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ABSTRACT

This thesis is concerned with the implementation of algorithms
designed to numerically solve ordinary initial-value problems whose
solutions are asymptotically stable. Those methods considered are
themselves A~stable in the sense of Dahlquist, and involve the multi-
plication of a vector of initial conditions by a rational function of
matrix argument. As an approximation to the exponential of z, the
rational function is A-acceptable. Our purpose is to develop for a
variety of cases a general computational scheme which is nearly op-
timal with respect to the three considerations of stability, compu-
tational complexity, and storage constraint.

The implementation schemes considered use explicitly only the
denominator factors of the rational approximation, and, by a trivial
extension to complex factors, include possible irreducible quadratic
factors associated with complex conjugate poles. The redundancy of
the complex elimination procedures is eliminated to provide a simple,
stable alternative to forming quadratic factors explicitly. The
feasibility of the alternative strategy of using rational approximations
whose poles are real is also discussed, and an order-2 example is
implemented.

Finally, particular rational approximations with complex conjugate
poles are implemented, and the incorpofation of forcing terms arising
from non-autonomous systems is investigated.

The stability constraint is most important for differential

equations which are known as stiff systems, since the relationship



between the stiffness of the differential system and the conditioning
of the associated linear algebraic systems is a direct one. The com-
putational scheme is thus oriented towards the evaluation of the dis-

placement of the rational approximation from its asymptotic value.
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CHAPTER 1

INTRODUCTION

1.1 The Ordering of Computation

The purpose of this thesis is to examine the structure of algorithms
for the numerical solution of the initial value problem for systems
which involve the computation of a rational approximation to the
exponential function for matrix argument. The three main concerns are
numerical accuracy and stability of the implementation, the relative
computational speed, and the storage requirements as a function of the
dimension and structure of the differential system.

Tradeoffs may exist among these considerations. Consider the

familiar trapezoidal rule applied to the scalar differential equation

y' = ay, y(0) =y,
1.1.1
q < 0.
To obtain the solution at t = h, we first compute
V2 = A+ hq/2)y,
then 1.1.2

y, = @-bha/D7ly,
However, if the order of the computation is reversed, and we note
that the first step in equation 1.1.2 need not be executed explicitly,
we obtain the alternate impleméntation:

* -1
Ypro = (1 - ha/2) 7y, ,
1.1.3

*
yh = zyh/:?- - yO .




The second mode of computation requires the temporary storage of
Yo while this 1s not a necessary feature of the first. As noted the
first computation in equation 1.1.2 has been eliminated.

In circumstances where an algorithm with fixed step-size is applied
to a constant-coefficient linear system, the coefficient matrix in the

system:

y' = Ay 1.1.4
may be overwritten with a suitable decomposition of the matrix factor
(I - hA/2). 1In any program where step—si?e changes are possible this
version might require increased storage, but since the initial value
must be kept, and matrix-vector multiplication involves temporary
storage, the two procedures have approximately the same storage
requirements.

Stability considerations are particularly important in the numeri-
cal treatment of so-called stiff systems of differential equations.
Systems of the form of equation 1.1.4 are called stiff when the coeffi-
cient matrix A has eigenvalues of widely different magnitudes, resulting
in solution components whose time-behavior differs greatly. For our
purposes, we suppose that the eigenvalues of A have negative real parts
which differ in size. The effect of this situation is best illustrated
by the familiar step-size constraint on the forward Euler's method for

systems:

Yoep = (T + hA)Y, 1.1.5
namely, ii%éll < 1.



This is necessary to ensure that the solution components associated
with the large eigenvalues do not grow in size indefinitely, when in
fact they should tend to zero with increasing time. These components
are the components which tend to zero the most quickly in the actual
solution, and any successful approximation procedure has to mimic this
behavior.

The implicit Euler's method, on the other hand is stable for all
such systems, regardless of step-size.

(1 - hA)yn+l =Y, 1.1.6

In the formulation of the trapezoidal rule given by 1.1.2 the
instability inherent in equation 1.1.5 is a source of numerical error.
Even though the trapezoidal rule may be inaccurate for stiff problems
because of its incorrect asymptotic form, this is a function of the
vector Yo» and if the ordering of equation 1.1.3 is used, this effect
can be minimized for certain initial values associated with small
eigenvalues of A. These transient solution components, even if only
present at round-off level, contaminate the first step of 1.1.2, and
the second step must damp this. Noise in the direction of the slowly
decaying solution persists as the solution advances in time.

For rational approximations of higher degree, it is proposed to
obtain a solution by partial fraction decomposition of the rational
function. The storage requirement is not significantly increased for.
homogeneous problems, and for forced linear systems where the forcing
function is evaiuated at a number of points proportional to the degree
of the denominator of the rational approximation, it remains roughly

the same. The primary saving is in speed of computation, since matrix-
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vector operations associated with the numerator of the rational function

are eliminated. Numerical stability is improved as well, since these

matrices are of large norm for stiff problems.

1.2 Stable Differential Equations

The initial-value problem for a first-order nxn system of differ-

ential equations has the form
Y' = f(t9Y): Y(O) = YO, 1.2.1

where f is assumed to be such that the initial condition ¥, ensures a
unique solution on an interval 0 < t < T. The following definitions
serve to define stable systems. For a more comprehensive treatment of

this topic, the reader is referred to [11].

Definition 1.1 If f(t,a) = 0 for all t > O then y(t) = a is a point

gsoelution of equation 1.2.1. We can assume, without loss in generality,

that a = 0. Then y(t) = 0 is called the null solution of 1.2.1.

Definition 1.2 The null solution of equation 1.2.1 is stable if,

given € > 0, there exists a 6 > 0 such that for 0 < [|y0|| < 8§,
||ly(e)|| <€ for all t > 0. If ||y(t)|| »~ 0 as t » =, the null solution

of 1.2.1 is said to asymptotically stable.

The notion of stability in the neighborhood of a point solution
includes stability in the neighborhood of a known function a = a(t),

and for any particular system, the second case is reducible to the

first.

Definition 1.3 Equation 1.2.1 is said to autonomous if f is a function




of y only, and nonautonomous otherwise.

N

Definition 1.4 Equation 1.2.1 is said to be linear if f can be written

in the form

y' = A(t)y + r(t) , 1.2.2

where A(t) is an nxn square matrix of finite norm, and r(t) is a vector

of forcing terms independent of the solution y.

If A is a constant matrix, we say that 1.2.2 is a linear constant

coefficient system. (To avoid confusion, we will assume when referring

to a linear system that, unless otherwise indicated, the system is a

constant coefficient system.) A linear system for which r(t) = 0 is
called a homogeneous linear system. For any such first order linear
system, there are n linearly independent solutions. The matrix

differential equation associated with a homogenous linear system,

Y'(t) = A()Y (L) > 1.2.3

where Y(t) has non-vanishing determinant defines a fundamental matrix

for the homogeneous system. If Y(0) = I, the identity matrix, Y(t) is

the principal matrix for the system. For constant coefficient systems,

the principal matrix solution is defined by

Y(t) = exp(td), where

tnAn 1.2-4
exp(tA) = I + tA + + « « + —— + .

The solution to the initial value problem for linear systems can
be written in terms of the principal matrix solution of the system.

In particular, for constant coefficient systems, the solution in terms



of the principal matrix system takes the form

t
y(t) = exp(tA)y0 + J expl (t-s8)AJr(s)ds. 1.2.
0

5

Terms in equation 1.2.5 which are of the form exp(tA)v , v a vector

are terms in the characteristic solution or complementary function.

That

function which satisfies the inhomogeneous problem for arbitrary initial

conditions is known as a particular solution or particular integral.

Finally, following [l1], we introduce the nonlinearity condition

and the definition of asymptotic stability for general systems in terms

of linear systems.

Theorem 1.1 Let

y' = Ay + r(t,y) > 1.2.6

where A is a real constant matrix whose eigenvalues all have negative

real parts. Let r(t,y) be sufficiently well-behaved for the existence

of a solution for ||y|| small and t > 0. Suppose further that r satis-

fies the nonlinearity condition,

1lim r(t

[yl [0 v~

undformly in t > O. Then the null solution of equation 1.2.6 is asymp-

totically stable.

Proof See [11,p.3141]. 0

The study of constant coefficient systems leads to a solu-

tion procedure for systems of the more general form 1.2.1. When the



0

eigenvalues of the Jacobian matrix of 1.2.1 have negative real parts,

Bfi
i.e., Re A'g—— (t)] < 0.
73

for t in a neighborhood of tg» the matrix A can be chosen to be an

approximation to the Jacobian evaluated at (t0 yo) , the solution
- ) 0, 7

can be advanced stably to t = tl with a polynomial approximation to the

nonlinearity term r(t,y), and the process repeated.

For constant coefficient systems with forcing, we attempt to
implement an approach which exactly integrates the partigular inte-
gral when r(t) is a polynomial. The error is solely in the evalua-
tion of the terms involving the complementary function, aﬁd the method
is equivalent to the replacement of exp(tA) by an approximation E(tA)
after the integral term in equation 1.2.5 has been evaluated for poly-
nomial r(t). The methods in this thesis may be extended to integrate

systems of the form of equation 1.2.6 in this fashion.

1.3 The Exponential Function for Matrix Argument

The exponential function for matrix argument, defined by dquation
1.2.4 is the principal matrix solution to equation 1.2.2 for constant
matrix A. Some of its properties are discussed Briefly.

Two nxn matrices A and J are said to be similar if there exists an
nxn nonsingular matrix H such that

3 = ARt 1.3.1

The Jordan canonical form of a matrix A is a matrix J such that

J = 2 ’ 1.3.2



which is similar to A, where

Ale. .o
3, = Adl. .0 . 1.3.3
0 CAy

Thus each Jordan block of A is associated with one eigenvalue of A. More

than one Jordan block may be associated with a particular eigenvalue.

For example, all positive definite real symmetric matrices have 1x1 Jordan

blocks, regardless of the multiplicity of the eigenvalues.

Definition 1.5 A matrix whose Jordan canonical form has all Jordan blocks

of dimension 1x1 is called a matrix of simple structure.

Any matrix of simple structure has a complete set of eigenvectors.
When the canonical form has blocks of dimension greater than one, there
is only one eigenvector corresponding to the block. Such a system is

termed defective.

The exponential function of a matrix is similar to the exponential
of its Jordan form. For scalar t,
exp(tJ) = H exp(tA) H-.1 s 1.3.4

and for a kxk Jordan block,

1t ekl
_ . (k-1)!
exp(tJi) = exp(tki) 0 1t . 1.3.5
| 1

In general any function f(A) defined on the.spectrum of a matrix A is

similar to £(J). The Jordan blocks Ji of A also satisfy the equation

£ ... e ) T ey
0 -

£(tyy) = .
0 0 f(t&ig'

-8 -



Theorem 1.2 If A is an nxn matrix whose eigenvalues have negative real

parts

lim exp(tA) =0 .
v nxn

If A has simple structure, then

||exp(tA)|| <1 ’
in some supremum norm.
Proof
The result follows from the similarity of exp(A) to its Jordan form,

and the fact that exp(t)p(t) goes to O for any polynomial p, as t > =,

for RelA] < 0.

For the second part of the Theorem, we know that |exp(At)l<1
for Re[)A] < 0, and that for any €>0 there exists a sup. norm such

that the spectral radius of A and its norm differ by less than €. (I

The qualification that A have simple structure is necessary to
avoid the possibility of the growth of off-diagonal terms in Jordan

blocks of dimension greater than 1xl.

1.4 Approximations to the Exponential Function for Matrix Argument

It follows from equation 1.3.6 that any function of matrix argument
is defined by the scalar values of the function on the spectrum of
the matrix argument [18]. Thus, when investigating properties of a
matrix-valued function, we may consider its properties for scalar

argument z, which is assumed to lie in a domain containing the spectrum

of the matrix.



For rational approximations to the exponential, denoted for scalar
argument z by E(z) the following properties are of importance.

Pl: For Re[z] < O lE(z)[ < 1.

1.4.1
PZ: lim E(z) = 0.
Re[z]> -«

Definition 1.5 A rational approximation to exp(z) with order k is a ratio

of two polynomials of degree m-and n, respectively, 0 < k < m + n, such
that for z » Q

Rm,n(z) =P (2)/Q (2), Q,(2) #0,

1 | 1.4.2

P_(2) - Q (2)e* = 0(z")

Definition 1.6 If a rational approximation to exp(z) satisfies'P1 ,

it is said to be A-acceptable.

Definition 1.7 If, in addition the approximation satisfies P2, it is

said to be L-acceptable.

Definition 1.8 A uniform rational approximation to the exponential

function is a rational approximation on a domain D, such that for €>0,

sup |[E(z) - exp(z)| < & | 1.4.3
zeD

For D a segment of the real line, a best-uniform approximation to
exp(z) is an approximation with minimum-maximum error [12]. Such an approx-

imation is called a Chebyshev approximation to exp(z).

Definition 1.9 An algorithm for the numerical solution to the initial

value problem is said to be A-stable if, when applied to y'=aqy, y0=l,

Re[ql<0, .it defines an approximation z(ih), i=1,2,3,..., such that

- 10 -



|z(t)| <1 for all t =2 0. The function z(t) may be termed A-acceptable,
considered as an approximation to exp(z).

Definition 1.10 If in addition the z(t) is L-acceptable, the algorithm

is said to be strongly A-stable.

The implicit Euler's method is an example of a method which is
strongly A-stable, the trapezoidal rule is only A-stable, while Euler's
method is neither. For stiff systems we will be considering the advantage

of strongly A-stable methods.

1.5 Systems of Linear Equations

The implementation of the schemes that we are examining for the
solution to the initial value problem involve repeated application of
algorithms to solve linear systems of the form

Ax = b , 1.5.1
where A is an nxn real non-singular matrix and b is a known nxl column
vector. The theoretical background is covered in Wilkinson [40] and
Forsythe and Moler [17].

The usual definitions for matrix and vector norms will be assumed,
particularly the Euclidean norm,

=11, = " 1.5.2

Given a vector norm, the subordinate or natural matrix norm is

defined by the relation

x| 1=

]l oS | 1ax]|].

A comEatible matrix norm satisfies the weaker condition:

| lax|| < [la]] |]x]

- 11 -



The spectral radius of a matrix is defined by

p(A) = sup|xi| R
i

Xi an eigenvalue of A.

The singular values o,,1 = 1,....,n of an nxn matrix A are defined

i’

by the relation

2 *
of =2, @),

%
where A denotes the conjugate transpose of the matrix A.

The Euclidean norm of a matrix A is defined by

1811, = ™1 .

For positive definite real symmetric matrices the Euclidean matrix
norm is the same as the spectral radius. For arbitrary A, the Euclidean
norm can be arbitrarily greater than the spectral radius, however.

If for example,

_f{la
A'Ql)

p(A) =1,

but 2
|1al], = o).

The principal method we shall use in the solution of equations 1.5.1
arising from the denominator factors of rational approximations is Gaussian
elimination. The coefficient matrix is factored into a lower triangular
factor L and an upper triangular factor U. The solution for a particular
right-hand side b is found by performing

Ly=b >

1.5.4
Ux =y

A complete discussion of Gaussian elimination can be found, for

- 12 -



example in [17], [40]. Usually we will consider procedures which main-
tain stability through partial pivoting, or, for symmetric matrices,
diagonal pivoting strategies.
The definition of the L and U factors varies with the form of
Gaussian elimination procedure used. The essential features are the same,
except for symmetric variants such as Cholesky factorization, and we will use

one type, namely Gauss-Doolittle, to describe the algorithm.

Let
4 T
a1 f1
A =.AO =
cl Mo
Then for uii = aii
T
1 0 up N
A = T . 1.5.5
o ¢y ¢y
u In—lxn—l 9 Mo T u
11 11

and the successive decomposition steps may be stored in place in the

matrix A. The factorization is carried out recursively on

# 0. 1.5.6

. . - u,,
i i-1 u,, > “ii

The computational cost in terms of multiplications for the decomposition
phase of Gaussian elimination for an arbitrary nxn matrix is n3/3 +
O(nz). The cost of substitution for a particular right-hand side is
n2 + 0(n), i.e. it is proportional to the cost for one matrix-vector
multiplication.

There has been considerable work done to minimize the cost of

Gaussian elimination for systems which have large dimension but have

- 13 -



many zero elements. We will be implicitly referring to the preservation

of such sparsity in some later discussions in the thesis.

The following theorem analyzes the possible effect of a change in

the right-hand side on the solution to 1.5.1.

Theorem 1.3 Let Ax = b be a nonsingular nxn system of linear equations and

let 6b be a change in the right-hand side b. Then, if we denote by ||6x[l

the corresponding change in x,

||6x|| < K(A) ||6b||

T TRIT

where

k) = ||a]]][a™t]] 1.5.7

is called the condition number of A.

Proof See [39]. il

Note that this result is sharp, in the sense that equality is possible

for arbitrary A and ||Sb]].

The class of matrices known as band matrices arise frequently in the
semi-discretization of partial differential equations. They involve sig-
nificantly less computational effort than general matrices when solving

1.5.1.

Definition 1.12 The semi~band-width of a square matrix A is defined as:

m = sup Ii - jl
aij#O

The band width of a matrix is then 2m + 1.

- 14 -



The solution of linear systems in t-digit floating point arithmetic
places some limitation on the type of linear systems that can be solved,
and affects the significance of the solution obtained. Defining the
error by the technique of backward error analysis, we need the following

two theorems.

Theorem 1.4 If x and y are any two t-digit base B floating point numbers,

and * is one of +,-,.,/ then the floating-point result of x*y, fl(x*y),

is given by
f1(x*y) = x*y(1+6),

7 Coolet o det .
where |§8| < u, the unit round-off error, 0.5 , or B, depending on

whether the arithmetic is performed by rounding or chopping.

Proof See [17,p. 901. o

Finally,
Theorem 1.5 If

T
x = (xl....... xn)

T
y = (yl....... yn)

are two t—digit floating point arrays,

n
Iyl = Y xy, @+ @+ 2 - DL.018,u) lo | < 1.

Proof See [17,p- 931. ) 0
Remark: obviously, if |xT.y|<<||x||.l|y||, the floating point answer may

have severe relative error.

Theorems 1.4 aﬁd 1.5 will be used in determining the stability of
both the linear systems and the formation of quadratic polynomials of

matrix argument.

- 15 -



CHAPTER 2

PREVIQUSLY KNOWN RESULTS

2.1 Numerical Solution of the Initial-Value Problem

Classically, there have been two main types of methods for solving the
initial-value problem. They can be categorized as multistep methods and

single step (Runge-Kutta, Taylor, and Hermite type) methods.

The general linear multistep method for the solution to the initial

value problem at t = (m + 1)h is expressed by the formula

k k
Vbl =1§0 ay_1 + :Zl biy;—i’ m=k,k+1,.... 2.1.1
Dahlquist [14] defines the concept of A-stability in terms of the
solution to equation 1.1.1 for complex q with negative real part. A-
stability relates to the fact that, as m + =, the solution to 1.1.1 by

an A-stable method tends to zero. He proved the following theorem for

linear multistep methods.

Theorem 2.1 An explicit multistep method cannot be A-stable. The order

of an A-stable multistep method cannot exceed two, and the trapezoidal

rule has the smallest error coefficient of all A-stable linear multistep

methods.

A method which is not A-stable may be used for systems provided

suitable restrictions are placed on the time-step.

Definition 2.1 The region of stability of a method is the region S in

the left-half complex plane within which hq must lie in order that

- 16 -



solutions to equation 1.1.1 by formula 2.1.1 tend to zero for large

m.

Gear [19] has considered multistep methods for which only a small
region of the left-half plane is missing from the region of stability.
Methods such as Gear's, which are stable for most of the left-half

complex plane are known as stiffly stable methods. The maximum order of

stiffly stable methods is conjectured to be eleven [15].

The weaker condition, that y(nh) converge to the solution y(t) as
h > 0, nh = t, imposes less stringent conditions on equation 2.1.1.
For a multistep method to be stable in this sense (Dahlquist [13]), the

order cannot exceed k + 1 for k odd and k + 2 for k even. Modified

multistep methods, which contain an additional term, Bhy; o ° 6 <1,
[ 5] are stable in this weaker sense [13] for order 2k formulae. The
maximum attainable order for modified multistep methods seems to be

k = 7 or 8.

One class of single-step methods is based on Hermite interpolation

at t =mh and t = (m + 1)h. The formula is given by

k k
_ m (i) m+l (i)
Vg1 = It Y C..y +i21 C..'y 2.1.2

. ik’m ik “mtl
i=1

The coefficients of the maximal order 2k formulae are the polynomial coef-
ficients of the numerator and denominator of the diagonal Padé approximation
normalized to 1 for the constant term. One analysis and implementation of
these formulae may be found in [34]. Since they reduce for y' = qy to the

Pade diagonal approximation, they are A—stableAﬁ16ll o

———

Liniger and Willoughby [33) consider intermediate methods based

on Hermite interpolation, in the sense that, for the scalar linear
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problem, they reduce to rational approximations which lie between the
diagonal Padé and the fully implicit Taylor expansion of the solution
to the differential equation. The parameters in the interpolation for-
mulae are chosen to fit the exponential function for a particular argu-
ment which at which the problem indicates that such a fit would be use-
ful to stabilize the approximation for that argument range. For k = 1,
the intermediacy condition reduces to the familiar stability condition

for the weighted trapezoidal approximation
= 1 - 1

namely, u < 1/2.

The Runge-Kutta formulae are another class of single-step methods

defined by the equations

\Y
v, =y +h2 w,k,,
m+1 m 1=1 i1

where v
h, y +h] b 2.1.3

k, = f(tm + ¢
j=1

i ijkj)’

and

A Runge-Kutta process is explicit if bi = 0 for j > i, and implicit

i
otherwise. Butcher [ 2] established that the highest attainable order
for an explicit v-stage process is

P(v) = v, v =14,

\Y _‘l’ Vo= 5,6,7
v-2,v=28,9
P(v) Ssv-2,v 210
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For implicit processes Butcher [3 ] established that the highest
attainable order is 2v. Butcher [ 4], Ehle [16], and Chipman [10] have
investigated the implicit Runge-Kutta processes based'on Gaussian, Radau,
and Lobatto quadrature formulae, and identified them with diagonal, sub-
diagonal, and second subdiagonal Padé approximations, respectively.

Gear [20] has shown that, given any rational approximation to exp(z),
E(z) = P(2)/Q(z), with distinct non-zero poles and with degree P(z) <
degree Q(z) = n, there exists an n-stage Runge-Kutta process which, when
applied to y' = qy, results in the difference equation Yobl = E(qh)ym.
However the order of the resulting process is usually much lower than

that of the rational approximation.

2.2 Stabilized Methods. Lawson [29] has investigated the following

stabilization transformation which when applied to existing methods has
resulted in new A-stable methods. For y' = £(t,y), he introduces the
change of variable z(t) = exp(-tA)y(t). From consideration of the

initial-value problem for z(t), he obtains the formula

t
Y(t) = exp(tA)y(0) + J exp[€t-s)Al{f(s,y(s)) - Ay(s)lds. 2.2.1
0
Alternatively,

for u(t) = f(tSY(t)) - AY(t)’
1

y(t + h) = exp(hA)y(t) + hJ exp[ (1 - T)hA]-u(t + th)dT.
0

2.2.2
The variable change results in a reduction of the Lipschitz constant

associated with the problem. It is now proportional to ||8£/82,- A||.

- 19 -



A need not be the Jacobian. It is sufficient that the Jacobian matrix
of the transformed problem, which is similar to 5f/3y - A, have eigen-
values with negative real part. For constant coefficient systems, the
transformed problem is just equation 1.2.5. The method for the original
initial-value problem is then A-stable provided an A-acceptable approxi-

mation is used to implement the transformation.

Setting t = 0 in equation 2.2.2, we can derive a recursion formula

for the integral term.

Define
1 .
Mj (ha) = J exp{ (1-0)hA}tddr.
0
Then hA{Mj(hA)} may be integrated by parts to obtain
1 .
halM, (ha)} = —exp(ThA)Tj|é + jJ expl (1-1)ha}rItar.
0
It is an easy matter to verify that hA is a factor of the right hand

side of this expression. In view of the remarks of section 1.3 we may
consider instead the expressions as functions of a complex variable z.
Accordingly, Lawson [29] derives a set of moment functions based on

integration by parts of the particular integral for

r(t) = tmb, m=0,1,.....,k=1, where k is the order of the rational

approximation E(z), of the form

2 L[E(z) - 1]

MO(Z)
2.2.3

-1, . _
z [JMj_l(Z) 1] §j=1,2,....,k-1

Mj(Z)

Using these moments, a set of weight functions are produced for

particular abscissae to yield for the inhomogeneous problem a
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solution which is formally the same as that of the continuous case,
with exp(z) replaced by E(z). The following two theorems establish

the behavior of this construct [29].

Theorem 2.2 Let E(z) - exp(z) = O(zk+l), z > 0 and let {Wi(hA)} be

computed from 2.2.3. Then the algorithm defined by

k
o4 = E(A)y + tilzlwi(hA)-u(tm + a;h) 2.3.1
is exact for particular integral of y' = Ay + p(t), where p(t) is

an arbitrary vector polymomial of degree k — 1 or less and A is a real

non-singular square matrix.

Theorem 2.3 Let the scheme of 2.3.1 be A-stable and exact for the

particular integral of y' = Ay + p(t), where A is a square matrix with

eigenvalues in the left-half plane. Then lim[yn - y(tn)] = 0, regardless

n-e

of stepsize h.

If E(z) - exp(z) = O(zk+l) holds, the particular integral is exactly

integrated for polynomially forced problems of polynomial degree < k - 1.

The error in the solution is then completely in the terms associaﬁéd with
the evaluation of the fundamental matrix in the complementary function.

One important aspect of this method of solution is that all the weights
so produced have the same denominator factors. This is an advantage that
this approach has over other methods such as [32].

Generalized multistep methods using this quadrature scheme appear
in [27]. The v-stage implicit Runge-Kutta processes mentioned in [4],

[10], [16] exactly simulate the polynomial solutions of polynomially forced

problems to degree < VU, as was pointed out in [261].
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2.3 Chebyshev Approximations to Exp(z) and Applications

One approach to the numerical solution of partial differential
equations of heat-conduction type has been the semi-discretization in
the spatial coordinates to produce, for linear problems, a constant-

coefficient ordinary differential system

y' = Ay + £(t), 2.3.1
where A is a constant square matrix.
For such problems, Cody, Meinardus, and Varga have developed algorithms
based on Chebyshev rational approximations to exp(-z) on [0,®) which have
been successfully used for constant r(t) to obtain a solution yv(T) for the
discretized problem in one time=step for any T. [12]
Lawson [30] has extended the usefulness of such methods by developing

combined order-uniformity constrained Chebyshev approximations which inte-

grate such problems for polynomial forcing.

2.4 Algorithms for Evaluation of E(tA)

For the implementation of generalized Runge-Kutta processes, a
suggested method of evaluating exp(z) for matrix argument which would
avoid the instability associated with a summation of a large number of
terms in the Maclaurin expansion is the computation of a low-order
expansion, which is valid for argument with small norm. The use of the

series:

n 6

Z_ 4+ 0.5625 2 2.4.1

E(z) =1+ =i 61

n=1

Il ~1n

which has a larger region of stability is recommended in [28]. This

truncated expansion is used to provide the initial matrix argument
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exp(Z_mtA) from which the approximation exp(tA) is calculated by m
matrix-squaring operations:

exp (2 ¥ ha) = B2 %Na)2. 2.4.2

For a polynomial expansion of degree k, and a full matrix with
dimension nxn, the cost of evaluating E(tA) is O((k + m)n3). The same
approximation, applied to the vector b as a sequence of matrix vector

m_2

operations costs kn3 4+ 2'n” multiplicative operations. Hence, the

choice of method depends on the larger of'{mn,Zm}.

If the matrix is sparse the exponential function or any approximation
based on powers of the matrix greater than 1 fills in non-zero elements

quickly, and the matrix-vector approach with

E(z) =1+ z 2.4.3
preserves sparsity in the individual matrix-vector 6perations. For
linear heat-conduction problems involving initial conditions which guaran-
tee a rapidly-decaying solution, the standard Euler's method has been
shown to be fairly efficient [7]., This is the simplest case of an

argument-reduction scheme such as we have been discussing.

Another problem associated with such argument-reduction schemes is
the inability of the norm-reduced exponential approximation to ''see" the
effect of components associated with small eigenvalues of the coefficient
matrix. These methods are less well suited to following slowly-varying
solutions over more extended time-periods.

If a method based on a rational approximation to exp(tA) is chosen
to follow a solution component which persists over a large time interval,
then the rational approximation must satisfy either Definition 1.5 or

Definition 1.8 to ensure that the limitation on the time-step for the
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initial-value problem is chosen from truncation error considerations
rather than consideration of the stability of the rational function
evaluation procedure.

The A-stable formulae of Section 2.1 all contain an implicit evalua-
tion of an A-acceptable approximation E(z). The generalized methods of
Section 2.2 and the one-step global methods for forced linear systems of
Section 2.3 have an explicit evaluation of a term E(tA) in the solution

procedure. In [8], Cavendish, Culham and Varga have implemented for

v,

some Chebyshev rational approximations the evaluation of E(M
. - 1 -~

where the argument M "N is calculated a priori. The method applied to

such an argument necessarily implies that the matrix M be of particularly

simple structure (in their example it is diagonal) to avoid matrix fill

if the problem as posed has a sparse coefficient matrix.

— 2. _



CHAPTER 3

OPTIMAL ORDERING OF COMPUTATION

FOR APPROXIMATIONS WITH REAL POLES

3.1 General Considerations

In the introduction, the effect of a change of computational
ordering on the number of operations and the stability of the numeri-
cal solution to a linear initial-value system by the trapezoidal rule
was discussed. In this chapter, these considerations are covered in
more detail. The more general case of linear factors is examined with
the trapezoidal rule as a model. As well, the development of a second-
order method which is strongly A-stable, involving real poles is
investigated, and one such method is examined in detail. This method
is used as a model for implementation procedures which are to be
followed for more complex methods based on rational approximations to
exp(z).y

The quadrature weights for a given rational approximation to
exp(z) will in general have a non-constant numerator. The method of
Section 3.6 avoids the problem of computing the numerators of the
Weight functions explicitly by a partial fraction factorization of the
weights and the rational approximation itself, with the added simplifi-
cation of the separation of the partial fraction factorization for the
quadrature points chosen in the section.

Section 3.8 considers another problem, namely the treatment of
linear systems of the form My' = Ny + f(t) and demonstrates that the
partial fraction factorization of the approximation and the weight
functions permits efficient calculation of numerical solutions to this

problem for quite general conditions on M, provided the denominator

- 25 =



factors are linear.

The treatment of mismatched initial-boundary values for the heat
equation is interpreted as a case of implicit matrix argument, and the

necessity of L-acceptability for this case is demonstrated.

3.2 Implementation of the Frapezoidal Rule

The trapezoidal rule, known also as the Crank-Nicholson formula in
the study of parabolic partial differential equations, is based on the
Padé (1,1) rational approximation to exp(z).

It is A-stable, but the rational approximation on which it is
based is not L-acceptable, since

1im Pll(z) = =1 . 3.2.1

The rational approximation and its first two moments from equations

2.2,3 are:
P, (2) = (1 - 2/2)7T @ + 2/2), 3.2.2
-1
Mo(z) = (1 - z/2) , 3.2.3a
=1 -1
Ml(z) =41 - z/2) ~. 3.2.3b
For equation 2.3.1, the trapezoidal rule for quadrature points g and
al is
L - oy
(1 - hA/2)yn+l = (I + hA/Z)yn + h{a-(;—_a—]? f(tn + hOLO) +
- oy
+&-I——%f(tn+hal)} . 3.2.4

For o = 1 - % this simplifies to
_ h
(I - hA/2) Yo+l = (1 + hA/2)yn + E{f(tn + aoh) + f(tn + alh)}.

3.2.4a
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L

The usual quadrature points chosen on the interval [0,1] are {0,1}
or {1/2}, the second abscissa being unnecessary for the midpoint rule
for the Padé (1,1) approximation. For simplicity, we will refer to
the inhomogeneous term as f%. The computational ordering of equation
1.1.2 we will call TR, and the ordering implied by 1.1.3 will be given

the designation ER. The algorithm 3.2.4 written in ER form is:

* -1
Yoty = (I - hA/2) Ty + hf, /2}

3.2.5
Ynt1 = Tty T 7n

A third ordering, which has the same characteristics as TR, is

given by the implicit Runge-Kutta model (IRK):
k, = (I - ha/2) Hay + £}
1 n Y

Ya+l = n + hkll2

If the two algorithms TR and ER are to be applied with constant
stepsize, their minimum storage requirements are, for a problem with
dimension k

TR: D(A) + D(LU) + k

ER: D(LU) + 2k

where D(.) denotes the storage for the computational step involving
matrix A and the LU factorization of the rational function denominator,

respectively.

Table 3.1 indicates the rough operations counts in terms of multi-

plicative operations for the matrix operations for the two different
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implementations, TR and ER, for;

(1), nxn tridiagonal coefficient matrix with re-decomposition of
the coefficient matrix at each step;

(2), nxn tridiagonal matrix using a stored LU factorization;

(3), a general nxn dense coefficient matrix for which the LU decomp-

osition has been found.

Table 3.1

(1) (2) (3)
TR 8n + O(1) 6n + 0(1) 20 + 0(n)
ER  6n + 0(1) 4n + O(L) n? + o(n)

The real advantage in cost of ER over TR is somewhat less than the
indication given by the table, as a significant overhead is encountered
in inhomogeneous problems from the evaluation of forcing terms. The
first column indicates a 25% saving in computational cost, while exper-
iments have shown the saving to be more of the order of 12.5%, in the
case of simple heat-conduction problems. This entry in Table 3.1 is
roughly proportional to the factorization cost, rather than simply the

back-substitution, and for a full matrix which has been factored in

a pre-processing step the saving in both substitution cost and storage

is more significant.
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3.3 Stability of ER-Trapezoidal Rule

ER is so—-named because it is an extrapolation procedure. To
identify it with the TR form, and establish that no instability arises,

ER may be viewed as a multilevel method.

]

GL |vHT

Define w y
n n

where v 1is an arbitrary nxl columm vector. Then
(I -hA/2) O Y g ) 0 I v

21 -I 0 I y

yn+ n

and since (I - hA/2) is non-singular, by hypothesis,

I-na/2 o\t /(1 - /)t o

21 -1 2(1 - na/2)”t 1
ER is thus equivalent to

0 (I -nas2) L

W, 3.3.1
n

W
o+l 0  2¢I -ha/2)t -1

ie. Wn+l Mwn .

We establish the correspondence between the eigenvalues and eigenvectors
of M and those of TR.

Assume that the matrix A has simple structure, and that its eigen-
value—-eigenvector pairs are denoted by <Ai,zi>, i-= l,.....;k. Theﬁ
the matrix M has n eigenvectors WT = (QT,_ET)T associated with non-zero
eigenvalues, and an nxn null space spanned by (vT, OTSTWhere the collec-

tion of vectors v, form a linearly independent set, spanning the null

i
space of M,
Consequently,

Mw = uw for non—zero‘ﬂ implies that
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-1
{-I + 2(I - hA/2) }zi =W,z

where the z-vectors are eigenvectors of A, and thus,

21 - hA,/2) = u 3.3.2
-1 +2@1 - i)—ui. .3.
These k eigenvalues are identical for the iteration matrix for TR,

Q- hA/z)‘l(l + hA/2)z, = 3.3.3

HiZi:
the remaining n eigenvalues being zero.

Thus, we have proven

Theorem 3.1 The marching procedures ER and TR have the same non-zero

eigenvalues of their amplification matrices, and ER is a stable variant of TR.

3.4 The Stability of Mixed Operations

The implementation of TR trapezoidal rule requires the performing

of the two operations:

x = Ab 3.4.1

A'x' = p' 3.4.2
in sequence.
Either operatioh can be written:
z = Pf 3.4.3
where 3.4.2 is assumed to have a non-singular coefficient matrix.
Instead of the exact solution of 3.4.3 we compute a quantity
z + 8z, which exactly satisfies
z + 8z = P(f + 6f). 3.4.4
Hence, we have
§z = POf

where llsz]|]| < 12| |.|]|6¢] 3.4.5
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and I]P,I is computed in a suitable compatible matrix norm. As in
Theorem 1.3, there can be exact equality in 3.4.5, if §f is in the
maximizing direction of flPl[ and the matrix norm is subordinate.

The reason for this section is the fact that Theorem 1.3 is a
"worst case" theorem, in that the right-hand side and the perturbation
on it are assumed to be in the direction of maximum relative error.
Also, fer such methods as the trapezoidal rule, the numerator factor
can be singular, and so any sensitivity analysis involving the mixed

operations must avoid inverses of numerator factors.

Continuing, we must construct such an analysis which doesn't
have these problems.

Assume that the solution to equation 3.4.4 is non-zero. Then

ozl | < R Vot [[zs0z] | -

Apply the triangle inequality, and assume that I]z], > lfézl[ to

obtain

X 3.4.6

B
— o
NN
—_f
IA
T
<

—t

where

P o] | 3.4.7
z+8z

We prove the following lemma.

Lemma 3.1 For IIEJI > ]]lel, there exists a 6, le] < 1, such that

£l _ L[el]]]f]]
inie Al 4.6

1+
z|

|[2]]
[z +

L
8z
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Proof
lz]] - [lsz]] < ||z + sz]| < |{=|] + ||sz]],
~[18z|| < ||z + 8z|| - |lz|| < [||sz]]

Therefore, there exists a 0 satisfying the hypothesis of the lemma,

P £ P| £ P f z

Assuming ||P|| and | |f]|| are nonzero, inversion of this relation

and

establishes the lemma.

Rewriting equation 3.4.7 as

P £ Sf

we see that two sensitivity ratios have been defined:

_ 1P £
KC(P|f) =TIz + 6z 3.4.10
and
k(2|£) = HEARRREAN] 3.4.11
|1z]
We note that if l ?: } is small,

K (P|£) = K(P|f)

Also, it may be noted that K(P]f) behaves exactly like the condition
number K(P), when K(P) exists (Chapter 1), for instance, the following
is true:
1 < K(P|f) < K(p) 3.4.12
The sensitivity ratio is not a substitute for the condition number

assoclated with the linear equations problem. Rather, it is a tool for
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comparing the computational schemes for sensitivity to perturbations
in the input data. For a genuinely ill-conditioned linear system,
provided a stable decomposition exists, the solution to equation 3.4.2
might have to be refined by iterative improvement [17]. The analysis
presented here is to show that the best solution available in a fixed
precision arithmetic is affected by the computational ordering. The
trapezoidal rule is the model problem for the sensitivity of mixed
operations, and specifically we consider the unforced linear system,
y' = Ay, where A has eigenvalues with negative real part. Assume that
the problem is ill-conditioned, i.e., A has at least one small eigen-
value and one large eigenvalue and h is such that both I - hA and

I + hA have large norm.

The explicit step of TR can be computed to high accuracy, and

neglecting (1 - y) in 3.4.6,

|16y .| | ey ||
2 K((I + hA/2 n 3.4.13
o < K((I + hA/2) |y ) RIEAL

If Y, does not contain a significant component in the direction of the
maximizing eigenvector, K((I + hA/2|yn) is large. If it does, ]lyn+b||
2

is large, and K(I - hA/Z)_1 y_.,) is large. Hence,
nHsg

Hayn.,_lll -1 1l6ynl|
- K(I - hA/2
Tl < K(I - ha/2) |Yn+;§) (x / IYH)W

is large, establishing the following theorem.

Theorem 3.2 For the TR ordering of the model problem, one of the

substeps 3.3.1 or 3.3.2 for arbitrary y must be ill-conditioned if

A is an ill-conditioned coefficient matrix.
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Continuing, we prove

Theorem 3.3 Lf K((T - ha/2) '|y,) is small and ||y, |1/]ly,yy || 1s aleo

not large, the ER computational ordering has a computed solution with

low sensitivity to computational error.

Proof

From the second step in the ER algorithm
Ynts li(yn+l + yn)

and

Hence,

18yl | Hy I .
|16y _4q 11 im‘r - 1+ Ty T Mgy 1. 3-4.24

If we neglect the computational error in the expression

[y, 1]
o]

then we can deduce from equation 3.4.13 that if the first factor on the
right-hand side of equation 3.4.14 is small, and the ratio llynl|/||yn+l||

is not large, then lldyn+ll|/||yn+l || is small. g

Conversely, since we can compute yn+k’ and hence Yo+l to full t-digit
.accuracy, a large value Ilyn||/||yn+l|| will indicate a measure of the

unsuitably of the trapezoidal approximation as an approximation to exp(hA)

in such cases.
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The result of these two theorems can be summarized, together with
the operations counts for the two variants of the trapezoidal rule for
linear systems, by simply stating that in virtually all circumstances
the avoidance of the explicit calculation of numerator factors is the
best strategy. The situation of a transient problem, where the trape-
zoidal rule is not a good algorithm to‘apply, is not an exception. 1In
such a case the sensitive step may be computed using techniques which
guarantee an accurate solution, and the vector addition may be performed

with little error.

3.5 Extrapolation Techniques

The technique of increasing the order of a method by extrapolation
results in an increase in solution accuracy with a moderate amount of
computational effort. The one-step two-step solution carried indepen-
dently in time is an often-used method for estimating the error in a
solution procedure. Some shortcomings in the use of local extrapola-
tion are given in [36]. The local step-by -step extrapolation for
the trapezoidal rule is a method of obtaining order-4 accuracy in a
fofced linear system, provided the time-step is such that the method

isn't unstable for the problem.

The Padé (1,1) approximation in ER form for first one step and

then two steps can be written for argument z as

P (2) = 2(1 - /)t -1 3.5.1

Y

and

- 35 -



P2 (2/2) = 41 - 2/ - 4@ - 2/ + 1 - 3.5.2
To extrapolate to obtain a fourth-order method, we use (4/3)P1§(Z/2) -
(1/3)Pll(z) to obtain

B () = -/ -~ -5 )

3.5.3

whose truncation error term for small argument is 1/32025.

It is easy to verify that Ell(z) is not A-stable, since

lim  Ej (2) = %- 3.5.4
Re[z ]

FIGURE 3.1

STABILITY REGION FOR .. LOCAL EXTRAPOLATION

15¢

- Y " A

0 5 10 15 20 25
- Re [s].

o

(Figure is symmetric with respect to real axis.)
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Figure 3.1 is a graph of the region of stability of Ell(z) for Refz] < O.
For heat-conduction problems, the condition ||hA|| < 25 (approximately)
results in a stable algorithm.

If the average of the two rationals is taken, rather than the
extrapolated value, a strongly A-stable method results, since the
averaged approximation is L-acceptable. The order of the averaged

method is still two. The approximation is given by
=2 -1 3 2
All(z) = (1-2/4) “(1-12/2) "1 - 16 2 ), 3.5.5

with truncation error for small argument -(5/96)2? It is interesting
to compare the two rational approximations to note that the term
responsible for the source of non-A-stability can be simply isolated.
From equations 3.5.4 and 3.5.5

=3
lim Ell(z) - All(z) =

Re[z]>—= 3
and

lim All(z) = (0, hence, the term

Re[z]»—=
(1 - 2072 - 2/ 2D

is the source of the potential instability.

Local extrapolation of two Padé(l,l) solutions gives an approx-

imation to the Padé(2,2) solution for a linear system:

2 2 2 2
hA . hA ~ hA , hA
(T-5 + oy = G+ + 35 v

k%

' %
If we let u 1 be the Padé(l,1) solution for stepsize h, and u

nt+
be the solution for two steps of length h/2, them . we denote by
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u ;the extrapolated solution:

n+l
4 kk 1 *
Yndl T 3 V41 T3 Y,
Then U1 exactly satisfies
2.2 2,2
hA | h"A _ hA  Kh°A
L=+ = A+ 5= +55)u +

The [0,1] moment equations for Ell(z) are,

setting q(z) = (1 - z/4)2(1 - z/2):

q(z)M (z) = 1 - % - _Z_z_ ;
a@g () =1 -1, 4 ?: ;
Q(Z)Mé(z) = %-_ %'z + ;j ;
q(z)MB(z) = %“ 3% z +.§;.

1l .2 2, %% *
36 h™A (un+1 - un+1)
3.5.6
3.5.7

For the nodes {0,%,1}, (Simpson's rule), the weight functions

derived from the moments are:

(Z) =_.1____Z_2_ s
w2Iw, =% ~ 9%
2 )
a(z)w; = 3(1 - fo ;
2
- 1_z_ z=
12w, = ¢ - ¢+ 33

3.5.8

A quick manipulation establishes the following two observations

and a theoremn.

- 38 -



Remark 3.1 For the Simpson nodes, the weights for Ell(z) from the
moment equation applied to the forcing terms for the inhomogeneous
linear system y' = Ay + f(t) agree with the weights derived from the
application of the trapezoidal forcing when the extrapolation procedure

is applied.

Theorem 3.4 When the trapezoidal rule is applied with the trapezoidal

rule for forcing terms and extrapolated as in equation 3.5.3, polynomial

forcing terms of polynomial degree < 2 are exactly integrated.

Proof

For i = 0, 1, and 2, the Simpson nodes produce for Ell(z) the
same moments as the application of the trapezoidal rule with trapezoidal
evaluation of inhomogeneous terms. But the moment equation for i = 3

is not satisfied by these weights:

2
1 - z-11 5 z_.
g Wi tw,= Q-9 G-zt M) 0

The mid-point rule quadrature for the trapezoidal rule doesn't

extrapolate in this fashion.

Remark 3.2 The extrapolated mid-point rule for inhomogeneous linear

systems integrates polynomial forcing for linear polynomials only.

There are no other obvious approximations which are based on
linear combinations of trapezoidal approximations, and the author has

been unsuccessful in obtaining any similar approximations using

elements of the Padé table in linear combination. In the next section
we discuss an order-2 approximation family with real poles which is

strongly A-stable.
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3.6 The L21 Approximation

We consider the class of rational functions defined by

Ry (2) = (1 - b2)T(1 - c2) 1L + a2), 3.6.1
for a real, a > 0
Re[b]l, Re[c] > O.
The conditions that 3.6.1 matches the Maclaurin expansion of exp(z)

through terms 0(z3) are

a+b+c=1 (linear)

1 3.6.2a

7" (b+c) +be=0 (quadratic) :
and, for the cubic term, the condition is

%'— (b+ ¢c)/2 +bc =0 (cubic) 3.6.2b

The first two equations yield the following characterization of b

and ¢ in terms of a:

b = %(l -—a+va*+2a~1)

c = %{l —a-yaZ¥2a-1)
The leading truncation error term is then, from 3.6.2b
= _33
T(Z)_(6 2)2.
We note the following special cases, expressed as a function 6f

the parameter a.

(1.) For a =1/3, 3.6.1 is the Padé(2,1) approximation (T(z) = 0).
(2.) For a = 1/2, 3.6.1 reduces to the trapezoidal or Padé(l,l)
approximation.

(3.) For a > 1/2, the approximation is not A-acceptable (c < 0).
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(4.) TFor a = 0, we have the Padé(2,0) approximation.
(5.) For V2 - 1l < a<1/2, the approximation has real poles, and if
a<1/2 - g, for ¢ a small positive number, the approximation is

L-acceptable.

(6.) For a = v2 - 1, the approximation has repeated linear denominator

factors.

It is this last case which we examine in detail, and we will call

it the L21 approximation:

L21(z) = (1 - (1 - /-]j)z)-z(l + (2 -1z . 3.6.3
7

For the L21 approximation, T(z) = {%-— (!2;5;13}23 and the
coefficient of z3 in T(z) has a numerical value -0.04044 (approximately),

which 1s about half that for the trapezoidal rule,
We now establish the stability of the L21 approximation.

Theorem 3.5 The linear approximation L21 is A-acceptable and L-accept-

able.

Proof

Let z = x + iy be a complex number such that x < 0.

Set [zlz = x2 + yz.

Define:

N(z) = 1+ (V2 - 1)z

a-q@a-21y,2
V2

D(z)
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Then,

|N(z)l2 =1+ (2/2-2)x+ (3~ 2/§)|z|2,
and D@ %= 1- a~-L)z4,
V2
fe. D)% = (A - @ - Dx + 26 - 2/D 2|2

This expression can be rewritten
2 2
D) |* = |N@) | - 2x + GG - 27Dz - @ - Dn.

Since x < 0, |D(z)| E_IN(Z)I and the first part of the theorem is

proved.

Continuing, since lD(z)l2 = IN(z)I2 + P(z), and P(z) is real and

positive and P(z) = Olzl4 for large |z|, L21 is L-acceptable. []

From the moment equations, we obtain for constant and linear

[]

moments, if we set q(z) 1- @@ - l-z)2:

V2
q(z)M (z) =1 - (1 - L );zz
V2
1M (2) = 5 - @ —/;: 2z

A particularly useful set of [0,1] abscissae for determining

1
weight functions is the set {(1 - =), (2 - v2)}.
2 D
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Solving the moment equations, we obtain

a@w =@ -1)a+ (Z-Dz2) ,
o /z

1 1
a@w, =L a-a-Ly.
1 /z

Hence the algorithm becomes:

- @-2mdy = @+ (Z - Dy,

V2
+ h{wofn+(1-l—) + Wlfn+(2-/§)} . 3.6.5
V2

For these particular abscissae, the formula reduces to the multiple
step formula:

1-a —/—;:)hA)y* =y + @ 'éﬁhfm(l _/;_) ,
2

T - (1 -Lym)y™ = 3"+ (1;-,/_1_-)h 3.6.6
5

‘/é- fn+(2"/§_) ’

k% *
Vo4 = 2+ Dy -2y

The two stages in the algorithm become the implicit Euler’'s
method at t = {n + (1 —V%)}h} and t = {n + (2 - ¥2)}h, respectively.
2
The separation is achieved because the choice of abscissae produces

weights which are factors of L21(z).

The L21 approximation error term has for argument with small norm
an error whose coefficient is roughly half that for the trapezoidal rule.
It 1s a preferable method in several situations. When the matrix is
stiff, or when a solution is required for large time, the L-acceptability

of L21 is important. When compared to the ER implementation of Crank-
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Nicholson with mid-point evaluation of the forcing on the same time step,
it is roughly 0.6 as efficient. This is the worst case, however, and when
the two algorithms are compared over long time periods, or when L21 is
compared to TR implementations of the trapezoidal rule, its efficiency in

terms of stability and ease of implementation make it a useful algorithm.

3.7 Applications to Non-Linear Systems

To date, the separable form of the algorithm L21 has not been
tried on nonlinear problems. However, the use of Lawson's linearization
transformation and the separability condition yields plausible formu-

lations for non-linear problems.

Recalling equation 2.2.2, for the system

y' = £(t,y),
we choose an appropriate linearization A so that %5-— A has eigenvalues
in the left-half plane in a t-interval containing {tn’tn+l} and apply

an algorithm based 6n a rational approximation such as L21, together
with the evaluation of f(t,y) - Ay as a forcing term.

We can apply multistep formulations, explicit or implicit, using
previously determined values of y at tn, tn—l’ etc., provided starting
values are generated by a single-step method of the same order as the

multistep formulae.

Lees [31] obtained a single-pass algorithm based on the trapezoidal

rule, for nonlinear systems of the form

y' = P(y)y 3.7.1
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which requires the prediction of Y(tn+%) using y-values
on {tn—l’ tn} in order to evaluate the nonlinear part contained in the
forcing function.

Using the trapezoidal rule with an approximation A to the Jacobian
of f, we obtain,

for u(t) ={P(y(t)) - Aly(t) ,

A
@ = 3900 = T+ Py + @G- By, | 3.7.2

If Yty replaces yn_|_;5 in the substitution in P(.), we obtain, upon
writing equation 3.7.2 in ER form, and simplifying:

h —
(I - P(yIH;i)))'m;5 =y, o>

ro|

3.7.3
Yn+1 2yn+l5 “Ya ’
This is the essence of the Lees extrapolated Crank-Nicholson method,
and the updated value of yn+% is obtained from {yn-l’ yn} by linear

extrapolation:

=3, _1
Ynts T2 Y0 T 2 Ypa1

In an analogous fashion, the L21 approximation with the quadrature
points chosen in Section 3.6 may be written to solve equation 3.7.1.

To simplify the expression, let

1
[ +(l"_)] )
nl n >

n, = [n+(2-+2)],
n; - l1=[n-1+ (1 - lﬁ]ls'
/2
and
n,-1l=1[n-1+ (-1,
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Then, using equations 3.6.6 and simplifying as in 3.7.3,

- a- é)hp(?nl»y; -y

s
1 — *k *
(I - @@=y )Ny =1y 3.7.4
/E) o I T T

k& *
yn+l - (/E.+ l)ynz - /E§nl

and

3.7.4a

<
It

(2 + 2)y:*_l - (2 + 1)}7:‘1 -

’
1 2 1 1

-y . 3.7.4b

~<

0
)

<

We note that the value ;; has second-order accuracy, since it is given
2 -
by the Crank-Nicholson formula 3.7.3 with h = (1 -V%)h.
2

If P is a function of t rather than y, both 3.7.3 and 3.7.4 have
their coefficient matrices given analytically by P(tn¥%)’ and {P(tn ),
1
P(t_ )} respectively.
n
2
In both cases, 3.7.4 behaves like an implicit Runge-Kutta formula,
*k

*
where y and y are the unknown quantities, rather than 'derivative"

values as in IRK methods.

3.8 Linear Systems with Implicit Matrix Factors

A more general class of linear differential systems is given by

the equation:

My' = Ny + g(t) » 3.8.1
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The matrix coefficients M and -N will be assumed to be positive
definite symmetric for the time being, as this is sufficient to

guarantee a stable coefficient matrix M_lN £381.

For these conditions on M and N the systenm is, formally,

y' = M Ny + Mg (e) 3.8.2
Thus, the substitution into the rational function approximation E(z)
is for argument Mle. If the rational approximation has only linear
numerator and denominator factors, one approach which avoids the explicit
calculation of M is to write the rational approximation in the form
idpq'$ ... where q represents a denominator factor, and p a numerator
factor. We need not specifically exclude the factorization of irreducible
quadratics into complex linear factors, although the feasibility of implem-

entation in such cases is reserved for Chapter four. Wé observe that, if

the number of numerator and denominator factors are the same,

-t = - oN)
and 3.8.3
@+ ety = M+ aw,
and the M terms cancel. This is also true for the forcing term, as
the M associated with the forcing term acts in the same manner as for
numerator factors, together with
Remark 3.3. For an A-acceptable approximatiqn to exp(z), the weight
functions derived from equations 2.2.3 have degree < m - 1, where m
is the denominator degree of the rational approximation E(z).

The need to apply numerator and denominator factors alternately

- 47 -



increases the computational cost and/or storage requirements considerably.
For the trapezoidal rule and L21, the partial fraction decomposition of
the rational approximation and its weights effects a computational
ordering which is useful in this case. Assuming that a linear combina-
tion of forcing terms is obtained from the partial fraction decomposi-
tion of the weights, and a term associated with the dependent variable

y, either at t = mh or some intermediate (known) point can be written

formally as

- * -
(I - oM 1N)y =y + BM lf 3.8.4

which may be rewritten

M - aN)y* = My + Bf. 3.8.5
Then, as in 3.8.3 the terms in the expaﬁsion of the partial fraction
decomposition may be summed to yield the solution to 3.8.1 at the next
level.
For the trapezoidal rule for implicit matrix argument the computa-
tional cost increases modestly in the ER form, and the computational

advantages over the TR form are now substantial.

This is a somewhat different approach to the treatment of the
implicit coefficient matrix factor M than in, e.g., [ 8]. It is not
surprising to note that the ordinary three-point spatial discreti-
zation of the equation

ut = uXX on [O’l] X[O,T] ’

u(x,0) = g(x) ,
3.8.6
u(0,t) = fo(t),

u(l,t) = fl(t).
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is of the form of equation 3.8.1.

in t and x
case of equation 3.8.3, and one of the common coding procedures to
solve the discretized problem by an implicit algorithm is in fact

similar in structure to either 3.8.3 or 3.8.5.
point spatial discretization at t = tn, on the uniform mesh iAx, i

l,..., (m+1); (m + 1)Ax = 1, and use the implicit Euler's method,

setting r = At/sz.

where

and

M - rN)un+l = Mun + Ath(tn+1) 3.8.7
L] L] 0
M = . Im"l .
0. . . 0O
Lax® 0. . 0
1 -2 10..
0 .
N = * -
‘ 1 -2 1
. 0 -Ax2
£,(t)
Q
h(t) = 0
£, (t)

Note that Mu, =

A full discretization

Apply the three-
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0,

1 Oati=1andi=m+ 2. Not surprisingly, this



formulation lends itself to efficient coding of the tridiagonal equations
solver in that the first and last rows of the coefficient matrix are not
special cases with respect to the loop structure used to perform the

substitution steps in solving 3.8.7.

The form of equation 3.8.1 gives rise to a class of singular
perturbation problems.

If in the matrix M of equation 3.8.7 applied to the semi-discre-
tization in space of 3.8.6, the {1, 1} and {n + 2, n + 2} elements are
non-zero but order e for some small € > 0, the problem would be a
classical singular perturbation problem. While it is beyond the scope
of this thesis to consider the case of singular perturbation problems,
it is of interest to note that the form of equation 3.8.5 is appropriate
to finding the solution to the reduced system for 3.8.7 for € approach-
ing zero. It is a well-known method for singular perturbation problems
to find the solution for the € = 0 case and theorems about its applica-
bility to the more general system exist [37]. Our concern is that, for
the problems to which we apply methods designed to follow solutions
which persist in time, the form of the linear systems which are free

1

of M = will be better conditioned numerically than 3.8.4, as the

application of Vi to the coefficient matrix N would, for such cases,

generate ill-conditioning that is avoidable through the use of 3.8.5.

Remark 3.4 For differential equations of the more general form 3.8.1,
which have a well-conditioned matrix N associated with the homogeneous

right-hand side, but an ill~conditioned matrix M, the coefficient
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matrix of the linear system 3.8.7 will be well conditioned for large
time-step.

What we have, in effect, is an equilibration of the coefficient
matrix in 3.8.7. The effect of this technique is to numerically solve
the reduced system when the time step is large relative to the singular
terms.

A more difficult problem arises in equation 3.8.6 when

Lim £,(t) # £(0)

t>0T

and

lim £, (t) #'g(l).

£+07

1f we replace the coefficient matrix M by M, where

M, =M

11~ Vo2 w2 €

then the differential equation becomes, for the variable Uy and U 402

R i - _
ug Ty + . fi(t)’ ui(O) g(xi) X, = 0orl

i.e., dropping the subscript i,

' 1

1
u' =--u + . £(t)

which has the solution
1 o1 £(s)
u(t) = exp (- E't)g + J exp{- E(t ~s) . ds 3.8.8
0

When evaluating equation 3.8.8 using a rational approximation
E(z) to exp(z), we have, for E(z) and a suitable quadrature formula
derived from it, exactness for a particular integral of u(t) for poly-

nomial f of degree < k (the order of the quadrature formula). For
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this case, the behavior of the solution to 3.8.8 must be examined as

e >+ 0. To do this, we must first prove

Lemma 3.2. If f(t) is a polynomial in t, then for t finite and € > 0

1(t 1
1lim —f exp{- = (t - 8)}f(s)ds = f(t).
e~+0 €70 €

Proof

Without loss of generality, assume that

f(t) = tJ, J > 0, and define

. 1 t 1 .
u;(t) = Efoexp{— E{t - s)}sts,

then for j = 0
0 t
u (t) =1- exp(--=,
P 4

and
lim [1 - exp(-,g)] = 1.
e>0t
t<T

Assuming the lemma statement is true for j > 0, then

. t .
uJ+l(t) = lf exp{- l‘(t - s)}sJ+lds
P [ 0 [
j+1 1 J+Lt 1(t 1 j
uP = exp{- E-(t - §)}s IO - js{;{oexp{- ;-(t - 8)}s”ds;
i.e.,
By = I ed (o)
P p
and lim u;+l(t) = tj+1, for t < T,
e*0
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since jeug(t) is finite, by the induction hypothesis. a

Corollary to Lemma 3.2. If f£(t) is a continuous function on [0,T], then

Lemma 3.2 still holds.

Proof
Apply the Welerstrass approximation theorem and the hypothesis of

the Lemma for polynomial forcing. 0

Hence, as € -+ 0, the particular integral up(t) approaches £(t).
When exp(z) is replaced by E(z) in equation 3.8.8, the solution

u(t) = Uc(t) + Up (t)

is exact for Up(t) under the conditions described and Up(O) = £(0).

However, for Uc(t),

t
U (t) = 1im E(- Dg
c 50 g’ ®?

and, if E(z) 1s not L-acceptable,

i.e. if lim E(z) = v, Y# 0,
Re[z]+ -

then, denoting the exact solution by u(t)

lim U(t) - u(t) = vg
>0

Hence, we have proven

Theorem 3.6 For nearly-singular implicit argument, L-acceptability of

the rational approximation E(z), and a quadrature scheme of order < k

is necessary and sufficient for exactness of the numerical solution to

equation 3.8.8 for f(t) a polynomial of degree < k.

From Chapter 1, the values of the {1, 1} and {m+2, m+2} elements of

any rational function with this particular matrix argument M—lN, are

- 53 -



the scalar quantities given by the approximation E(M‘lN) to the comple-
mentary function in equation 2.8.2. Two situations maﬁ occur here.

If the approximation is L-acceptable or is a Chebyshev approximation

to exp(z), the approximation may not be seriously in erfor. If, how-

ever, it is not asymptotically correct, there will be an error on the

boundary of the order of the asymptotic error. The formalism which
corrects this problem in equation 3.8.1 applies to any formula with
linear factors, e.g., the trapezoidal rule and the L21 algorithm. The
M-l—free property of the generalized algorlithms is in effect the solu-
tion procedure for finding the solution to the reduced system, as we
have mentioned.

For problems which have implicit matrix factors which are nearly
singﬁlar the application of L-acceptable methods becomes important here,
unless the reduced equations can be solved free of M-l, and for this
case, non-L-acceptable methods require unrealistic step-size constraints
to prevent incorrectness of the asymptotic solution to the singular
portion of the problem from contaminating the solution. The example
of this section is chosen because the cause of the singularity is
obvious, but it demonstrates all of the features that any system with

implicit argument might possess.
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CHAPTER 4

IRREDUCIBLE QUADRATIC FACTORS

4.1 Preliminary Considerations

The case of irreducible quadratic denominator factors in rational
approximations with matrix argument gives rise to two additional imple-
mentation considerations over those of approximations with linear deno-
minator factors. The cost of forming the irreducible quadratic factor
and the correctness of the floating-point representation of the result-
ing coefficient matrix when solving the resulting linear system are
both difficult questions.

We will look at alternative ways of accomplishing the factoriza-

tion, and compare the cost and accuracy of each strategy.

4.2 Operation Times and Programming Overhead

The traditional methods of evaluating the cost of a numerical
algorithm operate on the assumption that the cost of multiplications
and divisions together are proportional to the overall cost, provided
the numbers of additive operations and multiplicative operations are
roughly the same. This is a valid assumption to some extent, but is
dependent on both machine characteristics and the code which is generated

to handle such overhead as, for example, array indexing.

The following table lists the cost of the single and double-

precision floating point operations on the IBM/360-75 and
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HONEYWELL-6050, respectively.

Table 4.1 Operation Times (usec)

H6050" IBM 360/75 "
s.P. D.P. s.P. D.P.
+/- 2.2 2.2 1.17 1.17
x 3.2 6.2 2.05 4
: 7.52 12.3 6.92 6.92

A preliminary check of the table would indicate that, for both
machines, additive and multiplicative operations in single precision
are of the same order. The IBM/360 has the interesting characteristic
that single and double precision divide operations have the same cost.
The variation in cost between additions and multiplications lie bet-
ween a factor of one and three.

For a Gaussian elimination program, written in FORTRAN for example,
there are other overhead costs. For dense coefficient matrix, the
calculation of array pointers involves multiplicative operations, and
the loading/storing of array elements tend to make the differences
between single and double precision computation costs less than the
table of operation times would indicate. Figure 3.1 is a graph of
times in seconds for the decomposition and substitution phases for a
typical linear equations solver, modelled after the FORTRAN code

presented in [17]. For dimension 5 x 5 through 50 x 50, the code was

+,++
Source: IBM System/360 Model 75 Functional Characteristics
HONEYWELIL Series 6000 Programming Reference Manual - Hardware
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run completely in first single precision and double precision on the
HONEYWELL-6050, using the time-sharing FORTRAN compiler at a time when
minimum interference from other users could be anticipated. The time
variations between single and double precision are_of the order of

10% for problems of this dimension. For ill-conditioned systems of
small dimension, the need to perform double-precision calculations to
ensure a good result seems appropriate for a machine/compiler which

is gsimilar to the aforementibned, and the additional cost in the

absence of storage constraints is minimal.

8 FIGURE 4.1
*
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4.3 The Gomputational Cost of Irreducible Quadratic Factors

When considering evaluation procedures for rational functions of
matrix argument associated with an approximation to exp(tA), there

are two distinct computational considerations.

i) It is known a priori that the denominator matrix factors can
be re-applied, as in constant coefficient systems for which it is known
that the step-size need not be changed.

ii) The coefficient matrix is changed periodically, or the time-
step changes; in either case the matrix factors must be re-evaluated.

Case i applies to methods based on approximations to exp (tA) for
constant coefficient systems, for those instances when it is both feas- .
ible and economical to decompose and store the denominator factors.

For problems of moderate dimension, and for sparse systems with modest
fi11-in characteristics (e.g. tridiagonal systems) Case i 1s applicable.

For systems of large dime;;ibn but with structural simplifications
such as the Buneman algorithm applied to the multi-dimensional Poisson
operator, or for variable matrix coefficients, Case 1i 1is applicable.
Global methods (Varga et al [12], or Lawson [ 30]) may fall into either
category. They may operate in Case i mode for constant-coefficient
systems with fixed step-length, or, where the speed consideration is
marginal relative to the storage problems they may be of Case ii type.

The problem of storage limitations in general, relegates a particular

method to Case 1i,

For Case i, decomposition time is essentially pre~processing time,
and for Case ii the solution time must be estimated for both decomposi-

tion and substitution steps.



To conform with these separate cases estimates of cost based on opera-

tions counts will be broken up into three categories: initialization,

factorization, and substitution. The synthesis of the costs to be

evaluated into the broader picture will be carried out in Chapter 6.
The most general form of the equations we are to solve for

irreducible quadratic factors of the rational function is given by

(t2A2 + BtA + YI)y = 8Ab, + eb, 4.3.1

where B, Y, 8§, and € are real scalars, and the coefficient matrix

for equation 4.3.1 is assumed nonsingular.

The first simplification that may be made for the problem is to
assume that, for t # 0, equation 4.3.1 may be divided through by t2,
to make the scalar arguments in the rational function into simple
functions of the variable t. This makes a change in the time-variable
a more simple operation with respect to the matrix A: 0(l) computation
of time-changes at re-initialization time, and simpler representation

of the matrix argument.

Equation 4.3.1 is rewritten

(A% + BA + YI)y = 6Ab, + eb,. 4.3.2

Observation 4.1 The overall computing cost of an irreducible quadratic

factor is the cost in terms of real arithmetic operations to solve

equation 4.3.2. This cost will be subdivided into (i) the initial over-

head, (ii) the per-factor cost, and (iii) the substitution cost.



The following tables contain the cost estimates for the two
examples we are considering, and for reference, the cost of a real

tridiagonal decomposition and back-substitution.

Table 4.2

EQUATION 4.3.2 FOR NxN DENSE MATRIX

STEP TYPE +,- * /

Initial Cost Overhead

Matrix Squaring (n - 1)3 n3 0
Scalar Arguments 0 0(1) 0
Per Factor Cost
Assembly of Quadratic n2 +n } n2 +n 0
2 2 2
L-U Decomposition 1 3 n" 7 13 n" 7 n  n
(n7=5 tgn)  (GpT3 ) (G
Substitution Cost per Factor
Matrix-Vector Multiplication n2 -n+1 n2 + 2n 0
and Vector Assembly
. . 2 2
Substitution (n-1) (n - 1) n
Additional Initial Costs for Implicit Matrix Argument Vi
2 2
, 13n°,7 13027 n_n
L-U Decomposition of M (§n -3 +€n) (3n > +6n) (5 -3
Formation of M_lN n(n - l)2 n(n - 1)2 n2
Substitution M b (n - 1)2 (n - 1)? n

(a per-factor cost)



Table 4.3

NxN TRIDIAGONAL COEFFICIEN TRIX

Initial Cost Overhead +,- * /
Matrix Squaring 4n - 2 In - 4 0
Scalar Constants 0(1) 0(1) 0

Per Factor Cost

Assembly of Quadratic ° 4n - 2 3n - 2 0
L-U Decomposition bn - 7 4n - 7 2n - 1

Substitution Cost per Factor

Matrix-Vector Multiplication 2(n - 1) 3n - 2 0]
Vector Assembly n 2n 0
Substitution 4n = 6 4n - 6 n

For later reference, the computational cost for a real symmetric

tridiagonal nxn matrix is

Per Factor Cost + * /
L-U Decomposition n-1 n-1 n-1
Substitution Cost 2(n - 1) 2(n - 1) n

As has been noted, in general it is impossible to maintain sparsity

for implicit matrix factors, when the matrices M and N do not commute or

M 1N is full (Property P [21]).

4.4 The Existence of & Solution to the Complex Problem

Equation 4.3.1 has as coefficient matrix a denominator factor of

a rational approximation whose poles are outside some region containing the



spectrum of the matrix A. The irreducible polynomial for the factor is

p(z) = z2 + bz + ¢

or alternatively,

2

p(z) = (z - D2 +8° (B40) . 4.4.1

We first establish that the solution to 4.3.2 is unique.

Theorem 4.1 The linear system 4.3.2 has a unique solution for arbitrary

non-zero right-hand side b if for A an eigenvalue of A, p()\) # 0.

Proof
From Chapter 1, P(A) is similar to its Jordan form,

P(A) = HP(J)H—l

The diagonal elements of (J - yI)2 + BZI are

O - 92+ g

which are non-zero by hypothesis. P(J) is triangular, and thus has

non-zero determinant. Therefore, the solution is non-zero and unique,

and is denoted by

y = P(a) b, O

Theorem 4.2 _Under the same hypothesis, the solution to the complex

problem

{A+ v+ iBI}{zR + izI} = by + ib;

exists and is unique.

Proof

A+ yI + 481 = H(J + I + iBI)H_l
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if J is singular, then for some A, (X —y)2 + 82 = 0, a contradiction.

We can assume for the remalnder of this section that the irreducible
quadratic is of the form
2
P(z) = 22 + B",8 # 0
and denote the associated matrix problem by

(A + iBI)"SWR + dw ) = b, + ib_. 4.4.2

The following simple result, stated as a theorem, forms the basis
for the use of complex elimination as an alternative to forming the

quadratic matrix factor.

Theorem 4.3 For the complex linear system 4.4.2, the real and imaginary

parts of the solution vector are equivalent to the real pair of systems

2 .2 _
A"+ B8 I)WR = AbR + BbI
44,3

2 2
(A" + R I)wI AbI - BbR

Furthermore, there exist complex constants Yy and § such that the solu-

tion to equation 4.3.2 is given by w , where

R

(A + iBI) (wR + iwI) = Ybl + ch2

Proof
Multiply 4.4.2 by A - iBI and group real and imaginary parts. To

obtain the second result, we recall that the right hand side of equation

4.3.2 has the same form as the right hand side of equation 4.4.3, with

appropriate choice of Yy and §. O
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4.5 The Sensitivity of Complex Elimination

The complex elimination algorithm can be formulated in terms of

the equivalent real problem [1]

A -BL\/w b

BI A W b 405.1

A quick manipulation establishes a correspondence between the

singular values of the associated real and complex matrix factors,

(A - 181)T(A + 18T) = ATA + 821 + 18(AT- &)

and
AT +pI A -BI ATA + g%1 ~8 (AT - &)
\ -8 AT /\ g1 A 8(AT - A) ATA 481

The respective unitary and orthogonal matrices which diagonalize the
complex and assoclated real forms are similarly related. If U = UR + iUI

for the complex problem then

for the real problem.

Then we prove that for symmetric matrix argument both problems are

well-conditioned in the Euclidean norm.

Theorem 4.4 If A is a symmetric matrix, then the singular values ¢

of A and A + i8I are related by

o?[A + 1BI] = o2(A) + g2 . 4.5.2

Proof

The matrix (A - iBI)T(A + iRI) is, for symmetric A, equal to

e |
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the matrix

ATA + 621. 0

Corollary The 2-norm condition number for the complex problem for

a real symmetric matrix A is given in térms of the singular values of

A by
oi[A] + 62 }/2
K2(A + 1BI) = - T35 4,5.3
crn[A] + B

Thus the problem for symmetric matrix argument can be seen to
have exactly the square root of the condition number for that of the
irreducible quadratic matrix with the same argument.

For arbitrary square matrix A, the condition number for the complex
problem is not so simply related to the singular values of the matrix

argument, as the following theorem shows.

Theorem 4.5 The complex‘matrix A + iBI for arbitrary square matrix A

can possess singular values which exceed the square root of the maximum

and minimum eigenvalues of ATA + BZI.

Proof
Let the maximum and minimum singular values of ATA be represented
by Oi and Gi. Let z; and z, be the corresponding real maximizing and

minimizing vectors. Then,

zrf(ATA +8%1 + 18(aT - Az, z'{(ATA + BZI)zl

and

T, T 2 T T, T 2
zn(A A+ BT + 1B(A™ - A))zn zn(A A+ B I)zn.
Since zq and z are by definition real, a choice of complex vector

w may induce greater values in the two expressions (with .T replaced

*
by . , the complex conjugate).



For an example of a complex problem for which the conditioning of
the matrix formed from the quadratic factor 1s better than that of the

complex problem, let

then

but A + iI has roughly the same condition number as that of the real

matrix

K,(A + 1) = 0@®)  for a >> L. O

In practice, such situations are unlikely, since we will not, in
general, be working with nilpotent matrices or pure imaginary poles.
The complex problem will usually be well-conditioned, relative to the
matrix argument, at least.

Thus, the conditioning of the complex problem with respect to the
associated real problem is possibly greater for general non-symmetric
matrices. However, as the imaginary part qf the matrix tends to zero,

i.e. for large time step, we have

Theorem 4.6 In the limit as t > © for denominator factors of A-accept-

able rational approximations, the maximum and minimum singular values

of the complex problem become those of the coefficient matrix A.

Proof The result follows from equation 4.3.2, whose scalar arguments

are inverse functions of t. O
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4.6 The Cost of Complex Elimination

The cost of performing Gaussian elimination in complex arithmetic
may be compared to other alternative methods with respect to the number
of real operations required to perform the same elimination steps on a
real matrix of equivalent structure. The correspondence between the
real and complex arithmetic then establishes the complexity of the

algorithm.

The costs of complex operations in terms of equivalent real opera-
tions are summarized in Table 4.4 below. In addition to additive,
multiplicative, and division costs, the cost of inverting a non-zero

complex number is tabulated.

Table 4.4

COMPLEX OPERATIONS IN TERMS OF EQUIVALENT REAL OPERATIONS

real +,- * :
Complex
+, - 2 0 0
* 2 4 0
+ 3 3 3
1/a I* 2 2

For real computations in which the-number .of additive and multipli-
cative operations is the same, the cost of the equivalent complex compu-

tation is four times that of the real computation. The cost of inversion



of a non-zero complex number is included, because the cost of a cdmplex
division is not comparable to the cost of a complex multiplication.

Even tﬁough the real divisions can be seen to be more expensive than
real multiplications in Table 4.1, the fact that they are hardware
instructions and not performed via a subroutine results in a difference
in speed which does not affect the complexity arguments. In the context
of Gaussian elimination we have further justification for inverting the

diagonal numbers which are normally used in division.

Remark 4.1 When Gaussian elimination is performed on a non-singular
irreducible matrix A, the diagonal quantities are used at least twice
in an elimination procedure; at least once in forward elimination, and

once in the substitution of the right-hand side.

Comparing the table of equivalent real operations to perform the
complex operation, we see that an upper bound on the cost of Gaussian
elimination on an nxn complex matrix using the given assumption about
the diagonal terms may be expréssed in terms of the real factorization

cost.

c_(6) < 4(R (6) + ), | 4.6.1

where Rn(G), and Cn(G) are the costs of the elimination algorithm in

real and complex arithmetic, respectively.

There are a number of circumstances where the cost of the elimina-

tion for the quadratic is higher than for the complex elimination.
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EXAMPLE 1

10000001
01000001
00100001
00010001
00001001
00000101
00000011
11111111

is a coefficient matrix (with 1's representing non-zero elements or
blocks, and 0's representing zero elements or blocks) whose complex
elimination algorithm has O(n) computational cost, while the irreducible
quadratic factor has O(n3) elimination cost and O(nz) substitution cost.
In the case of block structure which is oriented towards maintenance

of sparsity, this sparsity arrangement (see for example [21]) for the
coefficient matrix of the differential equation is inappropriate for

the irreducible quadratic factor with that coefficient matrix as
argument. The quadratic matrix is, in the absence of any knowledge of

the internal block structure, full.

In the absence of any other considerations excepting complexity,
the complex elimination for a full matrix is more expeﬁsive than the
formation of real quadratic factors for the case of linear systems
y' = Ay + £f(t), for more than one irreducible quadratic factor in the

rational function denominator. It is competive in at least one common

situation other than the example just given, namely that of systems

- /0 -



with tridiagonal coefficient matrix A, For the principal reason that

the initialization of complex elimination involves no matrix multipli-

cation, the complex procedure can at least compete when the matrix
squaring results in either increased initialization overhead, increased
storage, or as in the example, increased computational complexity. The

cost breakdown is given below for the elimination alternatives.

COMPLEX FACTORIZATION IN REAL OPERATIONS

Real Quadratic Complex Factorization
+ - * / + - * /
Initial Cost 4n 9n 0(1) 0(1)
Per Factor Cost 8n 9n 3n 8n
Substitution per Factor n 10n 10n 12n

where we neglect the 0(1) terms. The cost with respect to the solution
of equatibn 4.3.2 is at least competitive for methods which require

a frequent re-evaluation of the coefficient matrix or the time-steps
(Case ii in section 4.3). A typical calculation for which two

quadratic factors with the same matrix argument are to be used in the
form of equation 4.3.2 would require for the real case 34n additive,

and 37n multiplicative operations and the complex form would require

26n additive and 36n multiplicative operations. The saving in the
complex elimination for tridiagonal matrices is accomplished by the

fact that the inversion of the diagonal element is the only full complex

multiplicative operation.

- 70 -



4.7 Round-off Errors in the Matrix Computations

The formation of the real irreducible quadratic factors is a
source of computational error in a solution procedure which necessi-

tates this step. If we denote the columns of A by c i=1,...,n,

i’
T
and the rows by I then

2 T
(A )ij = Ticys

and, using Theorem 1.5, the computed element aij of Aij will have
error which 1s bounded by

1.01( + Dul |z ][, ]le;]1],

where u is the unit round-off error in the floating point arithmetic.
The effect of this computational error is best illustrated for A
positive definite symmetric. TFor eigenvalue-~eigenvector pairs qu’ z, >,

l]zk|| =1, k=1,...,n of the matrix A, A may be written

n
A=72
k=1

The jth column of A is then

T
x 2%k ° 4.7.1

n

A.j=kglkk{zk}j z,
and the ith row is
)

A, .= ) A {z }

i k=1‘k k

Hence, the ijth element of A2 is given by the expression

T
j Tk

n
Ap-Aeg= § a2z} {2 4.7.2

k=l 17
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and

oA ] < T a2
Ay.A. | < A
1 3 k=1 k

since A is positive definite. If Al >>_)\n the component of the computed

a2, element corresponding to %n.may be negigible in equation

i3
4.,7.2. This will be more probably a drift in the computed Ai rather
than a change in z > especially if An is an isolated small eigenvalue.

The An solution component is, however, the persistent component in

exponential solutions to

t =

y' = -Ay (A positive definite),
and error in the numerical solution is likely to occur if A is severely

ill-conditioned.

On ;he other hand, there is no error in forming the ﬁatrix A + 1iBT
or its real equivalent:
A -g1
BRI A
The error occurs in'the reduction to complex L-U form.
One source of error in the solution results from the‘loss of
significance in the elimination steps. To minimize this, a pivoting
strategy needs to be devised which 1s inexpensive to use.

~

Let A + iB = MO, - 4-703

where mij = aij + ibi

j’

and construct the real matrix C corresponding to this complex matrix

by replaciﬁg the 1jth element of A by the 2x2 matrix
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The resulting matrix will look like

‘M., M. . . .M

11 12 1n
Moy Myp o o o My
M, = . . 4.7.4
Mnl an . » . nn
Now define
) 2 .1/2
r, = (aj; +byy)
cg = ay,/ry
s; = bii/r .
The matrix
Cl _Si
G,, =
11 s c
i i

is an orthogonal matrix and
c;  7Si\ /f1 O 85 Py
= 4.7.5
s i/ \% T b1 41

2x2 (n-1)

Now,

Oy m-1)x2 Y2n-2x2n-2
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rl 0 al2
' ]
10 . b
MO = 1 12
and
L} ]
315 by
' ' =
bii 314

7.6

We may now proceed with the first 4(n - 1) elimination steps of the

Gaussian elimination process, noting that only half of them are

distinct.
1 0 ry 0 pi
0
2x2(n-1) T
' 0 1 0 r1 Py
M =
0 T
a2, o Mo P19
ry r1 2n-2x2n-2 0 rl r2 /

Also, note that the two eliminations in the ith and i + 1lst

columns are disjoint, by virtue of the fact that the 2x2 matrix on

the diagonal is a diagonal

zi+l can be made less than

ing strategy that searches

gives a slow growth in the
1)

1j
The basic 2x2

Finally, the 2-norm of a

alj + ib

13"

M

0 r r

1 1

T T.
"_ 31 %P2

matrix. Hence the elements of li and

one in absolute value by a partial pivot-

for max{|a, |}. Such a strategy

1jllbij
1>3
upper triangular part of the matrix.

+ iblj

matrices in the submatrix

is the same as the 2-norm of
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step are in the i, jth position

" Rij TPIij
Mij = 4.7.7
Mriy TR
where
l | 1
Mty = 314 T ¥ 11215 T P11y’
1 ) 1 )
mryg = Py T Py T 24Py’
Now, let
| 1
n = H(ail + ibil)(alj + ibij)llz
then, since the rotation preserves the 2 norm
1 )
n =< ||ail + ibi]_| |2| |alj + ibljllz
n < Hail + ibilllzllalj + ibljllz :
The pivoting strategy was designed to operate in the || [Iw norm over
the aij's,
Hence
maX{Iail|, Ibill} 2r,
2 2
[la;; + 1bil||2 < 2r
||ail + ibil||2 < V2 r.
Therefore
f-‘r—i »/z—llal:i + 1b1j||2‘
and
”Mi'j” < (1+ /2')ma'x{]|a1j + iblj]|2, llaij + ibij||2}.
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The growth factor in the complex elimination is 1+ /f)k where k is
the number of elimination steps, rather than Zk as in the real case,
for an || ||_ - norm pivoting strategy.

Provided pivoting is applied, where necessary, the inherent
stability of the orthogonal transformation which is implicit in the
complex division defines a stable procedure ([40], p 133). Experi-
mentally, the complex elimination algorithm for positive definite A
and M = A + 1BI, appears to be at least as accurate in general as
double precision calculation with the irreducible quadratic factor.
This is particularly evident when A is so ill-conditioned that a
2

stable L-U decomposition doesn't exist for A + BZI.

4.8 Linear Systems with Implicit Matrix Factors (11)

For systems with implicit matrix factors, the complex elimination
form provides, for a modest increase in cost, an algorithm which doesn't

involve M_l.

For My = Ny + f(t) 4.8.1
we are required to solve systems with coefficient matrix M—lN (assuming

M is non-singular). The systems to be solved have the general form

{2 + Za(M—lN) + (a2 + bZ)I}y = b + MLk, 4.8.2
Unless M and N commute, there is no formulation of equation 4.8.2 which
is free of M_lN:

NN + 2aN + (a2 + bz)My =Mb + £ 4.8.3

1

If NM ~ = M—lN, we have

{N2 + 2aMN + (a2 + bZ)MZ}y = Mzb + Mf 4.8.3a
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However, the complex form is M-l ~ free:

iy + (a + ib)I}y = b + M le 4.8.4
or, equivalently (for M non-singular)
{N+ (a + ib)M}y = Mb + £. 4.8.4a

Equation 4.8.4a requires the additional computation N + aM in the
initial decomposition phase. Also, some of the simplification in, for

example, tridiagonal systems, is lost.

For sparse matrices the non-zero structure of M + yN relative to
that of M and N is additive, and thus provides considerable simplifi-
cation in maintaining sparsity. For nearly singular matrix argument M,
we again have the numerical effect of solving the reduced system for

large argument a(t) + ib(t).

4.9 Conclusions

The complex factorization form of implementing rational approximations
for matrix argument has no one-to-one correspondence in cost with its
irreducible quadratic real form. For sparse coefficient matrix argu-
ment, and especially for implicit matrix argument, where structural
considerations greatly affect the real computational mode, there is
a clear advantage in using the complex factorization. The special
form of equation 4.3.2 dictates that, even in the case of a dense
coefficient matrix, the substitution costs differ by at most a factor
of two, and initialization costs between a factor of one and four.

We can conclude that, carefully applied, the complex factorization

is a serious competitor to the real quadratic implementations of

the evaluation schemes.
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CHAPTER 5

SPECIFIC IMPLEMENTATIONS

5.1 Details of Algorithm Construction

The Padé approximations of order > 2 (excepting the trapezoidal
approximation) and many of the Chebyshev rational approximations with
or without order at t=0 have denominator factors which are almost
always irreducible quadratics. Methods such as the complex elimination
procedure of Theorem 4.4 are applicable to these approximations. In
this chapter we implement in the complex form three of the Padé approx-
imations, the Padé (2,0), the Padé (2,1) and the Padé (2,2). These
approximations are particularly appropriate examples of the complex
implementation because there is a single irreducible quadratic denom-
inator facfor. The close relationship with the optimal IRK methods
provides useful sets of quadrature points on which to develop quadra-

ture formulae.

‘Algorithm Construction

The procedure for deriving an algorithm for complex arithmetic
is given in four steps.

1. For indeterminate argument z, the rational approximation and
its moments from equations 2.2.3 are derived.

2. For particular abscissae on [0,1] the weights are geﬁerated

from the appropriate VanderMonde system.
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3. Theorem 4.3 is applied to the system to determine the complex

constants which result in the solution to the homogeneous problem.

4.

Complex constants o + if are determined for each weight

Wk(z) to satisfy the linear system associated with the forced problem

in one solution step.

5.2 The Padé (2,0) Approximation

The Padé (2,0) approximation is
approximation to exp(z). It has the
2

on(z) = (1 -z + %—)_l

The first neglected term in the

3, z3/6. The moments of order 0 and

1 .

Mo(z) 1 - z

2
z°\-1.1
)

Ml(z) (1 -2z +

On the unit interval, we

functions are

_ z2 -1
Wy(2) = -z +2)
2
W= A-z+3)7G-

and the algorithm

h2a2

_ h
(T-bA+=—)y 1 =V, T3

choose abscissae 0,1.

a second order L-acceptable

form

5.2.1

error expansion is, from Chapter

1 are,

z
>)
5.2.2
z
2)'

The resulting weight

5.2.3

Z
5)

for matrix argument hA is

5.2.4

1 hA
£ G -

The irreducible quadratic factor may be factored into
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2
a-z+Z)-a-é&+ima-é&-da

and for the homogeneous problem, we have the form

1,4 %
5.2.5

* + *
Yot T R T Y1
This can be verified by the multiplication of the first equation
in 5.2.5 by the complex conjugate factor.

For the inhomogeneous terms, the complex constants in step 4 of

the algorithm construction are

ao + iBo

ay + iBl

N N

The resulting inhomogeneous complex algorithm is then

(I - (l-+ iohA)y* =y + E-(f 4+ if 5.2.6
2 2 n 2 Vn n e

The coefficient matrix of this form may be put in the form
M + iBI by multiplication on the left by 1 - i:

i 1-1

2

(I - hA - iI)y* =@ -1y + h(l ; )E = h( )

n+l

The equivalent real problem is written as

. .
I -hA I y y + (£ = £
‘] = R I B
-1 I -hA Y1 Yo fn + fn+

We observe that the pre~ and post-multiplication of the coefficient

matrix by

I
nxn nxn

(o]
1

I
nxn nxn

- 80 -



and Q results in the system

-1, *
[QMQ "1y = @b

i.e.,
I-ha -I ey 0 £
- - Vo + Y
RO TL) + nf 1 5.2.8
I I-na/ \yp - v 2y_ £,
Setting

*+ * * %
YR TV T YR

YR-yI—yI
%k
then Yol = Vg and 5.2.8 is in the computational form given by Theorem

4.3,

Returning to the system in complex form, we have

*%
_ . — o1 + . 2.
(1 hA + il)y 2iy hf + ihf 5.2.9

1

or, equivalently,

k%
(@ - 6%+ Dy = 2y + 201 - ma)y_ +

+ [{(T - hA)fn+l + fn} + 1{-fn+l + (I - hA)fn}]. 5.2.10

The imaginary part of the solution vector in equation 5.2.9 is the
solution by the Padé (2,0) approximation to a system with the same
coefficient matrix A, with initial conditions Vo1 given implicitly by

the equation

-~

Yn-1 " (I - hA)yn

and the weights for the solution to the inhomogeneous problem are {1,2},
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so that this extra solution may be considered to be on the previous
time-interval. It is possible that methods may develop from this ob-
servation about the Padé (2,2) approximation which operate in predictor-
corrector mode for non-linear systems.

The transformation back to the original problem definition in
complex terms yields the observation .that the real part of the
solution to equation 5.2.6 satisfies the boundary conditions, and
the imaginary part of this solution represents a solution with homo-
genious boundary conditions.

For semi~discretized parabolic partial differential equations,
an attempt to split the coefficient matrix in higher spacé
dimensions may be able to make use of this observation to facilitate
the problem of local matching of time-dependent boundary conditions

when using this approximation.

5.3 The Padé (2,1) Approximation

The Padé (2,1) approximation is a third order approximation to

exp(z), which is both A-acceptable and L-acceptable. It takes the

form
' 2 z2 -1 1
PZl(z) = (1 -3z +€) (1 +'3'z) _ 5.3.1
Denoting the denominator by
2

q(z) = (1-%Z+-Z~'),

its first three moments are

a(2My(2) = (1 - ¢),
q@M (2) = G - ),
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and

a@M, ) = G- D). 5.3.2

The denominator factors into

2
2 2y oo - (L i - _ 4
(l-3z+6) 1 (3+ 3'/‘5__)2)(1 (3 3—;5)2)

and for the homogeneous solution the complex factorization procedure
*
can be written for y = YR + Y1
1 i *
(I-(G+ —)h)y =y

3/2 n
5.3.3

Ya41 = YRt 272 ¥;
There are a number of choices of quadrature points which yield implicit
Runge~Kutta formulations for this approximation but, for linear systems,
one which yields a minimum of function evaluations for the inhomogeneous
terms is the set {1/3, 1}, i.e., the implicit Radau formulae. For the
scalar Radau quadrature formula, the weights for these abscissae are
3/4 and 1/4.

Solving for the numerators of the moments, for the abscissae,
1/3, a, and 1,0 # 1/3 or 1, we obtain W& = 0 and

3
=) W37 3%

5.3‘4
q(z)w, _ 1 _z
1=G 6"

In terms of the complex factorization, the solution to the linear

inhomogeneous problem with this quadrature is
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1, 4 ¥ b5 1
-G+ Y T PGty T T ) Y
+1 -B(f +£.)/2 5.3.5
3/3 nt+l/3 n+l

: * *
Yom = yR + 2/5 yI

which simplifies considerably if written in the form

*
(21 - hA - /2 iL)y = (2 - Y2 1)y + hf y1/3 %
+1 B g ) 5.3.6
2/7 n+l n+l/3 o

This formula may be transformed, in a similar fashion to the Padé

(2,0), into an implicit Runge-Kutta form, via the transformation

M toy) = @b,

where

to give

. ‘
~2yn fn+1

zyn/ fn+l/3

The system in this form is similar to one of the variants of the IRK
implementations in [10] based on the Padé (2,1) approximation.

The main advantage of this procedure is that, for constant
coefficient forced linear systems, there is oﬁe less function evaluation
than normally necessary for the exactness property for quadratic poly-

nomial forcing terms. A look at the weights for the {0, 2/3, 1}



abscissae,

B

q(Z)WO =
-3
(2,3 =3

Z
q(Z)Wl - = 6

establishes that, in general, the number of weights necessary to
exactly integrate polynomial forcing of degree k is k + 1 in general,
and the example of the {1/3, 1} abscissae is not indicative of the

general case.

5.4 The Padé (2,2) Approximation

The Padé (2,2) approximation appears to provide the highest order
formula based on rational approximations from the Padé table which is
both A-acceptable and for which a reduced set of quadrature points exists
which exactly integrate the maximum degree polynomial forcing using
kthe algorithm construction of section 5.1. This approximation is not
L-acceptable, since

1lim (z) = 1.

P
Re[z]> —= 22

The approximation and its first four moments are:

z 22 -1 z 22
P22(2)=(l—-2-+ﬁ) (l+—2-+-fé-,

- a _z_+_2i-l
Mo(z) = ( - 2 12) 3 5.4.1
My (2) = M (2) G5 - 12,

= 1l __z
MZ(Z) - MO(Z) (3 12)’
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1 z
M3(Z) = MO(Z)(Z - ) 5.4.1

12
For the Gauss-Legendre points'{3 g /3-, 3 Z /5-} on [0,1], the weights

for the matrix quadrature are:

g () = n @G+ 2o
75 5.4.2
1 3
g, () " M@ G~ 139

When applied to the scalar equation y' = qy + (mtm_l - tmq)b
on [0,h] for m = 0,1,2,3, we find that this quadrature formula
integrates the polynomial solution exactly only to polynomial degree

2, and for m = 3,

_ _h 12 22-1,. h 10 22 .3
y(h) = (1 q2+-——*144qh) 1 q2+—*l44qh)hb-

i.e. the solution has error

3@+92h2—11 2.5

E(h) = (1 -5 +%57) "5y ah®
giving insight into the difference between order and exactness for

linear systems.
One approach to gaining full polynomial degree for the quadrature
is to add the points {0,1} to the Gaussian points, to produce the

weights

= _Z
Wy (2) = M (2) (- 15

W (2)

g, Mo(z)/2

W (z)

g, MO(z)/Z

Wy (2) = M (2) (13)
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which are of a particularly simple form.
However the Simpson nodes produce an algorithm which is exact for
cubic polynomial forcing terms.

1 z
WO(Z) = MO(Z) (g + TE)

Wy o) = Mo(z)(%) 5.4.3

- l1__z
wl(Z) - Mo(z)(6 12)‘
The proof of this assertion is by substitution to verify that
M (2) =% W, (2) + W (z).
38 "1/2 1

Thus, one function evaluation is saved and the quadrature is
exact to full capability for inhomogeneous terms. In the absence of
storage restrictions the end-point function values may be stored in an
array for re-use in the next step, resulting in a long-term reduction
in the number of function evaluations and for more general non-linear
systems a formula which is. comparable to the IRK formula in the

number of substitutions.

The complex form which reduces to the solution of the real problem
requires an extra step, as in the Padé (1,1). The real irreducible

quadratic formula for a hemogeneous system has the form:

2.2
hA  h™A" — _
(I - > + 15 )y = hAyn
_ 5.4.4
yn+l = yn ty

To develop the complex quadratures for the two algorithms of this

section, we apply the construct of Section 5.1 to obtain for the
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Gaussian nodes

1
-G+ )hA)y -y + ni 2 - )fgl +
| V3 - 2 i
+ ( + Yf )
8/3  8/3 8 43

*
yn+1 = y; + 4/5 y1

and for the Simpson nodes

2,2

hA h™A *% 1 i 1 i
(I—-——-+ L2yy =y +h{iE+—)f + (F+—f +

2 12 n 8 4, r“;3 n 6 /3 n+l/2

+ (— £ 5.4.6
24/) 1)
%%k

In+1 = n + 473 y

The algorithm constructed from the Simpson nodes represents a gener-
alization of a modified multistep method [5], for which the order 2k
formulae are known to.be stable. As a result, the A-stability and
exactness property of this generalized method appear attractive for
nonlinear problems. However, the generalization doesn't appear to
follow through for the Padé (3,3) approximation, which, for reference,

appears below, along with its moments.

z z2 : z3 -1 z z2 z3
Pya(z) = A -5+ 75139 L +2% 70" 120
42
q(z)M,(2) = 1 + &5
1 z z

q(2)M;(2) =5 - 75+ T30
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q(Z)MZ(Z)
q(Z)M3(Z)
q(Z)M4(Z)

q(Z)MS(Z)

I [}
NN W

U

o\

zZ
15 T

Z

+ 120

5.4.7

For the Padé (3,3) approximation, neither the Gaussian nodes nor

the modified multistep methods appear to have particularly useful

quadratures associated with exactness for the particular integral ,

It would appear that one should use equally spaced nodes for the

higher order methods, either as one-step or multi-step formulae for

linear problems,
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CHAPTER 6

CONCLUSIONS AND NUMERICAL RESULTS

6.1 The Decomposition of Rational Functions

The computational scheme for an arbitrary rational function
approximation Emn(z) = Pn(z)/Qm(z) to exp(z) with order k requires
the evaluation of Emn and up to k matrix-valued weight functions.
These rational functions all share the denominator Qm(z). The only
efficient mode of computation which involves a single substitution
for each denominator factor is a partial fraction decomposition of the
rational functions, since for stability we do: .not want to evaluate the
full numerator and polynomials, and for sparse systems we wish to
avoid fill-in in the denominator terms.

Accordingly, the rational functions are decomposed into partial

fractions:
P (2) Cus R (2)
Qm(z) Qm(z)
where k < min{n, m-1},
Pn(z) . §m ci(z)
Qm(z) i=1 qi(z)

where for distinct linear factors

ci(z) =cy
6.1.1

qi(z) z + di

and for repeated linear factors
c(z) = Cix k = l,...,mi (the multiplicity of the factor),

4 () = (2 + di>k 6.1.2
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and for irreducible quadratic factors

ci(z) ez + fi
6.1.3

qi(z) 22 + 8,2 + hi'
Then vector solutions for the partial fraction corresponding to
each denominator factor may be obtained for each weight and E(z) it-
self, the substitution can be completed, and the result accumulated
in a solution vector.
The work is thus proportional to the degree of the denominator
and - except for function evaluation overhead is, to a first

approximation, independent of the number of weight functions carried

in the computation.

6.2 Linear Systems with Implicit Matrix Factors (III)

For stable systems whose spectrum is real the combined oxder-

uniform approximations derived by Lawson [30] are approximatioms

-z .
E(z) to exp(l — z). The conversion to exp(-x) for the purpose of

computation is accomplished by the transformation

6.2.1

The factors, for matrix argument may be substituted directly as
for implicit matrix argument (Section 4.8).for if
p(z) =z + (a + ib)
* X
p (x) = (=) + (a+ ib)
For matrix argument hA, equation 4.8.4a becomes
{hA + (a + ib)(hA - I)}y = (hA - I)b + £ 6.2.2

There is no simple correspondence between the implicit matrix
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12.00 16.00
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4.00

factors in (I) and (II) and this case, in terms of the original
differential equation, but the restriction of the original approxi-
mation to the interval [0,1] results in more uniform scalar coeffi-
cients with less chance for error due to cancellation than if the

interval is transformed to [0,).

6.3 Repeated Exponential Approximations

Given the simple exponential approximation E(z) for which a satis-

factory error bound on [0,*) exists, the approximation Ez(z/2) may

have an improved error bound on [0,*). In particular, the A-acceptable

subdiagonal Padé approximations, L21, and the averaged Padé approximation
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A, (x) (Section 3.5) all have the property that, for % >> 1, the uniform
error in the squared approximation, ez(x), is roughly the square of the
error in the original approximation.
Let
el(X) = R(x) - exp(-%),
then for

¢, (x) = R(x/2)% - exp(-x)

ez(x) ei(x/Z) + 2 exp(—x/Z)el(x/2)

which for large x, implies

e2(x) = ei(x/Z).
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The graphs labelled Figures 6.1 - 6.5 illustrate this behavior. The
order of the approximations in the neighborhood of x = 0 provide
damping of the error for x ¢ [0, 1.5] (approximately) where the
coefficient c of the error near z = 0, e(z) =cz k, k > 2
guarantees a decrease in error (%)k—l per squaring step. The non-
L-acceptable approximations exhibit the same behavior on a finite
t-interval, although for stiff systems, the restriction in the time-
steps necessary to keep the spectrum of the matrix problem in-this
time-interval may be unacceptable. (The cusps in the graphs are

associated with cross-over points, where the error vanishes.)

The close agreement of the E11 extrapolated approximation to the
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Padé (2,2) is evident for stable systems whose coefficient matrix has

a real spectrum (Figs. 6.6-6.8).
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6.4 Conclusions and Numerical Results

When solving initial-value systems, an increase in stability
of a method which results from L—écceptability is more beneficial to
the computation than an increase in. the order of the method. Imple-
mentation of L-acceptable methods which have some computational
considerations in their derivation, such as L21, can result in
efficient algorithms at modest cost. Whether there exist signifi-

cantly higher order linear approximations (unlikely), or whether

it would be desirable to consider the implementation of linear ap-

proximations with greater uniformity, are questions yet to be answered.

The approximations derived without computational considerations
may clearly be implemented at reasonable cost with the use of complex
elimiﬁation. Further investigation of its stability is another major
topic to be analysed.

Structural simplifications with respeet to the choice of quad-_
rature points (such as in the methods based on L21 and in Ghapter
five) may exist for a few other methods of modest order. For approx-
imations for which no simplifications exist, a ''good" choice of quad-
rature points must be made. In this respect, one of the negative
results of Chapter five is that for nonlinear systems, the Padé

approximations do not have stable quadratures to full order.
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The following test problems are designed to illustrate two main
points which occur in the thesis: the damping properties of L-accept-
able methods in the presence of transient solution components; and
the ability of such methods to deal with discontinuities in initial-
boundary values for the heat equation.

The equation to be solved for t in [0,1] is

u =u_, x ¢ [0,1],

t XX
with
i) u(x,0) = sinmx + sinlémx
u(0,t) = u(l,t) = 0,
i1) u(,0) =1
u(0,t) = u(d,t) =0,

using the customary 3-point central difference. approximation to the
second partial derivative with respect to x. Figures 6.9 - 6.12

are graphs of the finite difference solutions to i and ii respectively
at t = 1 for Ax = 0.0625 and Ax = 0.015625 for the trapezoidal rule,
L21, Padé(2,0), and Padé(2,1) - based algorithms (At = 0.0625 in

both cases). The Padé(2,0) and Padé(2,l) algorithms are implemented

in simulated complex arithmetic.
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Such experimentation leads naturally to the conclusion that the
spatial discretization for partial differential equations of parabolic
type is a problem which 1s independent of the exponential approximation
chosen to simulate time-behavior. Thus, given a particular differen-
tial system which is written in the form of an ordinary differential
system, with possible algebraic constraints, one may apply the results
of Chapters 3 and 4 to particular exponential approximations to yield
implementations which have the desired attributes, e.g. attenuation
of transient components, to yield a solution to the ordinary differen-
tial equation problem which is as accurate as possible, from a numerical
standpoint. The interplay of time and space discretization errors
normally associated with partial differential equations need not
necessarily be part of the discussion, provided the expénential

approximation used has the desired stability properties.
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