ON PROFILE MINIMIZATION OF TREE STRUCTURES
by
Joseph W.H, Liu
Research Report CS-75-13
Department of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

April 1975

Research was supported in part by an Ontario Graduate Scholarship
and in part by Canadian National Research Council Grant A8111.

ON PROFILE MINIMIZATION OF TREE STRUCTURES '
by
Joseph W.H. Liu-

Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

T Research supported in part by an Ontario Graduate Scholarship
and in part by Canadian National Research Council Grant A8111.

Abstract

A graph-theoretic approach is used to study the envelope method
for the direct solution of sparse linear systems. In this context, we intro-
duce the minimum and minimal envelope problems. An O(N 1092N) algorithm,
which generates minimal envelope orderings for trees of size N, is presented.
The corresponding profile or envelope size is shown to be bounded by
2N + N 1ogZN. Some extensive test results of this algorithm on randomly

generated trees are also included.

§1 Introduction

The direct solution of a given N by N symmetric positive definite

lTinear system

1]

b (1.7)

involves two major steps: the symmetric factorization of A and the back

Ax

substitution for x. In the factorization step (or the elimination step),
the matrix A is decomposed into the product LDL", where L is unit Tower
triangular and D is a positive diagonal matrix. The solution vector x can

then be obtained by performing the forward and backward substitutions:
Lz=b, Dy=2z, L'x =y. (1.2)

It is essentially the well-known Cholesky method which has remarkable numerical
stability for positive definite systems [28].

When the matrix A is large and sparse, a significant reduction in
storage and computation can be obtained if sufficient care is taken to avoid
storing and operating on all or some of the zeros. With the assumption that
exact numerical cancellation does not occur during the factorization, the
matrix A generally "fills-in" so that L+LT usually has nonzeros in positions
which are zero in A. In other words, L+L' is usually fuller than A.

Consider any permutation matrix P. The solution for (1.1) can be

obtained by solving the equivalent system:
PAPT(Px) = Pb. (1.3)

Since the permuted system remains sparse, symmetric and positive definite, the
above scheme applies equally well to (1.3). Yet, the permuted matrix PAP' in
general fills-in differently, and the amount of fill may be drastically
different from that of A. In solving the permuted system, we gain the possible

advantage of reduced computation and storage requirements.

In [22], Rose used a graph-theoretic approach to study systematically
the effect of the elimination order upon the set of fill (and hence the amount
of fi11). His analysis established a theoretical foundation on optimal
orderings with respect to some criterion functions. In particular, he defined
the minimum and minimal triangulation (or fil1l) problems, the purpose of which
is to minimize the number of fill [21,22,23].

In general, for fill-reducing orderings, the correspondingly
permuted matrix has its nonzeros spread over the entire matrix. General
sparse techniques, which exploit all the zeros in PAPT or its triangular
factor, have to be used. Their implementations usually require special storage
methods such as linear lists or bit vectors [12,20,25], and relatively
complicated coding,

For purposes of implementation, it is often convenient to exploit

only those zeros outside a particular region of the matrix. The envelope method

is one such scheme [4,8,10,13,14]. Let M be a symmetric matrix with M.. # 0,

and fi(M) = mi"{leij # 0}. The envelope of M is defined as:
Env(M) = {(i,3)]f;(M) < j and f (M) =< i}. (1.4)

The envelope method exploits zeros outside Env(M). In the context of symmetric
factorization, this scheme is attractive because Env(A) = Env(L+L"), so that
fills are confined to this envelope region [27]. Furthermore, it requires no
more storage than the popular band method [5,6,10] and in most cases signifi-
cantly less. And yet, it retains the advantages of band schemes: simple data

structure [13], efficient data management and convenient coding [4].

-3 -

To reduce storage and computation in envelope methods, it is
desirable to produce orderings PAP' for which |Env(PAPT)| is small. The

quantity |Env(PAPT)| is usually referred to as the envelope size or the

profile of PAPT. There are heuristic algorithms that produce profile-reducing
orderings: Cuthill-McKee [6], George [7], King [14], Gibbs, Poole and Stockmeyer
[11]. A comparative study of these heuristics can be found in [4,12].

In this paper, we study the envelope method from a combinatorial
point of view. Parallel to Rose's treatment of the fill problem, we formulate
the minimum and minimal envelope problems in §2. Finding minimum or even
minimal envelope orderings is in general a difficult task. As a start, we
consider minimal envelope orderings on linear systems associated with tree
structures.

In 84, we discuss the postordering of rooted trees (Knuth [15])
which turns out to be an effective algorithm for reducing the profiles of
trees. The postordering is then modified in §5 to a new algorithm (called
MET) that always generates a minimal envelope for trees. It is shown in §6
that this algorithm has a time bound of O(N 1092N), where N is the number of
nodes in the tree. We also show that the resulting profile is always
bounded by 2N + N logzN. The algorithm is implemented in ALGOL W, and in §7

we include some results of this program on random trees of different sizes.

§2 Preliminaries

In this section we introduce some definitions, notations, and
simple results that are useful in subsequent sections.
We begin with some standard graph-theoretic terminology. A graph
G = (X,E) consists of a finite set X of nodes together with a set E of unordered
pairs of nodes called edges. A graph G' = (X',E') is a subgraph of G = (X,E)
if X' < X and E' < E.
Nodes x and y are adjacent if {x,y} ¢ E. For a subset Y ¢ X, the

adjacent set of Y is defined as

Adj(Y) = {x € X \ Y|{y,x} ¢ E for some y « Y}. (2.1)

In case Y = {y}, we shall use Adj(y) instead of Adj({y}). A clique is a suk-
graph whose nodes are pairwise adjacent.

A path of length & is a sequence of & edges {xo,x]},{x],xz},...,

{x2_1, XQ}, where all the nodes on the path, except possibly X0 and

X,, are distinct. A cycle is a path of length at least one, which begins

L
and ends at the same node. A graph G is connected if for each pair of

distinct nodes, there is a path connecting them. If G is not connected, it
consists of two or more maximal connected subgraphs called components.

In this paper, graphs are assumed to be connected, unless otherwise
specified. A separator S of a graph is a subset of X whose removal disconnects
the graph. A separator is minimal if no subset of it is a separator. If {x}
is a separator, then x is a cutnode. Clearly, cutnodes are minimal separators.

The distance d{(x,y) between the nodes x and y is the length of a shortest

path connecting them. Following Berge [2], we define the diameter §(G) of a

graph G = (X,E) to be the quantitykmax{d(x,y)]x,y e X}; and we call x and
y peripherial nodes if d{(x,y) = §(G).

In this paper, we are primarily concerned with a class of connected
graphs called trees. A tree is a connected graph with no cycles. It can be
easily verified that for a tree T = (X,E), |X] = |E|] + 1, and every pair
of distinct nodes in T is connected by exactly one path (Berge [2]).

We denote a rooted tree by (R,T), where R is a distinguished node (the
root) in the tree T. If the path from the root R to y passes through x, then
x is an ancestor of y and y is a descendant of x. If, in addition, {x,y} ¢ E,
x is called the father of y and y is a son of x. A node x with all its
descendants are called a subtree of the rooted tree. Note that the ancestor-
descendant and the father-son relationships are not defined in unrooted trees.

Consider a graph G = (X,E) with |X] = N. An ordering or numbering

of G is any bijective mapping o = {1,2,...,N} ~ X. We denote the ordered graph
and node set by Ga and Xa respectively.

To study the envelope method graph-theoretically, we associate an
undirected graph G(M) = (X(M),E(M)) with a symmetric matrix M. Here X(M) is the
set of nodes corresponding to and Tabelled as the rows of M, and E(M) is the
set of edges, where {Xi’xj} e E(M) if and only if Mij # 0 and i # j. The graph G(M)
has an implicit ordering defined by the matrix M. Indeed, there is a one-to-
one correspondence between orderings on G(M) and permutations on M. Each o

defines a permutation matrix POc where

G(A), = G(PaAP;). (2.2)

In the symmetric factorization of the matrix A in (1.1), we can
describe the set of fill in terms of the associated graphs G(A) = (X(A),E(A)),
and G(L+LT) = (X(L+LT),E(L+L")), where A = LDLT, as follows:

Fil1(A) = E(L+LT) \ E(A). (2.3)

Rose called Fil1(A) the triangulation set for A since these edges when added to

E(A) transforms G(A) into a triangulated graphT G(L+LT). For details, see
Rose [21]. Using the notion of triangulation set, Rose then formulated the
minimal and minimum triangulation problems. The former requires the finding

of a permutation P such that for any other Q,
Fi11(QAQ") = Fi11(PAPT) = Fi11(QAQ") = Fil1(PAP'). (2.4)

The second problem involves the finding of a P with a minimum set of fills, that

is, for any Q,
IFi11(QAQT)| < [Fi11(PAPT)| = |Fi11(QAQT)| = |Fi11(PAPT)|. (2.5)

For efficient algorithms to determine minimal fill orderings, see
Ohtsuki [17], Rose and Tarjan [24].

To establish the equivalent problems in envelope methods, we introduce
the set of potential fill. Let Ga = (Xa,E) be a graph ordered by a. For
i=1,...,N, the set Adj{a(1),...,a(i)} shall be designated as the i-th front
of G ; its size |Adj{a(1),...,a(i)}| is called the i-th frontwidth of G . We

then define the potential fills of G,, [9] as:

Pfil11(6)) = g{{a(j),a(i)}lacj) e Adj{a(1),...,a(i)}} \ E. (2.6)

Ta graph is triangulated if every cycle in it has a chord (Berge [3]).

It is important to note that, in terms of the permuted matrix
PQAP;, Pfi]l(G(A)a) contains locations of zero entries in the envelope of PaAPg.
The significance of the front and frontwidth concepts in envelope methods can
be justified by the following lemma (George [8]).
Lemma 2.1 Let o be an ordering on G(A). Let wy = [Adj{a(1),...,a(i)].

Then
N
. TV
(i) IEnv(PaAPa)I = 2(1Z1w1) + N.
(i) If e(P;AP;) is the number of multiplicative operation to factor

PaAP; without exp]oiting zeros within the envelope,

e(PaAP --;— Z w(w+3

Let o be an ordering on G. Then a is a full envelope ordering if

Pfi11(Gu) = ¢. We call o a minimal envelope ordering if no other ordering

B satisfies

Pfi]](GB) g Pfi]](Ga).

The mapping o is a minimum envelope ordering if

[PFi11(6,)| < [PFi11(6,)]

for every ordering B.

Clearly, any full envelope ordering gives a minimum envelope; and
any minimum envelope ordering is minimal.

The ordering in Figure 2.1 generates a full envelope. In Figure 2.2,
the ordering is a minimum envelope ordering with {{5,3}} as the set of potential

fill. Figure 2.3 is an example of a minimal envelope ordering. Here the set

of potential fill is {{6,3},{6,4}}; however, we can find a different ordering
with |PFill] = 1.

1 3 5 7 9
S .

i/// L
2 4 6 8 10

Figure 2.1 A full envelope ordering

Figure 2.2 A minimum envelope ordering

-

3 «g\"~“
) .

Serttl T, /0 8
L)
5 \‘\\‘c ,//;
6
2
1

Figure 2.3 A minimal envelope ordering

§3 On full envelope orderings

Except in some rather special cases, a graph does not possess full
envelope orderings. We feel that it is stil1l worthwhile to study them for
two reasons. Firstly, if o is an ordering on a graph G = (X,E), then o will

be a full envelope ordering on the super graph

G=(X, Eu PFi11(G,)).

Secondly, they do bear some significance in the study of minimal envelope
orderings. If B is a minimal envelope ordering on G, then for any nonempty

H < PFfi11(G,), the super graph

g)

G, = (X, E v Pf111(GB) \ H)

does not have any full envelope ordering.

To begin, we give a straightforward characterization of full envelope
orderings using the definition (2.6).
Lemma 3.1 The labelling o is a full envelope ordering if and only if
Adj{o(1),...,a(i)} < Adj(a(i)), i = 1,...,N.

Another characterization in terms of a sequence of cliques is
given in the following Temma.

Lemma 3.2 a is a full envelope ordering on G if and only if for every

i=1,....,N. Adj{af1),...,a(i)} v {a(i)} is a clique.

Proof "if part". By lemma 3.1, it is sufficient to show

Adj{a(1),...0(i)} < Adj(a(i)).
Consider any y e Adj{a(1),...,a(i-1)} \ {a(i)}. Since Adj{a(1),...,a(i-1)} v {a(i)}

is a clique, y belongs to Adj(a(i)).

- 10 -

"only if part". We first show that for i = 1,...,NAdj{a(1),...,a(i)}
is a clique. Assume for contradiction that for some i, Adj{a(1),...,a(i)}

is not a clique. Then, there exist
a(j),a(k) ¢ Adj{a(1),...,a(i)?}

such that a(j) and a(k) are not adjacent. For definiteness, let j > k. Then

a(j) e Adj{a(1),...a(i),...,a(k)}

and yet olj) ¢ Adj(a(k)).

To complete the proof, we show that Adj{o(k),...,a(i)} v {a(i)} is
a clique. If it is not a clique, since Adj{a(1),...,a(i)} is, we can always
find an x e Adj{a(1),...,a(1)} such that x ¢ Adj(a(i)). Contradiction. 0

Lemma 3.1 and lLemma 3.2 are characterizations of full envelope order-

ings on the ordered graph Ga. We can only provide a partial characterization
on the unordered graph in terms of separator cliques.
Let S be a minimal separator with m components C, = (Xi’Ei)’ i=1,...,m.

The following two Temmas are immediate.

Lemma 3.3 For i =1,...,m, Adj(Y) = S u Xi’ VY < Xi'

Lemma 3.4 For i = 1,....m, X; n Adj(x) # ¢, ¥x € S.

A full envelope ordering resequences the nodes in G according to some
pattern with respect to the components of minimal separators. It is given in
the following lemma.

Lemma 3.5 Let S be a minimal separator of G with m components C; = (Xi’Ei)'
If o is a full envelope ordering on G, then there exists a permutation o on the

components so that o ordersthe nodes in the sequence:

Xg(]),XO(Z),...,XO(m_]), Su Xo_(m).

-~ 11 -

Proof Let m = 2. We note that nodes 1in S cannot be numbered until there is
only one component Teft unnumbered, say Co(2)’ because of Lemma 3.4.

Let &(]) € XG(])' If n] = ICG(])I, we show that @(2),...,@(“1) € XG(])'
Assume that a(1),...,0(i-1) € Xo(]) where i < ny. By Lemma 3.2, a(i) has to
be chosen so that

Adjf{a(1),...5a(i-1)} u {a(i)}

is a clique. Together with Lemma 3.3,
al(i) e Adj{a(1),...,a(i-1)} < S u Xo(])'
Thus a(i) e X0(1). Hence o orders the two components in some sequence o

XO(])’ Suvu XO(Z)'

The proof can then be completed by induction on m, the number of
components. O
Theorem 3.1 Let G be a graph that has full envelope orderings. For every
minimal separator S of G with components Ci = (Xi’Ei)’ i=1,...,m, the set

S u {x} is a clique for every x « X for all except possibly two components.

Proof Let o be a full envelope ordering on G. Lemma 3.5 assures that a

orders the nodes in some component sequence:

Cg(]),Cd(z),...,CG(m_]), S u Cc(m)'
Consider any x « Co(2) U eou U Co(m—])' Let a(k) = x ¢ Ca(i)'
By Lemma 3.3, Adj(CG(1) U eew U 00(1_1)) = S, so that
S < Adj{a(1),...,0(k-1)}. The result of Lemma 3.2 implies that S u {x} is a

clique. 0

- 12 -

We shall find theorem 3.1 useful in §5 when an envelope-minimizing
algorithm for trees is analysed. We remark that the above theorem cannot be

extended to minimal u-v separators (Rose [22]). An u-v_separator is a

separator S such that nodes u and v belong to different components with
respect to S.

In the example of Figure 3.1, {3,4,7,8} is a minimal 2-5 separator,
and the corresponding components are {1,2}, {5}, {6}, {9}. The result of
Theorem 3.1 does not hold for {3,4,7,8}.

Figure 3.1

In the proof of Theorem 3.1, it is important to realize that the
components Co(2)""’co(m—])’ when considered as independent graphs, have full
envelope orderings. Thus, the result in Theorem 3.1 is also applicable to

these components.

- 13 -

§4 Postorder of trees

Ordering of tree structures associated with symmetric Tinear systems
was first studied by Parter [19]. He showed that any tree can be ordered so

that its fill is empty.

However, not all trees have full envelope orderings. As a matter of
fact, only those trees with a main stem and branches of length one can be
ordered with full envelopes. This can be readily proved by Theorem 3.1.

Figure 4.1 is an example of such trees.
20
'

Y
o - i/ ! 'a,\'
187 1715 ™16
A14

13 /AJZ

10° 49 1
pc
67 5¢ 402 3* 4
Figure 4.1 A tree with full envelope orderings

A thorough study of tree ordering has been given by Knuth [15,p.315-359],
in the context of tree traversals. Ref.[1] also contains a comprehensive treatment
of tree traversals. In a complete traversal of a given tree, each node is
visited exactly once so that it induces a Tinear arrangement of the nodes. It

is apparent that the postorder traversals of rooted trees is most appropriate

for profile minimization.

Let us first review the postorder traversal of a rooted tree. Consider

a rooted tree (R,T). Let the rooted subtrees under R be (Si(R)’ Ti(R))

- 14 -

i=1,...,m. Here ST(R)""’Sm(R) are the sons of R arranged in some
specific order.

The postorder traversal of (R,T) is a systematic visit to the nodes
of T using the following algorithm:

Algorithm
POSTORDER (R,T):

Comment Let (Si(R),T1(R)) i =1,...,m be the rooted subtrees under
R in (R,T);
For i := 1 until m do
POSTORDER (s, (R),T;(R));
Visit node R;

end;

If we number the nodes of the tree in the same order as the sequence
of node "visits", we obtain an ordering which generally yields a small envelope.
In the example of Figure 4.2 (Knuth [15,p.363]), if we choose node I to be the
root and the arrangements of the subtrees as shown, the postordering a on T will
then be:

J, N, L, K, E, F, A, B, D, C, G, M, H, I.

Here the set of potential fill is:
Pfi]](Ta) = {{G,A},{G,B},{G,D}};

and they are denoted by dotted lines in the figure.

- 15 -

A
;
B 'C D
——
EF G H I
L 4 .r - ——
J o
Wi i *.__“_.._‘ M

Figure 4.2 A postordering on a rooted tree

Evidently, the envelope size depends on the order of the subtrees
(S1(R),T](R)),...,(Sm(R),Tm(R)). To see how this arrangement will affect
the envelope size, we proceed to characterize Pf111(Ta), where a is the post-
ordering on T with a given subtree arrangement.
Lemma 4.1 Let u,v be nodes in the rooted tree (R,T). Then &_](U) < &_](V) if
and only if
either u e T (v) for some k

or U e Ti(z) and v ¢ Tj(z) where i < j for some node z.

Proof It follows directly from the ordering algorithm. U

Lemma 4.2 Let a'1(w) < a"1(u) < a'](v). If w is a descendent of v, so is

the node u.

- 16 -

Proof Assume for contradiction that u is not a descendant of the node v.
By Lemma 4.1, o (u) < u_](v) implies the existence of some node z such that
u e Ti(z) and v ¢ Tj(z), where i < j. Since w is a descendant of v, w ¢ Tj(z).
Yet, this would imply, again by Lemma 4.1, that a'1(u) < a'](w). O

A node s is said to be a younger son of x if s = si(x) for some
i=2,...,m.
Theorem 4.1 Let u'](u) < a'](v). Then {v,u} « Pfi]](Ta) if and only if u is a
descendant of v's younger sons.
Proof Let T,(v),T,(v),...,T (v) be the subtrees under v. We shall prove
the equivalent statement:

m
{v,ul Pfi]](Tu) iffue U

T.(v) \ Adj(v).
i=2

m

Letue U Ti(v) \ Adj(v). Since Adj(T](v)) = {v} and a_](u) < u'1(v),
i=2

v e Adj{o(1),...,u} \ Adj(u). So, by Corollary 2.4, {v,u} ¢ Pf111(Ta).
On the other hand, assume that {v,u} ¢ Pfi]](Ta). Now that
v e Adj{a(1),...,u} \ Adj(u), there exists some k < u'](u) so that

v € Adj(a(k)). Thus, a(k) is a son of v. Together with the relation

o7 (a(k)) < o7 (u) < a"T(v),

we conclude by Lemma 4.2 that u ¢ Ti(v). Finally, i cannot be one because
a(k) is numbered before u and a(k) is a son of v. 0

For a rooted tree (R,T) with T](R),...,Tm(R) as subtrees under R, it
follows from theorem 4.1 that the number of potential fills due to the node R
is given by:

m
i=2

- 17 -

In the context of profile minimization, the best way to arrange the subtrees
becomes immediate: always pjck the one with the greatest number of nodes as the
first subtree. This will ensure a minimal set of potential-fill in using the
postorder algorithm.

To make the selection possible, we have to know, for each node x in
the rooted tree (R,T), the number D(x) of descendants x has in T. Knuth

[15,p.351] introduces a locally-defined function in a tree as a function of the

nodes such that the functional value at a node depends only on the node and the
functional values of its sons. It is evident that D(x) is a locally-defined

function:

D(x) = D(s]) + D(Sz) +...F D(sm) +m

where Sys Spse-+s S are the sons of x in T. Locally-defined functions can be
computed very easily, provided that the data representation allows an efficient
retrieval of adjacent sets (e.g. adjacency structure [26]). If there are N
nodes in the rooted tree, D(x) can be determined in O(N) edge

inspections.

The algorithm POSTORDER is only applicable to rooted trees. Thus we
are left with the problem of finding an appropriate root for a given tree to
start the algorithm. An apparently good one is a peripherial node. This choice
is crucial in the new algorithm described in the next section. To determine a
peripherial node for trees requires at most O(N) number of edge inspections and

we shall discuss this in more detail in §6.

- 18 -

§5 A minimal envelope ordering for trees

The postorder scheme in §4 is a simple, efficient and yet quite
effective algorithm for minimizing profiles of tree structures. Unfortunately,
it does not guarantee a minimal envelope. In the example of Figure 5.1, a

is a postordering. But we can find another ordering g such that

Pfi]](TB) g Pfi]](Ta).

115 ¢ 15
!
14 L 14
L 13
-
i.-]zzli :-. N
» e ‘\. - \‘ \\
\ ag
P\ '\3*9 v
b \\ // w\v‘ [
™ V%Yo
v oE
i P
l*7 "
A postordering a A better ordering B

Figure 5.1 Postordering o is not minimal

In this section, we modify the postorder scheme to a new algorithm
that will always generate a minimal envelope ordering. Let us first study the
above example more carefully and relate it to Theorem 3.1. The node
{a(12)} forms a minimal separator in the tree T = (X,E) and also in the extension

graph (X, E u Pfi]](Ta)). There are three components with respect to {a(12)}:

= {al1):a(2),0(3) ,a(4) ,a(5) sa(6)}
5 = {a(7),a(8),a(9),0(10),a(11)}
and Cs {0(13) ,a(14) ,0.(15)}.

[ep]
—
1] H

- 19 -

Theorem 3.1 says that we cannot remove any dotted edges {a(12),x} where
X € Cy, n the set of potential fills.
But if we consider the component C,, 1t 1s clear that C, has a full
envelope ordering so that {a(11),a(9)} in Pfi11(Ta) can be removed. This
(R)

under R, we should treat T2(R),...Tm(R) as general subtrees rather than as rooted

suggests that in the postorder scheme for (R,T) with subtrees T](R),...,Tm
subtrees. In the following, we describe our modified algorithm MET (minimal

envelope ordering for trees) using two recursive procedures.

Algorithm:
MET(T):
Comment MET generates a minimal envelope ordering for a
given tree T;
Find a peripherial node R of T.
PORDER (R,T);
end;
PORDER (R,T):
Comment PORDER numbers the tree T rooted at R in a postorder-
like sequence. T](R),...,Tm(R) are the subtrees under the
root R;
If m > 0 then
Begin
Resequence the subtrees so that IT](R)I > lTi(R)l;
Comment Let 31(R) be the first son of R;
PORDER (s, (R),T, (R));
For 1 := 2 until m do MET(T.(R));
end;
Number node R;

end;

- 20 -

For a given tree, there is a class of orderings that can be produced
by the algorithm MET. The better ordering in Figure 5.1 belongs to this class.
For convenience, we denote by B an ordering obtained by MET. We prove through
a sequence of Temmas that g is a minimal envelope ordering.

Lemma 5.1 If R is a peripherial node in a tree, then |Adj(R)| = 1.

Consider the tree T rooted at R. Let Xp be the first descendant of
R that has more than one son, and T1(XR)""’Tm(XR) be the subtrees under xp.
By the definition of Xp» Wwe have m > 2. Here the first subtree is assumed
to have the greatest number of nodes, that is, |T1(xR)l > |T1(xR)I for
i=1,...,m. Note that XR # R in view of Lemma 5.1.

Lemma 5.2 If x, ¢ Adj(R), then

R
ITi(XR)l =1 fori=2,...,m.

Proof If for some i = 2, lTi(XR)I > 2, R cannot be a peripherial node. [

Lemma 5.3 Let B_](u) < B'](XR). {xR,u} € Pf111(TB) if and only if u is a

descendant of xR's younger sons.

Proof The same as Theorem 4.1.]

Corollary 5.4 xp is a cutnode of the extension graph G=(X, Eu Pfi11(TB)) of T.

Proof By Lemma 5.3, the removal of XR disconnects G into (m+1) components:

T1(XR)’ TZ(XR)""’ T (xR), Ancestor (xR),

m
where Ancestor(xR) is the set of ancestors of Xp- 0

Theorem 5.1 B is a minimal envelope ordering.

- 2] -

Proof Let G be the extension graph (X, E u Pfil](TB)) of the tree

T = (X,E). If R is the peripherial node used in the algorithm, we consider the

removal of some {xR,y} in Pfi11(T,). By Lemma 5.3, y € Ti(XR) \ Adj(xR) for

g
some i > 1. Thus lTi(XR)l > 1, so that IT](XR)I > 1 and by Lemma 5.2,
R ¢ AdJ(XR).
This means that Xp is a cutnode of G with components T1(XR)""’Tm(XR)’

Ancestor(xR), where T1(XR) ¢ Adj(xR) and Ancestor (xR) ¢ Adj(xR). Hence, by
Theorem 3.1, the removal of some {xR,y} in Pfi]](TB) from G(TB) gives a graph
with no full envelope ordering.

In view of the recursive use of the algorithm on TZ(XR)”"’Tm(XR)
and the remark after Theorem 3.1, the same argument can be used for these sub-
trees. Finally, with a minor modification on the ancestor set Ancestor(xR),
we can apply the argument to the first subtree T1(XR)' Thus, we arrive at

the conclusion that no edge in Pfil1(T,) can be removed showing that g is a

g)
minimal envelope ordering.]
We point out here that in general 8 is not necessarily a minimum

envelope ordering. The tree in Figure 5.1 has a better ordering as shown in

Figure 5.2.
a7l
- 18
égf ;9
\?tijo
6 13
. i ;. ¥ 12{;; +14
1 2 3 4 5 :
e ‘15

Figure 5.2 A better ordering than g in Fig.5.1

- 22 -

Although B may not be a minimum envelope ordering, the amount of
potential fill in B is reasonably small. A bound is established in the follow-
ing theorem.

Theorem 5.2 [PFi11(T < N Tog,N.

)|
Proof Let p(N) be the maximum possible number of potential fills on apply-
ing PORDER in the algorithm MET to a rooted tree with N nodes. We shall use
induction to show p(N) < N Tog,N.

Clearly, p(2) < 2. Assume the inequality holds for all k < N. Let
(R,T) be a rooted tree with N nodes which suffers p(N) number of potential
fills. Let T](R),TZ(R),...,Tm(R) be the subtrees under the root R where

|T](R)| > lTi(R)|. Using Lemma 5.3 and the inductive assumption, we have

m
p(N) < Z] p(IT(R)]) + Z [T (R)] - m+]
'l:
i m
< 1211 R)[Tog, [T, (R)| + 1.£2|T1-(R)l
< [Ty (R} Togy [T{(R)] + Z [T (RY (Tog, | T, (R1]+1).

But for i = 2,...,m, lT-(R)l N

; so that 1og2!T R)| < Tog,N-1. Thus,

o
—
=
~—
IA

N
R)[Tog,|T{(R)| + 122|T1(R)|1og2N

IA

N 1og2N.

The theorem then follows from IPfi]](TB)| < p(N). 0

- 23 -

§6 Implementation and time complexity of MET

A peripherial node of a tree or subtree is required recursively
in the algorithm MET. We first consider how such nodes can be determined

efficiently using level structures. In general, the level structure at a

node x in a graph is defined as:
LS(x) = {LO(X)’L1(X)""’Lz(x)(x)}

where LO(x) = {x}
] .
L1+](x) = AdJ(kg]Lk) i=20,1,...

and 2(x) = max{d(x,y) | y « X}.

In case x is a peripherial node, the length 2(x) of the level structure becomes
the diameter of the graph. The following lemma provides an almost trivial

way to determine a peripherial node of a tree.

Lemma 6.1 Let x be a node in a tree T, and its corresponding level

structure be
LS(x) = {LO(X)’Ll(X)""’Lz(x)(x)}'

Then any y « Lg(x)(x) is a peripherial node.

Proof The Temma follows from the fact that any two nodes in a tree are
connected by exactly one path. a

After finding a peripherial node, say R, we have to compute the
sizes of the subtrees, that is, the number of descendants D(x) under each node
x in the rooted tree (R,T). D(x) can be determined quite simply by running

through the level structure at R

- 24 -

LS(R) = {Ly(R),L1(R) 5. .. L (R)D
bottom-up once:

For node x, D(x) := 1;

For & := & step -1 until 1 do

For y € LQ,(R)
if 2 < Adj(y) o Ly 4 (R)
then D(z) := D(z) + D(y);

It is evident that a peripherial node and the corresponding function

D(x) can be determined in kN edge inspections. Here k is a constant.

We are now ready to determine the asymptotic time complexity of the algerithm
MET. Define c{N) to be the maximum possible cost required by MET to find a
minimal envelope ordering for a tree of N nodes. We measure the cost by the
number of edge inspections.

Theorem 6.1 c(N) < kN]ogzN.

Proof We shall use induction to show the inequality. Clearly c(2) < 2k.

Assume the result holds for all k < N. Let T be a tree with N nodes that

requires c(N) number of edge inspections to find a minimal envelope ordering 8.
Let R be a peripherial node found by MET and T](R),TZ(R),...,Tm(R)

be the subtrees under R. From the algorithm and our induction assumption,

we have

- 25 -

(@}
—
=
—

[

< KN+ (T (R)]) - KIT{(R)] + .EZC(ITi(R)I).
i=

IN

m
k(N-|T{(R)) + _Z]lei(R)l1092|Ti(R)l
=

m
4 KIT) (R Togy [Ty (R)] + T KIT; (R)] (Tog,| Ty (R)[+1).
'|=

Since !Ti(R)I < N%l-for i=2,...,m,

c(N)

IN

k + k Tog,N .E]!Ti(R)I
i=

m
k Tog ,N(T+) |T.(R)| = kN Tog,N. 0
2 T 2

A

- 26 -

§/ Experiments
The algorithm MET was implemented in ALGOL W and run on an IBM 360/75.

The program was applied to a sequence of randomly generated trees of different
sizes in order to find the experimental running time.

The test trees are generated recursively as follows. Let Ty-7 be a
random tree with N-1 nodes. A node X; is selected at random from TN—]’
We then add the new node XN and the edge {Xi’XN} to form Ty

The test results are tabulated in Table 7.1. For each N, the result
is the average of twenty random trees. For our implementation, the constant
k in Theorem 6.1 equals two. In fact, the plot in Figure 7.1 shows that
the cost is proportional to N 1092N. We also note that the number of poten-

tial fills is bounded by N 1092N and in most cases much smaller than N 1092N.

- 27 -

N N TogpN lei]](TB)I egg:a}nggécggons ¥;m§eg§ﬁgs NT}EZ/N
100 664 .4 76.9 1220.6 0.14 107(-4)
200 1528.8 195.8 2621.5 0.28 831(-4)
300 2468.6 346.0 4147 .1 0.46 863(-4)
400 3457.5 504.9 5710.3 0.62 793(-4)
500 4482.9 682.1 7336.1 0.85 896(-4)
600 5537.3 838.2 8889.1 1.02 .842(-4)
700 6615.9 1041.9 10627.6 1.22 844(-4)
800 7715.1 1203.7 12202.3 1.42 840(-4)
900 8832.4 1386.3 13863.7 1.68 902(-4)

1000 9965.8 1642.2 15801.2 1.91 916(-4)

1100 11113.6 1796.4 17344.7 2.13 917(-4)

1200 12274.6 2036.7 19227.5 2.39 947(-4)

1300 13447.6 2189.8 20769.1 2.69 2.000(-4)

1400 14631.7 2438.9 22688.5 2.91 989(-4)

1500 15826.1 2595.0 24238.3 3.17 2.003(-4)
Table 7.1 Average results of running MET on

randomly generated trees

22000

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

_ 28 -

s

. fﬁfﬁ
fﬁfﬁ

L

5600 0666060 g0 16000 13660 AG0T

Figure 7.1 Plot of number of edge inspections against N 1092N

- 29 -

§8 Concluding remarks

We have presented an O(N 1092N) algorithm that generates a minimal
envelope ordering for trees. The algorithm is a modification of the familiar
postorder scheme for rooted trees [15].

In practice, to minimize storage and computation in envelope
methods, orderings that produce minimum envelopes are desired. To find them
is usually very time-consuming. It is important to point out that minimal
orderings can often be far inferior to minimum orderings. However, the
minimal orderings produced by our algorithm has reasonably small envelope.
Theorem 5.2 says that the number of potential fills is always bounded by

N 1092N on applying the algorithm to a tree of N nodes.

- 30 -

References

[1] Aho, A.V., Hopcroft, J.E., and Ullman, J.D., The Design and Analysis
of Computer Algorithms, Addison-Wesley, Reading, Mass. (1974).

[2] Berge, C., The Theory of Graphs and its Application, Wiley, New York
(1958).

[3] Berge, C., Some classes of perfect graphs, in Graph Theory and
Theoretical Physics, Harary F. (ed.), Academic Press, New York,
(1967), 155-166.

[4] Bolstad, J.H., Leaf, G.K., Lindeman, A.J., and Kaper, H.G., An empirical
investigation of reordering and data management for finite element
systems of equations, ANL-8050 Argonne National Laboratory,
Argonne, I11inois (1973).

[5] Cuthill, E., Several strategies for reducing the bandwidth of matrices,
in Sparse Matrices and their Application, Rose,D.J., and Willoughby,
R.A. (editors), Plenum Press, New York (1972).

[6] Cuthill, E., and McKee, J., Reducing the bandwidth of sparse symmetric
matrices, Proc. ACM 23rd National Conference (1969).

[7] George, A., Computer implementation of the finite element method,
Stanford Computer Science Dept., Technical Report STAN-CS-71-208,
Stanford, California (1971).

[8] George, A., A survey of sparse matrix methods in the direct solution
of finite element equations, Proc. Summer Computer Simulation
Conference, Montreal, Canada (1973), 15-20.

[9] George, A., and Liu, W.H., A note on fill for sparse matrices, to appear
in SIAM J. Numer. Anal.

[10] Gibbs, N.E., Poole, W.G., and Stockmeyer, P.K., An algorithm for
reducing the bandwidth and profile of a sparse matrix, to appear
in SIAM J. Numer. Anal.

[11] Gibbs, N.E., Poole, W.G., and Stockmeyer, P.K., A comparison of
several bandwidth and profile reduction algorithms, ICASE Report
(1974).

[12] Gustavson, F.G., Liniger, W., and Willoughby, R., Symbolic generation
of an optimal Crout algorithm for sparse systems of linear
equations, JACM 17 (1970), 87-109.

[13] Jennings, A., A compact storage scheme for the solution of symmetric

simultaneous equations, Comput. J. 9 (1966), 281-285.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

- 31 -

King, I.P., An automatic reordering scheme for simultaneous equations
derived from network systems, Intern. J. for Numer. Methods in
Engineering 2 (1970), 523-533.

Knut?, D.%., Fundamental Algorithms, Addison-Wesley, Reading, Mass.
(1968) .

Martin, R.S., and Wilkinson, J.H., Symmetric decomposition of positive
definite band matrices, Numer. Math. 7 (1965), 355-361.

Ohtsuki, T., A fast algorithm for finding an optimal ordering in the
vertex elimination on a graph, submitted to SIAM J. Computing.

Ohtsuki, T., Cheung, L.K., and Fujisawa, T., Minimal triangulation
of a graph and optimal pivoting order in a sparse matrix, to appear
in J. of Math. Anal. & Appl.

Parter, S.V., The use of Tinear graphs in Gauss elimination, SIAM
Review 3 (1961), 119-130.

Pooch, U.W., and Nieder, A., A survey of indexing techniques for sparse
matrices, ACM Computing Review (1973), 109-133.

Rose, D.J., Triangulated graphs and the elimination process, Journ.
Math. Anal. and Appl. 32 (1970), 597-609.

Rose, D.J., Symmetric elimination on sparse positive definite systems
and t?e potential flow problem, Ph.D. thesis, Harvard University
(1971).

Rose, D.J., A graph-theoretic study of numerical solution of sparse
positive definite system of Tinear equations, in Graph Theory
and Computing, Read, R.C. (ed.), Academic Press (1972).

Rose, D.J., and Tarjan, R.E., Algorithmic aspects of vertex elimination
on graphs, manuscript.

Rheinboldt, W.C., and Meszteny, C.K., Programs for the solution of
large sparse matrix problems based on the arc-graph structure,
Technical Report TR-262 (1973), Computer Science Center, University
of Maryland.

Tarjan, R.E., Depth first search and linear graph algorithms, SIAM J.
Comput. 1 (1972), 146-160.

Tewarson, R.P., Sparse Matrices, Academic Press, New York (1973).

Wilkinson, J.H., The Algebraic Eigenvalue Problem, Clarendon Press,
London (1965).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

