EFFICIENT DIVISION ALGORITHMS
IN EUCLIDEAN DOMAINS

R. Moenck
and
J. Allen
Research Report CS-75-18
Department of Computer Science
University of Waterloo

Waterloo, Ontario, Canada -
July 1975

This research was supported by NRC Grant No. A-5549.

ABSTRACT

It is shown that efficient division algorithms can be
stated and analyzed in the general algebraic setting of a euclidean
domain instead of for a particular domain as is the usual case. The
general division problem is reduced to that of computing a "psuedo-inverse"
of the divisor in the domain. An algorithm is given for computing
psuedo-~inverses and this yields the result that the number of steps used
to perform a division is proportional to that needed to multiply two
elements of similar size in the domain. As corollaries this gives Cook's

0(n log n log log n) step integer division algorithm and a 0(n log n)

polynomial division algorithm due to Strassen.

1.1

I. INTRODUCTION

The classical long division method uses 2(m-n+1) (n+1) = 0(mpn)
arithmetic operations to divide a polynomial of degree m by one of degree n.
A similar bound holds for the long division method applied to integers with
m and n digits respectively. While this algorithm is adequate for the calcu-
lations one might perform using pencil and paper, if we were solving very
large problems using a computer we would be intereste& in methods which use
less operations.

We can contrast the situation for division with that for
multiplication. The classical multiplication algorithms use O(nz)
arithmetic operations, However, it is known that polynomials over a ring
which supports a fast fourier transform (FFT) can be multiplied in O(n log n)
arithmetic operations, Schonhage and Strassen [S571] used this FFT approach
when producing their integer multiplication algorithm which works in
0(n log n log log n) operations.

For division Cook [Co 66] showed how to consider the integer
division problem as one of Newton iteration. It follows from this that integer
division is bounded by the successive multiplications used in the iteration
and so may be performed in the O(n log n log log n) time bound. Fast
polynomial division does not appear to have been considered until Moenck
and Borodin [MB72] exhibited on O(n log2 n) algorithm based on the FFT
multiplication algorithm., Shortly afterward, Strassen [Str 73] and
Schonhage [Sch 73] independently developed an 0(n log n) algorithm. The
0(n log n) division algorithm is based on an algorithm for expanding the
reciprocal of a power series (cf [Sie 72]). Kung [Ku 73b] later showed,

this is essentially a form of Newton iteration.

1.2

The reason for this interest in the efficiency of division
is partially due to the result by Borodin and Moenck [Bor 74] that the
efficiency of multipoint evaluation and the Chinese Remainder Algorithm

in an EUD is log reducible to that of division in the domain.

In this paper we show that it is not necessary to use the
powerseries over the domain in which one wishes to perform division,
nor are the associated notions of approximation explicitly needed.
Instead one can attack the problem in the general algebraic setting of
an FEuclidean Domain [EUD] and perform all the computation in that do-
main. Instead of using the machinery of approximation we can compare
the relative magnitude of elements of the domain with respect to the
domain valuation. Even in this very much weaker framework we can show
that the number of steps used for division in an EUD is proportional
to that for multiplication of similar sized elements in the domain. As
corollaries we can derive Cook's integer division result and the fast

polynomial division algorithm.

One of the aims of this paper is to illustrate the fact that
efficient algorithms may be stated and analyzed in a general algebraic
setting and need not repeatedly be specified for particular domains.

For further examples of this claim see [Moe 73].

Before we begin our discussion we must specify our model
of computation. We shall use a random access machine (cf Cook [Co 72])
with a storage access cost function of wnity. Although Cook's model
does not provide for single precision multiplication as a primitive

operation it is otherwise well suited to our purposes.

The measure of efficiency of an algorithm will be the number
of register-register arithmetic instructions executed on variables or
constants. A uni£ coét for each operation will be used for all domains. The
operations are assumed to yield exact results. Branching, looping and
indexing instructions while conceptually and practically useful will be
neglected. The rationale for this is that their number can only
change in proportion to the nontrivial arithmetic instructions. We will
further refine the analysis by considering two possibilities. First we
will have a total operations measure which counts all arithmetic operationms.
Alternatively we will use a measure first proposed by Ostrowski [Ost 54]
and used by many other authors, where we count only non-scalar multiplications

or divisions.

We must also specify the data structures involved in storing
elements of an EUD. We will assume that polynomials will be stored as a dense
array of coefficients with one coefficient per register. Integers will
be considered to be in base B representation (possibly B=2) and each B
digit will be stored in one machine register. Elements from other domains
will be stored analogously. In this way a storage scheme similar to that

for a finite word length machine is obtained.

II. Some Definitions

.

As explained earlier one of the aims of the paper is to
formulate fast division algorithms in the general setting of a Euclidean

Domain. We can use the familiar:

Definition 1: A Euclidean Domain E is an integral domain with a degree

function (valuation)

3 : E* » Z+
where E* = E - {0} and Z+ is the set of positive integers. (We will also use
certain proper subsets of the positive real numbers as the range of the degree
function. These subsets will be well ordered by their isomorphism with

the non-negative integers), the degree function U satisfies

1) 35(A%*B) >3 (A), A BecE
2) E has a division algorithm
ie. VU, V ¢ E*, d4Q, R € E such that
U=V*Q+R

with 9(R) < 9 (V) or R= 0

This is the algorithm we wish to relate to the efficiency of multiplication

in the domain. A basic result from ring theory is:

Lemma 1l: Under the conditions:
9(Q) = 3(U) - (V) (2.1)
a(R) <3 (W) (2.2)

Q and R are unique for given U, V ¢ E.
In order to standardize the notation for the timing function

of the various domains we will make:

Assumption 1:

A, B € E* | a(A) =z 9 (B)
1) d(A * B) = 3(A) + 9(B)
(2.3)
2) 0(A+B) < 9(2A) = 3(2) + 3(4a)

or in general terms:

d(A+B) < max (o0(A), 9(B)) + &
where £ = 93(2).

If £ # 0, and 9(A) # 3(B) then we have a strict inequality.

o(A+B) < max (9(4), 9(B)) + &

we assume £=03(2) <1. [E = 1 can be dealt with in a straightforward
manner as a special case]

eg. For three particular domains of interest:
i) F{x] - the polynomials over a field F : 9(A) = deg(A)

g = 9(2) = 0.

ii) 2 - the integers : 3(A) = 1ogB |A| , B >2

so £ = 3(2) = logB2 < 1. (If B=2, &=1)
iii) :ZEi] - the gaussian integers : 3(4) = 1ogBlA|,
B > 2 where |atbi| = %SZ;;? and
£ =293(2) = logBIZI = logBZ < 1.

It should be pointed out that this restricts somewhat the
possible domains which can be considered. For example fields fall within

the scope of the definition of EUD's given above, if A, B ¢ E*

3(A) = 1 and 3(A*B) = 9(A) * 3(B).
However such properties violate the basic assumption of computational
complexity that some elements of the domain must be harder to compute with

than others. The degree properties (2.3) are acceptable for all the

conventional EUD's.

Assumption 2:

We shall use 0(A) both as a valuation of E and as a measure
of storage cost of an element of E. In fact a non-zero element will be
assumed to occupy [9(A) HC units of storage, for some small positive
integer constant C . This is owing to the assumptions above that
storage is allocated in integral units. Zero will occupy C storage
units. It is this integral storage cost which will be used as a

parameter of the timing function of the algorithms.

2.3

This assumption implicitly restricts the possible representations

of an element. For example the unary representation of integers is excluded.

However the possible representations conform to those which are intuitively

the correct ones from the complexity point of view.

In addition we shall define a function D(N) which generates
a canonical element of the domain for a given N.

Definition 2: Given a Euclidean Domain E, we define the function D : Z+ > E

+ .
(where Z are the positive integers) such that

VN € Z+ s HaN ¢ E where

D(N) = ag and B(aN) =N (2.4)
Given D(0) and D(1), D(N) can be defined inductively by:
* =
D(Nl) D(Nz) D(N1 + N2) .
We can think of D(N) generating a basis set for E. For the three example

domains:

n
ko

i) If D= F[x], D(N)

]
N
1

ii) If D ,» D)

2.4

1ii) If D =Z[i] pw) = (BHY
(cf. Knu 69] p 171).
Finally we introduce some notation. [V]k can be thought of
as the leading degree k portion of an element V or E with the appropriate

basis element factored out.

Definition 3: [V]k = V-~ Vmod (D(n-k|))
D(|n-k])

where 9(V) = n.
eg. if U(x) = x3 + 2x2 + 3x + 4
then [U]l =x + 2.

But n and k are not necessarily integers.

We want to develop bounds on 3([V]k). We may assume n > k >§
without loss of generality. This is because n > k is a necessary condition
for [V]k to be defined, and the cases n < £ or k < £ will not affect the
asymptotic complexity of the division algorithm.

We will show

n - In-kj - & < 3([V])) < n~ |n-k|
Upper bound:

From def (3) we see V = [V]k - D(ln-k]) + V mod (D(|ln-k]))

Using 2.1 we get 3([V]k) < 9(V) - o(D([n-k])) =n - |n-k] ... (2.5)
Lower bound:

First we will develop a lower bound for 3([V]k+l)

From def. (3) we get

L]

3(V) = 3([V] * D(in-kJ) + V mod (D(ln-k))))

IA

3([V]k * D(In~k]) + D(|ln-k]|)) since 3(V mod (D(|n-kj)) <

o(D([n-k]))

3C(IVI, + 1) -+ D(in-k1))

v

Therefore 3([V]k + 1) 9(V) - 9(D(In-k)))

n - |n-k|

Consider 3([V]k)

if 3([V]k) < 1, then £ = 9(2) > 8([V]k + 1)

=n - |n~kj] =2 k
this implies & > k which was eliminated above

Therefore we may assume 8([V]k) 21

To obtain the upper bound we consider

9(2 - [V]k) 2 3([V]k + 1) since 3([V]k) 21

= 9(2) + 9([Vl) =z n - In-k|

= B([V]) 2 n - lakl - &, &=3(2)

Combining this with 2.5 we get

n - |n-k|] 2 3([V]k) 2n- |n-kj-§ ... (2.6)

2.5

3.1

II1I. Division in the Domain

First we establish a useful lemma which shows that we need
only know a limited amount about the divisor and dividend to determine the

quotient in a division.

Lemma 2: Consider the division U= Q°*V + R in E. The quotient Q

= - " "
(3(Q) < k = 3(V) 3(V)) is "almost determined" by [V]k+2g and [U]2k+2£ .
= 0! o v
ie. 1if [U]2k+2£ Q [V]k+2€ + R
then U= Q' ¢« WR", with 3(R") < 3(V) + &.
eg. In Flx], & = 0 so we have determined Q'.
In Z , Q' 1is at most one from the true quotient

ie. the remainder is less than 2°V .
Proof:

Let 3(U) = m, 9(V) = n, 3(Q) <k = mn,
remembering that n,m and k are. not necessarily in F&.
Notice that:

m-2k = m~(m~n) -k = n-k e (3.1)

Now by definition:

U= [U]zk+2£ D(Lm-2k-2£1) + U" e (3.2)

= -l — 4
v [V]k+2£ D([n-k-2£]) + V ces (3.3)
L} .

Let Q' be the quotient of [U]2k+2£ and [V]k+2£
. - (] L
ie. [U]2k+ZE Q'. [V]k+ZE + R .
So 3(Q") = 8<[U]2k+2€) - 3([V]k+2£) by condition 2.1

<m - [m~2k-28] - (n-Ln-k-2&] -£)
using inequality (2.6) upper bound on 8([U]2k+2€) and lower bound

on a([V]k+zg)

IA

n + k - [m-2k-28] - (n-(n-k-2&)-&)

n + k - [m2k-2¢8] - (k+£)

n - [m-2k-2%J-§ .
So 3(Q'") < n ~ [m2k-2E] - & ‘e (3.4)

or n - [n-k-28] -& using (3.1). Now consider:

R"=U- Q'+ V if we show 3(R")<9(V)+{ then we are done.

= (LUl D(tm-2k-2E1) + U'")

2k+2¢

- Q' ([V] D(Ln-k-2E]) + V')

k+2E
from expanding U and V with (3.2) and (3.3).

= ([U]2k+2€D(Ln-k—2£J) - Q' [V]k+2E D(Ln~-k-2£1))

+ (U - Q'Y
= ([ul

- Q'[v])D(Ln-k-2£1)

2k+2§& k+2&
+ (Ul - Ql - v!) (3-5)
Now consider the first term of the addition (3.5)
30y ypr = @ LV) = 3(RY)
<8([V]k+2£) < n-[n-k-2& |
Soy8(([U]2k+2g - Q' - k+2£)D(Ln -k=-2£1))
(3.6)

<n - [n-k-2&] + [n-k-2E] =
Consider the second term of the addition (3.5): (U' - Q' V")
9(U") < Lm=-2k-2£]1 = [n-k-2& from (3.2)
(V') < Ln-k-2£&1] from (3.3)
0(Q') < n - Ln-k~-28] ~& from (3.4)

Hence 9(U' - Q'V') < max (9(U'), 3(Q'V")) + &

IA

max (Ln-k-28], n-&) + &
n-££+& =n (3.7)

3.2

So now we have:

a(R") = 3(([U]2k+2£ - Q'[V]k+2E)D(Ln—k—2€J)

+ (U' - Q'V"))

IA

max (3(([U] [v]k+2£) *D(Ln-k-2£E1)),

ai2e ~ @

(U' -Q'V")) + &

< max (n,n) + & from (3.6) and (3.1)
=n+ g
So 3(R) < n + £ as required. 0

One approach to performing the division is to compute the
quotient Q. Knowing the quotient we can compute the remainder in one
domain multiplication and one domain addition. From lemma 2 we know
that we need only consider [U12k+2£ and [V]k+2E , of any U and V to

determine the quotient. Even if we only "almost determine'" the quotient

then we can correct it in time linear with respect to the storage used by

the quotient and so this will not affect any general time bound.

So without loss of generality we will assume U and V are in

this form. Translating this condition into a degree relation between U and V we get:

20(V) = 28 2 9(U) > 23(V) - 28 -1

This is derived as follows, let 9(V) = n, 9(U) = m .

Now U = [U32k+2€

U - Umod (D(Lm-2k-2E0)) _

D (Lm=2k-2E [) v

=>

=> |m-2k-2£! =0

= 0<m-2k-2£<1

= 0<m-2 (mn) - 25 <1

3.3

3.4

=> 0 <2n-m- 2§ <1
=> =-2n + 26 £ -m < -2n+ 28 +1

=>2n -2 2m > 2n - 2§ ~-1.

The problem of computing the quotient can be attacked by way

of computing a "psuedo-inverse'" P of the divisor V. This is because of the following

central lemma,

Lemma 3:
If there exists a P ¢ E, 3(V) = n, 2n-2&+1<3(U) = m<2n-2§
such that

P.V=2S8=D(k]) +58' . (3.8)

where 3(8") < lk] = (V) = k) - n for Lk] > n
and 3(D(Lk]) + 8') = 3(D(L2nl))

then [P x U]m—n is "close" to Q the quotient of U and V.

fe. U= [Px Ul *V+A,B3(A) <M +E=n+E
Examples
In Q[x], £ =3(2) =0
Let V= x2—3, U= x4+3x3+x
So 3(V) =n =2 and 3(U) = m = 4 (= 2n-2£f)

Now if P = x2+3, then P.V = x4—9

D(4)+S' where S' = -9, So

[P.U]m_n |:(x2+3)(x4+3x2+x):|4.__2

5

[x6+3x +3x4+10x2+3x]2

x2+3x+3

3.4a

is 'close' to the quotient. In fact, we have calculated the quotient exactly

here because £ = 0,

In Z =

n s, a(x) loglox

let V=17, U=40

then 9(V) = 1.2304 and 3(U) = 1.,6021. Now if
P = 59,

P.V = 1003 = D(3) + 3, 8' = 3

[59.40] = [2360]

So [e-vl . 3716 =

.3716

_ 2360-2360 mod(D(L3.3729-.37161))
D(L3.3729-.3716 1)

which is the correct quotient.

Proof: Let 3(V) = n, o(U) = m

then 9(P+V) = 3(D(Lk)) + 8") < 3(D(LkD)) + &=Lkl + &

So 3(P) < Lkl -n+ & e (3.9)
Also 3(P-V) = 3(D(Lk]) +S") = 3(D(Lk))) = Lk

So 3(P) 2 Lk~ n . . (3.10)
We are going to be working with [P+U]

So by defn. 3 we want to find the bounds on:

D(L3(P-U) - (m-n)l) = D(L3(P) + m -~ m + n])

(1

D(La(P) + nl)

So by (3.9) and (3.10): [kl + £ > 3(P+V)

and so

[lk]l + &} 2 L3(P) + nl = Lk

a(P) + (V)

o(P) + n = LkJ

Therefore L9(P) + nl = Lk] since & < 1.
Consider the potential quotient:

PV = SB@®RD "~ SAED
where W = P*U mod D(LA(P) + nil)

= P°U mod D(Lk)
Consider:
T = [P'U]m_n v
= P'U]')\(IL;_JV)M - U'D(Ul;zll?kj)U'S' _W'V...(3.13)

using the hyp. that PV = D(LkI) + S'
We want to show: U*S' - WV = A«D(|k])

for some A, 9(A) <n + &.

9(U-S) 9(S") + 3(U) < LkJ - n +m= Lkl + (mn)

3(W=V) aMW) + 3(V) < |kl +n ... from (3.14)

This implies: 9(S'U - WV) < max (Lk] + m-n, LkJ +n) + &

=|lkl+n+E&
since n > m-n by hyp.

Now let S'U -~ WV = A+D(1k]) + B
but B (S'U ~ WV) mod D(LkJ))

P*VeU mod D(LkJ) - P*U*V mod D(Lk]) = 0
using defn. of S' (3.8) and W (3.14)
So S'U - WV = A*D((kJ)

Now 3(A*D(Lk1)) = 3(S'U - WV) < Lk) +n + E

=>9(A) <Lkl +n+E&-03MUkD)=n+E.

(3.14)

3.5

3.6

Now consider:

U ¢« DLk + AD(LkD)

[P.U]m-n V= D(Lk))
= U+ A
So U = [P-U] * V + (-A)
m-n
and 9(-A) = 3(A) <n + E O

This result reduces the general division problem to that of
computing a psuedo-inverse P of V. If we can compute P then we can form
[P‘U]m_n in one domain multiplication and in time linear with respect to
Lm-n] form the correct quotient Q. We multiply Q by V and subtract it
from U to get the remainder R. Thus we can compute the remainder given P
in two domain multiplications and some operations which are linear with respect
to the storage used by the divisor and dividend.

To ease the computation of P we will scale V such that:

where 3(V') = 2f . r = [1log(3(V)) 1] and ¢ € E.

In addition we will require that V' is of the form:

V' = D(2") + v, D(2"-1) + ¥
where 0 < 3 (Vi) < 1.
We may compute the psuedo-inverse of V. This will not be very different
from that of V and any difference there is will disappear in the

computation of ([P-U] .
m-n

3.7
Algorithm: Quot 4'))

Input: V € E where 3(V) =n, r = [logn]
Output: P the pseudo-inverse of the scaled V' such that:
pev =5 =D+ 0) + 8

r
where 9(8") < (2r+1 +4) -2

1+8(v])
and £ depends on v, = L= l—B(Vlf ’

Steps:
1) Basis: v':= scale (V); find vys
1+ 9(v,)
choose £ > 1 .
1 - B(Vl)
2
= I D) (vt
i=0

2) 1Iteration: for k:=1 until r do

. X Tyt Les
begin T} Pk-l Lv]Zk,

. k+1 .
Rk.— [Pk_l(ZD(Z) - [Tkak)J2k+2
if £=0 then Pk:=Rk

else form Pk . [V']zk and if necessary correct Pk

end; 0

The algorithm is invoked as P:= Quot (V);

The validity of the algorithm follows from:

Lemma 4: TFor the Quot algorithm for all 0<k<r

' - = ktl '
Rk[V]zk sk D(2 +) + sk

where B(Si) < 2k + 2L +3E£.

By assumption we can correct Rk to Pk in linear time such that:

Pk[v']zk = I)(2k+1 + 2) + g"

where 3(s}) < R YL)

k

Proof: K
First we note that by definition B(Rk) <2 + 2

Rasis: k=0, P, is chosen such that:

3.8

L

S, =2y [V'], = 2 D (v @) + vp)
i=0
= D(&+2) - vf+1
In this case 3(sy) = 3(v,"") = (142)3(v)
but £ > (l+8(vl))/(l—3(vl)) ie: (£+1)8(v1)< 2
so 8(86) < (#41) - 1 = 3(S) - 9(s) - 8([V']1) .
so the conditions of the lemma follow.
Induction: we shall assume that the assertion is true up to k. Now

we can follow the steps of the algorithm and see what is computed.

k-1 ~
= ' = 1 -
T, =P, [V1k=P ([V'1k-1D2") +7)
k-1 ~
=] -
=P _[V'Ik1D2 ") +P _,V
B k-1 , k-1 '
= D(3*2 +42) +8 _, D(2"7) +P _, V by hyp
But 3(s,_ D)) < 27h 4 24 g = Mg
2 W <2t aFa g,
. k-1 ~ k
and so E)(Sk_l D(2) + Pk—l V) <2+ 2 +E .
This means that Tk may be written as:
LI TE T S B TE A I SR e.
' k-1 " o= ' k-1 e k-1 9
where 3(T') < 2 + £ and T" = (Sk_lD(Z) + Pk_1V) mod D(2 + 2)
31"y < 27t 4+ .

_ k
So [Tk]2k =D(27) + T'

which means that:

k
=[P (»(2™) - TH]
T k-1 K .

Consider what happens when we form [V'] k R
2

3.9

we must show this is of the form D(2k+1+2) + Sﬁ .
Now:

[v'] = [vl, Ce-. (025 - 1)1
ok Rk Sk k-1 Keg

Ky _ g
(V] "B, *(@29) - T)]

2k PR
=251 + 0 + 12T+ 0 + Ty @511] by (2)
K+l
2Ky
= [p(5-25 1 +) + 2%y - 7202 4 2) - T3 1
2Kty
= [(D(2k+l+2,) + W)D(zk'l) + W' K+l
okl
= (2") + w
where W = T"D(Zk—l) - T'ZD(l) + [T'T"] k-1
m=-2 and m = 3(T') + 3(T")

2 < max (3(r"p2*N),0¢x’p()), 3qT'TY |, + &}
m-2

max {25040y 4270, 28 Lpe, @M+)+ @ T2 e g

P T

Therefore B(Si) < 2k + 2+ 320

By this development we see that the Quot algorithm generates a pseudo-inverse

P of V. This leads us to the central:
Theorem 5: Division is directly reducible to multiplication in an EUD.

Proof: Let Q(N) be the number of steps required to perform the Quot algorithm

on a divisor V of length no greater than N. We assume that M(N) the number

of steps used to multiply two domain elements of length N is of the form:
M(N) = N U(N)

where U(N) is a uniform non decreasing function in N. Then by inspecting

the algorithm we derive the recurrence relation:

Q2% = 2™ Y + 3m2" Y

r-1 i — r~1
=3 ¥ M(27) < 3U(2) X2
i=1 i=1

3u2t 1y (2-27 1)

eM(2" 1y —3u2™h.

In other words the number of operations used to perform the Quot algorithm
on elements of length 2" is no more than that to perform 6 multiplications

of elements of length 2r—l'

As abserved earlier the remainder in a division can be found in

2 more multiplications of domain elements of length 2%, a

This yields immediately Cook's [Co66] result:

Corollary 6: A 2N digit integer can be divided by an N digit integer
in O(N log N log log N) steps.

Also we have the polynomial division of algorithm derived by
various authors.
Corollary 7:

Division of a polynomial of degree 2N by one of degree N can be
performed in 8N-2 field multiplications or 36N log N + 60N arithmetic
operations.

Proof: In the Ostrowski measure: (M(N) the number of field multiplications
to multiply two polynomials of degree N is 2N+l (see for example [Bor74]).
Q(N) = 4N-2

The time to compute [P*U] V given P is 4N which gives a total of 8N-2.
m~-n

Counting total operations we have, the number of arithmetic operations used to
multiply two polynomials of degree N to 9N log N + 19N + lower degree terms

(ibid). So
Q(N) = 18N log N + 20N - 2 log N

Including the time for computing [P.U]m—n V this gives 36N log N + 60N
operations if we allow 2N operations for the correction of EP'U]m_n and

subtracting to get the remainder. M

IV Summary

We have discussed the problem of devising an efficient division
algorithm in a general euclidean domain. To this end we have shown that we
need use only very weak properties of an EUD (in particular its valuation)
to produce such an algorithm. While many algorithms have been stated in an
abstract setting before, our contribution is in showing that an analysis of
the efficiency of a particular algorithm can also be made in algebraic terms
This has the advantage that it unifies algorithms and their efficiency
measures for various domains into one common algebraic framework. What we
show is that the efficiency of division is directly related to the efficiency
of more primitive operations such as multiplication and addition of the
domain.

The approach we have taken is to show that only a limited por-
tion of the divisor and dividend need be considered to produce a unique
quotient. Further we have shown that division can be performed by computing
a psuedo=inverse of the divisor. This can be done within the domain and
avoids the use of quotient fields which are poor structures to work with from
the point of view of efficiency. An algorithm which is a variant of
Newton's Method is given for computing the psuedo-inverse. The number of
steps this algorithm uses is shown to be directly reducible to the number
of steps needed for multiplication in the domain.

This yeilds & corollaries Cook's result that integer division
is directly reducible to integer multiplication and that of several authors
that polynomial division is directly reducibie to the time for polynomial

multiplication.

Acknowledgement

We wish to thank Professor A. Borodin for his help and encouragement

in this work.

BIBLIOGRAPHY

Bor74 A. Borodin and R. Moenck: Fast Modular Transforms; JCSS (July 1974).

Cob6 S. A. Cook: On the Minimum Computation Time of Functions; Thesis
Harvard Univ. 1966 pp. 26-50.

Co72 S. A. Cook: Linear Time Simulation of Deterministic Two-Way
Pushdown Automata; Proc. IFIP Cong. 1971, North-Holland London
1972, Vol. 1, pp. 75-81.

Knu69 D. Knuth: The Art of Computer Programming Vol. II: Seminumerical
Algorithms; Addison-Wesley, Reading Mass. 1969. pp. 172.

Ku73a H. T. Kung: Fast Evaluation and Interpolation; Carnegie-Mellon,
Dept. Comp. Sci. Tech. Report Jan. 73.

Ku73b H. T. Kung: On Computing Reciprocals of Power Series; Carnegie-
Mellon, Dept. of Computer Science Tech. Report Sept. 73.

MB72 R. Moenck and A. Borodin: Fast Modular Transforms via Division;
Proc., 13th Symp. on Switching and Automata Theory pp. 90-96
(revised as [Bor741).

Moe?73 R. Moenck: Studies in Fast Algebraic Algorithms; Ph.D. Thesis
U. of Toronto 1973.

Ost54 A. Ostrowski: On Two Problems in Abstract Algebra Connected with
Horner's Rule; Studies Presented to R. von Mises, Academic Press,
New York, 1954 pp 40-48.

Sie72 M. Sieveking: An Algorithm for Division of Power Series; Computing
Vol. 10, No. 1-2, pp. 153-156, 1972.

Sch73 A. Schonhage: Private Communication.

S871 A. Schonhage and V. Strassen: Fast Multiplication of Large
Numbers; Computing 7 (1971) pp. 281-292.

Str73 V..Strassen: Die Berechnungskomplexitat von elementarsymetrischen
: Funktionen und von Interpolations koeffizienten; Numer. Math.
Vol. 20, No. 3 1973 pp. 238-251.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

