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ABSTRACT

We describe an implementation of Cholesky's method for banded
or envelope (profile) ordered linear systems which requires substantially
less storage than standard implementations. We then present a new
ordering algorithm designed to enhance the effectiveness of our implementa-
tion. Finally, we provide numerical experiments comparing our ordering/

solution package against what we regard to be its strongest competitors.



§1. Introduction

Let Ax = b be a given N by N sparse symmetric positive definite
system of linear algebraic equations. It is well known that for sparse
systems, the way in which the equations are ordered (numbered) can
sometimes drastically affect the storage and computation required for the
direct solution of that system, using Gaussian elimination. When A is
symmetric and positive definite, no pivoting (row and/or column interchange)
is required to maintain numerical stability; that is, symmetric Gaussian
elimination or Cholesky's method applied to PAPT, where P is any N by N
permutation matrix, is numerically stable [17]. Thus, we may choose P to
achieve other objectives, such as reduced storage and/or computation.

A common choice for P is one for which PAP' has a small bandwidth
or envelope (profile). For a given symmetric matrix M, its bandwidth g(M) and

envelope Env(M) are defined as follows.

(1.1) B(M) = max |i-j].
M; 570

(1.2) Env(M) = {(i,3)]1 = fy and § = fyl,

where fi = min{leij #0}, 1 <1 <N,

When Gaussian elimination is applied to a sparse matrix, it normally suffers
"fi11"; that is, the triangular factors have nonzero components in positions
which are zero in the original matrix. It is easy to verify that when no
pivoting is performed, this fill is confined within Env(M), and since

(i,3) € Env(M) = |i-j| < B8(M), fill is also confined within the band.



Implicit in the use of these ordering strategies is the assumption
that zeros outside the band or envelope are to be exploited, and zeros
within the band or envelope are not exploited. Efficient storage schemes
for utilizing such orderings have been described in [10,13].

It is becoming increasingly well known that if we are prepared
to exploit all zeros, then orderings which yield a small band B(A) or
|[Env(A)| may be far from optimal in the least-fill or least arithmetic sense
[6, 15]. However, robust algorithms for generating optimal or near-
optimal orderings for general sparse matrices are not yet well developed.
Moreover, in many situations, the relative simplicity of the (perhaps far
from optimal) band or envelope schemes are a reasonable compromise. More
to the point, there are several band and/or envelope reduction algorithms
available which appear to be quite effective for a large class of problems
[1,4,8].

The objectives of this paper are twofold. First, using some ideas
which have already been presented and analyzed elsewhere [3,7], we describe
an implementation of Cholesky's method which substantially reduces the
storage requirements over standard schemes, when these banded or envelope
orderings are used. Second, we present a new ordering algorithm which is
designed specifically to enhance the effectiveness of our implementation
of Cholesky's method.

An outline of the paper is as follows. In section 2 we present a
simple example which provides some motivation for both our implementation
scheme and our ordering algorithm. In section 3 we review some basic graph

theoretic notions as they relate to Cholesky's method. We also make the



connection between a level structure in a graph, which is a central construct

in many ordering algorithms (including the one we propose in this paper),
and the partitioning it induces in the matrix problem associated with the
graph. MWe also review the significance of the class of graphs called trees
in connection with matrix orderings, and extend some of the important

ideas to block matrices.

In section 4 we describe the principal ideas behind two algorithms
which are regarded as the most generally effective band/envelope reduction
algorithms in current use. These are the so-called reverse
Cuthill-McKee algorithm (RCM) [4 ,12] and the algorithm recently developed
by Gibbs et al. (GPS) [8 1. We then describe our ordering algorithm, and
through some examples show how it differs from the other two algorithms.

Section 5 contains a description of the data structures used in
the implementation of our Cholesky solver, together with an example.

Section 6 contains a substantial set of examples comparing various
performance criteria for our ordering/solution package against several

competitors. Section 7 contains our conclusions.



§2. A Motivating Example

Suppose we wish to solve Ax = b, where A is ordered so that
8(A) = m, and for convenience we suppose that for some integer k
N = km, and k = O(vN). We may regard A as a block tri-diagonal matrix

as shown below, where the blocks are m by m.
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If we factor A into LL', where L is lower triangular, using Cholesky's
method [17], we may again regard L as partitioned accordingly, as shown in

(3.2).
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o T _ _ T
(3.5) Ay =Ly = Ay - By R
- T T
- A_i - wi—]wi"]’ -l - 2,3,...,k.

Band-oriented storage schemes usually treat the wi and Li as full Tower
triangular matrices. Thus, to store L we require km? + 0(N) storage
locations.

Our strategy for saving storage utilizes some ideas which have
already been described and analyzed elsewhere, in a somewhat different context
[3,7]. From (3.5), it is clear that as far as the factorization is
concerned, we do not need w]._1 after Ai is computed, so we simply discard it
rather than save it. Instead, we retain only 81-1; when we need to use Wi-]’
we simply multiply by Bi-] and then solve the appropriate triangular system
whose coefficient matrix 1is Li—]' For example, to compute z = w _1Ys we
compute y = Bi_]y and then solve Li_]z = y. Thus, we only store Li’
i=1,2,....,k and By, i = 1,2,...,k-1, rather than Ly, i = 1,2,...,k and
i i=1,2,...,k-1. This will often reduce storage requirements because
in many situations the wi are far less sparse than the Bi‘ For example, the
total number of nonzeros in all the Bi may only be O(N). If this is true,

the storage requirement using this latter strategy is %km2 + 0(N), rather

2

than km“ + O(N).

In connection with the computation (3.5), in some situations it

1
175 - 1)

rather than as A, (B1 1L ])(L1 185 . ]), which is implied by (3.5). (Consider

may require fewer arithmetic operat1ons to compute A as A, B1 ](L ](L1

the case when wi is full lower triangular but Bi—] and Li-] are very sparse.)

Since we intend to discard Ni anyway, this "asymmetric" version of the
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computation usually requires less temporary storage than the first. That is,
we can compute Ai one column at a time, discarding the column of

BEI]A;1181_] as soon as it has been used. On the other hand, the calculation
of Ai as implied by (3.5) requires temporary storage for the whole matrix
wi_]. We distinguish between these two methods of computation, by denoting

the symmetric version by F] and the asymmetric version by FZ'



§3. Graph Theoretic Preliminaries

In this section we review some basic graph theoretic notions
and introduce a few definitions that are related to our implementation
of Cholesky's method. We also establish some preliminary results needed
in subsequent sections.

A graph G = (X,E) consists of a finite nonempty set X of nodes
together with a prescribed edge set E of unordered pairs of distinct nodes.
A graph G' = (X',E') is a subgraph of G = (X,E) if X' < X and E' < E.

Nodes x and y are said to be adjacent if {x,y} is an edge in E.

For a subset Y of nodes, the adjacent set of Y is defined as

Adj(Y) = {x e X\Y|{x,y} ¢ E for some y ¢ Y}.

If Y = {y}, we shall write Adj(y) instead of the formally correct Adj({y}).
The degree of a node x is the number of nodes adjacent to x, denoted by
|Adj(x)|. Sometimes, we shall refer to y € Adj(x) as a neighbor of the
node x.

A path of length & is a sequence of 2 edges {xo,x]},{x],xz},. ..,{xg_],xz}

where all the nodes XgsXyse-aXy are distinct except possibly X0 and X -

If Xg = Xg» it is called a cycle. A graph G is connected if there is a path
connecting each pair of distinct nodes. If G is disconnected, it consists
of two or more maximal connected subgraphs called components.

For a subset Y of nodes,the span of Y is defined as
Span(Y) = {x € X|3 a path from y to x, for some y e Y}.

If Y = {y}, Span(Y) is simply the connected component that contains the node y.
In case the graph is connected, the span of any nonempty subset is the node

set X itself.



Unless otherwise specified, graphs in this paper are assumed
to be connected. The distance d(x,y) between two nodes x and y is the length
of a shortest path joining them. The diameter of a graph G is
8(G) = max{d(x,y)|x,y ¢ X}. If d(x,y) = 8(G), the nodes x and y are

called peripheral nodes [2].

A tree is a connected graph with no cycles, or equivalently,
it is a graph where every pair of distinct nodes is joined by a unique
path. For a tree T = (X,E), |X| = [E] + 1.

A rooted tree is a tree T = (X,E) with a distinguished node R,
called the root of T. If {R,x]},...,{x,y} is the (unique) path from
the root R to the node y, x is said to be the father of y. We can then
introduce the single-valued function:

Father : X\{R} + X
that maps a node to its father in the rooted tree. It is important to note
that this function Father(x) uniquely characterises the rooted tree
(Parter [14]). Thus, a rooted tree with N nodes can be represented in
this form using N-1 storage locations. For convenience, we let Father(R) = 0
so that Father becomes a mapping from X to X u {0}.

For a graph G = (X,E) with [X| = N, an ordering or numbering of

G is a bijective mapping a:{1,2,...,0} »~ X. We use Gu and Xu to denote
the ordered graph and ordered node set respectively,

It is often convenient to view permutations on a sparse symmetric
matrix as orderings on a corresponding graph structure. Let M be a symmetric
matrix. We associate an undirected graph G(M) = (X(M),E(M)) with M, such

that X(M) is the set of nodes corresponding to and labelled as the rows of M,



and {xi,xj} e E(M) if and only if Mij # 0and i # j. Note that the graph
G(M) has an implicit ordering defined by the matrix M. Indeed, each ordering
a on G(M) identifies a permutation matrix Pa on the matrix M.

In [14], Parter studied the effect of Gaussian elimination on
matrices associated with tree structures. In this context, he introduced
the class of monotone orderings for rooted trees. In our notation, a

monotone ordering a for a rooted tree is one that always numbers a node

before its father; that is,
a(j) = Father(a(i)) = j > i.
Clearly, the root is always numbered last by a monotone ordering.
We can extend this definition to general trees. Let o be an ordering on a
tree T = (X,E), where |X| = d. We call a a monotone ordering for T if
it is one for the tree rooted at the node o(N). The following lemma is
due to Parter [14].
Lemma 3.1 Let A be an | by N symmetric matrix associated with a monotonely-
ordered tree. If A = LL' where L is the triangular factor of A, then

A]_j=0=_->L1.J.=O,fOY‘17‘J- 0

In other words, matrices associated with monotonely-ordered trees
do not have any fill in Gaussian elimination. We now extend this lemma in the
following form,
1

Lemma 3.2 Let A and L be as in Lemma 3.1. Then Lij = ngAij for i # j.

Proof In Gaussian elimination, the components of L are given by:

.—.I
_ -1 J oy
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J-1

It is sufficient to show that } Liijk is zero. Assume for contradiction that
k=1

Liijk # 0 for some k = 1,...,j-1. By Lemma 3.1, we have AikAjk # 0, so

that the node Xk is connected to both X; and Xj' This contradicts the

assumption that the associated tree is monotonely-ordered. U

An interesting consequence of Lemma 3.2 is that the triangular
factor L of A can be stored implicitly as {ijlj =1,...,N} and
{Aileij # 0 and i # j}; each nonzero off-diagonal component of L can be
generated readily when required. This observation becomes crucial when we
extend the ideas to block matrices. A substantial amount of storage can be
saved in using the implicit storage scheme if each Aij corresponds to a
sparse block submatrix rather than a nonzero component of A.

The example described in section 2 demonstrates how this implicit
scheme can almost halve the storage requirement. In that example, if each
diagonal block Ai is considered as a node, we obtain a graph which is a
simple tree - a "“chain". Furthermore, the block ordering defined implicitly
by A is a monotone ordering on this chain.

To formalise these ideas, it is convenient to introduce the concept
of quotient graphs, a notion motivated by the partitioning of a matrix into
block submatrices. Given a graph G = (X,E), let P be a partition on the
node set X

[ {Y]’YZ""’Yk}'

That 1is, 6 Yj = X and Y; n Yj = ¢ for i # j. We define the quotient graph
i=1
of G with respect to the partition P to be the graph

G/P = (P,€)
where {Yi’Yj} e & if and only if Adj(Yi) n Yj # ¢. When G/P is a tree, we

call it a quotient tree.
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An ordering o of G is said to be compatible with a partition P

if for each Y ¢ P, o numbers nodes in Y consecutively. An ordering of G

which is compatible with respect to P induces an ordering on the quotient

graph G/P. Obviously, there is a class of compatible orderings for G that

corresponds to any ordering on G/P.

We can derive a simple class of quotient trees using the concept

of Tevel structures [1]. Formally, a level structure of a graph G = (X,E) is a

partition
()Z/:: {L-I,LZ,.."L/Q/}

of X such that

u L. = 1,...,0.

Adj(Ly) e Ly q v Lyyys

Here, Ly and Ly, , are assumed to be empty. The number % is the length of
the Tevel structure. The quantity max {lLilli = 1,...,4} is called the
width of .Z. It should be clear that the corresponding quotient tree GAZ
is a simple "chain".

In practice, it is common to produce and work on rooted level

structures. For a node x ¢ X, the rooted level structure at x is defined as

the level structure:
’Zx(x) = {L'I(X) 9L2(X) 5o "LQ(X)(X)}’

where L](x) = {x},

i-1
L) = I L)), T = 2,.,0(x)
=1 7
and 2(x) = max{d(x,y)|y ¢ X}.
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We now make the connection between a level structure of a graph
and the partitioning it induces on a matrix associated with the graph.
Let G(A) be the graph associated with a symmetric matrix A and let .2
be a level structure in G(A). The quotient graph G(A)/LZ 1is a chain, so
if we number the nodes in each level Li consecutively from L] to LR, the
levels in £ induce a block tridiagonal partitioning on the permuted
matrix. The example in section 2 can be regarded as such. Figure 3.1

contains another example.

O—@ O, <
X X|X
—03 O | X| X
© x|
X X X
ﬁ@ X | X XX
X x X
(8) (9) ‘IBI X X
X

Figure 3.1 Block tridiagonal partitioning induced
by a level structure
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§4, Description of Ordering Algorithms

Gibbs et al. [ 8] have recently developed an ordering algorithm
for band/envelope reduction. A novel feature in their algorithm (GPS)
is the notion of pseudo peripheral nodes. Recall that nodes that are at
maximum distance apart are called peripheral nodes. In general, it is time-
consuming to find them.

Nodes at nearly maximum distance apart are pseudo peripheral nodes.

In other words, if we let 2(x) = max{d(x,y)|y ¢ X}, then a node x is a
pseudo peripheral node if 2(x) is close to the diameter §(G) of the graph.
In [8], Gibbs et al. have also provided an efficient way of finding pseudo
peripheral nodes. Their approach is based on the following observation.
Let Z(x) = {L](x),Lz(x),...,LQ(X)(x)} be the rooted level structure at x.

Then for any y ¢ LQ(X)(X), 2{x) < 2(y).

Since our new ordering algorithm requires the determination of a

pseudo peripheral node, for completeness we now describe their algorithm

Step 1 Find a node R of minimum degree.
Step 2 Generate the level structure at R:
LR) = {L1(R),LH(R) 5. .5l oy (R))

Step 3 Sort LQ(R)(R) in order of increasing degree.

Step 4  For each x « LZ(R)(R)’ in order of increasing degree, generate
the level structure ~C(x) at x. If 2(x) > 2(R), reset R to x and
go to step 3.

Step 5 Stop. R is a pseudo peripheral node.
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At the termination of the algorithm, we note that 2(x) = &(y)
for all the nodes x,y ¢ {R} v LQ(R)(R). In other words, {R} u LQ(R)(R) is a
set of pseudo peripheral nodes. We may pick any one from this set
to meet a specific objective; for example, minimal level width.

We now describe the essential ideas behind the GPS algorithm.
For details, the reader is referred to [8]. The objective of the GPS
algorithm is to determine a general level structure with small level width.
It first finds a pseudo peripheral node R and a node R' ¢ LR(R)(R) where
the width of .Z(R') is smallest among those defined by nodes in LQ(R)(R).
The algorithm then combines the rooted Tevel structures oZ(R) and -Z(R') to
form a new structure whose width is usually smaller than that of .¢(R) and
< (R'). The nodes in the graph are then numbered level by level in accordance
with this new level structure.

Another effective band/profile reduction scheme is the reverse
Cuthill-McKee (RCM) algorithm [4,5,12]. As
noted by Gibbs et al., the original version of the algorithm performs a
time-consuming search for a reasonably good starting node. Since the RCM
algorithm is similar in spirit to the GPS algorithm, it is reasonable to
start the former by using a pseudo peripheral node. Our new algorithm
described later in this section uses the RCM algorithm to reorder subgraphs,
so we now include a formal description of this scheme. Let G be a connected
graph. The RCM ordering of G will be given by XpsXos e et sXy after the execution
of the following algorithm.
Step 1 Determine a pseudo peripheral node R and assign it to Xy -
Step 2 For i = 1,2,...,N, find all the unnumbered neighbors of the node

X; and number them in increasing order of degree.
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Step 3 Reverse the order x;,%,,....X,.
Step 4 Stop.

It is straightforward to extend the algorithm for disconnected

graphs. Implicit in the scheme is the use of the rooted level structure at R

CR) = L (R)LLH(R) 5oLy (RDD

Indeed, the Cuthill-McKee ordering numbers nodes in L1-1(R) before those
in Li(R)’ so that the reverse ordering numbers the levels bottom up.

The renumbering procedure implies that the GPS and the RCM orderings
are compatible (see section 2) with their respective level structures. In
both cases, the induced ordering on the quotient tree G/~Z is monotone.

Thus, when the graph is associated with a symmetric matrix, we may incorporate
the implicit storage method described in sections 2 and 3 to both schemes.

To use the implicit storage scheme effectively, it is apparent
that we want to get a partition P = {Y]’YZ"'°’Yk} with as many members as
possible and consistent with the property that G/P remains a quotient tree.
This is the motivation of our algorithm, which may be viewed as a refinement
on the Tevels of a rooted level structure.

Let Z = {L]’LZ""’LQ} be a rooted level structure of a graph
G = (X,E)., For each j=1,...,2, we define the subgraph Gj = (Xj’Ej)’
where Xj = .S_Li, and Ej = {{x,y} € E|x,y € Xj}' Then, each level Lj can

i=]
be refined as:

{Y|y = Lj n C for some connected component C in subgraph Gj}.

Lemma 4.1 Let P = {Y]’YZ""’YK} be the partition defined by the refine-

ments of the levels. Then G/P is a quotient tree. 0
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The Refined Quotient Tree(RQT) algorithm described below deter-

mines this refined partition. WNote that we do not determine the connected

components of the subgraphs Gj explicitly. A stack is used to store those

partially formed partition members.

Step 1 Find a pseudo peripheral node R and its rooted level structure
X (R) = {L]’LZ""’LQ(R)}‘ Empty the stack. Set & < 2(R);

pick a node x in the Tast level Lz( ) and set S « {x}.

R

Step 2 Determine the set Y = Span(S) in the subgraph L.

Step 3 If all the nodes in Adj(Y) n Ly 7 have been selected in some
partition member, then go to step 5.

Step 4 Otherwise, push the set S onto the stack. Pick one such node

Yoe] € Adj(Y) n Ly4q. Trace a path You12Yg40s -+ sYppp Where

e L and Adj(y,..) nL Let S « } and 2 <« 4+t
2+t

Yo+i € “o+i gttt T @ Yort

go to step 2.

Step 5 Determine the set S « Adj(Y) n L Set £ « 2-1. If 2 =0,

2-1"
stop.
Step 6 If the node set T on the top of the stack belongs to LQ, pop T

from the stack and set S« S u T. Go to step 2.

It is interesting to note that the order in which the partition
members Y are formed defines a monotone ordering on the final quotient
tree G/P. The following examples illustrate the working of the algori thm,
Example 4.1

Consider the graph in Figure 4.1, The rooted level structure at
node 1 is shown in Figure 4.2. On applying the algorithm to ZA{1), we obtain

a refined quotient tree with ten nodes.
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Figure 4.1 A '+' shaped graph
(19
()
O
(1)
OO

ON®
OO

Figure 4.2 Rooted Tevel structure and its refinement

In this example, Y] = {20}, Y2 = {18,19}, Y3 = {16}, Y4 = {10,153},
{9,14,17}, Yg = {5,11}. So, we have L5 = Y5 U Y6’ L6 = Y2 U Y4 and

Y. u Y,.

1 3
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Example 4.2
Consider any tree T = (X,E). In this limiting case, the refined

partition is the trivial one
P = {{x}|x € X},

so that the quotient tree T/P is identical to T itself. The monotone ordering

defined on T/P, and hence on T, is, in fact, a postorder traversal (Knuth [10,p.334]
The ordering algorithm will be complete if we specify how the

nodes within each partition member are numbered. Consider a partition member

Y ¢ P where Y c LQ. Let S be the set

{y € Y|Adj(y) n L5L+] 7 o).

We first number nodes in the subgraph Y \ S using the RCM ordering
scheme. Note that the subgraph Y \ S may be disconnected. The nodes in S
are then numbered arbitrarily. This internal numbering strategy is chosen
so as to reduce the profile of the diagonal block defined by Y. Example 4.3

illustrates the effect of this internal ordering.

Example 4.3

Consider the mesh M in Figure 4.3. Here, nodes in each triangle
are assumed to be pairwise adjacent in the corresponding graph G. The rooted

level structure at the node 1

vz/(]) = {L]’L23L3,L4,L5}
has 5 levels. MNo refinement can be done on the levels so that
= = i i i 4.4 is
P = {Y],YZ,Y3,Y4,Y5}, where Yi L6-1‘ The new ordering in Figure i
obtained using the internal numbering strategy on the Y's. The correspondingly

permuted matrix associated with G is also given in Figure 4.4,
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Figure 4.4 Reordered mesh and its corresponding
matrix structure
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As already pointed out in section 3, there is a class of orderings
compatible with P. More careful reordering within partition members may

further reduce the profile of the diagonal blocks and the arithmetic operations.
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§5. Implementation of the Implicit Storage Scheme

In this section we provide some implementation details about our
subroutines for solving sparse positive definite systems. The code is
designed specifically to handle the quotient tree orderings such as those
provided by the algorithms described in section 4. OQOur code accepts the problem
Ax = b, along with a partitioning of A, and a) factors A into LLT, saving
the diagonal blocks of L and the nonzero components in the off-diagonal
blocks of A, and b) solves the triangular systems Ly = b and LTx = y. The
code uses the following arrays to store the necessary structural information
along with the actual components of the matrices. Here n, is the number of
diagonal blocks in the partitioning, ny is the number of nonzero components
in the lower off-diagonal blocks of A, and Ny is the number of components

of the diagonal of L which we store, including possibly some zeros.

Array Description
S : an integer vector of length ng . The number S(i) indicates the

diagonal block j, j > i to which block i is connected. If no
such block exists, S(i) is zero.

p : an integer vector of length nb+1, where p(i) is the row number
of A corresponding to the first row of the i-th diagonal block.
For programming convenience, we have p(nb+1) = N+1.

L a real array of length Ny After the factorization it contains
the components of the envelopes of the diagonal blocks of L,
stored row by row.

d‘: an integer vector of length N. If we view the diagonal blocks

L., 1 <1 < as a single N by N block diagonal matrix L, then

i? = Ny

d(i) points to the position in % where the i-th diagonal component

of L resides.
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W o a real vector of length N, containing the nonzero components
(outside the diagonal blocks) of consecutive rows of the lower
triangle of A.

j an integer vector of length N, where j(i) is the column subscript
of the component stored in w(i).

Vo an integer vector of length N. The number v(i) is the first
position in w where the components of row i of A are stored.

If v(i+1)-v(i) = 0, then no components of row i are in w.

Figure 5.1 is an example of a matrix stored using the arrays just
described, with n, = 5, nw = 9, and Ny = 22. The array 2 contains the components
of diagonal blocks of A, which are overwritten by those of L during the
factorization.

The storage required for the vectors j, d, v, s, and p must be
regarded as "overhead" storage, since it is not used to store actual data.
In addition, in our implementation of the F2 version of the factorization
(see section 2) we found it convenient to have an extra auxiliary real
vector of length N. In the F] version, we need temporary storage for the
largest Wi which occurs, along with another integer vector of length equal
to the maximum number of columns in any of the wi. This overhead storage

is reported in the tables in section 6.
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Figure 5.1 Example showing the arrays used in the
implicit storage scheme
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56. Experimental Results

We described in section 3 how any ordering scheme which generates
a level structure, and then numbers the levels consecutively induces a natural
block tri-diagonal partitioning in the corresponding matrix. Two such
algorithms, which experience has shown to be effective in producing small
bandwidths and envelopes, are the reverse Cuthill-McKee (RCM) ordering
algorithm and the algorithm recently developed by Gibbs et al.
(GPS). We described their basic features in section 3. Recall that
our implementation of the RCM algorithm uses the technique developed by
Gibbs et al. to find the endpoint of a pseudo-diameter (pseudo peripheral node)
as a starting node.

We are interested in answers to the following questions:

a) Does the use of our implementation of Cholesky's method (BLKSLV)
significantly reduce storage requirements over using the ordinary
envelope scheme (ENVSLV) proposed by Jennings [10]}, for the order-
ings produced by RCM and GPS?

b) How does the combination of our ordering algorithm (RQT) and BLKSLV
compare with the combinations in a)?

c) Which of the two possible ways of performing the computation in
BLKSLV (F] or Fz) appears to be more efficient for the class of
problems we are considering?

In order to obtain answers to these questions, we report on the

performance of the following ordering-algorithm/solver combinations:
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1) RCM - ENVSLV

2) RCM - BLKSLV (Fq)
3) RCM - BLKSLV (F,)
4) GPS - ENVSLV

5) GPS - BLKSLV (F;)
6) GPS - BLKSLV (F,)
7) RQT - BLKSLV (Fy)
8) RQT - BLKSLV (F,)

Our test problems consist. of six two-parameter planar
mesh problems typical of those arising in structural analysis. The basic
meshes shown in Figure 6.1 are subdivided by the factor a in the obvious
way, yielding a mesh having a(a+1)/2 times as many triangles as the original
mesh, as shown in the examples in Figures 6.2-6.3 for various values of o. The second
parameter p governs the distribution of nodes on the mesh, and corresponds
essentially to the degree of certain piecewise polynomial bases used in finite
element applications [ 9,16,18]. For any u = 1, there is one node at each
vertex of the mesh, u-1 nodes along each edge, and (u-1)(u-2)/2 nodes in the
interior of each element (triangle). For our purposes, the coefficient
matrix of the corresponding symmetric positive definite matrix problem
Ax = b has the property that Aij 0 <= X; and xj are associated with nodes

which belong to the same mesh triangle.



a) Square b) . Hollow square (small hole)

d) Hollow square (large hole)
¢} Graded L

e) + shaped domain f) H-shaped domain

Figure 6.1 Mesh Probiems with o=
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Figure 6.2 Graded L domain with a=4
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Figure 6.3 H-shaped domain with a=6
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It i 1089 Ordering Storage+t iFactorization Solving
E ; ;2 Timef Bandwidth ;;;fileEPrimary OverheadiTota1 Operations TimevOpcration% Time
RCM-LNVSLY 0.60i 33 25553 ;25553 1092 i26645; 344608 | 3.52: 51106 % 0.46
RCM—BLKSLV(I1) 14641 5543 '20]84i 344608 4.4]i 54338 E 0.7
RCM—HLKSLV(PZ) 14641 5510 20]5]’ 60032 | 6.58; 54338 % 0.63
GP'S-LHVSLY 1.01 33 25553 125553 1092 26645| 344608 | 3.56{ 51106 | 0.44
GPS-HLKSLV(l]) 14641 5543 201841 344608 | 4.507 54338 0.64
GPS-BLKSLV(!Z) 14641 5510 20151, 560032 | 6.70!1 54338 0.64
RQT—BLKSLV(T]) 0.67 33 25553 | 14641 5543 20184 344608 | 4.50; 54338 0.68
RQT-BLKSLV(FZ)! 14641 5510 20151 560032 6.78' 54338 0.67
N = 961 |
=2 i
a = 15 |
RCHM-ENVSLY 3 0.81 65 23800 123800 964 E24764 334114 3.34! 47600 0.40
RCM-BLKSLV(%I)% 14865 8077 f22942 334114 | 3.87: 54838 0.58
RCM-BLKSLV(FZ); 14865 5256 20121 547581 1 5.99! 54838 0.60
GPS-ERVSLY 1.12 63 37310 37310 964 38274 - - - -
GPS-BLKSLV(%I) 20365 7895 28260 | 845503 | 8.41, 76708 0.74
GPS-ULKSLV(FZ)! 20365 5316 25681 1221301 11.82{ 76708 0.74
RQT—BLKSLV(I]) .1 119 31606 | 14106 8077 221831 494755 ; 5.03] 51802 0.55
RQ[—BLKSLV(}Z) g 14106 5256 19362 619059 | 6.47] 51802 0.56
Table 6.1 Tabulated results for the square domain

U Primary storage is the storage required to store entries in the matrix; overhead storage is

used to store subscripts, pointers, etc.

ing that -needed for the right-hand side.

Total storage is the amount of storage used, exclud-
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‘h e 955.MV—> Ordering Storage Factorization Solving

i i }2 —};;;;TB;;JQEI&L”F;;fi1e Primary%Ové}head?Total}Ope;ations Time Operétion% Time
RCM-ENVSLY 0.47 27 22753 122753 939 23692 301788 52.99 45506 : 0.39
RCM-BLKSLV(] ]) 12967 4733 17700 301788 E 3.78| 46266 | 0.56
RCM~B1KSLV(12) 12967 4707 17674 489665 E 5.69| 44266 0.56
GPS-ENVSLY 0.74 27 22753 | 22753 939 23692, 301788 ; 2.99) 45506 0.39
GPS-BLKSLV(F]) 12967 4733 17700, 301788 E 3.81) 48266 0.57
GPS-BLKSLV(FZ) 12967 4707 17674 489665 i 5.74| 48266 | 0.59
RQT-ULKSLV(r]) 0.51 28 23061 {12967 4733 17700 310029 % 3.86| 48266 0.57
RQT—BLKSLV(FZ) 12967 4707 17674y 493141 i 5.84| 48266 0.56

N =936 L

no= 2

a =6

RCM-ENVSLY 0.88 58 24842 | 24842 939 25781T 356872 | 3.41 49684 0.42
RCM-BLKSLV(T]) 15367 6911 22278 356872 | 4.06| 57002 0.61
RCM—BLKSLV(FZ) 15367 5091 20458 | 590312 | 6.88 57002 0.61
GPS-ENVSLY 1.1 56 36608 | 36608 939 37547 - - - -
GPS-BLKSLV(F]) 19628 6959 265871 786126 | 8.12! 73932 0.73
GPS-BLKSLV(FZ) 19628 5139 24767 { 1103268 [11.30] 73932 0.75
RQT—BLKSLV(F]) 1.26 103 33772 | 14706 6911 21617 548162 | 5.31! 54358 0.55
RQT-BLKSLV(FZ) 14706 5091 19797 683297 7.121 54358 0.58

Table 6.2 Tabulated results for the hollow square
domain (small hole)



1009> Ordering Storage ;Factorization | Solving
x - é h};;;wwbandwidtﬁfProfi]o;Primary:Overhead Total‘Operation# Time Op}}gngﬁgw?}Hé—
RCM-LNVSLY 1.32 35 30028 | 30028 1012 310407 487992 } 4.54 6056 ? 0.50
RCM—HLKSLV(I]) 16732 5183 21915, 487992 5.60; 63106 | 0.67
RCM-BIKSLVY(! 2) 16732 5070 218021 796388 | 8.58 ‘ 63006 0.67
GPS-ERVSLY 0.98 33 25802 |25802 1012 268141 362124 | 3.56] 51604 6.43
GPS-BLKSLV(F]) 14717 5199 19916 362124 | 4.46] 54946 0.62
GPS-BLKSLV(FZ) 14717 5086 19803] 596075 | 6.90; 54946 | 0.62
RQT—BLKSLV(F]) 1.41 35 29673 | 16717 5183 21900| 476036 | 5.55) 62946 | 0.69
RQT—BLKSLV(FZ) 16717 5070 217871 788344 | 8.40f 62946 0.67
N = 1009
u =2
a =4
RCM-LNVSLV 1.19 ’ 69 27976 127976 1012 28988 422357 | 4.29; 55952 0.48
RCM—BLKSLV(T]) 17635 8792 26427 422357 | 4.85; 65672 0.7
RCMwBLKSLV(lé) 17635 5511 2314641 720559 | 7.74] 65672 0.72
GPS-ENVSLY 1.42 67 38530 (38530 1012 39542 - - - -
GPS-BLKSLV(P]) 22355 8792 31147 825303 | 8.99: 84552 0.80
GPS-BLKSLV(I?) 22355 5511 27866 1147497 |11.69! 84552 0.84

RQT~BLKSLV(F1) 1.68 120 38822 16807 8792 255991 676549 | 6.96| 62360 0.68

RQT~BLKSLV(F2) 16807 5511 22318) 844221 | 8.70| 62360 J 0.67

Table 6.3 Tabulated results for the graded L domain
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= 1440 Ordering Storage IFactorization Solving
E - ; Time | Bandwidth! Profile Primary!Overhead,Tota]‘Operations' TimeIOperations‘Time
RCM-ENVSLY 0.69 21 28218 28218 1443 2966]5 300226 3.14; 56436 | 0.49
RCM-BLKSLV(F]) 16526 7259 23785t 300226 4.44, 60630 : 0.80
RCM-BLKSLV(FZ) 16526 7239 23765 484736 6.64, 60630 ! 0.84
GPS-ENVSLV 1.56 21 28218 | 28218 1443 29661 300226 3.421 56436 ; 0.55
GPS-BLKSLV(F]) 16526 7259 23785} 300226 4,17 60630 i 0.76
GPS-BLKSLV(FZ) 16526 7239 23765 | 484736 6.25] 60630 ! 0.77
RQT-BLKSLV(f]) 0.77 22 28245 {16526 7259 23785 300496 4.47‘ 60630 ! 0.84
RQT-BLKSLV(FZ) 16526 7239 23765 | 485600 6.33; 60630 ! 0.79
N = 1152
=2
a=4
RCM-ENVSLY 0.76 44 22200 | 22200 1155 23355i 232144 ‘ 6.95f 44400 0.40
RCM~BLKSLV(F]) 14684 6407 21091 | 232144 7.85? 53358 0.65
RCMHBLKSLV(FZ) 14684 6227 20911 392004 |11.91 53358 0.66
GPS-ENVSLV 1.37 40 32943 | 32943 1155 34098 - - - -
GPS—BLKSLV(F]) 19524 6439 25963 | 518798 |19.06; 72644 | 0.78
GPS-BLKSLV(FZ) 19524 6259 25783 1 750097 23.81 ! 72644 0.78
RQT—BLKSLV(F]) 1.28 71 30400 {14166 6407 20573 | 360926 5.28 | 51286 0.59
RQT-BLKSLV(FZ) 14166 6227 20393 ! 455338 7.39 1 51286 0.60

Table 6.4 Tabulated results for the hollow square

domain (large hole)

¥ The apparently inconsistent timing in this column is due to underflow interrupts.
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N = 1180 Ordering Storage fFactorization ' Solving

2 - ; Time | Bandwidth! Profile; Primary, Overhead|Total Operationsg TimeLOperations Time
RCM-ENVSLV 0.82 31 25860 {25860 | 1183 27043, 332412 3.261 51720 0.42
RCM-BLKSLV(F]) 15013 5940 20953 332412 4.04i 55604 0.64
RCM—BLKSLV(FZ) 15013 5910 20923 539721 6.10% 55604 0.64
GPS-ENVSLY 1.17 21 22630 | 22630 1183 23813 235208 2.48! 45260 0.4
GPS—BLKSLV(F]) 13296 5939 19235} 235208 3.33! 48714 ;0.65
GPS-BLKSLV(FZ) 13296 5919 19215 379424 4.77, 48714 { 0.64
RQT-BLKSLV(F]) 0.79 235 19759 A 9645 6028 156731 123215 2.07t 34132 ;0.53
RQT-BLKSLV(FZ) 9645 6000 156451 190873 2.95; 34132 !0.52
N = 945 |

u=2

a =4

RCM-ENVSLV 1.04 58 19862 | 19862 948 20810 241666 | 2.41; 39724 0.36
RCM-BLKSLV(F]) 12965 7095 20060 241666 2.92§ 47522 0.52
RCM—BLKSLV(FZ) 12965 5070 18035 | 409569 | 4.761 47522 ?0.54
GPS-ENVSLY 1.47 40 20697 | 20697 948 216451 254761 2.72| 41394 0.38
GPS-BLKSLV(F]) 14639 5497 20136 | 254761 3.511 54098 0.59
GPS»BLKSLV(FZ) 14639 5110 19749 | 534489 | 6.41| 54098 0.61
RQT-BLKSLV(F]) 1.45 222 19355 8769 6517 15286 138166 1.88] 30738 0.4
RQT-BLKSLV(FZ) 8769 5110 13879 179606 2.53| 30738 0.4

Table 6.5 Tabulated results for the + shaped domain
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N = 1377 Ordering Storage Factorization Solving
2 j é '¥;m;“_b;;a;€hihﬂbf;¥;}e Primary Ovcrhead!Tota] Opcrations{ Time‘Operation% Tine
RCM-ENVSLY | 0.79 27 21682 | 21682 13860 23062 195063 2.08, 43364 0.39
RCM-BLKSLV(F]) 13062 6967 20029! 194028 2.87; 47078 | 0.63
RCM-BLKSLV(FZ) 13062 6342 20004| 309558 4.23, 47078 ; 0.64
GPS-LNVSLY 1.57 27 21682 121682 1380 23062 195063 2.18; 43364 | 0.38
GPS-BLKSLV(W]) 12212 6642 18854| 125039 2.01| 44328 0.60
GPS—ULKSLV(TZ) 12212 6617 18829| 210521 2.94; 44328 0.60
RQT-BLKSLV(T]) 0.80 189 16857 | 10124 7047 17171} 106173 1.98; 35326 0.58
RQT-HLKSLV(TZ) 10124 7022 17146 164757 | 2.83] 35326 : 0.60
FE:M%UB

no= 2

a = 3

RCM-ENVSLY 0.73 43 10996 {10996 808 11804 | 85875 0.99) 21992 0.20
RCM-BLKSLV(T]) 1787 4841 12628 | 84524 1.32| 27522 0.37
RCM—BLKSLV(FZ) 7787 4314 12101 | 140990 1.98] 27522 0.37
GPS-ENVSLY 1.00 42 13611 [13611 808 14419 | 137205 1.45| 27222 0.25
GPS—BLKSLV(F]) 9307 5340 14647 | 136525 1.84] 33542 0.40
GPS—BLKSLV(FZ) 9307 4339 13646 | 234751 2.85! 33542 0.40
RQT»BLKSLV(F]) 1.13 132 12021 6399 4871 11270 | 69679 1.11} 21970 0.33
RQT—BlKSLV(Fz) 6399 4344 10743 | 92318 1.49( 21970 0.33

Table 6.6 Tabulated results for the H shaped domain
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8§7. Concluding Remarks

To a large extent, the experimental results appearing in Tables
6.1-6.6 speak for themselves. We offer the following observations and remarks.
1) Our ordering algorithm/solution package appears to be as good
as its competition in all our examples, and substantially superior when the
domain has appendages and/or when high order elements (u > 1) are used.
This latter aspect seems particularly important, since the trend in finite
element applications seems to be towards the use of these more sophisticated
elements.
2) Even for problems of around 1000 equations, the time spent in
finding the ordering of the equations is still a nontrivial fraction of
the overall time spent in solving the problem.

In this connection, in all three algorithms, a substantial portion
of the ordering time (typically 40-50 percent) was spent finding the pseudo-
peripherial node(s) from which the rooted level structures were generated.

3) As described earlier, we reported primary and overhead storage
separately. In our implementation one storage location was used for each
overhead item (subscript, pointer, etc.). On machines which have a
large word size, it might make sense to pack such data two or three items
to a word. This would mean our scheme would lead to much more dramatic savings
in storage requirements than is apparent from our tables.

Along this line, we contend that storage reduction should be
regarded as at Teast as important as processor time, perhaps more so. Since
main storage continues to remain a relatively expensive hardware resource,

computing center charging algorithms are usually designed to discourage large
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main storage demands. A typical charging scheme is cost = (processor time) x
pq(storage used), where pq(x) is a polynomial of degree q, with q = 1.

It is frequently the case that for large problems, halving the storage
requirements more than compensates for doubling the processor time.

4) The algorithm GPS appeared to do an excellent job of finding an
ordering having a small bandwidth, as it was designed specifically to do.
Its performance as a profile minimizer was less consistent, however; for
our problems the RCM algorithm appeared to be at least as éffective,
particularly for the problems with appendages and/or those involving high
order elements (u > 1).

5) With regard to the variations F] and F2 of BLKSLV (see section 2),
for our examples, the F] version was significantly more efficient in terms
of execution time, and for the Tow order elements (u = 1), required only
slightly more storage. However, for u > 1, the F2 yersion required substan-

tially less storage.
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