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Pumping lemmas are stated and proved for the classes of regular
and context-free sets of terms. The lemmas are then applied to solve deci-

sion problems concerning these classes of sets.



0. Pumping lemmas have been produced in various versions for a number
of classes of languages (Bar-Hillel, Perles and Shamir; Moore; Hayashi; Ogden).
Their use is two-fold. On the one hand, they lead to algorithms for deciding
certain problems about languages such as emptiness and finiteness. On the
other hand, they provide an effective means of proving that some language

does not belong to a certain class.

In this paper, we provide pumping lemmas for regular and context-
free term grammars (Thatcher and Wright, Brainerd, Rounds, Maibaum). (The
pumping lemma for regular sets is really implicit in Thatcher and Wright.)

_As a consequence, we can derive the effective methods outlined above.
Algorithms do exist for deciding the emptiness/finiteness of context free
sets of terms, but these are indirect (Rounds). They depend on algorithms
to solve the same problems for indexed languages (Aho).

We begin in section 1 by introducing some algebraic concepts which
we will need. We also define and state some properties of regular and context
free term grammars. In section 2, the pumping lemmas are stated and proved.
In section 3, these lemmas are applied in proofs of non-membership of some

sets in some classes of languages.



1. We begin by introducing some essential algebraic concepts. Let

N be the set of natural numbers. A ranked alphabet is a family of sets indexed

by N. We use the notation L = {zn}neN for ranked sets. If f ¢ Zn’ f is said
to be of rank n. I is said to be fin;fe if the (disjoint) union of {Zn}neN
is finite. We will now restrict our discussion to finite alphabets. -
A IZ-algebra is a pair consisting of a set A, called the carrier
of the algebra, and an indexed family of assignments o = {an}neN such that
LHED (A" > A). (A" > A) is the set of n-ary functions from K.to A. Thus,
for f ¢ Zn, un(f) = fA is a function from A" to A. We denote the Z-algebra
with carrier A by Az.
Let X be any set and consider the set WZ(X)'defined by:
(0) X < Wy(X)3

(1) If feZ and ts e WZ(X) for 1 < i < n, then ft toe WZ(X)‘

1°

WZ(X) is called the set of expressions or terms generated by X.

We can make the set WZ(X) into the carrier of a I-algebra (also

denoted by WZ(X)) by assigning to f ¢ I the operation fwz(X)(tl""’tn) = ft,...

A homomorphism is a structure preserving mapping w:AZ > Bz between
two Z-algebras, i.e. w(fA(a],...,an)) = fB(w(a]),...,w(an)) for

a],...,an e Aand f ¢ Zn.

Unique ‘Extension Lemma: Given a Z-algebra Az and an assignment ¢:X > A,

there is exactly one extension of ¢ to a homomorphism 5:wz(x) > Az' In

particular, there is a unique homomorphism hA:wZ - AZ’ O

We now define the operation of substitution on the set wz(xn),

where Xy = {x],...,xn}. (See also Thatcher (1970), (1972) and Wagner.)



We will denote by SubX (t;t],...,tn) the operation of simultaneously substitu-
n
ting (for 1 < { < n) ti for every occurrence of X; in t. Note that if

taeist € wz(xm), then SubX (st ,tn) is the unique homomorphism

1200
n
¢:wz(xn) - wZ(Xm) defined by the assignment ¢(Xi) =t 1 <1 <n,.

We will use the informal notation t[t],...,tn] for the image of t

under the homomorphism SubX ( stys...t ).
N n

A context free term grammar (Rounds, Maibaum) G is a 4-tuple

(N,z,P,S) where:

(i) N is a finite ranked alphabet called the set of non-terminals of G;
(i) Z is a finite ranked alphabet called the set of terminals of G.

Let V = {vn}neﬂ_= {Nn u Zn}neﬂf

(iii) P is a finite set of productions of the form A(x],...,xn) > t, where
A e Nn and t ¢ Wv(Xn);

(iv) S is called the start symbol or axiom of G and S « NO‘

Given s, s' ¢ wz(xn) and G = (N,Z,P,S), s is said to directly derive

s' (denoted by s T s') if and only if s' is obtained from s by replacing

one sub-expression of s of the form At]...tn by the expression SUbXn(t;tl""’tn)’
where A(x],...,xn) ~ t is a production of G. Denote by %> the reflexive,
transitive closure of T Noté that we will often drop the G from T or %>
whenever it is clear to which grammar we are referring.

A grammar G = (N,Z,P,S) is said to be regular if N, = ¢ for all n > 0.
The set L(G) = {t ¢ WEIS 5 t} is called the (term) language

generated by G. The language generated by a context free (regular) grammar

G = (N,z,P,S) is said to be a context free (regular) language (over I).




Theorem The class of languages generated by regular grammars is a proper
subclass of the class of languages generated by context free grammars.

A context free grammar G = (N,Z,P,S) is said to be in (Chomsky)
normal form if each production in P is in one of the following forms:

(i) A(x],...,xn) > B(C](x],...,xn),...,Cm(x],...,xn));
(ii) A(x],...,xn) - ij]...xjm;

(ii1) Alxqseniax ) > xp

for A,C],...,Cm € Nn’ B e Nm’ f e Zm’ 1 < ji’ k<n,and 1 i <m.

Theorem (Maibaum) Given a context free term grammar G, there (effectively)

exists a grammar in normal form such that L(G) = L(G'). g

The depth of an expression t e wz(x), denoted by |t| is defined
as follows:
(1) [t] =0 if t=x, x e X;
(i1) If t = ft,...t,, then [t] = 1+ max {]t;13.

1<izn



3. We now use the preceding definitions to present pumping lemmas for
regular and context free term grammars.

Theorem Given a regular language L over I, there exists a constant r > 0
(depending only on L) such that, if t ¢ L and |t] > r, then t can be written

as u][uz[u3]] where:

(i) up e wz({y}) with exactly one occurrence of y;

(ii) U, € Wo({y}) with exactly one occurrence of y and 1 < [uzl < r;
(iii) Uj € Wz.
Moreover, u;[uj[u]] e L for all i = 0, where u) is defined by:

(1) ug =y

(ii) u;+] = u;[uz].
Proof Let L = L(G), where G = (N,z,P,S) is a regular term grammar. (Note
Nn = ¢ for n > 0). Let N0 = {A],...,An} and r = n, Consider t ¢ L such that
[t] > r. Then we must have

s % u][Aj]

= u[u,[A,1]

%, uq Lu,Lug]]
for ups Uy, ug as in the statement of the theorem and Aj € NO' (If we regard t
as a tree, this statement can be justified in greater detail as follows:
A path of maximum depth in t must have been generated by expanding |t| non-
terminals. Since |t| > r, there must have been a repetition of a non-terminal,

say Aj, along this path.)




But, then S — up [A;]

*

= U [UZ[AJ-]]

*

=> u] [uz[uz[AJ]]]

*

=> Uq[u,[u,[u,]]]
is also a valid derivation. Clearly u][u;[u3]] e L for all i = 0 and u;
defined as in the statement of the theorem.
Corollary The emptiness and finiteness problems are solvable for regular

term grammars. (See also Thatcher and Wright.)

Proof For the emptiness problem, it is clear that we only need to test
terms of depth less than or equal to r, for a given grammar G. This can be
done since L(G) is recursive. Similarly, for the finiteness problem, we need
to test terms of depth greater than r but less than or equal to 2r for member-
ship in L(G). A positive (negative) answer in either case provides a positive

(negative) answer for the corresponding decision problem. g

In order to prove the.pumping lemma for context free term languages,
we need a result of Rounds concerning the "set of paths" of t e wA(x), where A
is some ranked alphabet.

For each f ¢ An, let fi be a new symbol for 1 < i < n. i.e.
let & = {filf € Ay for some nand 1 < 1 < n}. For each a ¢ Bgs define the set

of a-paths through t e wA(x) as follows:

(1) P(x) = ¢,x e X;

$,b € Ao,b # a
() pylb)

{a},a € Aosa = b;

| n
(111) P (ftg...t)) = Ui {flw e P(t.)}.
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Thus the set of a-paths of t is a set of strings (ending in the symbol a)
over the string alphabet A.

For L ¢ WA, define
P(L) = a%ﬁo t%i Pa(t)'

Lemma (Rounds) If L is a context free term language, then P(L) is a context

free set of strings.

Proof Let 6 = (N,z,P,S) be a normal form grammar such that L(G) = L.

(Assume G has no useless productions (Rounds).) We will convert the productions

of G into the productions of a context free string grammar G' = (N,E,P,§).

Consider the following definition of x-paths of t e wV(X), where x € X:
(1) P la) = .2 < Vg3

.. * q)sy 7‘ X
(i) P(y) = '

x and x* is a new variable;
n

ig] {Aiwlw € Px(ti)’Ai € V}.

X*,y

(iii) Px(Atl"‘tn)
Now, if A(x],...,xn) + t is a pkoduction in P, consider Px~(t), 1<i<n,
- i
and P_(t), a e V,. Ifwx*eP_ (t), put A, >w inP. If x*e P (t), put
a 0 X3 i X;
Ai »> e (the empty string) in P. If wa ¢ Pa(t), put Ai + wa in P.
Let S = S. G' is then obviously a context free string grammar.
(Note that it is not quite in Chomsky normal form. There are some productions
of the form Ai + e in P, where Ai # §.) It can be shown by induction that

L(G') = P(L(G)). O



Theorem

-1 -

Given a context free language L over I, there exist constants

p,q > 0 (depending only on L) such that, if t ¢ L and |t| > p, then t can be

written as u][uz[u3[u4[u5]]]] where:

(1)
(i)
(i11)
(iv)
(v)

Moreover,

for all i
(i)
(a)
(b)
and (i)
| (a)
(b)

Proof

there are k non-terminals in N. Let p = 2

that [t| > p.

up e Nz({y}) with exactly one occu
NZ({Xn});
= (Ugyseeesligy) € (g (X 1)

4
5 = (u5],...,u5n) € (wz)" (i.e. a
2
i

m

us
u

=

o

= uz[y,u5],...,u5n] and Uy € WZ

with exactly one occurrence of y.

[us[usfu, ]| < g5 fu,| + ( max {]u
2734 2 1<isn
> 0 where:

ul = (ull,...,uin) and for 1 < j <

0 _ ..

u4j = Xj’

kt1 _ k r k k
Upy = u4j[u4],...,u4n]
ug is defined by:

0_ ..
uz_.ys

k+1 _
up =

Let L = L(G), where G = (N,z,P,S)
k-

ST T SR ) (T

Then in P(t) there is a string w of length greater than p = 2

rrence of y;

i.e. an n-tuple of terms);
n n-tuple of terms);

({y,x],...,xn})

sil?) > 0, and up LupLu[uglug1110 e L

n:

.,u5n].

is a normal form grammar. Suppose

1 and q = 2%, Consider t e L such

k-1

Consider the derivation tree of w in G' (the grammar of the previous lemma).

There is a path in this derivation tree such that more thank non-terminals of

N appear on it. Two of these occurrences must be Ai and Aj for some A in N

and some i,j.

This is because there are only k distinct non-terminals in N.
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Then, in the original term grammar G, it must be true that
*
S = u][A(x],...,xn)[us]]
*
= uy[uy[ACxy 5. 0% ) [uy fu 1011 (1)
5 uylu,luglu,[u-1111.

(Note that A(xq,....x ) LN u2[A(x],...,xn)[u4]]

n

:> U2[U3[U4]] .)

Again returning to G', it is clear that the occurrences of Ai and Aj can be

chosen in such a way that |u2[u3[u4]]| < q and it is obvious that

'|u2|+ max {|u4il} > 0. Moreover, the "middle" steps of the derivation I can
I<izn . X - ,

be repeated as often as desired and so u][u;[u3[ul[u5]]]] e L for all i 2 0.

Corollary The emptiness and finiteness problems are solvable for context

free term grammars. (See also Rounds for indirect proofs of these results.)

Proof For the emptiness problem, it is clear that we only need to test
terms of depth less than or equé] to p, for a given grammar G. This can be
done since L(G) is recursive. Similarly, for the finiteness problem, we

need to test terms of depth greater than p but less than or equal to p+q

for membership in L(G). A positive (negative) answer in either case provides

a positive (negative) answer for the corresponding decision problem. 0
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3. Let 20 = {a}, 22 = {+} and Zn = ¢ for n # 0,2. Consider the set
L ={taa,++taataa,t++taataat+taataa,...} over . L is the set of balanced
binary "trees" over a and + with interior nodes labelled by + and leaves
(or exterior nodes) labelled by a.

Lemma The set L described above is not regular.

Proof Suppose L 1is reqular. Then, by the pumping lemma, there exists a
constant r > 0 such that, if t ¢ L and |t| > r, then t can be written as
u][uz[u3]] with 1 < [u2| < r. Moreover, u][u;[u3]] <L for all i = 0.

Note that t' € L has the property that all paths from the root of t' to any
‘Teaf of t' are of equal length. This is certainly not true of u][ug[u3]].
This is a contradiction. Thus, L is not regular. (In fact, it is context

free.) 0

Let L' = {+aa,ttaataa,++++aataat+aataat+taataattaataa,...r.
L' is a language over I and L' is the set of balanced binary trees (over
+ and a) of depths 2" for n > 0.

Lemma The set L' described above is not context free.

Proof Suppose L' is context free. Then, by the pumping lemma, there
exist constants p,q > 0 such that, if t e L and |t| > p, then t can be

written as u][gz[u3[?4[u5]]]] with |u2[u3[u4]]l < q and luzl+12?in{]u4i'} > 0.

Moreover, u][u;[u3[ul[u5]]]] e L' for al1 i = 0. Let |u,|+ max {Jug; 1 = k.
. X “ <i<n

Then u;lus[uglu,[uc]1]] = [t| + (i-1)k for i > 0. That is, the depths

of these terms (which are supposed to be in L') form an arithmetic progression



-14 -

[t], |t]+k, [t][+2k,... . The depths of terms in L', on the other hand,
form a geometric progression 2,4,16,..., [t] = 2j,2j+],2j+2,... . Thus the
two series, starting from |t|, must differ at some point. This is a contradic-

tion. Thus, L' is not context free. (In fact, it is an indexed term language

(Maibaum and Opatrny).) ]
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