=Ux(U=UU(NP=1))/UL(NP=2)/(UU(NP=2)Y=UL(NP=-1))
C2=U»(U=UU(NP=-2))/UU(NP-1)/(UU(NP=-1)-UU(NP~-2))
DY 7 1=1,MPN
XJ(I)=CO*XD(I)+Cl*XA(NP=2,1)+C2%XA(NP=-1,1)
CO=(U=-UU(NP=3)) *(U=UU(NP=-2))/UU(NP=3)/UU(NP=-2)
Cl=Ux(U-UUINP=2))/UU(NP-3)/(UU(NP=-3)=UU(NP=-2))
C2=U»(U=UU(NP=3))}/UUCNP=-2)/(UU(NP-2)-UU(NP-3))
Do 8 I=1,MPN

XK(1)= CO*XD(I)+C1*XA(NP—3 I)+C2*AA(NP 2,1)

DO 9 1=1,MPN

E2(I)= DARS(XI(I)—XJ(I))/Z

L=1

EMAX=E2(1)

DO 10 I=2,MPN

IF(E2(I).LE.EMAX)Y GO TC 10

L=1

EMAX=E2(1)

CONTINUE

YB=6*E2(L)/U/(U-UU(NP-1))/(U-UU(NP))
E1=DABS(XJ(L)=-XX(L))/Z
YA=6*E1/U/(U=-UU(NP=-2))/(U~-UL(NP=1))

YMIN=YA

IF(YB,LT.YA) YMIN=YR

CesxIf the effects have not been eliminated we multiply the
Cewxauxiliary parameters by .75, store the necessary values
Ceevand repeat the process.

1k
13

17

15

TF(DABS(YB-YA)/YMIN,LT.RR) GO T0O 12
YB=YA

DO 13 J=1,HNPH1

NPMJ=NP~-J

UUCNPMJ+1) =UU(NPMJ)

DO 14 Y=1,MPN

XA(NPMJU+1,1)=XA(NPMJ, 1)

CONTINUE

UU(1)=UU(2)*,75D0

CALL ERRTOL(UU,U,NP,C,D,TCL)

CALL AUXSTP(XO,M,N,TO,UU,1,C,HA,Z)

DO 17 1=1,MPN

XR(I)=X0O(1)

TA(1)=TO

CALL AUXSOL(XR,M,N,TA(1),UU(1),HA(1),TFINAL,C,D,Z)
DO 15 I=1,MPN

XA(1,1)=XR(I)

XI(I)=XJ(I)

IJ=1d+]




C*+*1f we are not successful after 5 tries we return fndicatinv
Cxwxthe failure,
IFCIJ.LE. 5) G0 TO 16
K=1
RETURN
C*»+Set up Aitken's table.
12 D0 11 I=1,MPN
DO 18 J=1,NP
18 TAB(J,1,D)=((UUCJI)-UI*XD(TI)-UxXA(J,1))/UUCY)
DO 19 J=2,NP
Do 20 \,l’=2'\J
TAB(J, J, 1) =((UU(J)-U)*TAB(IJ=-1,Jd=1, I)=(UL(JJ=1)-U)*TAB(J,JJ-1,1)
& Y/ (uuUd)-vu(Ju-1))
20 CONTINUE
19 CONTINUE
CewxCalculate the error In using NP-1 auxiliary parameters.
E2(1)=DABS(TAB(NP NP, I)-TAB(NP-1,NP=-1,1))/Z
11 CONTINUE
EMAX=E2(1)
DO 21 I=2,MPN
IFCE2(I).GT.EMAX)EMAX=F2(1)
21 CONTINUE
FACT=1,D0
DO 22 J=1,NPM1
22 FACT=FACT«(U~-UU(J))/J
NN=NPM1
Ce»else the error to calculate a set of auxillary parameters
Cx#tbased on the error tolerance and the error involved in using
CeeeNP-1 auxilliary parameters.
UMIN=(TOL*0*DARS {FACT)/EMAX)#»=(1,D0/NN)
UMAX=UMIN*(NP-1)
.C*=«Keep only the auxillary parameters that are In the range.
CeesFor those out of the range new auxiliary parameters are
Cewxobtained using EMAX in the error expression for Lagrange
Ceerinterpolation. For each of the new auxiliary parameters
Cewr]ts values of X,T,H,C and D are set. The auxiliary
Ceeseparameters that are kept and the degenerate solutlon keep
‘C***the current values of these quantities.
15=0
DO 100 1=1,NP
IF(UUC(T). LT UMIN,OR.UUCI).GT. UMAX)Fﬁ TO 100
IS=1S+1
VV(IS)=Uu(I)
DO 105 11=1,MPN
105 XA(IS,IT)=XA(I,I1I)
: TACIS)=TA(I)
HA(TIS) =HA(T)
100 CONTINUE
IF(IS.GT. 0)GO TO. 101,
pe 102 1=1,NP
DM 150 I1=1,1"PN
150 XA(L,I1)=XO(T1)



TACI)=TC

102 VV(I)=I*UMIN
CALL ERRTOL(VV,U,NP,C,D, TrL)

CALL AUXSTP(XM,M,N,TO,VV,NP,C,HA,Z)
GO TO 290

101 IF(IS.NE.NP)GO TC 103
IF(EMAX.LE.TOL*N)GA TO 200
VV(1)=TOL*0/EMAX*VYV (1)

DO 106 IT=1,MPN
106 XA(1,11)=X0(1)
TA(1)=T0O
CALL ERRTOL(VV,U,NP,C,D,T0L)
CALL AUXSTP(XO,M,N,TO,VV,1,C,HA,Z)
GO TO 200

103 IF(IS.NE.NP-1)GO TC 104
F1=1.D0
F2=1,D0
DO 107 I=1,NPM1
F1=F1#VV(I)

1107 F2=F2#UU(I)
IF(F1.GT.F2*TOL*0/EMAX)GO T 108
VV(NP)=4,D0/3.DO*VV(NP-1)

DO 109 II=1,MPN

109 XA(NP,II)=X((II)

~ TACNP)=TO
CALL ERRTOL(VV,U,NP,C,D,TOL)
UTEMP(1)=YV(NP) :
CALL AUXSTP(X(,M,N,TO,UTEMP,1,C,HTEMP,Z)
HACNP)=HTEMP (1)

GO TO 200

108 VV(NP-1)=TOL*N/EMAX*F:/F1*VV(NP-1)
111=1

111 IF(DABS(VV(NP=-1)-VV(ITI)).LT. 1.D-4)GO TC 110
I1I=111+1
IF(ITI.LE.NP-2)G0 TO 11
GO TO 112

110 IF(VV(NP-1).GT.VV(III )GO TO 113
VV(NP-1)=VV(NP-1)-1.D
GO TN 112

113 VV(NP-1)=VV(NP-1)+1.D-1

112 VV(NP)=16.D0/9.D0*VV(}P-2)

DO. 114 I=1,MPN
XACNP=1,1)=X0(1)
114 XA(NP,1)=X0(1)

: TA(NP-1)=T0

TA(NP)=T(

CALL ERRTOL(VY,U,NP,C,D,TOL)

UTEMP(1)=VV(NPI1)

UTEMP(2)=VV(NP)

CALL AUXSTB(XO,t, N, TH,UTENP, 2,C, HTEND, 7)

HA(NP=1)=HTFI4P(1)

HA(NP)=HTEMP(2) -




GO TO 200
104 F2=1,D0
DO 115 I=1,NPM]
115 F2=F2»UU(T)
F1=1.D0
DO 116 I=1,18
116 F1=F1+VV(I)
IFACT=1
IJK=NP-1S~1
DO 117 I=1,1JK
117 IFACT=IFACT*I
VV(IS+1)= (TOL*O/EMAX*FZ/FI/IFACT)**(l DO/IVK)
TJKPI=1JK+1
DO 118 1=1,1JKP1
118 VV(IS+1)=VV(]IS+1)+]
Jd=1
123 111=1
120 IF(DABS(VVLIS+JJ)=YV(III)). LT, 1.D-0)GM T 119
111=111+1
IFCITI.LE.IS)GON TO 120
GO T 121
119 IF(VYV(IS+J ) .GT,YV(IIT))IGO TO 122
O W(IS+JJ)=VV(IS+JJ)-1.D-L
: GO T 121
122 VV(IS+JJ)=VV(IS+JJ)+1, D L
121 Jd=JJ+l
IFCIS+JJ.LFE.NP)GO TO 123
ISP1=]1S+1
DO 124 J=I1SP1,NP
b 125 I=1,MPN
125 XA(J,I)=X0(1)
TA(J) =TO
124 UTEMP(J-1S)=VV(J)
CALL ERRTOL(VV,U,NP,C,D,TOL)
CALL AUXSTP(XO,M,N,TO,UTEMP, I KP1,C, HTEMP,Z)
. DO 127 J=ISPI, NP
127 HA(J)=HTEMP(J=-1S)
200 DO 126 J=1,NP -
126 UU(J)Y=VV(J)
RETURN
END
C
c
Ce«xSOLVE is a subroutine that finds the smallest root of
Creaxuxln(u)+Cu+D=0 if It exists where C=In(A)/2(K+1) and
CrenD=SxT/2(K+1),
SUBROUTINE SOLVF(T,K,S,A M)
IMPLICIT DAUBLE PRECISIMM(A=H, (=7}
C=DLOG(AY/(2*(K+1))
D=S+T/(2%(K+1))
C=»«Choose the starting value at the minimum value of the function
W=DEXP(-(1.D0+))



IF(W*DLOG (M) +Cx+D GT, 0.D0) GO T 7
CewxFind V and W such that we have a change in sign when the function
Cxwxis evaluated here.

1 V=W _1DO

FV=Va2DLOG(V)+CnV 4D

IF(FV.GE., 0.DO)GE TC 2

=\

GO TO 1
C***Test for convergence of Newton's method.

2 TECFV/(V*{DLOG(V)+1.DN+CY*%2) LT, 1.D0) GO TO 5
Cex+Continually refine V and Y until the test for convergence of
C+exNeviton's method is satisfied.

I Vu=(V+W)/2.D0

FU=VW*DLOG(YW) +C:V+D
IF(FV,GE, 0.D0) GO TO K
W=
GO TO 3
h VY=V
GO TO 2
CeexApply Newton's method to convergence.
5 W=(V=-D)/(DLOG(V)+1.D0+C)
IF(DARS(™~-V)/DABS(") ., LE, .5D-4)GO TO &
V=
GO TO 5
CexxThe maximum value we allow Is .01.
6 IF(W,.GT. .01D0)w=,01D0

RETURN
7 W=.01D0
RETURN
. END
c
c

Ce#e¢#FERRTOL is a subroutine that calculates the error to]erances
Cewe#necessary to inteprate the auxiliary systems so that the over
Ce%#all error stays within TOL.
SUBROUTINE ERRTOL(U'U,U,NP,C,D,TOL)
IMPLICIT DOUBLE PRECIQIﬂN(A -H,0-2)
DIMENSION B(5),UU(5)
SUM=0.D0
po 77 1=1,NP
B(1)=1.D0
DOY 78 J=1,NP
CIF(ILEN,J) GO TO 78
B(1)=RB{1)=(U-UU(J))/(UUCT)=-UUCI))
78 CCOHTINUE
BOI)=B{I)*Uy/0U(I)
77 SUM=SUM+R(T)
C=TOL/SUM=,1D0
D=C*»,01D0
RETURHN
EHD



c
Cox+AUXSTP is a subroutine that calculates the starting
Cexesten sizes for a set of auxiliary systems by using a
Ceex)l-step, 2-step method.
SURROUTINE AUXSTP(XO,M, N, T,UU,NP,C,H,2Z)
IMPLICIT DOUBLE PRECISINN(A-H,0-7)
DIMENSION XR(IO),XS(lH),XT(lO),Xﬂ(10),UU(5),H(5)
MPN=M+N .
DO 3 J=1,NP
H{S)=uU(Y)
DO 4 I=1,MPN
L XR(I)=X(1)
TT=T
CALL RK(XR,M,N,TT,UU(."),H(J),1)
10 H(J)=H(J)/2.D0
DN 5 I=1,MPN
5 XS(1)=x0(1)
TT=T
CALL RK(XS,M,N,TT,UU(J),H(J),1)
DO 6 I=1,MPN
6 XT(I)=XS(I)
CALL RK(XT,M,N,TT,UU()),H(J),1)
DO 7 I=1,MPN
IF(DABS(XT(I)-XR(I))/Z.GT.C)GO TO 8
7 CONTINUE
H(J)=H(J)*2,D0
GO TO 3
DO 9 I=1,MPN
XR(I)=XS(I)
GO TO0 10
3 CONTINUE
RETURN
END

0O oo

c..
c ,
C+2+DEGSTP Is a subroutine ‘hat calculates the starting
Cesestep size for the degencrate system by using a
Cewwl-step, 2-step method.
SUBROUTINE DEGSTP(XC,t ,N,T,CC,HZ,Z)
IMPLICIT DCUBLE PRECItION (A-H,0-2)
DIMENSTION XR(10),XS(10),XT(10),X(10)
MPN=M+N
HZ=CC#»,25D0
DO 11 I=1,M
11 XR(I)=X0(1)
TT=T
CALL RUNGE(XR,M,N,TT,HZ,1)
17 HZ=HZ/2.D0
no 12 1=1,M
12 Xs(I1)=xn(1)
- TT=T
CALL RUNGE(XS,M,N,TT,HZ,1)



Dot 13 I=1,M
13 XT(I)=XS(I)
' CALL RUNGE(XT,M,N,TT,HZ,1)
Do 1k I1=1,MPN
IF(DABS(XT(I)-XR(I))/Z.GT.CCIGO TO 15
14 CONTINUE
HZ=HZ+*2.DO0
RETURN
15 DO 16 I=1,MPN
16 XR(1)=XS(I)
GO To 17
END
C

c
C+»»*DEGEN s a subroutine that intesrates the desrenerate system

Cerxusing a fourth order Runge-Kutta method with a modified
Cewel-step, 2-sten method.
SUBROUTINE DEGEN(X,M,N,T,H,TFINAL,C,D,Z)
IMPLICIT DOUBLE PRECISTON(A-H,0-2)
DIMEMSION X(10),XX(10).XXX(10),E(L10)
MPN=M+N
CwxxK Is the number of steps we take before checking accuracy.
K=8
7 DELTA=TFINAL-T
IF(K*H.GT. DELTA) GO TO 1
NS=K
18 TO=T
po 2 I=1,M4
XX(I)=X(1)
2 XXX(1)=X(1)
CeexApply Runpe-Kutta with a step size H.
CALL RUNGE(XX,M,N,TO,H,NS)
co TO=T
9 H=H/2.D0
NS=N§ #2
CawxApply Runge-Kutta with a step size H/2.
CALL RUNGE(XXX,M,N,T0,H,NS)
CeswCheck for agreement w!thln the error tolerance and refnne
Cweeli and repeat If the error tolerance is not satis®led.
po 3 1=1,MPN
E(I)=DABS(XX(I)-XXX(I))/Z
IF(E(I).CT.C) GO TO &
3 CONTINUE
H=H=*2,.D0
po 5 1=1,MPN
5 X{I)=XXX(1)
T=TO
CessIf the error 1s smaller than the minimum tolerance we
Cxaxdouble H for the next anplication.
Dot 6 I=1,MPN
IF(ECI).GT.N) O TOV 7
6 CONTINUE




H=H+2,D0
GO TCO 7
4 DY 8§ I=1,MPN
XX(T)=XXX(1)
8 XXX(I)=X(1)
TO=T
GO T 9
1 IF(DELTA.GT. 0.D0) GO TO 10
RETURN
10 IF(DELTA.GT.H) GO T0 11
Cexx1f the step size H is too larpge for the value of t needed we
Cx*xdefine HH to fit exactly and perform the l-step,2-step with
Ce#xthis value of HH.
HH=DELTA
NS=1
TO=T
Do 12 I=1,M
XX(I)=X(1)
12 XXX(I)=X(1)
CALL RUNGE(XX,M,N,TO,HH,NS)
TN=T
17 HH=HH/2.D0O
NS=NS»2
CALL RUNGE(XXX,M,N,TO,HH,NS)
Do 13 1=1,MPN
ECT)Y=DABS(XX(T)~-XXX(1))/Z
IF(E(T).OT.COGO TO 1L
13 CONTINMUE
Do 15 I=1,MPN
15 X(I)=XXX(I)
T=T0
RETURN
1% DO 16 I=1,MPN
XX{I)Y=XXX(I)
16 XXX(I)=X(1)
TO=T
G0 TO 17
11 NS=DELTA/H
G0 TO 18
END
c
¢
Crx# AUXSOL is a subroutine that integrates the auxiliary systems
Cexsusing a fourth order Run-e-Kutta method with a modified
Crxaal-step, 2-step method.
SUBROUTINE AUXSOL(X,M,N,T,U,H,TFIMNAL,C,D,Z)
IMPLICIT DOUBLE PRECISION{(A-H4,0-2)
DIMENSTION X(10),XX(10),XXX(10),E(10)
MPN=M+N
Ce*2xK |5 the number of steps we take before checking accuracy,
K=1
7 DELTA=TFIMNAL-T



IF(K*H.GT. DELTA) GO TO 1

NS=K

18 TO=T :
D 2 I=1,MPHN
XA(I)=X(1)

2 XXX(I1)=X(I)
CeexApply Runpe-Kutta with a step size H.
CALL RV(XX,M,N,T0O,U,H,NS)
TO=T
9 H=H/2.D0
NS=NS*2 ‘
Ce+e+=Apply Runge-Kutta with a step size H/2.
CALL RK{XXX,M,N,T0,U,H,NS)
Ce#xCheck for apgreement within the error tolerance and refine
Ce++H and repeat If the error tolerance Is not satisfied.
DO 3 1=1,MPN
ECI)=DABS(XX(I)~XXX(1))/1
IF(E(I).GT.C) GO Tn &
3 CONTINUE
H=H#*2,D0
Do 5 I=1,MPN
5 X(I)=XXX(I)
T=T0O
Cee+1f the error is smaller than the minimum tolerance we
Cexxdouble H for the next application.
DY 6 I=1,MPN
IF(E(1).GT.D) GO TC 7
6 CONTINUE
H=H*2,D0
GO TO 7
4 DO 8 I=1,MPN
XX(1)=XXX(1)
8 XXX(I)=X(I)
T0=T
GO TO 9
1 IF(DELTA.GT. 0.D0) GO TO 10
RETURN
10 IF(DELTA.GT.H) GO TC¢ 11
C+ex]1f the step size H is too large for the value ¢¥ t needed we
¢esxdefine HH to fit exactly and perform the l-step,2-step with
Cewathis value of HH. '
HH=DELTA
NE&=1
TO=T
Do 12 I=1,MPN
XX(1)=X(1)
12 XXX(I)=X(I)
CALL RK(XX,M,N,TC,U,HH NS)
TO=T
17 HMH=HH/2.DO
 NS=NSx2
CALL RKLXYX,M, N, T0,U,HI, NS)



c
C

13

15

14
16

11

D 13 I=1,MPN
ECI)=DARS{XX(I)=XXX(1))/Z
IF(ECD).GT.C)OGO TO 14
CONTINUE

DT 15 I=1,MPN
X(I)=XXX(1)

T=T0

RETURN

DO 16 I=1,MPN
XX(I)=XXX(1)
XXXCI)=X(1)

TO=T

GO TO 17

NS=DELTA/H

GO TO 18

END

C#»*RUNGE Is a subroutine that actually implements a fourth
Crexorder Runge-Kutta method for DEGEN.

¢
c

SUBROUTINE RUNGE(X,M,N,T,H,NS)

IMPLICIT DOUBLE PRECISION(A-H,0-2)

COMMON /FUNCT/F(10) '

DIMENSION X(10),XT(10),A(10),8(10),C(10)

D 5 J=1,NS

DO 8 I=1,M

XT(I)=X(1)

CALL EVAL(XT,M,N,T)

DO 2 I=1,M

ACI)=F(1)

XTCT)Y=X(I)+H*A(I)/2.D0

T=T+H/2.D0 s
CALL EVAL(XT,M,N,T) il
DO 3 I=1,M Ol
B(I)=F(I)

XT(I)=X(I)+H*B(1)/2.D0

CALL EVAL(XT,M,N,T)

DO 4 I=1,M

C(I)=F(I)

XT(I)=XCI)+H*C(I)

T=T+H/2.DO

CALL EVAL(XT,M,N,T)

DO 5 I=1,M

XCI)=X(I)+H*(A(1)+2.D0*B(1)+2.D0*C(I)+F(1))/6.D0

CALL PHI(X,M,N,T)

RETURN

END

C+#**RK Is a subroutine that actually implements a fourth
Cexxorder Runpe-Kutta method for AUXSOL,

SUBROUTINE RK(X,H,N,T,U,!H,NS)



8
2
3
h
5
C
c

CawsFNEVAL Is a subroutine that evaluates the functions f and g/u.
C+++This subroutine Is used by RK and must be sunplied by the user.

¢
c

C#+##«PHT is a subroutine that solves g(x,v,t)=0 as y=p(x,t).
C##x*This subroutine Is used by EVAL and RUNGE and must be supnlied

IMPLICIT DOUBLE PRECISICN(A-H,0-7)
COMMON /FUNCT/F(10)
DIMENSION X(10),XT(10),A(10),B(10),C(10)
MPN=M+N ‘
D5 J=1,NS -

DO 8 I=1,MPN

XT(I)=X(1)

CALL FNEVAL(XT,T,U)

DO 2 I=1,MPN

A(1)=F(I)
XTCI)=X(I)+H*A(1)/2.D0
T=T+H/2.D0 :

CALL FNEVAL(XT,T,U)

DO 3 I=1,MPN

B(I)=F(1I)
XT(I)=X(I)+H=*B(1)/2.D0

CALL FNEVAL(XT,T,U)

DO b I=1,MPN

C(I)=F(I)

XTCI)=X(I)+H=C(1)
T=T+H/2.D0

CALL FNEVAL(XT,T,U)

DO 5 I=1,HPN

XCI)=X(I)+H*(A(I)+2.D0O*B(T1)+2.D0*C(I)+F(I1))/6.D0

RETURN
END

SUBROUTINE FNEVAL(X,T,U)
IMPLICIT DOUBLE PRECISION(A-H,0-2)
COMMON /FUNCT/F(10)

DIMENSION X(10)

F(1)=X(2)

F(2)=(X(1)##*2-X(2)*%2)/U

RETURN

END

Cx«xby the user.

c
r

SUBROUTIME PHT(X,I%,N,T)
IMPLICIT DOUBLE PRECISTON(A-H,0-2)
DIMENSTON X(10)

X(2)=X(1)

RETURN

END

C*x*EVAL is a subroutine that evaluates the function fix,r{x,t),t)



Cewxyhere p is exnlained in PHI,.This subroutine is used by DEGEN
Cewvand must be supnlied by the user,
" SUBROUTINE EVAL(X,M,N,T)
IMPLICIT DOUBLE PRECISION(A-H,0-27)
COMMON /FUNCT/F(10)
DIMENSION X(10)
CALL PHI(X,M,N,T)
CF(1)=X(2)
RETURN
END ‘ '
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