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The design of data structures should be made systematically, rather
than being haphazardly based on past experience. Data structures should be
designed through step-wise refinement, using a framework which incorporates
five distinct stages: data reality, data abstraction, information structure,
storage structure, and machine encoding. The description of the proposal
presented here includes its relation both to other research in data structures
and to other approaches to data structures design. An application taken from
the literature is then described in terms of the design framework.

One aspect of the design which can be approached algorithmically
{s the evaluation of storage structures (the fourth level of the design
framework). If a library of potential implementations for each permissible
data type is maintained, parametric formulas for expected run time and
storage space can be derived for each member. The resulting formulas for
individual data types are then used to design a storage structure by super-
imposing Tibrary members chosen to minimize the cost for a given information
structure. The representation of the application described in the first

section is thus redesigned using the algorithm described.



1. A scenario for data structure design

1.1 Levels of data refinement

Most data structures designers finally realize that data should
be specified at two Tevels: the abstract, user-oriented information structure
and the concrete, machine-oriented storage structure. Judging from the
experience of algorithm designers, data structures should instead be viewed
at many levels.

The design methodology suggested in this paper is based on five
views of data:

+ data reality: the data as it actually exists (including all
aspects which are typically ignored except in philosophical
treatises)

« data abstraction: a model of the real world which incorporates
only those properties thought to be relevant to the application(s)
at hand

+ information structure: a refinement of the abstraction, often
expressed in mathematical terms, in which only some data
relationships are made explicit, the others derivable
indirectly

« storage structure: a model of the information structure,
often expressed in terms of diagrams which represent cells,
linked and contiguous lists, and levels of storage media

. machine encoding: a final computer representation, including
specifications for encoding primitive data objects (e.g., the
representations for numbers and characters, the use of absolute

as opposed to relative addresses, and the use of data packing).



The design of a data structure should proceed through successive levels,
binding only those aspects which are necessary to specify each level.
Within a level, the process of stepwise refinement should be adapted
from algorithm design methodology to provide as smooth a transition as
possible to the more detailed data level [Dijkstra 72, Wirth 73, Honig 74].

These five views of data correspond exactly to the levels of
development in the corresponding program which describes the data operations
to be performed. The first step defines the application's goal in terms
of real objects. Next, the approach to a solution which achieves that
goal is specified in terms of the data abstraction. An algorithm incor-
porating the approach is designed to operate on the information structure,
after which a program implementing the algorithm is written to manipulate
data in terms of its storage structure. Finally, the program is translated
into object code which operates on data bound to a particular machine
encoding.

The following paragraphs examine some aspects of research at
each of the levels of data and at the interfaces between successive levels.
This outline is not a complete review of current activities in data
structures, but rather it is intended to provide additional insight into
the interrelationships among the levels.

Top-level management must be able to consider all aspects of the
data reality. For example, managers in a credit card company do care
about the availability of plastic for the cards, the appeal of the design
on the card's face, and other aspects which are probably "irrelevant" in
the view of computer personnel dealing with the data. Therefore, such

information must be included as part of the first view of data.



Translating an application from the reality into the abstraction
is the interface at which data managers decide which aspects of data are
relevant to the model (possibly by enumerating the types of queries and
updates that may be applied to the data). This interface has also been
studied by researchers in artificial intelligence who try to approach a
problem by generating subgoals and assertions that lead to a solution.

Next, the data abstraction is the level at which management must
communicate with computer personnel. In order to describe data formally,
yet in terms understandable to non-mathematicians, many researchers
have decided that the data abstraction is most conveniently expressed
using a relational model of data [Codd 70]. Simultaneously, other research
at this level has been conducted in terms of algebraic and graph-theoretic
models [Furtado 75]. One important characteristic of any model at this
Tevel is that all relevant data relationships are equally accessible; thus,
there are no preferred access paths to individual data elements.

Given an abstract specification of a data structure, many
relationships can be expressed in terms of other, more basic ones. For
example, finding a person's cousins can be accomplished by finding the
children of that person's uncles and aunts, by finding the nieces and nephews
of that person's parents, or by finding the children of that person's parents'
siblings. Thus a data structures designer (typically the data base adminis-
trator) must determine which of the relationships are to be considered
basic and therefore stored explicitly as part of the information structure.

The rest will remain accessible only via one or more "access paths" through

the stored relationships [Astrahan 74].



Recently, research at the information structures level has been
concentrated on the study of data types [Hoare 72]. Each explicit relation-
ship must be encoded by means of a data type such as a Cartesian product,
sequence, set, or array, for which certain operations are defined. From
these, complete information structures can be built and associated algorithms
can be expressed in terms of the given primitive operations. Another area
of study within information structures is the determination of optimal
ordering within a particular data type (e.g., search trees) [Knuth 71].

For each data type there are many storage structures which can be
used to model the data and operations. Thus, at the next interface, the
choice of representation includes decisions between contiguity and links
(i.e. pointers), between one-way and multiply-linked lists, and between
direct addressing and scatter storage techniques. Some research has been
conducted into choosing an optimal representation from only one class of
storage structures [Randall 72], whereas section 2 describes a method for
selecting the best representation available from a Tibrary of structures
encompassing many classes.

Individual storage structures have been studied for many years.
Before the mid-sixties numerous novel linking methods were developed
in new programming languages [McCarthy 60, Weizenbaum 63, Roberts 65].

More recently, quantitative studies have been conducted to determine the
performance characteristics for several storage methods [Lum 71, Nievergelt 72].
Binding a storage structure to a machine is the last interface in

the design of data representation. Research at this interface includes the



choice of encoding for indivisible units of data such as integers (twos
complement vs sign magnitude) and characters (EBCDIC vs ASCII). Research
at this Tevel includes the study of data compression techniques [Lesk 70]
and the study of portable software [Waite 70].

Finally, the machine encoding is the level at which all implementa-
tions must eventually reside. Research at this level is typically hardware-
oriented, concentrating on new memories and associated addressing
techniques [Parhami 73]. |

It is important to realize that the design of a data structure
can iterate through these levels. It may be obvious that the design of one
level may give insight into deficiencies in the design of the previous
level, thus requiring some backtracking to redesign. Less obvious is that
"one man's indivisible unit of data is another's data reality". For
example, a character string, which may be a primitive object to one user,
may instead be interpreted to be a sequence of characters, thus requiring
the design of a stcrage structure for the sequence and a data encoding

for the individual characters.

1.2 Other descriptions of data levels

The design methodology proposed here is not new, but is instead
a fresh look at methodologies suggested for several years. It is worthwhile
to examine some previous proposals which are related to this framework.

The separation of the storage structure from the machine encoding
was first incorporated into the COBOL language. By providing distinct
data and program divisions, COBOL programmers were forced to separate the

details of data encoding from the programs that manipulated the data,



thus achieving a degree of representation independence not previously
available in other 1anguages.%

In a paper which is now classic, Mealy described data at three
levels [Mealy 67]. He reminded programmers that their view of data was
only a theoretical model of real world objects, and therefore necessarily
did not include some properties thought to be irrelevant. Furthermore,
Mealy pointed out that the data as stored was, in turn, only a machine
representation for the theoretical model. He claimed that programmers must
be provided with facilities for accessing data from either of the latter view-
points to allow representation independence while still providing control
over implementation efficiency.

Following along these Tines, d'Imperio explained the advantages
of separating the design (and the description) of stored data into the two
stages suggested by Mealy [d'Imperio 69]. She then reviewed several common
structures in terms of those two levels which she called the data structure
and the storage structure. This analysis aided her in comparing the
facilities and efficiency of the data structures provided by a chosen set
of programming languages.

A two-level approach to data has led several language designers
to provide a syntax and semantics which will aid programmers in separating
the design of the theoretical model from the design of the machine
representation. Balzer developed a system which provided a uniform syntax
for manipulating several data types [Balzer 67]. For example, the construct

PERSON(AGE) could be used to access a component of a PL/I structure, access

T The format statement in FORTRAN does provide some independence, but at the
input/output interface only.



an element in some array, or call a function which takes one parameter and
returns some value. The particular machine representation to be used could

be chosen after the program was completely written, and if inadequate it
could be redesigned without any programming changes. Separating the two
design decisions by this technique has since become known as uniform referents
[Ross 70].

An extension and formalization of these ideas has recently
received much attention under the name of abstract data types. One major
approach has been conducted by Liskov and Zilles who have designed a language,
CLU, which incorporates a construct named a cluster, through which the
properties of a user-defined data type and valid operations on that type are
defined separately from its representation [Liskov 74]. The translator for
CLU enforces this separation by allowing access to a data type's representa-
tion inside the cluster which encodes it and disallowing such access elsewhere.
The data encoding can thus be altered without affecting the rest of the program.
In addition, the clusters permit proofs of correctness to be established in
two stages: the uses of the abstract data type can first be shown to model
reality, and the representation can then be shown to be a faithful implemen-
tation of that data type.

While some researchers explored the separation of the theoretical
model from the machine representation, others realized that it is worth-
while to view data structures as consisting of more than two levels.

McCuskey described a model containing four data views: the real world
(problem level), the theoretical model (problem interpretation), the

information structure (logical organization), and the machine representation



(physical organization) [McCuskey 70]. McCuskey thus separated Mealy's
theoretical model Tevel into two stages to distinguish between the
specification of the relevant relations (to be made at the level of the problem
interpretation by using a set-theoretic framework) and the specification of
the explicit relations (to be made at the Tevel of the logical organization).
Earley furthered the ideas of McCuskey's model by developing unified Tanguage
constructs to encompass the three levels dealing with stored data [Earley 73].

Another data model developed recently is the Data Independent
Accessing Model (DIAM) [Senko 73]. DIAM has four levels of data specifica-
tion: the entity set model for describing the data abstraction, the string
model for describing the access structure, the encoding model for mapping
access structures into an address space, and the physical device model for
binding the address space to a machine. Thus, Mealy's machine representation
has also been separated into two stages: the linking method (sometimes called
the "storage mapping function") is to be specified at the former and the actual
data layout at the 1atter.*

Figure 1 compares the several related proposals. From this
summary, it should be apparent that the five views of data suggested here

are not without a history, and that further motivation for each level can be

found elsewhere .

1.3 An example of data description by levels

To understand the role of each view of data structures, it is worth-
while to examine an application taken from actual practice. This section

therefore contains the description of a system for natural language

T McCuskey also recognized this division, which he named the relative vs
absolute organization and incorporated into his model as sublevels of The

physical organization.



- 10 -

Figure 1 Comparison of data lTevel models
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understanding which has recently been developed [Cohen 74b]. Naturally,

it would be tedious, and likely confusing, to include all details of the
design process or even of the final data design; many aspects are therefore
omitted or simplified.

For this application, the data reality was natural language -
in particular, written English. The data domain therefore included at Teast
grammar (part of speech, tense, mood, voice), meaning (denotation, connota-
tion), etymology (derivation, form), style, punctuation, and typesetting
(type font, Tine width, spacing). Although it may not be apparent that all
these could affect understanding, writers, publishers, and reading teachers
might choose a different subset of these data properties as influencing a
reader's comprehension.

Since the system was intended to be used to answer questions input
from some computer terminal, the relevant relations were derived from some
aspects of English syntax and semantics only. In particular, the syntax
could be represented by a model in which a sentence consists of a verb
together with a set of noun phrases assigned to roles determined by the verb's
"case frame". The semantics were modeled by a "structural dictionary"
which used a hierarchy of concepts (e.g., Ypen - writing implement - tool -
artifact"), some definitional information encoded using case grammar (e.g.,
"pens use ink"), and links to specific instances occurring in some text
(e.g., "John holds the pen and the paper"). Cohen chose to represent the
data abstraction by a labeled, directed graph in which the edges served
either to identify a node or to link a verb to its noun phrases, a concept to

its superset, or an instance to its dictionary entry (Figure 2).
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Figure 2 Data abstraction
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At the Tevel of the information structure, only some relationships
from the graph can be made explicit. It was decided that connectivitiy,
reachability, and planarity, for example, were not used sufficiently often
to justify their explicit inclusion. Furthermore, because graph traversal
was expected to be performed in the direction of the edges more often than in
reverse, edges originating at a node would be represented explicitly (those
sharing a common label being grouped together), but those terminating at
that node would only be accessible implicitly through a set of predecessor
nodes (i.e., nodes from which there originates at least one edge terminating
at the particular node in question). The following declarations could thus

be used for the information structure (Figure 3):

type graph = set of node;
type node = (set of node PREDECESSORS;

set of edge class OUT EDGES);

type edge class = (string LABEL; set of node SUCCESSORS)

This choice of information structure determined the algorithms
which could be used to manipulate the data base. For example, finding the

set of nodes adjacent to node N via an edge labeled E implied scanning

the set OUT_EDGES(N) for an edge class which has LABEL E and returning the
corresponding SUCCESSORS. On the other hand, finding the set of nodes

of PREDECESSORS(N) and returning all those nodes for which the set OUT_EDGES
has an edge class with LABEL E and with SUCCESSORS including N. The following
Algol-Tike procedures encode these algorithms at the information structure

level:
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Figure 3 Information structure
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(set of node) procedure SUCCESSOR (node N; string E);

begin
set of node S;
:= empty;
or I'e OUT EDGES(N) do
if LABEL{I) = E
" then S := SUCCESSOR(I);

—h )

|

w

end;
(set of node) procedure PREDECESSOR (node N; string E);

begin
set of node S;
1= empty;
for P"e PREDECESSOR(N) do
for I ¢ OUT EDGES(P) do
if LABEL(I) = E
then for J e SUCCESSORS(I) do
ifd=N T
then S := S v {P};

[¥2]

S
end

At the next Tevel, the storage structure must encode each of the
data types comprising the information structure. Because sets were expected
to be fairly small and insertions and deletions were expected to occur quite
frequently, singly-Tinked lists were chosen to represent sets in storage.

In addition, each set was to be headed by an owner element to which the last
element of the list was linked.

Finally, the machine encoding binds the data structure to a
machine. Since the application was intended to be core-resident on an IBM
System/370, pointers were encoded as full-word, absolute addresses and
strings were encoded in EBCDIC.

Describing the data structure from all five views allows some

improvements to be incorporated into an application in such a way that only
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those levels affected need to be altered. For example, moving Cohen's system
to another machine or allowing for data segments to be relocated should
require changes to the machine encoding only. Decreasing set search time
(e.g., by ordering the edge classes lexicographically by LABEL) should

affect the storage structure only. Improving the algorithms (e.g., simplify-
ing reversed edge traversal) will have its major impact on the information
structure. Finally, including additional graphs in the data base (e.g., to
represent a scenario predicted by the system from its present understanding)
or revising the case grammar representation would involve changes to the

data abstraction. The step-wise design of data produces a modularity which
leads to clarity in description and convenience in data reorganization.

&

2. Evaluation storage structure alternatives

Although the design of data structures involves a}great deal of
insight and artistry by the designers, there are stages which can be made
algorithmic. In particular, the transition from the third level, the
information structure, to the fourth, the storage structure, can be made
methodically enough to be automated. To incorporate the algorithm it will
therefore be assumed that an application's data structure, being designed
according to the scenario given here, has been refined fo the level of the
information structure (i.e., data relationships have been made explicit by
choosing appropriate data types to superimpose and by writing corresponding
algorithms to manipulate the data). The next step is therefore to design a
storage structure which will be an efficient model of the information.

Because the number of possible storage structures is very large,

choosing an efficient one has too often been based on the designer's
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intuition and past experience. To reduce the number of choices, the effi-
ciency of possible representations for each of the individual data types
involved in the information structure can be evaluated first, and then, using
these evaluations, the costs of storage structures produced by the superposition
of the representations can be compared. Although the number of choices for

the representation of a single data type is much smaller than the number which
can represent a composite information structure, even for a single data type
many representations have been described in the literature, and many more can
still be described. There seems to be no method for effectively organizing

the set of all possibilities, and to search the space of all representations

would be extremely inefficient, if not impossible.

2.1 The Tibrary of storage structures

The approach adopted here is to consider only representations
available from a given "library". To contain representations used in current
applications, this library would likely include contiguous tables, hash
tables, linear linked lists, and a variety of tree structures [Gotlieb 74].
In practice, for an application written in a high Tevel language, the library
would consist of those representations which can be generated by the
language's translator. To choose a globally optimal storage structure is
not the goal here, but rather to choose one which has the most efficient
implementation as generated by the transiator.

For any data type, the library should contain one or more
clusters of code which implement the operations for that type, as could be
done in the CLU framework reported in section 1.2. Furthermore, since the

choice of representations will depend on the efficiency of the implementation,
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it would be convenient for each data type to have an associated cost table.
For each potential representation for a data type, this table should contain
an entry indicating formulas for expected run time and storage space in
terms of parameters which will reflect the role of the data type in the
information structure. For example, the parametric table entries for a
"sequence" (i.e., an arbitrarily large, ordered collection of similar elements)
would contain formulas for representations by contiguous storage and by a
singly-linked list. These formulas, expressed in terms of the expected
number of elements in the sequence; the expected size of each element; the
expected target position for a probe (e.g., whether all probes are at the
start or, instead, uniformly distributed over the sequence); and the expected
number of insertions, deletions, and sequences traversals, may then be
evaluated in light of an application's parametric values as determined from
the algorithms used on the information structure.

Recently, two systems have been described for measuring expected
run time for a program. In the first [Cohen 74a], a program written in a
language similar to Algol 60 is translated into a LISP structure in which each
source-level construct is replaced by an expression that parametrically
represents the time to execute that program. In the other (Appendix), the
syntax of the Counter language was designed such that every symbol in a
program has an associated run time, and the expected time for a complete
program can be determined easily during parsing. By using either system to
encode the basic operations defined for a data type, the run time for each
representation in the library can be determined with respect to parameters

which represent how many times each function is executed, as well as how
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many times loops are executed, whether various conditions will be true or
false, and the timing characteristics of the hardware. The resulting formulas
form the run time entries in the parametric table.
Unlike the evaluation of run time, the measurement of storage

space is not directly dependent on the processes involved in the application.
In fact, the amount of storage space can be specified as a function of

« the number of occurring elements,

» the maximum number of elements likely to occur,

» the number of possible elements,

« the number of cells per element, and

» the size of each ceH.Jr

Therefore, parametric formulas which represent the storage space can also be

entered into the table.

2.2 Using an evaluation matrix to choose a storage structure

To choose a storage structure for a given information structure,
the appropriate parametric table must be evaluated for every "substructure"
(i.e., for every instance of a data type appearing as an explicit relation).
These calculations will each produce a column of an evaluation matrix, such
that the element pair in row i and column j represents the run time and
storage space contributed by the j-th substructure when represented by the i-th

cluster in the Tibrary.'™

i The possibility of overlapping clusters to share data complicates the

analysis of storage space requirements. The user must supply additional seman-
tic information to allow the system to consider shared data. The problem can
be circumvented by assuming that the parametric values have been adjusted by
the user such that each item of data is reflected once only.

Fr The orderings of the substructures and the library's members do not affect
the evaluation's outcome, but they may affect the efficiency of the evaluation
itself,
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The calculation of expected run time is straightforward. From
the algorithms at the information structure Tevel, the values of most of a
cluster's parameters can be determined, the rest being assigned default
values. These values are then substituted into the time formula for
the cluster, which will yield the expected run time (in microseconds).
This result is then assigned to the appropriate time entry of an evaluation
matrix.

The space required by a substructure is the product of the number
of cells used by the cluster representing that substructure, and the
number of copies of that substructure in the application. Thus, for
example, the space required by a cluster representing a personnel record
must be multiplied by the number of personnel records in the file. If
this product were entered into the matrix, however, the space used by a depen-
dent substructure (one wholly contained within another) may be represented
twice: first as the dependent substructure itself, and second as a set of
fields within one of the member elements of the substructure on which it
depends. To avoid this duplication, it is necessary to multiply only the number
of cells for that part of each substructure which would be Tocated outside
all other substructures by the expected number of instances. The space
entry will therefore contain that product (henceforth called the separafe
space) separately from the space which will Tie within another substructure

(the nested space).+

T Where programs and data are allocated storage from the same memory, the
space required for manipulation routines can also be entered into the matrix
separately.
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Given such an evaluation matrix and a user-supplied cost formula
as a function of space and/or time, a cluster may be assigned to each
substructure such that the resulting composite storage structure has minimal
cost over all such cluster assignments. Unfortunately, in general, the Teast
cost for the whole application is not achieved when each substructure uses
the least-cost cluster. For example, consider an application having the
following evaluation matrix in which, for simplicity, only one space entry
per matrix element is shown:

substructures
1 2
1 (50 cells, 50 msec.) (1 cell, 100 msec.)
clusters

2 (100 cells, 1 msec.) (40 cells, 60 msec.)

For the cost formula represented by space*time, a matrix of costs

could be derived by evaluating each element individually:

substructures
1 2
1 2500 cell-msec. 100 cell-msec.
clusters
2 100 cell-msec. 2400 cell-msec.

Thus cluster 2 has the least cost for substructure 1, and cluster
1 has Teast cost for substructure 2. Using these assignments to implement
the appTlication would result in a cost of (100+1 cells) * (1+100 msec.) = 10201

cell-msec. This is clearly not minimal: using the first cluster for both
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substructures would result in a lesser cost, namely (50+1 cells) * (50+100 msec.)

7650 cell-msec.

Because choosing the cluster of least cost for each substructure
will not guarantee an efficient storage structure, it would seem at first that
all possible combinations of clusters must be examined. This is impractical
for large applications, however, because the number of cluster assignments
grows exponentially in the number of substructures. Therefore, a technique
must be adopted for reducing the expected number which need to be evaluated
explicitly.

Branch and bound, which has been used successfully in many areas
of operations research [Lawler 66], can be applied to direct the search for
an efficient storage structure. "The space of all feasible solutions is
repeatedly partitioned into smaller and smaller subsets, and a lower bound ...
is calculated for the cost of the solutions within each subset. After each
partitioning, those subsets with a bound that exceeds the cost of a known
feasible solution are excluded from all further partitioning."

Applied to this algorithm, the branching phase partitions sets of
potential storage structures by considering one substructure at a time.
Consider, for example, an application consisting of three substructures,
each of which can be represented by any of four clusters (thus there are

43

= 64 potential storage structures). The set of all potential storage
structures can be partitioned along the first substructure into four subsets:
those in which the first substructure is represented by cluster 1, by
cluster 2, by cluster 3 and by cluster 4, respectively. It is convenient to

represent the state of cluster assignments by an assignment vector in which

each position corresponds to a substructure and each non-null entry corresponds
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to the number of the cluster assigned. For example, the initial assignment
vector would be (,,). After branching along the first substructure, four new
assignment vectors would be generated (1,,), (2,,), (3,,), and (4,,). Choosing
the second of these for subsequent branching would result in four new subsets
of potential storage structures, represented by (2,1,), (2,2,), (2,3,), and
(2,4,). Finally partitioning the first of these would produce four fully-
defined storage structures (2,1,1), (2,1,2), (2,1,3), and (2,1,4). The
complete branching into subsets can be illustrated in the form of a tree of
assignment vectors (Figure 4).

Because the clusters are to be superimposed in a given machine, and
not only in a mathematical model, the characteristics of the machine must be
considered in order to avoid any contention (e.g., for limited memory space)
[Gotlieb 74]. Thus, given an assignment vector, v, and a substructure, j, for
which v(j) = null, a preliminary pruning phase must be invoked to eliminate
those clusters which would lead to contention if assigned to the j-th
substructure. That phase can further reduce the number of possible cluster
assignments for v(j) by eliminating those for which the cost for performing a
needed operation is prohibitive (e.g., an implementation requiring a complete
scan of memory).

The branching of a set of cluster assignments, represented by
vector v, into subsets is therefore accomplished as follows:

* Find the index of the first null entry, J. (The algorithm
is such that if v(J) = null, then v(j) = null for all j > J.)
* Use the preliminary pruning phase to eliminate all clusters

which cannot be chosen for the J-th substructure.

* For each of the k clusters ij,...,ig remaining in the library,
create a new assignment vector vI such that vI(j) = v(j) for

§# 3, and Vi) = il



- 24 -

Figure 4 Branching of a set of storage structures into subsets
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If the set of all potential storage structures were to be fully
partitioned, as implied by Figure 4, and each node of the tree were to be
evaluated, the cost for evaluation would not be decreased. It is the second
stage of branch and bound which attempts to prune the tree by finding lower
bounds on cost for all members of designated subsets. For example, if a Tower
bound on cost for the storage structures in the set represented by assignment
vector (1,,) were found to be greater than the cost for the storage structure
represented by (2,1,3), there would be no need to evaluate the left quarter
of the tree in Figure 4. When the cost formula, F, can be assumed to be a
non-decreasing function of run time and storage space, one lower bound on
cost is the value of F applied to the fastest possible time and the smallest
possible space (which are not necessarily simultaneously achievable).

To calculate the fastest possible time for a set of assignments
vV, a temporary assignment vector Tv is constructed, in which if v(j) # null
Tv(j) is set to v(j), and if v(j) = null, Tv(j) is set to the index of the
cluster requiring least time after pruning. (If several clusters have the
same minimal time, one of those with Teast space should be chosen for Tv(j).)
It is important that, for each substructure, the library is pruned with
respect to v, rather than to that part of Tv which has already been constructed,
in order that the clusters are chosen independently for all null entries in v.
The least time for v, t(v), is the sum of the run times for the components
of Tv.

To calculate the least possible space for v, a second temporary
vector Sv is constructed similarly, except that Sv(j) is set to the index

of the cluster requiring least space for the member elements after pruning
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for each of the null entries in v. The total space for a component of Sv

must include the cells required for the nested space of any dependent sub-

structures if and only if the index in v for that dependent substructure
is not null; otherwise, the value for the smallest possible nested space
should be used. Furthermore, for a substructure which is not contained
within any others, the value for its own nested space must be added, regard-
less of the null entries in v. The least space for v, s(v), is then the sum
of the space required for the components of Sv.

The Tower bound on cost for v, denoted c(v), is therefore
F(t(v),s(v)). If (1) Tv = Sv, (2) each null entry in v which corresponds
to a dependent substructure has been assigned a cluster in which the nested
space is minimal in size, and (3) all the clusters represented by Tv happen
to be free from contention, then the storage structure is a feasible solution
for which the cost therefore provides an upper bound for the application.
It is this upper bound which is used to eliminate sets of storage structures
having greater lower bounds on cost.

The complete algorithm for searching an evaluation matrix is thus
illustrated in Figure 5. The algorithm, given an evaluation matrix and a
cost formula, returns the assignment vector and cost for the most efficient

storage structure.

2.3 An example of storage structure design

Consider again the natural Tanguage understanding system described
in section 1.3. The information structure chosen for that application (Figure

3) includes the following processes:
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Figure 5 Algorithm for searching an evaluation matrix

Determine Tv, Sv, and c(vo) for vo, the assignment vector having
null entries only

If Tv is a feasible solution
Then Set Choice to the pair <Tv,c(v®)>

Else Initialize Choice with the pair <null, infinite cost>

Initialize S, a set of vectors to consider, with the
ordered pair <v°,c(v°)> as its only member
While S is not empty:
Choose the assignment vector, V in S, with least c(V)
and delete the corresponding ordered pair from S
Apply the branching to V to obtain new vectors, V'
For each of the V':
Determine Tv, Sv, and c(V')
If c(V') is Tess than the cost for Choice
Then If Tv is a feasible solution
Then Replace Choice by <Tv,c(V')>
For each ordered pair <v,c(v)> in S
If c(v) > c(V")
Then Delete the pair from S
end "For each" Toop
Else Add <V',c(V')> to S
end "For each" Toop
end "While" Toop
If the cost of Choice is finite
Then The assignment vector chosen has minimal cost

Else There is no solution for the application
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P1. Determine whether there is an edge beginning and ending at given
nodes (hereafter called the source node and target node,
respectively), such that the edge has a given label.

P2. Find a target node, given a source node and an edge label.

P3. Find a source node, given a target node and an edge Tlabel.

P4. Add a labeled edge between two (not necessarily distinct)
given nodes.

P5. Delete a given edge between two given nodes.

P6. Add a node to the graph.

P7. Delete a node from the graph, and delete all edges to and
from that node.

For each of these processes, an algorithm has been written in terms of the
operations defined on the data types involved (i.e. sets).

The next step in the design process is to determine the values
for the parameters appearing in the library's tables, which for the example
will be assumed to contain formulas for fifteen clusters for representing
sets. For representing a short English-language discourse it may be assumed
that there are approximately 100 nodes, an average of 5 edge labels per node,
1.5 target nodes per edge label, and 4 predecessors per node. Furthermore,
it will be assumed that there is exactly one Toop on each node (specifying
the "name" of that node), and 25 distinct Tabels appearing on edges between
pairs of nodes anywhere in the graph. Finally, the relative frequencies
of invoking P1 through P7 is estimated to be 25%, 20%, 20%, 10%, 10%, 5%, and

5%, respective]y.+

¥ The expected values were estimated by P. Cohen and L. Melli from their
experience with this application.



- 29 _

This presentation will by-pass choosing a cluster for the first
substructure, the set of nodes. For reasons which are superfluous to the
illustration, it will be assumed that that substructure will be represented
by the second cluster in the library; thus vO, the initial vector for the
algorithm, is (2,,,).

Figure 6 illustrates the evaluation matrix for this application,
in which the run times represent the expected time for any one invocation of a
process. When the branch and bound method is invoked, Tv and Sv must first
be calculated for VO. From Figure 6 it can be seen that Tv = (2,2,6,2) and
that Sv = (2,11,11,11). Since the application was designed to be used at the
University of Toronto, that university's charging algorithm will be assumed;
thus,

18) 2

F(s,t) = (1.42¢1077)t + (.7%10719) txs + (.56%*107'8)txs

where t is in microseconds and s is in cells (which are assumed to be four
bytes each). Therefore, assuming that data manipulation dominates, the Tower
bound on cost is c(vo) = $.99*10'4 for each process invocation. Since Tv # Sv,
Tv is not a feasible solution, and the branch and bound algorithm proceeds
to search the matrix.

After finding the costs of 73 assignment vectors (which represent
729 potential storage structures having finite cost), the algorithm terminates
producing the vector (2,6,6,6) and a cost of 5151.91*10'4 for each process

+

invocation.  This choice represents a 14% improvement in run time over the

T The sixth cluster represents sets as described in section 1.3, except that
member elements are ordered by value and the owner element contains a "dummy
value" which is greater than any member's value.
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Figure 6 Evaluation matrix for Cohen's system

Substructure 1 is to be implemented using the second cluster:

thus the single matrix entry required is (33, (2,3) ).

Substructure 2 Substructure 3 Substructure 4
Space space space
cluster time separate nested time separate nested time separate nested

1 186.6 15 3 134.3 22.5 3 81.6 12 3
2 156.7 15 3 127.6 22.5 3 73.5 12 3
3 190.9 20 4 213.3 30 4 104.1 16 4
4 157.7 20 4 131.3 30 4 74.3 16 4
5 ® 10 2 ® 15 2 ® 8 2
6 161.4 10 2 124.3 15 2 75.3 8 2
7 ® 15 3 ® 22.5 3 e 12 3
8 323.2 20 4 264 .4 30 4 148.8 16 4
9 ® 25 5 ® 37.5 5 o 20 5
10 320.8 25 5 267.2 37.5 5 153.1 20 5
11 274.9 0 23 153.9 0 7 100.8 0 27
12 736.5 0 23 409.3 0 7 677.1 0 27
13 @ 0 *© «© 0 © © 0 ©
14 ® 5 14 ® 7.5 9 ® 4 29
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storage structure originally designed and adopted for the application.
Unfortunately, the actual cost reduction is only 4% because of an increase
in storage space.

After reconsidering the information structure in Tight of insights
provided by using this algorithm, it was redesigned to consist of three
substructures only: a set of labeled nodes, a set of out-edges for each
node (i.e., edges for which the node is a source), and a set of in-edges for
each node (i.e., edges for which the node is a target). This revision
requires new algorithms to be written for the processes. Again an evaluation
matrix can be constructed using the new parametric values, and the branch and
bound algorithm can be invoked to find the best representation. The cluster
assignment which results is (2,6,6), for which the cost is only $].66*10"4

per process invocation. This represents a 16% cost reduction with respect

to the application's original design.

3. Conclusions
This paper presents a procedure for choosing a storage structure
which will be efficient for a given application. The procedure is divided
into three phases:
« design of the information structure
« calculation of the corresponding evaluation matrix

+ search for an efficient composition of simple clusters

The algorithmic approach to choosing storage structures is superior
to intuitive methodologies in several respects. Foremost, the algorithm

includes a comparison of all structures which can be realized by superimposing
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components from a library. Therefore, a cluster which is traditionally used
in one specific application, and which is therefore included in the library,
will be considered for any substructure having the same data type. Although
the resulting choice may not be counter-intuitive, it is often not what
intuition would dictate. )

A second aspect favouring the algorithm is its speed. Because of
the parametric approach, the evaluation matrix entries for each substructure
can be calculated quickly. While it is true that searching the matrix may
require an amount of time that grows exponentially in the number of sub-
structures, the branch and bound technique is a systematic search which attempts
to eliminate many potential computations. Furthermore, there have been
several heuristics suggested for increasing the efficiency in branch and
bound searches, including methods for computing suboptimal solutions
[Lawler 66]. Additional improvement in the algorithm's speed can be obtained
by judiciously ordering the substructures (matrix columns), such that the
substructures having the least number of choices and the "clearest" choice
of clusters occur first. (In this way, the exponentiality of the search will
be reduced.) Therefore, unlike traditional hand analyses, the method is
fast enough to allow many alternatives to be considered. In fact, using a
PL/C [Conway 73] implementation of the algorithm, each of several examples
required less than three seconds execution time on an IBM 370/165 [Tompa 74].

Research into the evaluation of storage structures can be continued
by examining data base applications such as those which use the Information
Management System [IBM 71]. The description manual for that system raises

the questions that have been considered here, but it fails to answer them
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satisfactorily. For example, "Within any physical data base a mixture of...
pointers may be employed... The reader is advised to review the advantages
of each pointer technique."

The choices which confront the Information Management System
user can be made systematically. After a data abstraction is designed for
an application, the Information Management System requires that the data be
separated into segments. This step would be part of the design of the
information structure, and the relations which result correspond to sub-
structures. Before applying the algorithm to choose a storage structure, the
model used to generate parametric formulas must be extended to encompass
a two-level store [Tompa 74]. Next, a library must be compiled to contain
clusters which utilize the possible Tinking methods for a segment, including
contiguous stores, singly and double linked 1ists, hashes, and any other
implementation which may be supported by the Information Management System.
(The basic set of operations implemented for each cluster would consist of
all data management commands defined, including GET UNIQUE, GET NEXT, INSERT,
and REPLACE.) Finally, the preliminary pruning phase must incorporate
any restrictions imposed by the Information Management System, e.g., "hierarchical
pointers cannot be used to connect segments in different data set groups."
After these steps are taken, users of the Information Management System will
be able to apply the algorithm presented here to design (or redesign) data

bases.
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APPENDIX

Counter, a tool for measuring run time

A program's run time is assumed to be a Tinear function of the
number of executions of each of three primitive instruction types: memory
accesses, arithmetic and logical instructions, and transfers of control.
That is, the time can be expressed as

TIME = c1*M + c2*%A + c3*T (*)
where M is the (average) time to access one memory cell; A, the average
time to perform one arithmetic or logical instruction: T, the time to transfer
control; and the coefficients represent the number of executions of each
primitive type.

The Counter Tanguage was designed to allow the expected run time
for a program to be calculated easily at compile time. The output from
the parse phase of program translation includes an expected run time for the
program in terms of the number of each primitive instruction type which will
be executed.

The complete syntax for Counter is described elsewhere [Tompa 74].
Every symbol in a Counter program has an associated run time (i.e., there are
no superfluous punctuation marks or dummy keywords).+ Counter's tokens
(the symbols which are separable by a lexical analyzer) are divisible into
six categories, each of which is recognizable by its "type font".

+ Tokens written in upper case letters, numbers, and underscores

(e.g., VAR, PARSE PTR, 25, 3 ) are identifiers or constants,

which each represent one memory access at execution time.

« Periods signify implicit memory accesses, and therefore represent

one access each.

T Counter was not designed to be a user-oriented language, but rather the
target language for translators of higher level languages.
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+ Tokens consisting of special symbols, such as +, =, and *,
each require one arithmetic or logical operation. (For simplicity,
they will be said to represent one arithmetic each.)

* Tokens written in underscored lower case letters (e.g., if, out)
are instructions which each represent one transfer of control.

* Tokens written in lower case letters and surrounded by
parentheses (e.g., (cycle), (procedures)) are control instructions
which do not add to run time themselves, but rather indicate
that the subsequent sections of code may be repeated, and thus
that their run times will be multiplied by some factor.

* Tokens written in quoted lower case letters represent "macro
instructions”, each of which can be expanded in terms of the three
primitive instruction types. In order that the run time calculated
remains independent of any given operating system, the macro

instructions are assigned parametric times as follows:

macro time
"call" call.time = call.m*M+tcall.a*Atcall.t*T
"allocate" alloc.time = alloc.m*M+alloc.a*A+alloc.t*T
"free" free.time = free.m*M+free.a*A+free.t*T
I/0 (i.e. "get" jo.time = io.m*M+io.a*A+io. t*T

"put","title")
Thus, by scanning a line of code for type fonts alone, a parser for Counter
can immediately calculate the run time for executing that Tine. For
example, a comparison between "the contents of the second cell past the
location referenced by A" and "the contents of the third cell past the Toca-
tion referenced by the seventh cell past the location referenced by 3" can be

made using the following line of code:
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ifz A=3 7 B
Execution of this line requires five memory accesses, one arithmetic (for =),
and one transfer of control (if) to the "then" or "else" sections of code.

In order to determine the run time for a program, the times for
individual lines in that program must be aggregated. The parser for
Counter regards time as a polynomial in many unknowns, where each unknown
represents a probability for the number of times a cycle or a subroutine is
executed, the probability that an exit is taken from a cycle, and the
probability that a condition in a if statement is met. The coefficients of
the polynomials are seven-tuples whose components represent a number of
memory accesses, arithmetics, transfers of control, calls, allocates, frees,
and I/0 instructions, respectively.

Each production in the Counter grammar has a corresponding
formula which generates a polynomial, named Time, and a set ordered pairs
which is used to maintain the run time for the paths of control flow
involved in leaving cycles. If, for each production invoked during the
recognition of a program, these two are calculated using Counter's formulas,
the run time for the complete program will be represented by the Time
generated for the root of the parse tree.Jr

As an example of the results from Counter, consider Figure 7.

Beside each Tine of code is its run time in terms of the three primitives

instruction types (represented by MA, AR, and TR) and the four macro-level

" The correctness of the formulas as applied a particular program could be
proven by induction on the parse tree associated with the recognition of

that program.
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instructions (represented by C, A, F, and I). The time for a complete
conditional statement is equal to the time for the if instruction plus the
aggregated time for the "then" part when the condition is met, or the
aggregated time for the "else™ part (if it exists) when the condition is not
met.” The fraction of times the condition is met is represented by a para-
meter in the condition column on the Tine of code containing the if. (When
the "then" part ends with an exit, the parameter is instead listed on the
exit line.) The expected time is thus reflected in the output from Counter
by a triple representing the aggregate time for the "then" part times the
parameter, plus the aggregate time for the "else" part times one minus the
parameter. For example, lines 2 through 4 correspond to the "then" part of
a conditional and therefore the run time is reflected in Counter's output by

+ (5, 0, 1) (ALESS)

In evaluating the time for a cycle, the aggregate time for the body
must be multiplied by the number of times the cycle is executed. For each
exit from the cycle, the time for that part of the body leading to the exit
must be multiplied by the probabiility of taking that exit. Again, the
parameters representing the expected number of cycles and the exit
probabilities are shown in the condition column of the Tisting. The time
which is output from Counter for the cycle in Tines 7 through 11 of Figure 7 is

+ (6, 1, 2) (N)*

+ (3, 1, 2) (1)

T In Counter, the conditional statement has an explicit if, but the "then"
and "else" parts are indicated by formatting.
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The resulting time for the complete routine is therefore printed as a
sum of triples which represents the TIME formula

(6N+TT-ALESS)*M + (N+3-ALESS)*A + (2N+4+ALESS)*T
where N represents the number of repetitions of the cycle and ALESS is
one if A<B, and zero otherwise. This expression can be evaluated for any
set of parameter values provided for the unknowns.

Although Counter has been designed to model a very simple computer,
the techniques used to generate the parametric table are applicable to
more complex models. As a first extension, rather than merely dividing the
primitive instructions into three types, a finer division can be used to
account for the variance in time for several arithmetic and logical instruc-
tions or branches (e.g., addition and subtraction may take two microseconds
each, while multiplication and division require ten). New instructions
can also be added to Counter's repertoire to access blocks of cells (such as
IBM 370's "move character", "compare logical character", and "translate and test")
and IBM 1130's "shift left and count accumulator"), to simplify control
structures (e.g., a "case" statement, implicit function calls, and dynamic
stacking of activation records), or to improve input/output.+
The techniques involved in computing run time remain the same after any of

these modifications.

" In fact, many of these syntactic extensions can be achieved simply
through additional macros.
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