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Another Polynomial Homomorphism

by Robert T. Moenck

ABSTRACT

The current proposals for applying the so called "fast" O(N log® N)
algorithms to multivariate polynomials is that the univariate methods be
applied recursively, much in the way more conventional algorithms are used.
Since the size of the problems is rather large for which a."fast" algorithm
is more efficient than a classical one, the recursive approach compounds

this size completely out of any practical range.

The degree homomorphism is proposed here as an alternative to this
recursive approach. It is argued that methods based on the degree homo-
morphism and a "fast" algorithm may be viable alternatives to more
conventional algorithms for certain multivariate prob]ems in the setting of
algebraic manipulation. Several such problems are discussed including:
polynomial multiplication, powering, division (both exact and with

remainder), greatest common divisors and factoring.



1. Introduction

In recent years there has been a considerable interest in devising
algorithms for operations on polynomials which are more efficient than the
more traditional methods. These new algorithms are generally based on the
use of the Fast Fourier Transform (FFT) to perform polynomial multiplication
in O(N log N)* steps and are generally characterised by an O(N Tog®N),

a e {1,2,...} run time. A partial list of such algorithms is shown in

Figure 1.

Polynomial operation Operation count Reference
Multiplication O(N }og N) 1
Exact Division O(N log-n) 1
Powering 0(dN log dN) | 2
Division with Remainder O(N ]o§ N) 3
GCD and Resultants : O(N logzN) 4
Multipoint Evaluation O(N log?N)' 5
Interpolation O(N 1092N) 5
Factoring O(N21094N) 6

Figure 1 A 1ist of some fast algebraic algorithms

Univariate polynomial multiplication is itself a good example of
such an a1gorithm; If we assume that the coefficients are drawn from an appro-
priate finite field so that all coefficient bperations are exact and require
one step to add or multiply (we shall assume this throughout the paper) then

2

the product of two polynomials of degree N-1 can be formed in 2N opérations

*A11 logarithms are base 2.



using the classical algorithm. This product can also be formed using the

FFT method in 9 N Tog N + 19N steps (see 6).

" Classical Method : FFT Method
= degree + 1 Theoretical [Empirical Theoretical Empirical
2N° - 2N + 1 | Secs./60 | 9 N Tog N + 19 N | Secs./60
2 0.01 0.12
4 | 0.03 ” 0.16
8 0.08 0.3
16 481 0.29 880 0.55
32 1,985 1.10 .. 2,048 1.05
64 8,055 4.25 4,672 2.3
128 17 N 5.0
256 | 66 11

Table 1

A comparison of the classical vs. the FFT method of univariate poly-
nomial multiplication. Times are taken fron an Algol-W code running on an
IBM 360-75 for multiplication of polynomials with coefficients in the finite
field GF(40961). Note that both the theoretical and empirical times indicate
a crossover point at degree 31.

These two operation count functions can be compared by evaluating
them at some sample values. As Table 1 shows the FFT method theoretically
is more efficient than the classical method for polynomials of degree greater
than 31. An implementation of the two algorithms in Algol-W bears out this
cross-over point of 31. However, whereas the classical method increases

quadratically with the degree, the FFT method is only slightly faster than

linear. Therefore, once the cross-over point has been reached, in the time



the classical algorithm could form the product of twice the degree,lthe FFT
method could multiply two polynomials of almost four times the degree.

We can draw an analogy with traﬁsportation systems in that the
classical method is rather like a bus, being a'good method to travel a
distance of several miles. On the other hand, the FFT method is like an
airplane, a good method to travel a distance of several hundred miles but
not a few city blocks.

Part of the motivatfon for developing these methods was to derive
algorithms which could be used in the algebraic manipulation setting.
Although products of polynomials of degrée greater than .31 do arise in
algebraic manipulation they do not come up very frequently. Generally
problems are much smaller.

We can conclude that the kinds of polynomials which are suitable

for these fast algorithms are those with a large number of coefficients.

However, problems in algebraic manipulation tend to be characterised by
polynomials of low degree. This leads us to Took at multivariate problems
which lie in the intersection of these two constraints. In the past, it

has been proposed (cf.2, 4 or 7) that to derive a multivariate algorithm one
should apply the univariate algorithms recursively. However, here we Qi]]

look at an alternative approach.

2. Polynomial Multiplication

Consider the problem of multiplying together two dense bivariate
polynomials p{x,y), q(x,y) of degree n in each variable. There are several
approaches we might take:

i) the Recursive Classical Method

The classical high school mu1t1p1ication algorithm for univariate

polynomials of degree n uses (n+1)2 coefficient multiplications and n?



coefficient additions. We can-apply this method recursively to the

bivariate case usina:

2

(n+1)2 univariate polynomial multiplications @ 2n2+2n+1 = (n+1)2(2n +2n+1)

n2 univariate polynomial additions @ (2n+1) = (2n+1)n2

4 3 2

Total = 2n" + 8n” + 8n" + 4n + 1 coefficient

operations
which is asymptotically 0(n%).

ii) the Homomorphism Method

Over the past few years there has been developed a é]ass of algo-
rithms which can be described as homomorphism methods (see Lipson [8] or
Horowitz [9] for surveys). These methods are based on the idea that
evaluation of a polynomial at a point,is a homomorphism of a polynomial ring
R[x] to its base ring R. Since ring operations are preserved under the homo-
morphism, the original polynomial can be recovered by interpolation at
sufficiently many points. The origin of this idea has been ascribed to
Kronecker. For our bivariate case this would use:

Evaluation of 2+(n+1) polynomial coefficientS'at 2n¥1 pts.
| = 2(n+1)+(2n+1)-2n

Multiply the 2n+1 univariate polynomials produced todgether

(2n+1) (2n%+2n+1)
Interpolate the 2n+1 cnefficients to give the polynomial coefficients

= 2(2n+1)3

Total = (2n+1)(14n2+14n+3) coefficient
operations

which is 0(n3) asymptotically.

iii) Recursive Fourier Transform Method

The idea used in ii) can be extended by use of the finite Fourier

transform (cf. Pollard [1] or Bonneau [7])which essentially provides a slick way



to evaluate a polynomial at the m roots of unity (where m = 2r) inm+ 3/2 m
log m + Tower degree terms coefficiént operations. The interpolation phase
is accomplished by an 1nver$e transform which takes 2m + 3/2 m log m + 1dt.
coefficient operations. Since the FFT is an O(m log m) algorithm it can be
effectively applied all the way down to the base ring to give an O(m log m)
univariate polynomial multiplication algorithm. In our bivariate case we
use:
2-{n+1) applications of the FFT to the coefficient polys.
| | = 2(n+1)+(m + 3/2 m log m)

2m applications of the FFT to give base ring elements

2m(m + 3/2 m log m)
multiplication of the base ring elements
=m2
m applications of the inverse FFT to give univariate polynomials
=m(2m + 3/2 m log m)

m applications of the inverse FFT to give the coefficient polynomials

=m(2m + 3/2 m Tog m)

2+6m2109 m)+(n+1)«(2m+3m log m)

Total = (7m
However in order to get this O(m2 log m) asymptotic behavior we must choose
m= 2" where r = f1092(2n+1)1.
This means essentiallv that we must append zero leading coefficients to a
polynomial. For large n the penalty is worthwhile since we get a faster
algorithm despite this handicap. However for small values of n there is a
marked discontinuity in the operation counts for n close to a power of 2.

(cf. Table II)

iv) Degree Homomorphism Method

In view of the fact that algorithms based on the FFT tend to have



high cross-over points we would expect that the recursive FFT algorithm
would not perform as well as method§ i) and ii) for polynomials of small
degree. The question is how we can adapt the problem of small bivariate
polynomial multiplication to a situation where the FFT would be used to
its best-effect.

One possibility proposed here is that we map the bivariate problem
onto a univariate problem. Consider the multiplication of p(x, y)-q(x, y)
where:

| p(x, y) = x (2y+1) + (-y+2)
q(x, y) = x (y+3) + (4y-3)

since the product will be of degree two in each variable we might try sub-
- stituting x = y3 in p(x, y) and q (x, y) to get p'(y) and q'(y) respectively.

Now:

p'(y) = 2y4 + y3 -y+2

q'(y) = y4 + 3y3 +4y - 3
and p'(y)+q'(y)

8 7 6

=2y + 7y +3y :

P et e oty -6
Taking the remainder of successive quotients with respect to {y31} s
22>2120. We invert the substitution to get
(2y2 + 7y + 3)x2 + (7y2 - 3y + 3)x + (-4y2 +'1]y -6) .

This is the product of b(x, y)eq(x, y) as can be verified by carrying out
the multiplication in some more conventional way. This method is usually
known as "Kronecker's Trick". |

In general for bivariate polynomials the validity of this method is

established by:

‘Lemma 1: Over the polynomial ring R[x, y] the mapping:



¢ : R[x, y] > R[y]

¢ : x P ym sm20
is a homomorphism of rings.

Proof: We must show that for polynomials p(x, y), q(x, y):

6 (p(x> ¥)) ¥ 8lalx, ¥)) = o(p(x> ¥) % alx, y))

This -can be done by a suitable grouping of terms of the homomorphic images
of p and q and some elementary manipulation of sum and product formulae for
polynomials.

An alternative way of viewing this method is as a homomorphism on
the multiplicative monoid of monomials in x and y. Lemma 1 can then be had
as a corollary of a much more general theorem given in [10, Ch. V § 2]
Theorem 1: Universal Mapping Theorem for Polynomial Rings)

Let A, B be commutative rings, and let f: A.+ B be an A-algebra. Let S
be a subset of B, which generates B, and assume that the elements of S are
algebraically independent over A. Let A! be a commutative ring. Let

f: A > Albe a ring—homohorphism, and A: S - A! a map. Then there exists a

unique ring homomorphism h: B - Al such that the diagram is commutative:
, By
o 1 ::E;
A
and such that the restriction of h to.S is equal to A.

A = R[y], B = R[x, y],
{x} and h = ¢

For Lemma 1: _ A

s
We can obtain an "inverse" for the homomorphism ¢ as follows:

Lemma 2: . Let  be the homomorphism of free R-modules:

¥ : R[x] + R[x, ¥]

v o yk > xYy’



A

where k = qm+ r, o <r <m. Then for a polynomial p(x, y) in B[x, y]
v (¢ (p(x, ¥))) = plx, y) iff m > ay(p) (where By(p) is the maximum degree
p in the variable y).
Proof: If m> ay(p) then the process of taking remainders wrt. ym(1+1),
i =0,...,n will generate the coefficient polynomials of pi(y) of the
original polynomial uniquely. If m > By(p) then when ¢ is applied to p
some of the coefficients in r will be added together and so pl(y) =
o(p(x, y)) will correspbnd to an infinite set of bivariate polynomials.
Further we note: | .
Lemma 3: The degree of the image polynomial under the mapping
ot x>y s ay(p)-m + ax(p).
Returning to our prpb]em of bivariate polynomial multiplication

we can apply degree-homomorphism x =y 2n+1

to the bivariate polynomials
p{x, Y) and q(x, y) to give polynomials pl(y), q*(y) of degree (2n+1)n + n
= 2(n+1)n we can multiply these together using the univariate FFT polynomial

multiplication method:

a) 2 forwards FFTs 2(m + 3/2 m Tog m)

H

- b) multiplication of the sequences = m

c) one inverse transform 2m,+»3/2 m logm

Total = 9/2 m Tog m + 5m
Again because we are dealing with the Fourier transform we must choose:
m = 2" but here r = rlog2(2n + 1)21
Also we have a discontinuous operation count function. However since we are
dealing with the larger values of m than before,the steps are not so high as

with the recursive FFT method.

Small initial values of the four operation count functions are



t

displayed in Table II. The table illustrates that the degree homomorphism
method is more efficient than the c1assiéa1 polynomial multiplication
method for all polynomials of degree greater than ten in each variable.
For the recursive FFT method the cross-over point is at degree 20.
Surprisingly, the evaluation homomorphism method which was once considered
a reasonable alternative to the classical method has a higher cross-over

point than the degree homomorphism method.

Degree Recursive , Recursive Degree
N Classical Evaluation FFT Homomorph1ism
2 137 435 - 1192 880
4 1169 2547 7264 4670
6 4633 7683 7712 10496
8 12833 17187 - . 47392 23296

10 28841 - 32403 48480 23296
12 . 56497 . 54675 49568 51200
14 100409 .85347 . 50656 ' 51200
16 165953 125763 - 328960 111616
18 259273 177267 331520 111616
20 387281 241203 334080 111616
22 557657 318915 336640 111616
24 778849 411747 339200 241664
26 1060073 521043 341760 241664
28 1411313 648147 344320 241664
30 1843321 794403 346880 241664
Table II

Operation counts of the four methods for multi-
plying 2 bivariate dense polynomials of degree N

3. Larger Numbers of Varijables

We can apply the "Kronecker trick" to polynomials with
larger numbers of variables. This is shown by:
Theorem 2: In the polynomial ring R[x],...,xv], v > 2. The mapping
¢ : R[x] » R[x,,]
¢ :x; b x1n1 s 1 six<V

where ny>...>ny = 1 is a homomorphism of rings.
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Proof: By induction on v. If y =2 then we can apply lemma 1 to obtain
our result. If the result is true up to v=1 then we can apply our hypo-
thesized homomorphism to the coefficient polynomials to obtain a mapping:
y-1 ° R[x] ~ R[xz,x]]
and then apply lemma 1 for a mapping
¢ R[xz, x]] -> R[x]].

Since homomorphisms are closed under composition the result follows.

Again we could have obtained this result as a corollary of the
Universal Mapping Theorem for Rings. We note that the ke?ne1 of the homo-
morphism is:

(Xz-X1n1,o..,XV-X1nV)

We can use the following notation:

Definition: For a polynomial p(x) e R[x], ai(p) is the maximum degree of the
polynomial in the variable X

Now we can state the multivariate analogues of lemmas 2 and 3.

Theorem 3: Let y be the homomorphism of free R-modules defined by:

¥ : R[x1] +-R[x1,...,xv]

where n, , k = q-ni+r

0<r<n, and n,>--->Mm = 1.
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Then vp(x) e R[x], v(o(p)) = p
» . 1. |
iff Vi, 1 <4 < v,jf1 aj(p) ny < Nig
1
Proof: It is sufficent to consider p=x;2 ..xvav
. ) . _ max .
and én induction on i -ajfo J.

If 1 = 2 then there are only two relevant variables and so Temma 2 applies.
To show the result for i from the hypothesis for i-1 it is sufficient to

observe that the division k = gen.trs nogq > k > Nys 0<rc«< n,

' i
uniquely defines the exponent q of X5 if: jE]aj(p).nj < Mg

i
If £ ai(p)~nj > ni+1 then clearly several monomials could be mapped onto
j=1 » :

the same power of x; and so the mapping is no longer unique.

. O
Note that this result in effect shows that for the set of polynomials
for which the relation: i :
n > T 93:(p)*n., 1 < i <v, where n; = 1.

i+] j=1 J J

holds are isomorphic to their univariate images. Thus any polynomial ring
operation on elements of the set giving results in the set will be preserved
by the isomorphism. In this sense ﬁ‘behaves 1ike a ring isomorphism on this

set of polynomials.

Another viewpoint is to choose a set of multipliers {nj} of the

exponents of a polynomial in such a fashion that we get the desired isomorphism.

If we have m; > ai(p), 1<i<vandm =1

i
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then it is evident that:
j

i .
N, 2 & 9.(p) m m
W7 T ke K
J
i.e.sn. = w m, is such a set of multipliers.
I g

This in turn means that we can consider the map ¢ as being recursively
defined as:

¢ P Xy X g s 1 <isy

Theorem 4: The degree of the image polynomial under the map:
—_— . :
o X5 > Xi—} s 1<isv
is:
deg(p') = ((...(3,(p)em,_; + 3, _1(p))em, _, + ...)my + 3;(p)

' i.e., if m, =m, 1< i,_< v then

] v V-'i
deg(p') = =z 3;(p)m
1=

< (m+1)Y o, iF 3. (p) sm, 1 < 1<y,

This means that if we are going to apply the degree homomorphism method in
an algorithm for some polynomial operation, we must have reasonably tight
bounds on the degree of result.

We can now proceed to establish bounds for some of the simpler
polynomial operations.
Theorem 5: If a(x), b(X) € RIx1 where R contains no divisors of zero. Then
for the product:

c{x) = a(x)-b(x)

'ai(c) = ai(a) + Bi(b) o, 1<sisv
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.Proof: By induction on v:

If v = 1 then deg(c) = deg(a) + deg(b).
If we assume the result is for v-1 and consider the polynomials
a, b, ¢ in recursive canonical form with main variable Xy Then
av(c) = av(a) + av(b).
The coefficients of Xy in ¢ will be sums of products of polynomials in the
subsidiary variables {Xi}’ 1 <1 <v. For any product of two such co- |
efficients a; and b, |
ai(aj-bk) = ai(aj) + ai(bk)’ 1<1i<v by hyp.
For any sum of such products the relation will hold since the degree of the
sum of two polynomials cannot be greater than their maximum degree.
Therefore:
ai(c) = ai(a) + ai(b), 1‘5 j < V.
O

A well known consequence of this result (cf. 10, Ch V § 3) is that
31(a) is a valuation of R[X].

A number of corollaries follow immediately from this theorem.
Corollary 1: If b(x) = a(i)d where a,b ¢ R[ij then ai(b) = d-ai(a) for
1€i<v.

Corollary 2: If b(x) divides some polynomial c(X) exactly to give a
quotient a(x) = c(x)/b(X) where a,b,c ¢ R[X] then

3i(a) = ai(c) - ai(b) ,» 1 <d <.
and also
Corollary 3: If a(x) is a common divisor of two polynomials b(x) and c(x)
where a,b,c ¢ B[x] then

ai(a) < min(ai(b), ai(c)), 1 < i s»v.
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General Multivariate Polynomial Multiplication

We can perform a similar analysis of the four methods of polynomial
multiplication considered in section 2 in terms of the degrée n and v the
number of variables of the polynomials involved. The operation counts are
best described in terms of recurrence relations:

i) the Recursive Classical Method

Let MCPM (n,v) be the time to multiply dense polynomials of degree
n in each of v variables using this method.
MCPM(n, v) = (n+1)2 coefficient multiplications
+ n2 summations of these products
= (n+1)% McPM(n, v-1) + n(2n+1)""]
with MCPM(n, 0) = 1. It's asymptotic form {s MCPM(n, v) = O(nzv).

ii) the Evaluation Homomorphism Method

Let MEPM(n, v) be the operation count function for this method
MEPM(n, v) = steps to evaluate 2-(n+1)v'1 coefficient polynomials of
-of degree n at (2n+1) points
+ MEPM(n, v-1)<(2n+1)
+ steps to interpolate (2n+1)v'] coefficients at
‘ (2n41) points
with

MEPM(n, 1) = (2n°

+2n + 1)
thus
MEPM(n, v) = 2 (n+1)v-]-2n (2n+1)
+ (2n+1)<MEPM(n, v-1)
+ (2n11)V "z (2n41)2.

The asymptotic form is MEPM(n, v) = 0(v nV+]).
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iii) the Recursive Fourier Transform Method

Let MFPM(n, v) be the operdtion count function for this method.
It will be similar to that for MEPM.
MFPM(n, v) = 2-(n+1)v"](m +3/2 m log m)
+ m-MFPM(n, v-1)
+ mvﬂl-(an + 3/2 m Tog m)

with MFPM (n, 0) = T and m = 2", r [1092(2n+1)1. The function is
asymptotically: MFPM(n, v) = O(v n" log n).

iv) the Degree Hommorphism Method

Let MDPM(n, v) be the operation count function for this method. It
will have the form:

MDPM(n, v) = (5m + 9/2 m log m)
where m = 2" and r = [1092(2n+1)v].

Again the asymptotic form is MDPM(n, v) = O(v n" log n). But in
fact it does grow slightly faster than MFPM(n, v), because of its lower order
terms.

The values of these functions for v = 3, 4, 5 and 6 and small n are
displayed in Table III.

The values in these tables are essentially all the values of n for
which one might try to perform a polynomial multiplication in the setting of
algebraic manipulation and still expect to receive an answer.

We can see that again the degree homomorphism.method is better than

the classical for:

v=3atn=7
v=4atn=4
v=5atn=4
v=6atn-=3
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The evaluation homomorphism methdd has a cross-over point wrt.
classical multiplication about one degree. Tower than the degree homo-
morphism method. However, the evaluation method itself has a cross-over
point wrt. the degree method about one degree above that of classical
multiplication. So the evaluaticn method is the "best" algorithm only for
a small range of degrees. The recursive FFT method is faster than the
degreé method at a few small points, but because of the high steps in its

computation time function it is not consistantly better.



Recursive
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Degree Recursive Degree
Vars. N Classical Evaluation - FFT Homomorphism
3 2 1333 3785 10328 4672
3 7849 14525 11648 23296
4 30521 39645 121824 51200
5 91981 88385 127872 111616
6 233101 172289 134368 241664
7 520213 305205 141312 241664
8 1057969 503285 1560608 520192
9 1993141 784985 1588352 520192
10 3533861 1151065 1617184 1114112
1 5959801 1684589 1647104 1114112
12 9637993 2350925 1678112 1114112
13 15039389 3197745 1710208 2375680
14 22756861 4255025 1743392 2375680
15 33524€41 5555045 1777664 2375680
16 48239201 7132389 21423360 5046272
4 2 12497 26255 85000 51200
3 128671 140665 98816 241664
4 774689 492903 1577184 520192
5 3344561 1341857 2094336 1114112
6 11501041 3089359 2226720 2375680
7 23503807 6311865 2375680 504€272
8 86009921 11792135 50336032 10682368
9 199869679 20550913 51371264 10682368
10 428523281 33878607 52473952 22544384
5 2 114937 165765 687128 241664
3 2080345 1241457 813056 2375680
4 19472201 5589009 31774944 5046272
5 120771301 18588669 33799680 22544384
6 2 1047257 994795 5518408 1114112
3 33436788 10423301 6594560 10682368
4 487749809 60317019 509099104 99614720
5 4351793111 245160421 542536704 208666624
Table III

Operation counts of the four methods for
multiplying to dense polynomials in 3, 4, 5
and 6 variables of degree N in each variable.
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4. Other Applications

The degree homomorphism can be applied to other problems. Since
the transformation is a ring homomorphism, we can use this fact to apply it
to other situations. Some of these are:

i) Powers of Polynomials

Fateman [2] discusses a variety of techniques to raise a polynomial
to an integer power d. One method is to apply the FFT recursively as
follows:

a) apply the transform until the polynomial p(x) and all its coefficient
polynomials are evaluated at the primitive roots of unity to give a
sequence of values {p;}.

b) raise each value {ﬁi} to the d-th power

c) apply the inverse transform to the powered values to obtain the powered
polynomial in coefficient representation. |

Again we have to append sufficient leading zero coefficients to the
polynomial before the forward transform is applied in order to allow for the
growth in degree.

- Féteman shows that the recursive FFT method becomes better than
other methods for larger degrees and numbers of variables. An alternative
for the smaller degrees is:

den.+1
1) Apply the degree homomorphism ¢ : X; *> xi_]] to the
multivariate polynomial p(§) to obtain a univariate image p'(x).
2) Raise p'(x) to the power d using the standard FFT (or other)
method to get the result q'(x).
3) Apply the inverse degree homomorphism to q'(x) to obtain its
multivariate analogue q(X).

The validity of this approach is guaranteed by Theorem 2 since in
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(]

step 2 we are just performing a sequence of ring operations with a result in
the isomorphic set. This time through, the leading zero coefficients would be

appended by the degree homomorphism.

The degree of the result will be d-ni where n; = Bi(p(i)) and there-

fore tHe'degree homomorphism is:
' d-n1+1

. = X,
x1 i=1

vd log n) as with the recursive FFT

The method is asymptotically O(v d n
method. However the degree homomorphism method should take advantage of its

larger degree to exploit the asymptotic properties of the FFT.

ji) Exact Division
| If we wanted to divide some poiynomia] p(x) by another polynomial
q(x) exactly (i.e. with no remainder) again we could apply the Fourier
transform recursively. Pollard [1] points out that the Fourier Transform
method would be: ° |
a) apply the FFT to p(x) and q(x) to give two sequences of values
{p;} and {3}
b) divide the sequences Fi = ﬁi/ai'
c) apply the inverse FFT to the sequence {?1} to obtain the quotient r(x)
in coefficient form.
Again the FFT method is faster than other more classical methods
for degrees greater than the cross-over point. However we can also use the
following degree homomorphism method:

1) Map the two polynomials p(x) and q(x) into their univariate

n.
images p'(x) and q'(x) using the map ¢ : xill’

where n; = 3;(p) + 1, T <1 <.
2) Apply the FFT method to the univariate polynomials p'(x) and

q'{x) to compute their quotient r'(x).
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3) Map r'(x) back info its multivariate analogue r(x).

Since p'(x) and q'(x) are polynomials of relatively high degree, the
constant of proportionality in the computing time for the method will be
amortised over a larger prdblem so that this approach should be quite
competitive with the recursive FFT method and other classical methods. The
validity of this approach is shown by: _

Theorem 6: For this method p(Xx) = r(x)-q(x) (i.e. r(x) is the desired
quotient).
Proof: By construction p'(x) = r'(x)-q'(x) and by corollary 2:

ai(r) = ai(p) - ai(q). Therefore by Theorem 3: y(r'(x)) = y(¢(r(x))) =

ne.
r(x) under the map ¢ : Xs > x111, where n; = ai(p) + 1.

We have assumed here that q(X) is known to divide p(X) but we could
also use this method as a "divide if divisible" test by incorporating extra
steps. We would check that ai(p) 2 ai(q) when applying the map and that
ai(p) = ai(q) + ai(r) when inverting it. If any of these tests fail, then we
succeed, then we would know we have a correct quotient.

iii) Division with Remainder

Another potential application of the degree homomorphism, is to the
problem of polynomial division where a remainder is produced. Strassen [3]
shows how to use a fast polynomial multiplication algorithm to obtain an
O(N log N) univariate complete polynomial division algorithm. Howevér, there
are several problems to be overcome:

Tity in the coefficient domain

and this may not hold in general.

b) Even if it is known that a division is bossib]e, bounding the degrees of
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the quotient and remainder for the degree homomorphism is a difficult
operation.
Brown and Traub [11] show that for the division of S(x) by T(x)
where S, T ¢ F[x], and Q, R are the quotient and remainder respectively
S=QT +R,

av(s) < aV(T) < av(R).

Then the degrees of the coefficients of the remainder in the subsidiary
variables {Xi}’ 1 <1 < v will be bounded by:

ai(R) > 2m-max(ai(5), 3:(M)

where:

m=1/2 (av(s) + aV(T) - z(av(R) -1)).

Since it is difficult to boundav(R) a-priori we could choose the very gross

bound
av(R) =0
and get
m > 1/2(8V(S) + BV(T) + 2).
If . ai(S), Bi(T) <n, 1 <1i<v.
then ai(R) > 2n(n+1).

We could use this as a bound in the degree homomorphism to convert a multi-

variate polynomial division problem to a univariate division problem and

2V]og(2n+1))t1’me bound. This might

)+,

obtain an algorithm with an 0(2v(2n+1)
be advantageous when compared to a classical worst case 0((2n+1
however it has been observed in practice that most division problems do not
exhibit this catastrophic growth of coefficent degrees.

If it is not known that a multivariate division is possible then a

process known as psuedo-division can be used. This involves dividing T into
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S-L(T)k, where L(T) is the coefficient of the highest degree term in T and
k = BV(S) - BV(T) + 1. This altered form of division guarantees exact
divisibility of the coefficients and therefore a unique quotient and
remainder.

iv) Polynomial Greatest Common Divisors (GCDs)

There has been considerable interest shown in the efficiency of
algorithms for multivariate polynomial GCDs. In spite of the great strides
made by Brown [12] with a recursive eva]uafion homomorphism algorithm,
current algorithms can only compute the GCDs of relatively small polynomials.

In Moenck [4] it was shown that the GCD of two univariate polynomials
of degree N could be computed in O(N 1092 N) operations (cf. 0(N2) for the
classical euclidean algorithm). There it was advocated that a variant of
Brown's algorithm be used for the multivariate case to obtain an algorithm
with a time of 0O(v NY 1og2 N). However, using this method, the cross-over
point (already high in the univariate case) compared to Brown's method,
would be prohibitively 1arge.

An alternate approach is to apply a degree homomorphism method as
follows: -

1) Map the two polynomials p{(x) and q(x) into their

jmages p'(x), q'(x) by the map

n,

¢ x; > xil], where n

1 = max(3,(p)» 2;(a)).

i
2) Compute the univariate GCD g'(x) of p'(x) and

g'(x) using the o(N 1092 N) algorithm.
3) Map the GCD g'(x) back to its multivariate image g(x).

2

This would give a method with an operation count of 0(v2 N 1og° N)

where ai(p,q) <n, 1 3 <v. However if v is small compared to the other
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parameters it might offer a considerable improvement over existing methods.
The validity of this method is sﬁown by:
Theorem 7: g(x) is the GCD of p(x) and q(X).
Proof: By construction g'(x) is GCD of p'(x) and q'(x). Therefore
q'(x)|p'(x) and g'(x)]|q'(x) and by the isomorphism given by Theorem 3:
w(g'(x)) = v(e(g(x))) = g(X) and therefore g(x)|p(x) and g(x)|a(x). This
means that g(x) is a common divisor of p and q. Suppose it is not the
greatest one but instead that some polynomial f(x) is the GCD of p and q.
This would imply that: |
p(x) = u(X)f(x) and q(x) = v(x)d(x) for some u, v ¢ R[x] and
g(x)|f(x)| (properly).
Then under the degree mapping:
p'(x) = u'(x)d"(x), q'(x) = v' (x)f'(x)
and g'(x)|f'(x)](properly).
Therefore f'(x) would be a common divisor of p'(x) and q'(x) of greater

degree than g'(x) contradicting the construction.

-* Again the advantage of a degree homomorphism method is that it
maps a small dense multivariate problem into a large dense univariate
problem which may be more efficiently computed by a "fast" algorithm. Also
in this case, the concern about intermediate coefficient growth and unlucky
homomorphisms (cf. Brown [12])can be put aside because of the theorem above.

v) Factoring Polynomials

In Moenck [6] it is shown that a univariate polynomial over a finite

field can be factored into its irreducible components in O(N2 1og4N) steps.

Corollary 2 gives a bound on the degrees of the factors of a polynomial p(x)

of ai(p).
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Thus we can apply thé degree homomorphism:

3;(p)+1
O X T Xy

to obtain a univariate polynomial p'(xv). We can then use the efficient
factoring method to obtain its irreducible factors. These factors will then
be isomorphic to the original multivariate factors of p(x) {by the iso-
morpﬁism shown in Theorem 3).

'This method is more of a curiousity than a practical method since

it yields an algorithm with a bound of 0(_v4 n2v 1094

n) which is inferior
to the techniques based on Hensel's lemma (cf. Yun [13]) which perform as
O(nzv), if all goes well.

5. Summary and Conclusions

We have seen that a viable alternative to the conventional approach
to multivariate polynomial problems, of applying univariate algorithms
recursively, is to apply a degree homomorphism:

m

¢ 1 x5 > xil], in R[x].

This approach leads to algorithms for a variety of multivariate polynomial
problems which have lower cross-over points than, say, methods based on
recursive application of the FFT. It would seem that this approach would
be a reasonable one for intermediate sized problems in the field of alge-
braic manipulation. The areas which should be explored further are:

i) Other problems to which this method could be appiied. Those that
spring to mind immediately are linear algebra and truncated power
series operations.

ii) Deriving tight bounds on the degrees of p61ynomia1 results and inter-
mediate values.

Finally, it should be noted that the notion of a degree
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homomorphism is not very new. As a mathematical device it dates back at
least to Kronecker. In the sefting of algebraic manipulation it is just an
alternative way to view the packing of exponents which occurs when a poly-
nomial is represented in expanded canonical form. Several algebraic
manipulation systems use this representation, the most notable of which is
Altran (cf. Hall [14]). Williams [15] describes an early use of this
representation.

However, the exponent packing used in éuch algebraic manipulation
systems is different in that the same packing for a polynomial is used
throughout a program. Also two polynomials must be "pécked" in the same
way before an operation is performed on them. What the degree homomorphism
implies, is that an optimum packing be chosen for each operation and a
polynomial be suitably "repacked" if necessary.
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