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ABSTRACT

Two discretizations of a constant coefficient diffusion-convection
equation are compared. It is well known that to obtain acceptable results
with centred differencing the spatial mesh size must be restricted in pro~-
portion to the strength of the convection. A similar restriction is shown
to apply to the box scheme of H.B. Keller; however, a more quantitative
examination of the two cases shows that the restriction is less severe for
the box scheme. The errors in each are characterized by a false damping
and phase shifting of solutions. It is shown that both effects are less
prominent using the box scheme than using centred differences for problems
with strong convection. The analysis is based on the observation that the
box scheme can be viewed as having the same spatial discretization as the
centred difference method, but with some spatial averaging of the temporal
derivative. Such averaging features are commonly found in finite element

methods also.



1. Introduction.

The success of centred differences in handling problems with
diffusion as the primary transport mechanism is well known to
deteriorate severely when convection challenges or surpasses
diffusion as the dominant transport mechanism of the model.
Early studies of this were made by Peaceman and Rachford, [ 1],
and Price, Vargay and Yarren, {2}. More recently this
phenomenon has received attention in a variety of contexts as
the followlng selected references indicate: thermally driven
flows [3]y [4] steady viscous flows [3], [6]y [7], flows in a
porous medium [ 8], [ 9] In these studies, the remedies sought
for the degradation of performance in the centred difference
analogs are variants of upwind differencing which adapt the

scheme to the local transport conditionse.

For one space dimensional problems, a method suggested by

Hs Bs Keller ,[10], has been guite successful in a number of

calculations of this type, particularly in fluid boundary Llayer

problems J{Keller and Cebeci [11] , Ackerberz and Phillips [12].)

This approach is based on reducing the equations of the model to

firast order system, and then using first differences to form a

finite difference analoge For example, for the simple eguation

{1s1) du/at = d2a/dx2 + bl du/dx)

we would introduce wlix,t) = ulx,t) , Zz{xy,t) = dulx,t)/ dx

and write the equivalent first order system

a



(1,2) aw/ax

]
N

dz/dx = aw/dt - bz

h

Figure 1

If we consider one rectangley, or 'box', shown in Figure 1, of a

rectangular grid, we can write down the difference veprsion of

(1.2) as
(1e3)a (w(R) = w({8))/h = W.5(z(R) + z(8))
(1.3)b S{lz(R) + 2(0)) = (2z(3) + z(P))}/n

= o5{(w(R) + w(8)) - (w(0Q) + wT))}/k
- bfz(R) + z(3) + 2z(P) + 2(Q)} /4 .

The difference egquations use first order differences and averages soO
as to obtain a second order accurate scheme whi le only coupling
unknowns at the corners of one mesh 'box'. This method has been
called the box scheme, and a hint at its effectiveness for problems
of mixed transport ty pe might he gained from the fact that it
was discussed in an early paper on the mixed initial boundary value

problem for hyperbolic systems by Thomee, [13],



In this paper, we attempt to indicate why the box sScheme may
be superior to centred difference methods for problems Iin which
di ffusion is not the dominant transport mechanism. To do this, we
shall study the simple model equation (1.1) for a constant

nonnegative parametery b , and impose boundary conditions

(1.4) u({d,t) = 0 3 ull,t) =0

on the solution. A significant part of the problem of designing a
satisfactory numerical method appears to be that of determining a suit-
able gspatial discretizations Hence we shall retain the time variable
as continuous but study two spatial discretizations to the

uniformly spaced set of lines;

b
"
[
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i:(), 1, [ R} N 3 h = 1/N .

The semidiscrete problems corresponding to centred differencing and
the box scheme will be systems of N-1 linear ordinary differential
equationse Qur comparison of these schemes will be based on a study
of the relation of the fundamental modes of the semidliscrete
problems with those of +the original problem (1.1) with boundary

conditions (1.4), as the parameters b and h varya.

The transient response from any initial condition can be
expressed as a superposition of these modes. Hence we expect to be
able to draw some conclusions for general transient problems about
the relation of solutions of the semidiscrete analogs to solutions
of the original problem. Computations which illustrate some of the

points of our comparison are discussed.



2. The Semidiscrete Problems

The centred difference approximation is based on replacing the

spatial operator L = @2 /@dx2 + bd /dx by centred differencess The
subscript 'j! on a function such as V (t) will indicate that it is

J
40 be considered the time history of that function on the line x = x

J
of the semidiscrete mesh; V(t) will be the N~1 vector with

components V (t)y V (t)y sasy V¥V (t)s Then the centred difference
1 2 N-1

semidiscrete problem can be written as the initial value problem

(2., 1) dV(t)/dt = A V() s Vv (())-—-UQ(X ) J=1,2,.»»,N*1
J J

where A is the (N-1)x(N-1) tridiagonal matrix with -2/h2 for its
diagonal entries super diagonal entries of (1+ g)/h2, and subdiagonal

entries of (1-8)/h2, for R = bh/2.

In its form (143)y the box scheme is the time discretization

of
(2.2) (w (t) - W (t))/h = .5(Z2 (t) + 2 (t))
J J=-1 J j=-1
(z (t) - Z (t))/h = 3(w'(t) +w ' (t))
J J=1 J J-1
~ed b (Z (t) + Z {t))
J J=-1

If, for two adjacent boxes, we add the second of these eguations
together, and eliminate the resulting spatial averages of 7 using

the first equation, we shall get

20w (t) + ¥ (1) -~ 2 W (t))/h2 =
j+1 J~-1 J

#B(W Y (t) *F 2 W) +w o (t)) - b( W (t) - w (t))/h
J*1 J J-1 J+1 J=1



This can be written as the initial value problem

(2.3) Cldw(t)/dt = A W(t) 3 W (D) = ugl{x ) ,

Jd J
J = lyZyooyN“l

with A as in (2,1) and C°! bheing the tridiagonal matrix with 1/2 for

its diagzonal entries and super and sub diagonal entries of 1/4.

Hence for this problemy the box scheme can be viewed as being the
centred difference scheme modified by a space averaging of the time
derivative, A similar observation has been wmade by Ackerberg and
Phillips in [12] and incorporated in their computational procedure.
When Salerkin methods of spatial discretization are used, a similar
averaging of the terms in the time derivatives occurs e.gs | 16]» For
finite element methods, the matrix corresponding to C ! is termed the

mass matrix (see [141.)

3. Modal apalysis
The solutions of (141)y (2.1) and (2.3) can all be written as

linear combinations of fundamental modes characteristic of each

problem. The mth mode of (1s.1) restricted to the mesh points is

(m) (m)
4] {(t) = © exp(Y t) {(3.1a)
m
(m) {(m)
wvhere the spatial part U is a vector with components U and
J
{(m)
U = exp(~-bx /2) sinlm x ), (3.1b)
J J J
and time constants
Y = -'(ma 11'2 + b2/4)n {3.1¢c)

m
The modes (3.1) show that an increasingly pronounced boundary layer

forms at x=0 (i.es at the outflow boundary,las b increasess.



Similarly, from the eigenvalues and eigenvectors of A and CA,
we can obtain a fundamental system of modes for (2.1) and {(2+3).

We shall wuse Y (A) and Y (CA) for the eigenvalues of A and CA
m m

{(m) (m)
resgspectively, and V and w for the corresponding

eigenvectors. Then the modes,

(m) {m)

v (t) = Vv exp(?Y (A1) {3.2)
m
(m) {m)
W (t) = w exp(Y (CAIt) (3.3)
m
are semidiscrete analogs of (3.1 ). Some standard technigques

for determining the spectra of tridiagonal Toeplitz matrices

given in the Appendix are used to obtain the following expressions,

using ® =mm™h,8 = bh/2,
m
Y (A)= -h 2{4sin?(s /2) + 2cose (1-(1-532)102)}, (3e4a)
m m m
Y (CA)= ~-h 2{4tanZ(e /2) *+ 2coss (4-(16-482s5in2s I 2)/5in2a }.
m m m m m
(3+.4b)
For the eigenvectors, we have
{m) g/ 2 .
v = {(1-8)/(1+8)} sinlmr x ), (3.5a)
J J
(m) J/2
w = {(1-8~h2y (CA)/4)/(1+5-h2Y (CA)/4 )} sin(mTrx ).
J m m J
{ 3+5b)
Ohviously, the parameter B = bh/2 plays an important role in

these expressionss Looking at the time constants for the centred
di fference scheme, we see that the Y (A)'s are real only if |8i<1,

m
and they lie in the interval of length 4( 1-82)1#2/1h2 centered

on =-2/h2,



If |B] < 1, we can write (3.5a) as

Vj(m)= exp(—b(A)xj/Z)sin(mﬂXj), (3.6)
where b(A) = h™ ! 1n{(1+B)/(1-B)} (3.7)
™ 5n (3.1). 1f

1Bl =1, Ym(A) = -2 h 2; and if |B| > 1, Ym(A) becomes complex with

to show its correspondence with the spatial variation of U

with Re(Ym(A)) = -2 h 2 and V(?) become complex as well. The qualitative

description of these properties of the centred difference scheme have been
discussed by Price, Varga and Warren in [2]. They use the concept of
oscillation matrices and their analysis extends to variable coefficient
problems. It is apparent that if f > 1 the matrix A ceases to be an
oscillation matrix. Some implications of this have been discussed in a
recent note by Hirsh and Rudy, [5], who refer to 28 as the cell Reynolds

number,

The variation of the time constants of the box scheme is different
and more complex., The Ym(CA)'S are real if |B| < 2, and, if |B| grows
beyond 2, they turn complex, two at a time, starting with the pair closest
to the index [N/2]. More precisely, for specific index k, if
B > 2/isin(kmh)| then Yk(CA) is complex, but if |B| < 2/|sin(kmh)| then

Yk(CA) is real and negative.

Thus, W(?) is real for |B|<2/|sin(mmh)| and
(m) _ ,
W i T exp(—bm(CA)xj/2)51n(mej) (3.8)
where
bp(CA) = h™*In{(1+8-h*y_(CA)/4)/(1-B-h%y_(CA)/4)} (3.9)

as compared with (3.1b) and (3.6). That is, the lower modes, which decay
more slowly in time and hence are the most important modes, may remain real

for a wider range of |B|, even for |B| beyond 2.

To summarize then, as B increases the qualitative similarity
between the modes of the semidiscrete problems and those of the original
problem breaks down. However, the breakdown for the centred difference
scheme, which occurs at B = 1, occurs for all modes simultaneously. This is

quite drastic compared to the graduated breakdown occuring for the box scheme
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which starts when B = 2 but in which the (usually dominant) lowest order

modes are the 'last to go'.

We can get a more quantitative comparison of these modes, when they
‘are real, by expanding their parameters Y (A), Y (CA), b (A), and bIn (ca),
m m

in power series in B and h. The results are;

Y, A =y + (m* m*/12)h% + (m® 12/2-b2/16)B% + 0(R"+h*),

. (3.10a)
Y, (CA) = y ~" m*/6)h® + (m® 7%/2)B% + 0(B*+h*). (3.10b)
and
b(A) = b + bR?/3 + 0(B"), (3.11a)
b (CA) = b + b(B?%/12 - m® 7% hZ%/4) + O(h"* + B8Y). (3.11b)

For the simple heat equation with b=0, (3.10) shows that the
leading term of the expansions of the error IYm(A) Y, | is half that of

Iym(CA)-YmI. A more significant observation is that the leading terms
(at least) of the expansion of the error in Ym(CA) in B8 and h are independent

of b, while those of Ym(A) have coefficients proportional to bZ. Moreover,
(3.11) shows that for larger Ibl, the box scheme is better in approxi-
mating the mode shape constant, b, for a fixed h. These observations
suggest that the centred difference scheme should be superior for b=0 or
b small, but the box scheme should be better for larger b.

In figure 2, a graph is given showing the variation of errors with
B. The variation of B from .2 to 1.2 by .05 was obtained by fixing h at
.02 and varying b from 20 to 120 by 5. The four curves which appear
represent the errors in the propagation of two different initial profiles
by each of the two methods. The initial profiles are those of the first
and third modes of (1.1) and the error is the relative error averaged over
the leftmost third of the meshpoints at time t=l/Y1 for the first mode and
t=l/Y3 for the third mode. Several similar measures of error were tried but

no significant difference between them was noticed.



RELATIVE ERRORS

0.4

0.3

0.2

Q.1

CENTERED DIFFERENCES
1st mode —O—O—O—

3rd mode XX -
BOX SCHEME

Ist mode . —g—@—m—
3rd mode . —uprm b —t—

BETA

FIGURE 2: Variation of Relative Errors with Beta




- 10 -~

4, Pseudo Modes

For the pure diffusion case, (b=0), the initial profiles of the
modes for a fixed wave number are the same for all three problems. Simple
computations show that the error in propagation of one of these profiles
by the centred differences scheme is about half that of the box scheme, and

has the opposite sign as predicted by (3.10).

However, for b#0, the initial spatial profiles of the modes of the
mth wave number do not coincide for any pair chosen from the original or
the two semidiscrete problems., This complicates the designing of com-
putations to demonstrate the features of the preceding modal analysis.

We can, however, find quite simple analytic forms for certain solutions of
the semidiscrete equations which have the same initial profile exp(-bx/2)
sin(m T x), as the mth mode of the continuous problem. These solutions do
not satisfy the boundary conditions exactly. However, their values at

x=0 and x=1 remain small for short times in a way made more precise by
their expressions given below. Hence we may expect them to approximate the
solutions of the semidiscrete problems with initial profile exp (-bx/2)
sin(m ™ x) at least away from the boundaries. These approximate solutions

we shall call pseudo modes.

The mth pseudo mode for the semidiscretizations of the centred

difference scheme, (2.1), and the box scheme, (2.3), we shall denote by

Vs(m)(t) and Ws(m)(t) respectively.
exp (-bx/2) sin[m T x + Im(A)t] exp(Rm(A)t), 4.1)

ve (M@

Ws(m) exp(-bx/2) sin[m 7™ x + Im(CA)t] exp(Rm(CA)t). (4.2)

The mode parameters Rm(A) and Im(A) for the centred difference

scheme are
R (A) = h™*{-2+cos(¢_) [ (exp (B)+exp (-B))-B(exp (B)-exp(-B))1}
(4.3a)
I, (8)=h" *{sin(¢ ) [B(exp(B)+exp(-B))~(exp(B)-exp(-B))1}

and those for the box scheme are

R (CA) = {R_(A)p+I_(A)q}/ (p*+ q°) (4.4c)
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1.(cA) = {I_(A)p-R_(A)a}/ (»*+q?), (4.4d)
p=1/2+cos¢m[exp(3)+eXp(-B)]/4; (4.4e)
q=-sing_[exp (B)-exp(-B)]/4. (4.4£)

These parameters are determined by identifying them as the real and
imaginary parts of a complex parameter o = R+iI. Then o is determined, for
the centred difference discretization by requiring y(x,t)=exp(-bx/2+immx+ot)
to satisfy

dy (x,t)/de=h"2{y(x+h, £)-2y (x,t)+y (x~h,t) }

+b{y (x+h,t))-y (x-h,t) }/ (2h) (4.5)
The equating of real and imaginary parts of both sides of (4.5) yields
(4.3). For the box scheme, ¢ is determined by requiring y(x,t) to satisfy
(4.5) with the left side replaced by
.25 dy(xth,t)/dt+.5 dy(x,t)/dt+.25 dy(x-h,t)/dt. (4.6)

To see the connection between these solutions, and the modes of
the original problem, we again expand the mode parameters R and I in power

series in h and B to get

Rp(a) =y +@*r*/12)h + (@®1?/2-b%/16)B% + 0(B*+h*), (4.7a)
R (CA) = ym-(m‘*n”/é)h2 + @*1%/2)B% + 0o(B*+h"). (4.7b)
I (A)=mr[b?/3] + 0(8"), (4.8a)
I_(CA)=um[b(B?/12 - m*m?h?/4)] + 0(h* + B*). (4.8b)

It is interesting to note that the leading error terms in Rm(A) and
Rm(CA) are exactly the same as the corresponding leading error terms in the
time constants for the semidiscrete modes given in (3.10)(errors meaning

deviations from the time constants of the original problem)

The pseudo modes are intended to serve as models for predicting
the propagation of the continuous modes' inital profiles by the semi-
discretizations. Consider, for example, the leading error term in B2 for
Rm(A). It predicts an erroneous damping if m?72/2<b%/16 which depends on
b and which is most severe in the modes of smallest wave number. The
corresponding term of the error in Rm(CA) predicts an amplification of the
modes which is uniform in b, and increases with the wave number. Similarly
the terms Im(A) and Im(CA) represent erroneous phase shifts in the time

evolution of the discretized solutions. The leading terms of these phase
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shifts predicts that at least for the lower wave numbers the phase shift

in the box scheme is less than a quarter of that for the centred difference
scheme. However, as will be seen in Figures 5 through 8 (discussed below)
these two time behaviour 'errors' compensate for each other so that the
pseudo mode is substantially closer to the continuous problem's mode than

the discrete problem's mode is, and the same is true of the approximate

solution.

We shall examine a particular but representative case in more
detail. We choose b=60. and h=.02, so that £=.60. In this case, the
mode parameters for the first and third modes are:

i) for the exact modes

b= 60., Y1= -909.9, Y3 = 989.0
ii) for the centred difference method modes
b(A) = 69.32, Y;(A)= -1007.9, Y3(A)= -1070.9
and for its pseudo modes
Ry (A) = -990.6, R3(A)= - 1053.8
iii) for the box scheme
b1 (CA)= 61.84, b3(CA)= 61.37
Y1(CA)= -908.2, Yi= -974.1
and for its pseudo modes

R; (CA)= -907.6, R3(CA)= -974.3

The spatial profiles of these modes are shown in Figures 3 through
8. These profiles are taken for t=1/Y; for the first modes and t=1/Y; for
the third modes. 1In each cdse twenty time steps were used to reach the

final time from t=0., The figures show four graphs:

i) the mode of the exact problem (3.1) shown as a

dashed line

ii) the pseudo mode for the method shown as a dashed-
dotted line (4.1, 4.2)

iii) the mode of the @emidiscrete) method shown as a
small cross at the spatial mesh points, (3.5)
and

iv) the solution of the initial value problem (2.1, 2.3)
by the method (initial values equal to those of i)
and i1i)) shown as large 'x' at the spatial mesh

points.
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There are several different points of comparison that can be made here.

The pseudo modes, ii), are intended to be an analytical model for the
computed solution,iv), of the initial value problem. This latter is, of
course, the numerical approximation by the method to i). The comparison of
the mode of the exact problem, 1), to the corresponding mode of the semi-
discrete problems, iii), indicates the degree of accuracy to which the
continuous mode, i), can be approximated by the discrete mode, iii), of the
method. If the discrete mode, iii), approximates poorly the continuous
mode, i), we expect poor agreement between the numerical solution, iy), and
the exact solution, i). Actually, Figure 3 shows that this indeed happens
to the central differencing scheme. On the other hand, Figure 4 shows good
agreement between both the discrete mode and the discrete solution to the
continuous mode, in the case of the box scheme. In both Figs. 3 and 4, the
pseudo modes predict the discrete solutions reasonably well, showing their
capability as an analytical model for the discrete solution. In fact, the
analytical forms (4.1) and (4.2) of the pseudo modes can further quantify
the errors in terms of damping or amplifying, and phase-shifts in the
numerical solution. To show this, we scale up each of the profiles i) - iv)
by the factor exp(bx/2) and examine the resulting "expanded" profiles as
shown in Figs. 5-8. As explained earlier, for a fixed time t, the damping
error in Rm(A), (centred differences,), is most severe in the modes of
smallest wave number, whereas Rm(CA) (box scheme), results in an ampli-
fication of the modes, which is uniform in b but increases with the wave
numbér. Superimposed on these errors are the phase-shift errors due to
Im(A) and Im(CA) in (4.1) and (4.2) which are most evident in Fig. 7, the

third mode of the centred difference approach,

A major motivation for examining the modes of a problem is to be
able to make 'educated guesses' about the behaviour of the more general
initial value problems which are linear combinations of modes. In
comparing - our approximating semidiscrete problem to its continuous
counterpart, the notion of 'corresponding mode' is fairly clear on a
qualitative basis (e.g. number of interior zeros). But there is also some
implication that if the restriction to the mesh lines of a general initial
value problem were

m
ui(t) = amUi( )(t) (4.9)
m
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then the semidiscrete approximation could be thought of, at least for

intuitive guess purposes, as

(m)

aV,
m 1

v, (t) (t) (4.10)

or

a W, ® (4.11)

m
The errors in the semidiscrete mode parameters, [primarily b(A) and bm(CA)]

I

w, ()

indicate that the corresponding modes are, in fact, too dissimilar to
provide much of a basis for the approximations in (4.10) or (4.11), at
least for the range of mesh sizes yielding a few percent relative error.
However, the correspondence between the propagation by the numerical
method of the initial mode shape for the continuous problem and the
method's pseudo mode seems quite close. Hence we feel that thinking in

terms of expansions in pseudo modes

i.e. vs, () =ZamVsi(m) (t)
m

or ’wsi(t)==§:amWsi(m)(t)
m

provides a viable base for 'educated guessing'.

It appears on this basis that as the convective terms of a one
dimensional transport model become more significant the box scheme enjoys
an increasing accuracy advantage over centred differencing for the same
mesh. It should be noted here that the box scheme has the more significant
practical advantage of retaining second order accuracy on general non-
uniform meshes, The qualitative behaviour of the time constants for the
centred difference scheme with non-uniform meshes, i.e. becoming complex
when B > 1, was established in [2]. (Here B varies with the position in
the mesh,) The authors have been able to show that the time constants for
the box scheme, for variable meshes, are real and negative if B < 1,
(again, for local B); however we have been unable to establish this
qualitative fact for the range 0 < B < 2 as suggested by this analysis of

the uniform mesh case.

Alternatively, these observations can be viewed as a beneficial
effect resulting from a particular spatial averaging of the time deri-

vatives of the semi-discretization. Similar averagings are done by the
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'mass' matrix of variational semidiscretizations using basis functions of

small support (e.g. [16],) and a discussion of these is made in [17].
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Appendix

We shall outline the proofs for the expressions in
(3¢4)-(3.5) and for the expansions in (3.10),(3.11),(4.7) and
(4.8). Ve first derive the expression (3.4)-(3.5), using the
following lemma on the eigenvalues and eigenvectors of a

tridiagonal Toeplitz matrix 3

Lemma A

Let L be an (N-1)x{(N-1) tridiagonal Toeplitz matrix such that

L = 119 129eeeyN-1; L = | P 1=1,e0e9N—-1;L = 13,
1,1i-1 1,1 igei%1
i=19eee9yN-2; L = Ojyotherwise. Let ¥ be the mth eigenvalue of L
1,.j m
{m) (m)
and Y be the corresponding eigenvector with components Y ’
J
J=l,ooyN'10 Then,
¥ = 1l + 2(1113)1‘2 cos ¢ ’ {Be.1)
m m
{(m) J/2
Y = (13/13) sin(je ) s j=1lyeeyN-1, (B.2)
J m

where ¢ =m T /N.
m

For a proof of this lemma, we refer the reader to [15].

Nowy(3.4) follows immediatelys. For the box scheme, we observe
that the eigenvalue problem,
(m) {m)
CA W = Y (CA) W ’ ({B.3)

m

is identical with the generallized eigenvalue problem,

—e (m
AW = Y (CA) CT 1y ’ {B.4)
m



- %g_

ory we can consider the problem
- (m) (m)
(A - 7 (CA) CTY) W = a W v (B.5)
m J m j
and ask for «a =0, m=1y0e9gN-1,

Using Lemma A,
m

and after

discarding of some extraneous roots in the equations

a =0, we
m
obtain (3e5).



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

