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Abstract

A heap is defined as a class of data structures used to
represent a partially ordered set of data from which we can
repeatedly and efficiently extract the maximum (or minimum)
element. The definition of the class covers heaps of in-
teger as well as real branch factor. Ve define and descriope
the basic operations on a heap and evaluate the running
times of wvarious algorithms to perform these operations.
The complexity of a heap is defined in a way that proves to
be a useful tool for evaluation of running times. We give,
in detail, an average case analysis of these algorithms as
well as considering the worst case. A relation between
probabilistic models of heaps is given and various com-
parisons of the vrunning times are presented for the most
common heap structures. In addition we consider some less
common heap structures and describe one heap which resembles

the tournament selection process.
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1l. - Introduction.

The heap first became widely known as a data structure
used in the Heapsort (Williams, 8). Since then it has been
applied to a variety of algorithms and applications. Aho
(1) and others have used heaps in graph theory, in al-
gorithms for finding the shortest path through a graph and
the minimum cost spanning tree of a graph. Malcolm and
Simpson (7) have applied it to adaptive quadrature routines
and Gentleman (4) has used it in a large sparse matrix
elimination application. Heaps have also found wuse in
sparse polynomial multiplication, (Johnson, 5) in both sort
and high order merge routines and in generating prime

numbers.,

In the above applications a heap has generally been
defined as a special binary tree with an order relationship
between father and son nodes. In this paper we will define
a heap to cover a wider range of data structures that in-
cludes the binary heap, some ordered trees and, to some éex~
tent, the ideas about nth degree selecting structures as

described by Friend (3).

The concepts that link these structures together are:

a) the ability to access the maximum or minimum element



directly,
b) an efficient (better than ordered list) method of con-
structing, extracting and adding elements to the structure,
c) an implementation which allows efficient use of storage

and indices, rather than pointers.

The basic operations that we will consider over this
data structure are:
a) adding a new element to the heap,
b) extracting the maximum (or minimum) element,

c) constructing a heap from a set of elements.

Note that a heap can be constructed by repeatedly
adding elements, but other alternatives have persuaded us to

consider the construction algorithm as basic.

This structure is a compromise, in orders of hagnitude
of average running time, between the unordered list (G(1) to
update and U(N) to retrieve maximum or minimum) and the
ordered 1list (O(N) to update, 0(1) to retrieve and
O(N*1g(N)) to construct). In this paper we will present a
model of the complexity of a heap and probabilistic models
of the number of comparisons and moves required for the
basic operations on a heap, using various algorithms. The

estimated number of comparisons and moves are then related



to the complexity function. This relationship shows that
the heap is U(N) to construct and O0(1gN) to update (add or

extract).

The results are obtained from a probabilistic model of
the data. We also show a correspondence between the com-
monly used models for analyzing this kind of algorithms and

the probabilistic model.



2. - Definitions, Notatjon and Basic Results.

A heap is a data structure defined over a set of nodes
such that:

a) there is a unique node called the root;

b) each node i , other than the vroot, 1is related to a
unique father node J by a function f and an order
relationship between i and j .

The order relation Is usually either >= or <=, For the
remainder of this paper we will assume that the father node
is >= to the son, however the results are unchanged |if

another relation is chosen.

The above definition (implies that a heap is a tree
defined by the father function f and the order relation.
The N nodes of the heap may be numbered breadth first and
sequentially starting with the root, numbered 1, and the

father function viewed as a function over this numbering.

We now define a uniform heap as one in which the father

function Is defined by

f(i) = J(i=-2)/bl + 1 (Jx] is the floor function)



where b is a constant branch factor for the heap.

This function f has the properties:

1 <= f(i) <1 for i=2,3,...,N,

f(i) <= f(j) for i<j.

These properties are important for the implementation of

uniform heaps.

If b 1is an integer, each node will have the same
number of sons, except for the leaves and the last non-leaf

node. Figure 1 shows some uniform heaps and their branch

factors.

We define the son function s(i) as the inverse of the

father function, that is a set function defined by

s(i) <j | i=f(j)>.

For uniform heaps this becomes

s(i) = <fo*(i-1)+2),..., Toxi+1]>



The most common heap is a binary heap. This is a

uniform heap with b=2., The father function is then

f(i) = Li/2L

and the son function is

s(i) = <2*j, 2*i+l>.

Figure I(a) shows a binary heap. In the extreme case with

branch factor b=1, the heap becomes a linear ordered list.

We will call a heap a perfect heap when all the leaves
are at the same distance (number of edges to the root) from

the root., In figure I, a and c are perfect heaps.



Graphic examples of uniform heaps with branch factors

b=2 b=3 b=3/2

1

(a) (b)
Figure I

2.1 - Notation.

Uur general notation will be:
1) f(i) 1is a function that defines the father of
node R(i).
2) s(i) is a set function that defines the sons of
node R(1i).

3) R(i) represents the ith node in the heap.



4) K(i) is the key value, upon which the order rela-
tion is defined, of the ith node. From the
definition of the order relation on the heap
we have K(f(i)) >= K(i) for every node R(i)
that 1Is not the root. This ensures that
K(root) is the maximum element of the set.

5) N is the total number of nodes in the heap.

6) b is the branch factor for uniform heaps.

7) n is the height (or depth) of the heap, the max-
imum distance (number of edges) from the root
to a leaf.

8) n(i) is the height of the subheap rooted in node

i ; n=n(l).
g) T(i) is the set of nodes of the subheap rooted in
i, TCi) = <i> U s(x€T(i)).

10) t(i) is the number of nodes in the subheap

rooted in node i : t(i)=|T(i)].

11) 1g(x) is the logarithm in base 2 of x.



2.2 - Storage Structure.

The fact that the nodes of a uniform heap can be num-
bered sequentially and the father function specified in
terms of these numbers, leads to some important implementa-
tion features. We can store the nodes of the heap in se-
quential storage such that R(1), R(2),... are stored adja-
cent to each other. This allows nodes to be added and
deleted from one end of the storage area and the storage
management is as simple as running a stack. Further the
nodes can be indexed by father and son functions and hence

no pointers are needed.

To describe the storage structure and the algorithms,
we will wuse a pseudo PASCAL language (Wirth, 9). This is
motivated by the need of variables, as sets and records,

that are not provided by other common languages.

From the above observations we see that the simplest
representation of a uniform heap is an array of records R,
each having a scalar type key K and further data fields. In

PASCAL this is declared as



R: array (1..N) of
record K: <scalar type>;

data: <any type> end.

23 - Number of possible heaps.

Several questions arise from the data structure; the
first of them is simply how many different heaps, G(N), can

be generated from any permutation of the numbers 1,2,...,N.
The answer is quite simple:

N
G(N) = NI/Z(TTtCi))

(21

This is easily proved by induction on the subheaps.

2.4 - Complexity of a heap.

The complexity of a heap, H(N), will be defined as an infor-
mation theoretic value that is the difference between the
uncertainty of a random ordered vector and the maximum
uncertainty of a heap. This occurs when all possible heaps

are equally probable.



Defined in this manner the complexity is a measure of
the information gained in constructing a heap from a ram-
domly ordered vector. A heap with higher complexity means
that it contains more information.

N
H(N) = 1g(N!)=1g(G(N)) = ZEE%(t(i)) (in bits).
=\
For a perfect heap with integer branch factor this

becomes

n

\

H(N) = i br*k * 1g((b**(n+l-k) - 1)/(b-1)),

K=-0
which transforms into

HOW) = (N=1)*((2b=1)/(b-1)*1g(b)=1g(b=1)=/Xb)*(b=1)*b)/b -
n/(b-1) -b*/?(b) + O(b**(-n-1)),

where /S(b) is

o>

Sb) = % 1/((b**(2(j+1)) - b**(j+1)) * j).
Jel
This shows that the asymptotic behavior of the complex-

ity of a heap as N ==>e© Is linear with respect to N.

This is true only for perfect heaps with integer branch

factor, but actual calculation of real values shows that,



for any wuniform heap, this formula gives very good approx-

imations.

Some coefflcients of (N-1), in the complexity formula, are:
b=2 ==> 1.36L4L365,..
b=3 =-=> .94517688. ..
b=k -=> .75183245...

b=5 =-=> .6350584L44. ..

2.5 - Lower bounds on comparisons.

The complexity, as defined, is a measure of information
gained in the process of constructing a heap from a randomly
ordered vector. The algorithms we are going to study are
based on comparisons between keys. Since each comparison
(using only two possible results) may give at most one Dit
of information, the complexity is a lower bound of the

average number of comparisons needed.

Another obvious minimum of the number of comparisons is
N-1l, since we obtain the maximum record out of a set of size

N.



2.6 - Height of uniform heaps.

For wuniform heaps, we may relate the height n to the

branch factor

parameters a

3
L

For integer branch

a =

Any ¢ in the specified range will satisfy the equation.

b

and

and ¢

1/¢

b-1)

the number of

= llogb((N-c)/a)l.

factor

and -1/(b=1) < ¢ < (b=2)/(b-1).

elements N

We were not able to find closed forms for a and

as functions

discontinuous at infinitely many rational

Some values found with a linear programming technique are:

b
1.5
1.8
2.2

2.5

of

b

a(b)
2.4334
1.5117
1.0354

0.76u46

for non-integer

c(b)
-2.0 to
-1.2 to
-.94 to
-.66 to

-1.7
-1.1
-.40

.04

b. Moreover

points.

using

a

C

is



3. - Uperations on the data structure.

In this section we will describe the algorithms and
‘running time requirements to perform the basic operations on
a heap. More emphasis will be given to the construction al-
gorithms since the extraction and addition are similar to

them.

3.1 - Creation.

There are two basic algorithms for heap construction,
the Williams (8) method and the Floyd (2) method. In both
cases we will assume that the records are stored in an array

of size N in which we want to construct the heap.

We state below in PASCAL algorithm W, similar to Wil-

liams' method, and algorithm F, similar to Floyd's method.



Algorithm W.

for I 2= 2 to N do
begin

aux := R(i);

while j>1 and K(f(j)) <= Kaux do
begin
R(j) := R(f(j));
i o= ()
end;
if i#) then R(j) := aux

end;

We assume that there is a record aux that has a similar
definition to R; iIn particular, it contains a key field

Kaux .

The logical expression in "while j>1 and..." should be
evaluated from left to right to avoid ¢trying to access

R(f(1)), where f(1) is not defined.

Slightly different versions are obtained by stating
K(0)=+infinite, and removing the j>1 test in the while
statement, or suppressing the "if i#j'" test depending on

the efficiency of the "if'" with respect to the "assign'.

- 17 -



This algorithm creates a heap by repeatedly inserting
one element into the tree. The insertion is done in the
first free position of the array. This new element is
ordered with respect to the elements on the path from the

new leaf to the root by a "linear insertion'.

Notice that in algorithm W, only the father function is

used.



Algorithm F.

for i := f(N) downto 1 do
begin
aux := R(i);
jo= i
while s(j) # null do
begin
find m so: K(m) = max(K(x€s(j)));
R(j) := R(m);
J t=m
end;
while j > i and K(f(j)) < Kaux do
begin
R(j) := R(f(j));
b= £())
end;
R(j) := aux

end;

The notation:

find m so: K(m) = max(K(x€s(i)))

implies that an m is found such that K(m) s the max imum

value of the set K(j) where j belongs to the set s(i). This



function will be implemented differently depending on the
form of s(i) and the actual value of H. As in algorithm VW,

the while conditions should be evaluated from left to right.

Note that this procedure uses both functions f and

s . This algorithm is slightly different from the original
algorithms given by Floyd (2) and Knuth (6). In terms of the
number of comparisons this version is more efficient, as we

show later.

This algorithm employs an outer loop and two inner

loops. The outer loop performs the following function:

for i := f(N) downto 1
make a heap of the nodes presently rcoted at

node i.

We begin at node f(N), since any node numbered greater
than f(N) 1is a leaf and therefore is already a heap. The
node i is not currently In the heap, but each son of i
is the root of a subheap. The operation makes a heap of the
new node and its subheaps; hence, when the operation is com-

pleted for i=1 the heap is constructed.



The operation 'make a heap of the nodes presently
rooted at node I " must make one heap from the new element
at the root node and the heaps rooted at its sons. This is
done by extracting the root node and, in the first loop,
promoting repeatedly the maximum of the sons to the cur-
rently empty position. The second loop then demotes nodes,
from the father of the empty position to the empty position,
until one greater than the new node is found. The new node

then goes in the empty position.

3.2 - Running time analysis of Algorithm W.

Typical vrunning time analyses of algorithms are con-
cerned with the worst case behaviour. The maximum number of
node comparisons required to construct a uniform heap using
algorithm W is the number of times through the outer loop,

N-1, multiplied by the maximum number of times through the

m

inner loop, n, the height of the heap. Hence it is saen
that in  the worst case we might perform (N-1)n node com-

parisons.

The worst case analysis is somewhat pessimistic and

overestimates the number of comparisons required. For ex-



ample, for a binary heap with 120 nodes the worst case
analysis shows we will perform no more than 714 node com-
parisons. The average analysis shows that we would expect no
more than 250 comparisons, a significant difference even in
the case of a small heap. Moreover we will find that the

average behaviour is O(N) instead of U(N*n).

We will now consider and average case analysis of these

two algorithms.

Algorithm W does not generate equally probable heaps
from a random permutation, in fact a random permutation of
(1,2,3) will give (3,2,1) with probability 1/3 and (3,1,2)

with probability 2/3.

We will use random independent variables wuniformly
distributed between 0 and 1 to model the keys of the nodes
in tne heap. Since the algorithms' work is based on com-
parisons between keys, only the partial ordering of them is
relevant. In this case we assume that all partial orderings

of the keys are equally probable.

For any function f(i), to evaluate the number of moves

and comparisons needed to construct a heap with algorithm W,



we define:
1) X is a random variable U(0,1).
2) X{(i,N) is the random variable located in position
i in a heap of size N.

3) F(y,i,N}) = Prob(X(i,N) <= y) the probability
distribution function of the random variable
located in position i

) Q(i,N) = Prob(X >= X(I,N}).

5) X(i,N) <= X(f(i),N), is the order relation in the

heap.
Since X and X(i,N) are independent, we find that

i
Qli,N) = f:(y,i,h’)dy.

To calculate the expected value of the number of com-

parisons when inserting the N+lst element, we will follow

the steps of algorithm W. Let i be a node of the heap that
belongs to the path from node 1 to N+l i.e.
i=f(...f(N+1)...). If the new element 1Iis greater than

X(i,N), it will be inserted above in the branch, and hence
(unless i=1) it will be compared to the father of X(i, !l
namely X(f(i),N). So the new element is compared with prob
Q(i,N) with X(f(i),N); (with prob 1 with X(f(N+1},N)} so

summing these terms we have



E(Cmpr) = 1 + QUF(N+1),N) + QUFCF(N®LI)I,NY +....+

Q(1,N) = Q(1,N).

Here the -Q(1,N} term is included to simpliify the notation.

Similary the number of moves (note that the element is

initially in position N+1 of the array) is

E{Moves) = 1 + 2*xQ(f(N+1),N) + QUF(F(N+1)) N} =+

oo+ QML N,

In this case the extra move with Prob Q(f(N+1),N)} is the one

caused by the statement "if i#j then R(j) := aux;",

The variance of both quantities can be readily

evaluated too.

When the heap grows by one element the only functions
that change are the ones that describe distributions of ele-
ments that may be modified by the iInsertion, Conversely we

have

F(y,i,N+1) = F(y,i,N) iff i # €(f(..f(H+1)..)).

If 1 = fFOFCLLF(N+D)..)) # 1, that is & is in  the

path from the root to node N+1, from the description of the



algorithm we find that

XCi,N*¢1) = min(max(X,X(i,N)), X(f(i),N))J.

The distribution function of the variable in such a node is

F(y,i,N+1) Prob(min(max{(x,X(i,N)), X(fC{i),N))<y)

Prob(max(X,X(i,N))<y) + Prob(X(f(i), H}<y)
- Prob(max(X,X(i,N))<y and X(f{i), N)<y)
= Prob(X<y and X(i,N)<y) + F(y, f{i), N} ~
Prob(X<y and X(i,N)<y and X(f(i), N)<y).
Since X(i,N) <= X(f(i),N), we have
F(y,i,N+#1) = y*F(y,i,N) + F(y,f(i),N) - Prob(X<y and
XCFCi),N)<y)
= yxF(y,i,N) + (1-y)*F(y,f(i),N).

If we analyze the boundary situations, (i.e. F(y,1,N+1)
and F(y,N+1,N+1)) we find that the same recursive relation

holds, provided that we make the natural definitions

F(y,f(1),N) = 0, and F(y,N+1,N) = 1.

Note that the operations involved in the construction
of the distribution functions imply that they are polyno-
mials of degree at most N. This allows us to calculate in

O(l*N*n) operations the expected number of comparisons and

- 25 -



moves.

The expected values generated from the above shows very
close linear relationship to the complexity of a heap. A

least squares approximation for 0<N<121 yields:

b=2 E(Cmpr) = 1,0608 + 1.6399*H(N) - 1.6480*In{(H(N))
b=3 E(Cmpr) = =.3275 + 1,8209*H{(N) - 0.7720*In(H(K))
b=4 E(Cmpr) = =.3582 + 2,0530*H{(N) - 0.9011*In{kE{N))

The root mean square deviations (RMSD) of each fit were
0.24, 0.21 and 0.30, respectively and the corresponding

coefficients of variation were 0.20%, 0.22% and 0.347%.

It may be interesting to explore non integer b in the
uniform heaps. Since we can measure the complexity obtained
with a particular b and the expected number of comparisons
required, we may select the b that maximizes the ratio

H(N)/E(Cmpr), which we will call the efficiency of a heap.




Some speclial values are:

b N E(Cmpr) H(N) H(N)/E(Cmpr)
1.4 110 326.93 205.95 0.629Y
1.6 110 278.606 177.82 0.€381
1.8 110 244 .61 155,98 0.6377
2.0 110 229.50 84,22 0.6284
2.2 110 209.63 129,22 0.6164

The maximum efficiency for algorithm W is located near
b=1.72 where the efficliency is approximately 0.6L3. This
should be interpreted as maximizing the usefullness of each
comparison. Note that the efficiency, as defined, depends
on N since E(Cmpr) Is not exactly linear on H(N). For dif-
ferent values of N we may have slight changes in the

efficiencies and where the maximum is located.

3.3 - Equivalence with other models.

A common model for analyzing these types of algorithms
is to consider as an input, a random permutation of
1,2,...,N. The problem 1is then reduced to one of counting

certain configurations.



Let P(i,j,N) be the probability that integer j ap-
pears in position i in a heap of size N, resulting from

the construction from a random permutation of 1,2,...,N.

Let UL(j,y,N) be the distribution function of the jth
ordered element from a set of N, U(0,1), random Iindependent

variables.

We know that:

DG,y,N) = j(
J

N[ L N-§ ,
)x (1-x) dx = Iy(j,N-j+1) (Incom-
[

plete Beta function).
Then if we know P(i,j,N), the marginal distribution of the
element located in node i is:

F(y,i,N) = PCi,*,N) . D(*,y,N)
(The "*" notation indicates that we expand to a vector or
matrix in that dimension).

Expanding for all nodes in the heap we obtain:

FCy,*,N) = P(*,%,K) . D(*,y,N)

Moreover the components functions of D and F are polynmials

in y of degree at most N. Let Y be the column vector

- 28 -



(y,y**2,...,y**N). Then we have

FCy,*,N) = F(N).Y = P(*,*, N).D(H).Y = P(N).D(N).Y.

In our notation F(N) is the matrix of coefficients of the
polynomials that describe the distribution functions of each
node in the heap. The element (i,j) Is the coefficient of
y**j in F(y,i,N). The (i,j) element of D(N) is the coef-
ficient of y**j in Iy(i,N-i+1) (The incomplete Beta function

for positive integers Is a polynomial).

Since the above equation should be equal for any value

of y, it implies that
FCN) = P(N) . D(N).

Since D(N) is known for any N this shows how to obtain

the distribution function from the frequency counts.
Conversely,

P(N) = F(N) . D™(N)

The function D™'(N) exists and its elements dU satisfy the

recursive relation:



A =d§ /(".1):
Ye

d® =d® +g¥* d
\l—\

3 .
4] LQA ; 0 =1; d=0 otherwise,

This completes the equivalence between the distribution

function model and frequency count model.

2.4 - Rupning time analysis of Algorithm F.

The worst case analysis for algorithm F occurs when we

construct a heap from a heap. In this case we have at nost

N
Y‘_ﬁ[b]*n(i) = (J(N*n) comparisons.
i
This worst case, wunlike algorithm W, occurs only for

pathological heaps. For wuniform heaps, the worst case is

U(N).

The average running time analysis of a simpler version
for the case b=2 can be found in Knuth (6) Ch 5.2.3. In our
case we first note that for any b the resulting heaps of a
random permutation of keys, are equally frequent. Knuth (6)
demonstrates this theorem for binary heaps (Theoreri H 5.2.3)
and the extension to general heaps is immediate. This fact

will ease the analysis.



The operation "find m so K(m) = max(K(x€s(j)))" takes
Is(j)}-1 comparisons. The probability of any of the sons of
node J being the maximum is proportional to the weight of

its subheap; i.e.,

Prob(m belng the maximum son of j) = t{(m)/(t(j)-13,

Thus the expected number of comparisons in a complete 'sift

up" operation (promoting the maximum element within a sub-

heap all necessary levels) is

SFU(J) = Is(j)]-1 + zngFU(k)*t(k)/(t(j)-l)
Kexn (\")

if |s(j)l = 0 then SFU(j) = 0.

The second loop contains only one comparison in each
step, so to count them we observe that the top element will
land in any position of the subheap with equal probability

(because all resulting heaps are equally frequent).

Let U(j) be the number of comparisons to promote an
element from any of the leaves of node j up to node i

We can see that

Uu@j) = 1 + :iJU(k)*t(k)/(t(j)~1).
Kesij)



with the boundary condition U(j)=0 if 1s(j)]=0. Since the
element may land in any of the nodes of the subheap, (and
except for node J we need one more compariscon), the ex-

pected number of comparisons is

SFD(j) = ( ZEEU(k)+1) - 1) /7 t(j).
KeT()
The total number of comparisons to construct the heap Iis

then
N
E(Cmpr) = EZ}FU(k) + SFD(k).

V.:a

For a perfect heap these formulas are readily sim-

plified:
SFU(j) = n(j)*(b-1),
(i) = n(j),

SFD(j) = (b**(n(j)+2)-b**x2-b*n{j)+n(j)) /

((b**(n(j)+1)-1) * (b-1)) = A(n(j)),

E(Cmpr) = (b**(n+l) - (n+l)*b +n) / (b-1) +

Iz

A(k)*bx*(n-k).

I

K o=(



As in algorithm W, an excellent fit was found in
relating the complexity and the estimated number of com-
parisons. In this case the formulas for a few values of b

are,

b=2 E(Cmpr) = -0,26448 + 1.20876*H(N) + 0.20162#*n,
b=3 E(Cmpr) = -0.07784 + 1.45213*H(N) + 0.14858*n,
b=4 E(Cmpr) = -0.03996 + 1.68392*H(N) + 0.12157%*n,
b=5 E(Cmpr) = -0.02484 + 1.90236*H(N) + 0.1036L=*n.

The RMSD of each fit was 0.08, 0.06, 0.12 and 0.03 respec-

tively.

To compare against the original algorithm, (Floyd, 2)
let SF(j) be the number of comparisons needed for a '"sift
up'" operation from node Jj . (The original algorithm
differs from algorithm F in the "linear insertion" operation
of the top element. This was done, instead, by comparing it

at each step against the maximum selected).

In each iteration comparing the maximum to the top ele-
ment of the subheap requires |[s(j)] comparisons. If the
operation is not finished, then we continue to count the
comparisons in the selected subheap. Therefore the expected

number of comparisons is



SF(j) = Is(j)] + Prob(having to continue siftup)*

SF(k)*t (k) / (t(j)-1)

«

SF(i) = Is(j)| + LSF(k)*t(k)/t(j).
kesl)
For perfect heaps, if h=n(j) we have,

SF(j) = bx(h*b*x*(h+2)~-h*b** (h+] )-Db**h+1) /

((b**x(h+1)=1)*(b-1)).

Now the difference (term by term) between the original and

the proposed algorithm is

SF(j)-SFU(j)-SFD(j) = bx((h*b-b-h~1)*b**h+bxh+b-h+1) /

((b**(h+1)-1)*(b=-1)).

For b>=1 and h>=1 this is nonnegative (this can be proved by

induction on h, noting that the difference is zero for h=1),

For perfect heaps the version presented is better in
terms of number of comparisons. Notice that the overhead

needed by the double loop is not considered.

Some least square approximations on the original method

yield:
0.84638 + 1.37886+*H(N) =~ 0.60211=*n,

b=2 E(Cmpr)
0.23421 + 1.55313*h(N) - 0.26230%*n,

b

[}
W

E(Cmpr)

- 3h -



b

L E(Cripr) = 0.11032 + 1.75551*H(M) = 0.15961*n.

The RMSD of each fit was 0.21, 0.10 and 0.1i6 respectively,
In either case, this construction algorithm is, on the

average, better than algorithrm W in terus of conparisons.

tHowever this difference is small, so the wuetails of

inplemnentation may be important,

3.5 - Extraction of the maximun element.

The extraction itself is trivial, the maximun elenent
is located in R(root). UOur main effort will be in recon-
structing the heap with the elenents left. The basic opera-
tion of algorithn F is to create a new heap fron a node and
the subheaps rooted at its sons. VWe now use this operation

to form a heap frori R(N) and the sons of the now empty root.

To analyze the number of operations taken in the recon-
struction of the heap we should know the probability
distribution of the X(i,N). These are known only when wve ex-
tract the first element, put each extraction changes the

probability distribution of the heap, so a complete analysis



upon succesive extractions becomes very difficult.

This process is equivalent to the body of algorithin F,
changing only the top element of the subheap, that now conies

from the last leaf (node N).

Under the assumption that all heaps are equally
probable, we may analyze, roughly, the algorithms for recon-
struction derived from algorithm F and the original one. In
the first one, we find that the first loop does exactly
SFU(1) comparisons. (SFU(k) is the number of comparisons
needed for a complete "sift up" operation from node K
during construction. Here the same arguments apply.) The
second loop, for a random variable, will execute U(1l) com-
parisons. (U(k) is the number of comparisons needed to in-
sert a random element in any path of a subheap rooted at
node k .) The variable introduced is not randorn, bLut comes
from a leaf, and is smaller than at Jleast one variable.

Because of this, U(1) is an upper bound of the expected

number of comparisons.

For the reconstruction algorithm based on the original
algorithm we have the sane situation, in tinis case 5F(1)
becomes a lower bound of the average number of comparisons.

(SF(k) is the number of comparisons of a complete "sift up"



operation fromi node k for the original algoritiwi.) The
quantity SF(1)-SFU(1)-U(1), which is the difference in the
running time between both methods, is greater in the
extraction-reconstruction phase than during the creation
phase. We have already seen that this difference was always

positive.

For uniform heaps, b*n is an upper bound of the average

number of comparisons.

3.6 - Insertion of a new element.

This process is accomplished by the body of algoritin

W.

The time required for each insertion has already been

deternmined during the analysis of algorithm V.



L. - Non wuniform heap.

We have so far restricted ourselves to uniform heaps,
but other father functions give rise to interesting non-

uniform heaps.

A rather natural heap arises from

FCi) = 0 = 2#%]1g(i-1)].

The resulting heap resembles the tournament selection

process.

393 11%7 0% 44,

heap of size 16 equivalent tournament

Figure II



If we observe the tournament, we find that node 1
played against 9,5,3 and 2 and beat them all. In the heap,
node 1 is the father of nodes 9,5,3 and 2. Each node in the

heap bears the same relation to each node in the tournament.

Note that f(i) in this case Is not monotonic. Therefore
the algorithms presented earlier cannot be applied directly.
Let N be a power of 2 for simplicity. The <construction of
the heap in this case is easily accomplished by the repeti-
tion of the following steps: divide the elements into two
equal parts; compare each element of one half with the cor-
responding element in the other half and interchange them so
the first half element |is greater than the second half;

iterate with the first half.

Its main drawback 1is that the extraction takes
(n*n+n=2)/4 comparisons on the average, which is

U(Tg(N)w=*2),

To demonstrate this result we observe that when N=2*#*n,
the recursion formula for the number of comparisons of a
heap is

n-|

B(2**n) = n-1 + EE:B(Z**k) * 2xx(k-n),
k:l
with B(1)=B(2)=0,



The above follows, in the usual way, from the description of

the algorithm.



5. - Longlusions.

The above algorithms are not intended to denonstrate
the optimum coding techniques. Instead they are written in
such a way that they are casy to translate to any other
language in which they are going to be implemented. In nany
cases, without modifying the behaviour of the algorithr, tie

language may provide sonie shortcuts for the implenentation.

The class of data structures we have defined is con-
siderably broader than those usually considered under the
name heap. The results apply to this class of data struc-
ture and we suggest that in some applications it ray be

worth considering heaps other than binary heaps.

Our main concern in the running time evaluation is with
thhe number of comparisons. In terms of actual flplementa-
tions the number of comparisons may account for only a siiall
percentage of the total running time, but in rost cases 4
comparison or a number of grouped conmparisons is directly
related to the number of times a given loop is repeated.
This leads us to the important conclusion that, in these
cases, the total running tine is some linear function of tne

number of comparisons.



The numerical approximations show that the running time
requirements of the algorithms are closely approximated by a
linear function of the complexity. This is an useful tool in

comparing algorithms or evaluating them absolutely.

In the authors' experience, the computation of the
probability distribution functions as polynomials is a
powerful tool in solving these kinds of problems. We feel
that this technique may be usefully applied to the average

case analysis of other algorithms.

The results derived for Algorithm W make wuse of the
U(0,1) distribution of the keys in the heap. Similar results
should be obtained for any other distributions used, as long
as the variables are independent. That is, that any par-
ticular ordering is equally probable.) It may be possible to
find a distribution function that simplifies the calculation

and avoids the need for polynomials.
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7. - Appendix I - Numerical results.

Table of expected value of comparisons for
slzes, compar ing algorithms W, F and the original

2), for b=2, 3 and 3/2.

Algorithm W Algorithm F
Size b=2 b=3 b=3/2 b=2 b=3
10 13.95 11.75 14,54 12.17 11.07
20 33.55 27.91 39.53 27.83 24.32
30 53.L48 43,97 65.84 43.33 37.u1
Lo 75.27 59.72 93.32 59.86 50.35
50 96.61 77.82 122.24 76.08 64.87
60 117.69 94.72 150.13 92.08 78.71
70 139.91 111.62 180.61 108.50 92.99
80 161.91 128.88 210.00 124.84 106.27
90 183.93 145.36 238.51 141.30 119.36
100 206.02 162.28 270.27 157.71 133.42
110 227.63 179.16 301.06 173.71 146.33
120 249,63 195.44 331.22 190.13 159.17

various

(Floyd,

b=3/2
12.73
33,39
5459
76.95
97.10
119.26
141.59
163.34
185.53
207.58
229.23
253.26

Original Algorithm

b=2
12.93
30.23
L7.43
66.14
dh.ul
102.33
121.06
139.56
158.22
176.82
194.94
213.47

b=3

11

21.
39.
52.
68.

83.

98

112.
126.
141,
155.
168.

.40

51
37
93
69

40

48

82

62
L2
97

b=3/2
13.50
36.55
60.77
26. 0L
110.56
136.48
162.69
188.17
214.28
241.37
267.08

294,17



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

