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ABSTRACT

.This thesis attempts to show the feasibility of modeling a
data base in terms of the mathematical system known as relation algebra.
‘Such a model uses a set of axioms to derive an automaton and its‘state
transition diagram for the data base. The resulting diagram is a structural
represgntation of the way in which the relations in the data base compose
with one another subject to the constraints specified in the axioms. These
constraints include, among others, assertions about the structural
properties of the relations which are in the data base, (e.g. symmetry,
equivalence), By stating these assertions as axioms, the associated
properties of relations will remain invériant throughout the operation of
the data base. In this way a measure bf control and integrity of the
datavbase is achieved.

The transition diagrams can be used to simplify query expressions.
By controlling the transition from one state to another in the diagram,
the problem éf data security can be addressed. Furthermore, by requiring
that any update procedure produce only those updated versions of data
which continue to satisfy the basic_Set of axioms it follows that the
state transition diagram also remains applicable after each valid update.
This contributes to the reliability and consistency of the data base

model.
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1.1

CHAPTER I INTRODUCTION

Intuitively a data base is a collection of data
associated with facilities which provide the capability of
performing certain operations on the data and of establishing
interrelationships among them. The data base is therefore
endowed with a modelling capability, and within its frame-
work it becomes possible to organize the data so as to estab-
1ish interrelationships which at least partially represent
the universe from which the data are drawn. A data base so
conceived provides a means of further study and to investi-
gate the properties of the underlying universe with which

the data base is associated.

Over the last decade the emphasis in computing has
clearly shifted to a better understanding of the nature, rep-
resentation, storage and manipulation of data. In the trans-
ition from manual operation to the use of computers the trend
has been to an emulation of manual techniques., However, a
point has now been reached where it is necessary to reexamine
the foundations of all aspects of data processing and data
analysis., As part of this reexamination there has emerged a
parallel interest in data bases and the associated require-—
ments of data security, data base integrity and correctness

of operations, to challenge the existing technology.
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The development in data bases in some ways is anal-
ogous to the metamorphosis undergone in programming languages,
where the evolution was clearly from primitive unstructured
machine language programming to very high level structured
languages. In this case however the motivation was somewhat
different. The need was a need for formalism, correctness
and conceptual clarity. The process of development was from
the concrete to the abstract with a striving for a high level

of generalization.

Data should have embedded in them relations corre-
sponding to the relations embedded in the universe from which
they are drawn., These relations are not arbitrary or ad hoc
relations among the parts but represent independent structur-
al entities and as such must be so specified and explicitly
represented in any structural description of a data base. If
this is not done then structural information about the uni-
verse may be lost entirely or may be only implicit in the
data. The result would be the loss of control over the in-
tegrity and modelling capability of the data base. It is
desirable that the structure of a data base be invariant with
respect to changes occurring in its underlying aggregate data
as a result of update, delete and edit operations. This in-

variance can be achieved only if the structure is specified
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exclusively in terms of structural properties of the rela-

tions embedded in the universe or data from which they come,

‘This thesis is concerned with an investigation of
the use of mathematical systems for modelling data bases. 1In
particular an attempt is made to incorporate certain well
known mathematical properties (e.g. symmetry, operators,
functions, rules such as composition) into the structure of
the data base and to demonstrate that this would facilitate
achieving data base reliability, security, integrity, cor-
rectness and structural invariance relative to data opera-
tions. The approach has been to develop a model for a data
base using algebraic properties of relation algebra. Whereas
it is desirable to develop a working system of this model,
this has not been the principal object, Instead this is an
investigation into new ideas for developing data bases which
should in time find practical realization perhaps in terms

of other technologies.
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CHAPTER II DATA BASE DEVELOPMENT

2.1.0, Data Collections

To collect and process data are very common activities
in any field of endeavor. Of late these activities have grown
tremendously both in scope and size [Westin, 1972], and com-
puters are being used increasingly in this context.

The rapid growth of data collections has brought
to the forefroqt many problems of data and their relation to
the computer. Recently much attention is being devoted té the
study of these problems and the need for their systematic

solution is being recognized.

2,2.0. Data Directed Processing

In what may be called data directed processing of data,
each datum carries with it information about the operation to be
performed on it. This method reminiscent of plug board pro-
gramming days of compﬁting [Brooks and Iverson, 1969] is quite
convenient for small data collections on which a few diverse
operations have to be performed. The datum and its associated
operation are presented to the éomputing mechanism, which
performs the operation and proceeds to the nexﬁ datum,

For larger collections of data unless the patterns

and redundancies existing in data or operations are exploited
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to their full advantage, data directed processing becomes
inefficient and cumbersome.

Furthermore, since data collections vary and each
processing task is different, it appears that for processing
fixed data with different operations or different data with
identical operations both data and operations have to be
prepared for processing repeatedly. This naturally leads to
a shift in the emphasis from the study of data and their
patterns to finding ways and means of separating data from
their operations, so that either could be altered separately.

On the other hand if the data and operations are
readily available together, it is unnecessary to consider access

and ordering of data.

2.3.0. Separation of Data and Operations

As the need for handling very large collections of
data grew, a gradual and almost complete separation of
operations and operands took place in the form of stored
program and data. Here ideally instructions are in one module
called program and the data in a separate module. As the
instructions are executed operations are performed on the data
which are accessed and retrieved from the data module as
required. This mode of data processing may be termed program

directed., This method while solving some of the problems of
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efficiency inherent in data directed processing, has created its
own peculiar problems. Among these, perhaps the most important,

is the dependence of programs on the data on which they act.

2.3.1. Data Dependency

Data dependencies in a program arise when it uses
those properties of data which result directly from ordering,
indexing or methods of accessing them,

Problems due to data dependency in programs to some
extent arise from the fact that in practice programs oﬁce
written are not subject to continual structural change and in
this sense are relatively fixed or invariant. On the other
hand, collections of data are time varying, subject to changes
of organization, deletion, editing; and updating. This mis-
match of invariability in time results in valid programs be-
coming invalid due to changes in data. If an invalid program
actgs and causes changes in data, then the result is a corruéted

data collection.

2,.3.2. Data Dependency: Solutions

One solution is to ensure that dependencies exploited
in a program remain intact for data as.they'are changed. However,
.this may not be always possible to do, Speciallylwhen thére

are many programs which may be utilizing various data depen-
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dencies.

Another solution is to write programs which utilize
structural characteristics of data collections rather than
specific special properties of individual datum, some of which
-result from ordering and indexing. Hence as long as the
structural characteristics of data collections are invariant
there will be no need to change the programs which utilize
these characteristics. For example if a collection of ordered
pairs F is a function and a program. P utilizes only the
fact that F is a function, then as long as the functional
character of F is preserved, P will remain applicable to ordered
pairs in F, independently of thelr number, which will depend

upon insertions or deletions over time.

2.4.0. Data Base

The term data base is applied to'colleétions of
data whose structure is specified. This is in contrast to the
view that a data base is a large filing system [Knuth 1973,
p. 389]. A data base is more than a filing system and it
must provide its users adequate tools to model various aspects
of reality as they perceive them. Furthermore, this facility
must be provided in a data independent manner, i.e. free from
the.considerations of how the data is ordered, indexed, accessed,

or stored.
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The need for such data independence is clear. Data
bases are collections of data which are time varying. If the
data base is to remain structurally invariant in time, i.e.
if its integrity is guaranteed then the integrity should not
depend upon individual datum changes, such as insertions or

deletions.

2.5.0, Notation
For specifying the structure of a system a notation is
needed. Symbolic notation standing alone does not provide
any indication of the meaning and usage to be attached to it
in a particular application. Thus if M is a relation de-
signed to model a functional relationship in some practical
isituation, then M standing alone does not give any indication
that it is a function. In most applications meanings agsigned
to symbolic notation remain fixed. Conventionally to avoid
repetition this meaning is assérted once, say by means of a
declaration, and can be factored out. These statements and
thelr representations are essential in order to make symbolic
notational systems operationally and structurally complete.
The supporting assertions usually concern the struc-
"ture of the notation and remain constant. This invariance is
induced by the fixed and constant aspects of reality being

modelled.
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Notational devices which may be mentioned are
Turski's notation [Turski, 1971] for modelling data structures,
and the languages provided by sets and relation calculus.
Notable also is the work of Galler and Perlis [1970].
Notaﬁion from logic, functional calculus [Levien and Maron,
1967] and the domain of algebra [Nero, 1969] have all found

some use in data base work,

2,6.1. Information Algebras

In a CODASYL Development committee report [1962]v
an outline of an information algebra was proposed. This is an
attempt to recognize the fact that a mathematical space
provides a better model for data collections than that pro-
vided by an amorphous set,

Information algebra is based on the undefined notions
of property, value and entity; there are three postulates
regarding the éxistence of a value set from which an entity
may be assigned a single value only and entity value pairs are
always well defined. The concepts of lines, areas (files),
and bundles characterize the operations of the algebra.
Finally the glumps are provided as summarizing functions.

Recently interest has been revived in this type of

approach, [Kobayashi, 19727,
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2.6.2. File as a Formal System

Hsiao and Harary [1970] have proposed a formal
structure for files. Starting with a set A of attributes and
V of values, a record R is defined as a subset of A x V. The
concepts of index, keywords, address, pointers, and pointer-
lists are formalized., Finally a file is defined by closure of
a set of records on pointer-lists, and the notion of a directory
of a file i1s established.

A generalized file structure is a file and its
directory. The authors have shown that commonly encountered
filing schemes such as inverted, indexed, sequential, and
multilist schemes are all special cases of the generalized
file structure of their paper.

This paper establishes that it is possible to construct
a formal model of a rather general nature and forms a basis of

further explorations on algebraic lines [Wong and Chiang, 1971].

2.6.3. Files as Boolean Algebras,

Wong and Chiang [1971] starting with the formal
basis provided by Hsiao and Harary [1970] have shown how to
organize files as Boolean algebras and have indicated that there
might be some merit in such explorations because they provide
alternate means of storing basic data from which other information

can be derived. For example when files are organized as
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finite Boolean algebras then theoretically it is sufficient

to store only their atoms.

2.,6.4, LEAP: An Associative Language

Feldman and Rovner [1969] have developed an exten-
sion of ALGOL6Q by appending to it a special comstruct for
handling associative data structures . As association is
defined to be an ordered triple (a, o, v) and provides a
model of " attribute a of object U has value v'", By intro-
ducing the notions of items, association and associative

context a framework is provided for associative data processing.

2.6.5, Relational Model of Data.

In a number of papers [1970, 1972a, 1972b] Codd has
suggested that a data base be viewed as a collection of time
varying relations of assorted degrees. The term relation is
used in the usual sense that it is a subset of the cross
product of domains on which it is defined. Thus if there are
n domains Sl’ SZ""Sn then a relation R of order n is a set of

e
Ko oo X5

n-tuples such that R& Slxs? o KS

Codd uses an array representation for relationms.
In terms of this representation it may be argued that each
n-tuple is a small record and a relation is a file. TFiles

have been viewed as relations by Langfors [1967]., Thus in
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conventional terms Codd‘'s model of a data base is at least

a collection of files containing different types of record.
This latter part makes the relational model differént from
many existing data bases wherein very limited types of record
formats are allowed,

Relations are sets and hence have a very rich alge-
braic and logical structure [Tarski, 1941]. Powerful operations
can be performed on them and there exist both calculi and al-
gebras for handling relations systematically [Carnap, 1958].
The systematization afforded by these tools allows Codd to
develop a powerful language of specification, description and
analysis.

Formalization of data bases in terms of relations
naturally leads Codd to consider the question of form and
organization of relation, He suggests a number of normal
forms for organizing data bases., These normal forms exploit
structural characteristics of data and thus serve as a means
of control for the entire data base system, This feature of
Codd's work must be emphasized, that is structure of data is

exploited in a meaningful way.

2.6,7, Data Independent Accessing Model

Senko et. al, [1973] have presented another view

of data and data bases, The basic theme of their model is a
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systematic use of names, set and subset comstruction for the
purpose of describing real objects of all kinds. The various
levels of indirection provided by the use of names allow them
to handle associlations and relation without the specific use of
pointers or other data dependent devices,

Entities are distinct realities either concrete or
conceptual, Entity sets may be constructed from entities
by grouping similar entities. Entities can be named from which
name sets may be constructed., A name can be an entity name,
entity name set name, entity set name or role name. A set can
be an entity set, entity name set, or a subset of an
entity set. Using these constructs and devices it is possible
to model objects as entities, Various associations between
objects can be modelled by considering the role played by the
asgsociation, and assigning 1t a suitable role name.

Senko et. al. [1973] use triplets in constructing
description sets for entities, Description sets describe
entities and their association with other entities. These
associations can be exploited for establishing others by match-
ing names in various positions of the triplets. In the model
there is no constraint of order, i.e., how things are to be
arranged or any use of pointers. Since associations are im-
plicit via names, the model is relatively free from data

dependencies and is rather powerful,



2.11

2.6.8. Set Model of Data

In a number of articles €h#1ds[1968] has proposed
to construct a data structure to model sets and relations.
Such a data structure could then serve as a useful tool where
notions of sets and relations can be applied. Childs [1968],
introduces the notion of a complex in order to overcome the
ambiguity inherent in the interpretation of products of more

than two sets, For example for sets S SZ’ and S the

1 3°
products Slx(Ssz3), (SlXSZ)XSB and SleZXS3 are different.

Childs' complex of two sets can be used to model
relations of various degree and also allow full use of set
theoretic operations,

It is clear that the data base development has
taken a turn towards formal and systematic de#elopment.
Increasingly it is being pointed out that such an approach

could be very rewarding [M, W, Wilkes, 1972], [Florentin,

1974].
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CHAPTER III ALGEBRAIC PRELIMINARIES

In algebras operations play a fundamental role, in
fact as soon as a set is endowed with an operation it quali-
fies as an algebraic system. A binary operation on a set S
is a function defined on its cartesian product SxS into S.

A unary operation is a function on S into S. Generally an
n-ary operation is a function on the n-fold cartesian product
SxSx...xS (n factors) into S, and the integer n is called the
arity of the operation. For completeness a nullary operation
has arity 0, and in a set S on which it is defined the effect
of this operation is to always select a fixed or constant
element of the set. It thus provides a method of specifying
the constants of a system. Finally when the arity is finite
the operation is called finitary.

For data bases relation algebra is useful. A re-
lation algebra is a Boolean algebra enriched by two addition-
al operations [Chin and Tarski, 1950] and is formally defined
elsewhere. It is assumed here that basic concepts of set
theory and Boolean algebra are known [Halmos 1967] so many

of the results in the following are stated without proof.

3.1.0 Definition. Algebraic System
An algebraic system, or an algebra, is an ordered
pair <AJF> where A is a set called the carrier set and

& is a family of finitary operations such that the set A
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is closed under every operation in ¥ .
For convenience an algebra will also be denoted as
<A, 0,5 0,, ...> where Oisf@ sy 1 =1, 2, ... . Furthermore

in some cases nullary operations may not be listed at all.

3.1.1 Algebraic System Development

An abstract algebraic system <A,[® defined as
above is too general to make it relevant to con-
crete situations such as data base work. It is necessary to
suitably limit the scope of operations in §. An algebra so
restricted provides a powerful tool for modelling selected
aspects of the real world, and its further development con-
sists of establishing the necessary conclusion from the re—
strictions imposed on its operations.

Clearly the constraining hypotheses must be so for—
mulated that the properties and the structure of the concrete
world are faithfully reflected in the structure of the alge-
braic system., Thus for example in a concrete group, an identity
is a unique element possessing very special properties., This
feature is incorporated in the abstract group algebra by in-
cluding a nullary operation in its family of operations. A
set of axioms are chosen which are obeyed by this operation
and guarantee that the effect of this operation is to always
select that element of the carrier set which corresponds to

the abstract concept of identity in a group. Due to its ab-
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stract nature a group algebra describes many concrete groups.
It is this descriptive power of algebras which makes the study
of algebras so desirable and important. This last point can-
not be overemphasized, for it provides a firm logical basis
for using algebras for studying concrete objects such as data

bases.

3.1.2 Descriptive Power of Algebras

In algebras the concepts of operation, closure and
homomorphisms‘play an important role in establishing similar-
ity of structure. Similarity between two algebraic systems
S1 and 82 established by means of a homomorphism is valuable
for many reasons, and not the least is that if results are
known for one of the systems say Sl, then thege can be trans-
lated into corresponding results for the other system Sz.
This combined with the observation [Weyl, 19497 that it is
characteristic of algebraic systems that their structure can
be described in a few axioms, provides a powerful mechanism
for describing various systems.

A semigroup is a closed system with an associative
operation defined on it. It is well known [Ginzburg, 1968] that
from a set F of transformations a semigroup can be generated.
Since transformations are commonly encountered in real life,
it appears that semigroup structure should apply to many of

these situations, and many of the results already known for
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semigroups can be applied to real life situations.

3.2.0 Boolean Algebras

A Boolean algebra will be denoted by <B,+,-,1,0>
or briefly <B,+,-> . The theory of these algebras is well
known [Halmos, 1967] and many familiar results used here will

be assumed without proof. A few pertinent facts are noted below.

3.2.1 Characterization as a Lattice

A Boolean algebra is a complemented distributive
lattice [Gratzer, 19717 .

This characterization of a Boolean algebra as a
lattice is sometimes taken as its definition, and the partial
ordering relation will be denoted by < .

Lattices have been used by Hayes [1968] to comstruct
a model for a thesaurus and to study its properties by decom-

posing it into the direct product of sublattices.

3.2.2 Algebra of Subsets

Let B be the set of all subsets of a given set
A. An algebra can be constructed as follows. First distin-
guish two special elements of B, the empty set ¢ and the
whole set A, and denote these by 0 and 1 respectively.
Next, for any subset =xeB take X to be the relative comple-

ment A-x. Finally, for any subsets x and y belonging to
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B, take x+y to be the set theoretic union and X*y to be
the set theoretic intersection. Then <B, +,, , -, 1, 0>

is an algebra and is called the algebra of all subsets of A.

3.2.3 Theorem

Any algebra of subsets is a Boolean algebra.

Thus algebras of subsets provide a rich source of
Boolean algebras.

A number of definitions of some concepts associated

with two place relations follow.

3.3.0 Definition., Binary Relations

A binary relation is a set of ordered pairs.

The motivation for considering such sets is that
many actual two place relations among various objects can be
represented as sets of ordered pairs. Thus the set of ordered
pairs

{(1,2) , (2,3), ...}
may be used to represent
'is the successor of'
relation for natural numbers. Another example is the set
{(kitten, cat), (chicken, hen), (calf, cow)}
and each pair (x,y) in it is connected by the idea
'x is a young v'.

For convenience the terms 'binary relation' and
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'relation' will be used interchangeably, unless otherwise

stated.

3.3.1 Definition. Domain
The domain of a relation R, denoted by DO(R) is the
set
D,(R) = {x|(x,y) € R}
The domain of a relation 1s the set of first

coordinates of the ordered pairs which belong to it.

3.3.2 Definition. Range

The range of a relation R, denoted by Ra(R) is
the set

Ra(R) = {x](x,y) e R}

Again, the range of a relation is the set of second
coordinates of the ordered pairs in it.

Sometimes the terminology first domain and second
domain is used respectively for domain and range of a binary

relation.

3.3.3 Definition, Field
The field of a relation R, denoted by Fd(R) is the
set
Fd(R) = DO(R) W Ra(R)

From these definitions, it is clear that every re-
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lation R satisfies
R & Fd(R) x Fd(R)
Sometimes the term concourse is used synonymously
with field.
Several relations may have the same given field G.
In G there are two special relations 1' and 0' called

the identity relation and the diversity relation respectively.

3.3.4 Definition. 1' and O'
The identity relation 1' on a given field G 1is
1" = {(x,x) | xeG}
The diversity relation O0' on a given field G is
0' = {(x,y) | x,yeG and x %=y}

An important point to note is 1' and 0' are
unique relations with respect to a given field. Further it
is also clear that

o' = 1"

where '_'

the relative complement is taken relative to
GxG, where G 1s the field.

Binary relations are sets of ordered pairs, hence
set theoretic operations of union, intersection, and comple-
mentation can be defined for a collection of relations. Fur-
thermore other operations, called relative operations, [Chin

and Tarski, 1950] may also be defined on the class of rela-

tions. The relative operations are peculiar to relatioms
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and derive their strongest motivation from them. Two relative
operations are defined below. Several others can be defined
in terms of these two relative and the usual set theoretic

operations.

3.3.5 Definition. Relative Product
The relative product of two relations R and T,
denoted by R;T, is the relation
R;T = {(x,y) I for some g, (x,g)eR and (g,y)eT}
The symbol ; (i.e. the relative product
operation) is sometimes also referred to as the composition

operation,

3.3.6 Definition. Conversion
v
The converse of a relation R, denoted by R, 1is
the relation
'
R = {(x,y) ] for each (y,x)eR}
The symbol w denotes the relative operation of

conversion, sometimes also called the reverse operation.

3.3.7 Properties of Relations

In this section relations are classified [Carnap,
1958] into various categories and certain of their properties
enumerated. The identity relation on a field F will be

dencted by 1', i.e. if =xeF then (x,x)el’,



3.9

(1) Symmetry. A relation R 1is called symmetric if
v
R=R .
(11) Non symmetry. A relation. R 1s called non symmetric
- .
if R %t’R i.e. there is at least one pair (x,y)eR and
S
(x,y)‘é R .
(iii) Asymmetry, A relation R is called asymmetric if
e - (>
R & R i.e. there is no pair (x,y)eR and (x,y)eR .

(iv) These three relations, symmetric, non-symmetric and

asymmetric classify all relations as follows.

symmetric non-symmetric
e ~Y — _
k* Ry
—~——
asymmetric

Some examples may be noted. Sibling is a symmetric
relation. Brother is neither symmetric nor asymmetric,
Father is asymmetric.

§2) Transitivity. A relation R is called transitive if
R? & R, where R2 denotes R;R.

(vi) Non transitivity. A relation R is called non transi-
tive if RZQ#ER. i.e. a relation is non transitive if the
condition for transitivity fails for it.

(vii) Intransitivity. A relation R is called intransitive
if R’€2R i.e. a relation is intransitive if R? and R
are disjoint.

(viii) A three way classification of relations is induced by
(v), (vi) and (vii). For . example father is intransitive,

friend is neither transitive nor intransitive and ancestor
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is a t;ansitive relation.

(ix) Reflexivity. A relation R 1is reflexive if for each
(x,y)eR, (x,x)eR.

(x) Non reflexivity. A relation R 18 non reflexive is
there is at least one (x,y)eR such that (x,x){R.

(xi) vIrreflexivity. A relation R is irreflexive if there
is no (x,y)eR such that (x,x)eR.

(xii) Total reflexivity. A relation R is totally reflexive
if 1' e« R.

(xiii) A three way classification of all relations is induced
by (ix), (x) and (xi). Some examples may be noted. Father,
sister, brother are irreflexive. The subset relation is re-
flexive.

(xiv) Connectivity. A relation R 1is called connected if
for any fwo members in the domain of R either R or E{
holds.

(xv) Equivalence. A relation R is said to be an equiva-
lence relation if it is reflexive, symmetric and transitive.
(xvi) Right Ideal Relation. [Chin, Tarski, 1950] A relation
R is a right ideal relation if, x,yeF and (x,y)eR iff

x 1is in the domain of R.

(xv) Closed Relation. A relation R is said to be closed
if R;‘RJ; R =R [Ono, 1957]

(xvi) Function. A relation R is called a function if

~
R; Rexl' [Ono, 1957]
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Asymmetrical relations play an important role in
the logic of relations. The concept of asymmetry is also
important in connection with ordering relations such as total
order and partial order:. For a set to be algebraically

interesting it must be at least partially ordered.

3.3.7 Arrow Diagrams, Relation Matrix, Similarity and Structure.
A binary relation R may be represented by an

arrow diagram according to the following rules, If (x,y)eR

then draw two circles and label them x and v, and draw an

arrow emanating from the x-circle to y-circle thus xo—-—)@ .

Thus if R = {(1,2), (2,4), (1,4)} then its arrow diagram

is |

2 b

A relation R may also be represented by its relation matrix
by constructing a square array with its rows and columns
labelled by the elements of the field of the relation in some
arbitrary manner. Then the array contains a 1 in x-row
and y-column if (x,y)eR otherwise the entry is 0. Thus

the relation matrix of  {(1,2), (2,4), (1,4)} is
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| 1 2 4
1 0 1 1
2 0 0 1
A 0 0 0

Iwo relations R and S are similar if they have

isomorphic arrow diagrams or relation matrices. Similar re-

lations have exactly the same structure. [Carnap, 1958]

3.3.8 Some Further Properties of Relations.
Below some more properties of relations are listed.
These are elementary theorems which can be easily proved.

[Chin and Tarski, 1950] Proofs in general are omitted.

(i) If R 1is any equivalence relation then
(a) R; R=R
®) X =R
(¢) R 1is closed.

(ii) If R is any function then
\J
(a) R; R& 1!
(b) R is closed
-
(¢) R is closed,
(iii) If R and S are closed relations then
'
(a) R is closed
() R N S is closed

(¢) It is always possible to express R as R =

where F and G are functions.



(iw)

(v)

(vi)

(vii)

(viii)
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Some closed relations are listed below:

(a) If R is a function, R 1is closed

(b) If R is an equivalence relation, R 1is closed

(¢) If F and G are any pair of functions then EEG
is closed

(d) If R'is a right ideal relation them R 1is closed.

v
(e) For any function R, R ; R 1s closed i.e.

-
R

=

1V 4 -’
R; R; R; R; R; R=R;

In fact for any function R,
~ - v
R

R ; s R; R=R; R .
o
Let R* = (, R; (R ; R)" . Then
n=1

(a) R* is closed

(b) R#*% = R%

(¢) R is closed iff R = R¥* ,

A relation R is called dense if (x,z)eR implies

the existence of an element yeF with (x,y), (v,z)eR.
If R=R ; R them R 1is

(a) transitive

(b) dense,.

Every equivalence relation is transitive and dense but

not conversely,

R is called left modular relation for !' wunder ;‘iff

both
(a) R; R&R
~
(b) R ; R €&&R hold.
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Left modular relations are closely related to
equivalence relations. Any equivalence relation is left
modular for ! under ; .+ The converse is not true, e.g.,
consider the relation [Chin and Tarski, 1958]

{(1,1, (1,2), (1,3), (3,1), (3,2), (3,3)}

This relation is not an equivalence relation but
is left modular for ) under ; . These left modular re-
lations form a more comprehensive class than the class of
equivalence relations.

(ix) If R is left modular relation for /) under ; then
R 1is closed. Because we note that
(1) for any R , RER;E{;R
(2) for R left modular for ] under ; R;\I:ER
and R ; R& R, hence R;i’;RgR;R_c._’.R
Hence the result.
(x) If R is left modular relation for /) under ; and
S and T are any other relations then
R N [s; ® MI=@ Ns); ® N1

From relations we can obtain algebras of subsets.
Hence collections of relations provide a source of concrete
models of Boolean algebras. On the other hand Boolean algebras
must be suitably extended by incorporating relative operations,
if they are to adequately reflect the structure of the class
of relations. A reason is that if a relation b belongs to

the carrier set B of a Boolean algebra, then there is no way
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to obtain ‘; using only b and Boolean operations, even
though '13' may belong to B. This argument becomes much more
transparent if we assume b to be an atom. Then ‘f is also
an atom, and certainly }; cannot be expressed in terms of b
using only Boolean operatiomns.

Abstract Boolean algebras may be extended by adding
new operations and axioms. If the relational operations
composition, reverse, identity and diversity are models for
these new operations, then a collection of relations can be
used as a model for the extended abstract Boolean algebra.
Abstract algebraic systems called relation algebras are such
systems. These extended Boolean algebras are very complex
and rich in their algebraic structure. This by itself pro-
vides the motivation for constructing and studying relation

algebras.

3.4.0 Definition. Relation Algebra. [Chin and Tarski, 1950]
A relation algebra is an abstract algebraic system
<S, +, =y 3, > . The binary operations + and ; are called
absolute addition and relative product respectively. The
unary operations ___ and (g are respectively called comple-
mentation and conversion. The carrier set S is closed under
these operations, which obey the following postulates, For
a, b, ce S,

(i) B =<5, +, ~> 1is a Boolean algebra
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(ii) a;(bs;c) = (asb);c

(iid) (atb);c = ajctb;c

(iv) there exists an element u in S such that aju = a
v) a = a
~ - -
(vi) (ath) =a + b
4 - -
(vii) (a;b) =b 3 a

(viii) & ; (a3b)" +b =hH

As an example of relation algebra, consider a set X.
The set of all subsets of the cartesian product is the carrier
set. For + take set theoretic union , for - take set
complementation relative to XxX., For ; take composition
of relations , for « take conversion of relations. The
resulting system is a relation algebra and can be easily
verified to be so. For example axiom (viii) may be verified
for this system as follows. It is sufficient to prove that
:; (ajb)” is a subset of b. This is done below.
(1) Let (x,y) ¢ E’; (a;b)~ assuming that ;J; (ajb)~ is
not empty because then there is nothing to prove. Hence
(2) There exists an element 2z.eX, such that (x,z) € by and
(z,y) & (a3b) . Hence
(3) (z,x) ¢ a.
(4) There exist elements of the form (x,m)eb and m #y
because if m =y then (x,y¥b and (z,y)& a;b contradict-
ing (z,y)e(a;b)— established in (2). Hence (x,y)eb.

Any collection of binary relations satisfying the
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requirements of a relation algebra is called a proper relation
algebra. It is known [Henkin et al., 1971] that not all relation
algebras can he represented by proper relatioﬁ algebras.

Some results from relation algebra are listed below for
reference. It is hoped that these results, which have not been used in
this thesis, are indicative of the type of theorems which can be
proved in this algebraic system and may in the future find applica-
tion in the data base work, particularly in the composition of

relations.

3.4.1 Relation Algebra. Some Results.

Let R = <A, +, -, ;, > be a relation algebra, and
a, by, ¢, «...c A, Following notational convention will be used
used. [Chia and Tarski, 1950]
(1) Parenthesis may be omitted if two additions are to
be performed in the same order in which symbols follow from
left to right.
(ii) Parenthesis may be omitted if two multiplicatiéns
are to be performed in the same order in which symbols follow
from left to right.
(iii) A multiplication symbol is regarded as taking preced-

ence over an addition symbol.

For example a:b.c means (ajb).c
and a+b ;3 c means at(bjc)
(iv) The partial ordering relation of the Boolean algebra

B is denoted by =< .
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Some results in relation algebra are listed below wiﬁhout
proofs which may be found in [Chin and Tarski, 1950].

(1) The element u satisfying 3.4.0(iv) 1is the unique
element, called the identity and is denoted by 1'. For any

element a,

a; 1" =1';a = a
(ii) The element O' is called the diversity element and
ig given by
0' = (1')"
(ii) (@ av =1
(b) 1] = 0 (0 is the Boolean zero)
(c) ‘T =1 (1 is the Boolean unit)
(@) 131 =1
(iv) a<b iff & < e
(v) (a.b)v Y. b
(vi) a7 =3

(vii) If a < b, then cja £ c;b

(viii) If a < b, then ajc < bjc

[ w

(ix) If a<b, then a < b
(x) (b;a)” ;8 + =B
(xi) For any a,b,c,cA, the following formulas are equiva-
lent.

(1) ajb.c =20

o
(2) ajeb =0
(¥ 4

(3) c; b .a=20



(xii)
(xiii)
(xiv)
(xv)
(xvi)
(xvii)

(xvidii)

(xix)

(xx).

(xxi)

)
a.b.c < a; b ;c

For every acA,

Ld

(1) a; ac<o0'
@2 ¥; (a;1)”
a.5<o0

If ajc < a and

If ajc <

A
W]
8
[N

a.(bj;c) = (a.b);ec

.19

a.(bjec) = (a.b)jc .
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CHAPTER IV A FORMAL MODEL OF DATA BASES
The general concept of a data base as a set of data
on which relations are defined can be used to obtain a number

of algebraic systems associated with 1t.

4.1.0, Subsets of Data

The properties of individual objects represented in
a data base can be modeled by partitioning the data into subsets
whose elements are identical in a given respect. Each property
induces a decomposition of data into homogeneous subgets., For
example the property 'color' would partition the data collection
into specific color classes say 'red', 'green', or "plue'

1f these were the three colors handled by the data base.

4.1.1. Boolean Algebra

The properties of objecté represented in the data
base determine a class of subsets. These subsets can be
used to generate a Boolean set algebra,

The language provided by this Boolean algebra is
then adequate to handle problems of classification and
specification of represented objects relative to the class

of properties handled by the data base.
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4,1.2. Relation Algebra
The associations, interrelationships and inter-
connections which exist among data can in many cases be mod-
eled by binary relations. The relational structure of a
data base specifies how the data are interconnected to one
another and what type (symmetrical, transitive, functional,
etc,) of binary relationscharacterize these interconnections.
The domains and ranges of these relations are
drawn from the collection of subsets which classify the data
into various property ciasses. These binary relations can be

used to generate a relation algebra.

4,1.3. Explicit Structure

It is characteristic of data bases that they have
a set of profusely interconnected data. Clearly there is
a strong need to formally control these interconnections.
In this context the algebraically specified structure of the
community of relations in the data base can play an important
role. If such information is available then it can form the
basis of consistent data base operations. Without such
regulatory control it becomes quite easy to execute incon-

slstent updates or deletions.



4.3

4.2.0. A Formal Model of a Data Base
The definitions and discussion in the following

sections lead up to a formal definition of a data base.

4,2,1. Data Universe

Definition. The aggregate of data representing the
individual objects of a concrete universe, in a data base
is called the data universe (DU).

Semantics. A DU is a set of abstract entities
which provide representations of concrete .. situations.
In a data base DU is the basic underlying collection of data

on which it is built.

4.2.2 Data Base Domain
Definition. A data base domain (DBD) is a subset
of the data universe.

*Semantics. A DBD is abstractly defined.by enu-
merating the properties of the objects which may belong to it.
Concrete DBD's are obtained by searching the data universe D
for objects which satisfy the DBD's membership requirementé.

For example consider a collection H of data about
human beings as DU. Then a DBD could be
M= ixlx(ﬂ and x is a male}

modelling the set of males and also the property of being
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'male'. Similarily
F = {x]xGH and x is a female}
models the set of females in H. M and F will be a realistic

description . ~ if also . M.n F.= ¢.

4,2.3, Data Base Relation

Definition. A subset of D x D where D is a data
universe is a data base relation (DBR) if and only if both
its domain and range are subsets of data base domains.

Semantics , A DBR is a set of ordered pairs and
provides an abstract model for two place relations which may
exist among objects represented in a data base,

For example the relation 'is the father of" among
the individuals in a set of human being H can be modeled aé

Fa = {(x,y)l xeH and y¢H and x is the father of y}

It is important to note that if Fa is to represent
the relation " is the father of" as it is understood in every-
day life, then Fa is subject some further restrictions such
as Fa is asymmetrical or i1f (x,y)éFa then x must be a male
and so on. These properties when explicitly noted in a data
base where Fa appears serve to provide regulatory mechanisms

for it.
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4,2.4, Data Base Axiom
Definition. A data base axiom is an assertion which
remains true at all times with respect to a data universe.
Semantics. Data base axioms provide a mechanism
for finer modeling of entities modeled. The aggregate of
DU and the axioms provide a closer description of the modeled

object than that provided by DU alone.

4.,2.5. Data Base

Definition., A data base is a quadruple{D, B,‘ﬁ, AP
where

(i) D is a data universe.

(ii) B 1s a collection of data base domains.

(1ii) ﬁ is collection of data base relatloms.

Y]

(iv) A is a set of data base axioms.

4.3.0. Data Base Boolean Algebra.
A
Definition. For a data base{D, B, R, A, the data
base Boolean algebra (DBBA) is the Boolean algebra generated

by B.

4,3.1. Data Base Relation Algebra.
A
Definition. For a data base{D, B, R, A}, the data

base relation algebra (DBRA) is the relation algebra generated
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by ﬁ.

4,4,0, Data Base Model: Relevance

I1f the proposed model of data base is to be useful,
it must provide solutions to basic data base problems. These
problems include at least the following:

(i) 1language (query and manipulation)

(i1) dintegrity

(iii) security

(iv) control

(v) consistency

(vi) data independence

(vii) structural invariance

4.,4.1. Data Base Languages.

The DBBA and DBRA provide useful
languages for specifying precisely and unambiguously the
various requirements of a data base. TFurthermore these
algebras also connect data bases with the algebraic structure

theory.

4,4,2, Data Base Integrity.
The most important requirement on a data base is

that of integrity. It is essential that in a data base
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there be a guarantee that the basic data, the DBDs and the
DBRs shall remain syntactically and semantically consistent
and intact throughout the existence of a data base and yet
allow operations such as update, access, or system failure.
The syntactic structure of the domains and relations
of a data base can be guaranteed and regulated by means of the
data base axioms. This may be done by constructing axioms
which specify the structure of various entities such as
relations, On the other hand semantic structure is very
difficult to guarantee mainly because different users may
understand the same data differently. Once again, however, some

measure of regulation may be achieved via the axioms.

4.4,3. Data Base Control.
In a data base the relative or association structure

is of great importance., Merely a collection of data may

not be as useful as when various associations and intercon-
nections among data are also specified. And merely specify-
ing these interconnections is not sufficient and means must

be provided to maintain the given interconnection and allow
new interconnections to be introduced in a systematic and
precise way. It should be possible to create new links or
delete existing links or prohibit access to certain associa-

tions. And all this must be done within the framework of
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the data base withoyt doing any violence to its structure.
It may be mentioned here that the notions of access-
ibility and creation of new links or associations among
data must be kept separate., Merely because two items can
be associated in a data base does not also mean that the

associated pair is automatically accessible., For example

consider:
d = {(account #, salary)}
a = {(name, account #)}
b = {(name, salary)}

Now b may be obtained as b = ajd. However even though d and a
may be accessible separately, it may not be desirable for b
to be accessible to every user. Separation of these two
notions opens up many control situations. Thus system
may prohibit explicit construction of inaccessible items
but may allow access to these items in coded, implicit, or
indirect form. This clearly has relevance to implementation
of security in a data base. The logical principle may be
stated as follows: object access is logically independent
from object construction.

In the following chapter the problem of data base
control from the point of view of finite state systems is

studied,
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CHAPTER V DATA BASE FINITE STATE SYSTEMS
5.1.0 Introduction

The problems of control, security and integrity in
a data base have been previously mentioned. Many important
aspects of these problems find a most clear statement in the
setting of finite state systems.

The theory of finite automata and its relation to
algebraic structures and their decompositions is well known

[Ginzburg, 1968].

5.1.1 Data Base Semigroup and Monoid
Let <D, B, ﬁi A> be a data base. The relational
structure of the data base is contained in ﬁ 'aﬁd D. Let
G be given by
G=1{x | x=y or x= 37' whereyea} .

That is G 1is a collection of relations which are in
ﬁ or their reverse relations are in ﬁ. G under composi-
tion operétion ; generates a semigroup S which may be ex-
tended to a monoid M [Ginzburg, 1968j. If the relatioms in
G are finite then so are S and M. Now data base semi-

group and data base monoid are defined as follows.

5.1.2 Definition. Data Base Semigroup.
A data base semigroup (DBS) is the semigroup gener-

ated by the elements in G and in which all the axioms in A
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are satisfied.

5.1.3 Definition. Data Base Monoid.
A data base monoid (DBM) is the DBS to which an iden-

tity element has been appended.

Semantics. The significance of S (or M) is that
it is the free semigroup (or free monoid) which can be obtain-
ed from G. On the other hand DBS (or DBM) may be thought
of as being derived from S (or M) by identifying certain
elements according to the dictions in A, hence it reflects
the composition structure of relations in G (hence in ﬁ)
subject to the axioms in A. Accordingly, DBS is S in Whicﬁ
requirements specified in A are always satisfied. In con-
crete and specific instances this distinction may not be
apparent, due to the fact that any object inherently carries with
it ail information that structures it. It is only at the ab-
stract level where objects are referred to by names that the
distinction becomes clear and significant. For example

{(L,a), (2,b), (3,0)}

is a concrete instance of a function. If this is denoted by
F then it is necessary to impose the restriction on F that
it is a function, otherwise essential structural information
is lost. On the other hand given only the concrete entity

{(1,a), (2’b> ’ (3,0}
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a test can be carried and it can be determined that it is a
fﬁnction. In this sense it cafries its own structural in-
formation,

In the following section only finite DBS or DBM

are considered.

5.1.4 Data Base Semiautomata.

Let <D, B, ﬁ, A> be a data base and G defined
as before. Let G* be the transitive closure of G uﬁder
the operation of concatenation, i.e. G* is the set of words
obtained by concatenating elements of G in all possible
ways. The empty word AeG*. Let w = w,w,... v and
g = 88,00 8 be two words in G%, and LA gjeG and

i=1,2....m; j=1,2,....n. The equality of two words w and

g is defined as follows.

Definition. Two words w and g in G* are equal

and denoted by w=g if and only if Wil Wo3 Wai e 3 W F
g3 8,5 B33 +v 3 8 where Vo wjeG and i=1,2,....m;
j=1,2,....10.

It is then easy to establish the following theorem.

Theorem:

(1) Equality of words in G* as defined above is an
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equivalence relation and

(2) It has a finite index.

Let the equivalence classes of G* mod = be represent-
ed by a word of minimal length in each equivalence class. A
list of such representatives is finite. With each member in
this list associate a unique member $eS whgre S has exact-
ly the same number of elements as in the list of representa
tive of equivalence classes. Fﬁrthermore the empty word is
in the list and hence has a correspondinglreprésentation
in S. |

A finite state system <S, N, A> over alphabet G
can be constructed as follows.
(1) Take G as the alphabet
(2) Take S as the set of states
(3) Take N as state transition function, where N : GxS-»S

and N(g,s) = s' where sg=3s8' . |
AeS 1is initial state.

Definition., The finite state system constructed as
‘above is called the data base semiautomaton (DBSA).

It may be noted that S may be interpreted as a

set of unique names associated with the distinct words of

minimal length in G¥*.

5.1.5 Properties of DBSA

(1) DBSA is unique
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(2) DBSA exists

(3) Number of states is bounded
(4) DBSA is a generator of DBM
(5) DBSA is reduced

(6) DBSA 1is connected.

5.1.6 Data Base Automaté

An automaton can be obtained from data base semi-
automaton by attaching a suitable output function. Such an
automaton is called data base automaton (DBA).

The output function of DBA can be used
to control the system in a variety of ways.

The DBSA and DBA can play an impor-
tant role in the control and regulation of data bases,especial-
ly as far as the relational aspects are concerned. Further-
more if this last remark can be supported, then‘there is thé
interesting possibility of realizing such control through
hardware realization of DBA as a sequential circuit. 1Imn fact
the direction to take would that be of microprogramming.

There are certain practical problems which must be
mentioned. If Q contains many relations then the number
of states in DBA will explode. This number evidently must
be controlled. This control furthermore must be achieved in
a data independent way, i.e. in controlling the number of

states one must not appeal to specific and particular data but
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to other features and characteristics of the data base such as
the structure of relations in ﬁ. By structure of a relation
the reference is to those properties of the relation which re-
main invariant in timé. Thus the fact that a relation is a
function is a structural fact and remains so whether it con-
tains one pair or a thousand pairs.

Some examples of data base semiautomata follow.

For convenience the following conventions are adopt-
ed. The members of ﬁ' will be denoted by upper case letters.
The state corresponding to Reg (hence ReG) will be
denoted by reS, or by some other straightforward mapping or
coding as the situation demands.

The members of A will be denoted a, , i=1,2,...,(or simply

i.?

and usually a; will stand for a true statement.

5.2.0 DBSA: Single Equivalence Relation.
A
In the data base <D, B, R, A>, let

N
(1) R = {R}
(ii) aeA where a stands for the statement: R is an equiv-

alence relation.

(V4

(iii) G = {R, R }. Then:

(iv) The distinct words of G* are computed as follows,

by i)
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v
R

il
o=

because R 1is an equivalence relation

RR

I
=]

because R;R = R for equivalence relations.
Hence A and R are the two distinct words.
(v) The set of states S = {A,r!

(vi) The state transition table is

(vii) The state transition diagram is

"@ R;E

In the following presentations of semiautomata,

-

RR

much of repetitive computational details will be omitted,

where possible.

5.2.1 DBSA: Single Symmetric Function
A A
A data base <D, B, R, A> with R = {R} where
acA asserts that R 1is a symmetric function. This means R = R.

Thus G = {R} and distinct words of G* are computed as

follows.
A
R

= R
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RRR = R, because R is a symmetric function.

The set of states S = {A, T, rz}

The transition diagram is shown below.

OARMO==10

5.2.2 DBSA: Right Ideal Element.

Let £' in a data base <D, B, g; A> consist of a
single relation R and A contains the statement R = R;l ,
i.e. R is a right ideal element. Final results of the compu-
tations are summarized in Fig. 1 and Fig. 2.

(Note: The 1 in R = R;1 is the Boolean identity element.)



Stateg Words of G*
0 A
1 1
2 R
b
3 R
4 1R
o
5 RR
-
6 Rl
~it
7 RR
L™ 4
8 1RR
-
9 RR1
(¥ 2
10 RIR
)
11 1RR1
v
12 RR1R
v
13 R1RR
LI <
14 RRIRR

Figure 1

5.9

~__1 R
o 1 2 3
1] 1 4 3
2| 2 2 5
3| 6 7 3
4] 4 4 8
51 9 2 5
6| 6 10 3
71 7 7 3
8 | 11 4 8
9] 9 12 5

10 | 10 10 13

11 | 11 4 8

12 | 12 12 14

13| 6 10 13

14| 9 12 14
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p=i¢ 7
- Y
x(
\4 /
O
(
~ i

Kal Ql
M A%

3

Figure 2



5.11

5.2.3 DBSA: Single Closed Relation; Third Power Empty.
' A
Let the data base <D, B, R. A> be such that
A . s 3 .. o
R = {R} and A consists of (i) R®* =¢ , (ii) RRR = R.

Results of computations are given in Fig. 3 and Fig. 4.



Stateg| Words of G¥*
0 A
1 R
V)
2 R
3 RR
o
4 RR
v
5 RR
-
6 RR
v
7 RRR
v
8 RRR
v
9 RRR
[V LV
10 RRR
(v
11 RRRR
vy
12 RRRR
L4 A\ J [
13 RRRR
"
14 RRRR
what
15 RRRRR
L d
16 RRRRR
g
17 RRRRR
[V VI
18 RRRRR
et
19 RRRRRR
Wk P\
20 RRRRRR
21 oy

.12

R R
0 1 2
1 3 4
2 5 6
3 1 7
4 1 8
50 9 2

6 | 10 21
7 3 11
8 | 12 21
9 | 21 13

10 | 14 6

11| 15 21

12 | 16 8

13| 9 17

14 | 21 18

15 | 19 11

16 | 21 4

17 | 5 21

18 | 14 20

19 | 21 7

20 | 10 21

21 | 21 21

Figure 3



Figure &4
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It may be noted that in constructing these DBSA
only the structural properties of relations involved have
been used. The property that R is closed is a rather
general property possessed by many different kinds of rela-
tions. The DBSA associated with closed relations merits
further study. Again, in real life situations it is likely
there would be many more constraints on the finite state
system. These restrictions will arise from semantic con-
sider#tions, and their effect is to reduce the number of
distinct states in the DBSA. This point is important if the

number of states in the DBSA are to be controlled.
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5.2.4. DBSA: Simple Kinship Relations

The following discussion of simplé kinship relations
is presented in three parts. In part one, an abstract system
is developed, in part two it is interpreted and part three is a

general discussion of the model and its utility. -

PART I: ABSTRACT SYSTEM
Let{D, B, ﬁ, A) be a data base where
D is a set of basic data

= {Ma, Fe]‘

={F, u}

A contains the following statements

B
A
R

1. Ma= D

2., Fe&e D

3. MaUFe = ¢

4, F&@ MaxD

5. M&Fe x D

6. Ra(F) = Ra(M)

7. F;F = H;M

o '
8., F:;M and M;F are 1-1 functions
V@
9. F;F = MM = F3F = ;N
- v

= F;M = M;F = F;M = M;F
= 0

v
10. M;F
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~ b
11. F and M are functions. Hence it maybe noted that

-
(1) F;F;F = F

\’ 4
(11) M;M;M = M
As a result of this specification of the data base,
% v %k
G = {F, ,M,M; and.the distinct words of G and their coding

as states is giveni(in Figure 5.
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" Words of G~

< = dm =)=

Y ¥= m Ym I

=]

m Y 2 o2 s

States

Figure 5



5.

18

The DBSA associated with the data base consists of

(1) The alphabet
¢ = \F,F,M,H}
(ii) the set of states
s ={An 6,¢, Eom, ¥, £, £, £, nf, mv }

(ii1) the initial state A, and

(iv) Figures 6 and 7 glve the state transition table and

the state transition diagram respectively.

F ¥ M N
A £ £ m 4
¢ £f ¢ £
£ £t ¢ ¢ ¢
m ) mf ) mm
m ¢ ) r ¢
££ £ 9 ¢ ¢
£ ¢ ¢ £ ¢
¥t ¢ £ o
nf m ¢ ¢ g
m ¢ ¢ m ¢
¢ ¢ ¢ ¢ ¢

Figure 6



Figure 7
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PART II: INTERPRETATION

The DBSA constructed in Part I can be interpreted
as follows:

Take D to be a set of human beings consisting of both
males and females. Let Ma . be the subset of males in D and
Fe be the subset of females in D, Let F be the relation:

"{g the father of" and M: "is the mother of". Now the
assertions 1,2,3,4, and 5 in A are straight forward and must

be obeyed by F and M and Fe, Ma if the interpretations attached
to these symbols are to hold in the biological sense of their
meanings. Thus 11 states that an individual can have exactly
one father and exactly one mother. Biologically this is what
is required. Again 10 states a mother canmnot also be a father
and vice versa.

The statements 6 and 7 may be interpreted as children
who are legitimate and parents and their children all are in D
and are recorded as such.

Item 8 will be valid in a monogamous soclety.

The assertions in 9 effectively mean: that second
generation information is not available in the data included
in D.

As a concrete example, let 0, 1, 2, 3 be names of

individuals. Then:
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p={0, 1, 2, 3}

B = {Fe,Ma}
Fe = {3, 1}
Ma = {0, 2}
F={0, 1, 0, }
M={@3, D, G, 2}

satisfies the requirements of the abstract DBSA.

PART III: DISCUSSION

The first point to note is that the DBSA was obtained
in a very general and abstract way without any appeal to the
contents of the sets D, B, ﬁ. (Here the term content is being
used to mean what a relation in a.may actually contain).
Thus the derivation of DBSA is clearly data independent and
depends upon the structural properties specified by A,

The DBSA summarizes the constraints and restrictioms

(at least some of them)included in A. It would be rather awk-
ward to work directly with the axioms in A. The DBSA obtained
not only reflects the axioms in A but also what can be deduced
under composition and inversion of relatioms. Thus DBSA is
a powerful tool of control and regulation. Furthermore as a
finite state mechanism it is a convenient system to work with.
This above justifies studying these special semi-automata .

The DBSA as constructed will serve as a model for
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any system of actual relatiors and data which satisfy the con-
straints specified in A, It may be noted that in the actual
deriﬁation of the DBSA only those constraints\in A which were
in the form of equations were utilized. Tﬁe constraints which
are in the form of inequalities wefe not fully utilized.

The DBSA so constructed can serve as a tool for control
and regulation of access and updating of information. For
example, if the relation F;M were to be updated, then from the
transition diagram it is clear what other relations must also
be updated, since the state fi (corresponding to P is
connected to other states which correspond to other relations.
The significance of this really lies in the fact that DBSA
summarizes these interconnections in such a remarkably clear
and precise way.

The interpretation of the abstract system as a very
simple kinship model points out the general thrust of such an
approach, By including in A sufficient number of axioms, it
is 1likely that this method will succeed in providing means of
modeling complex . situations in a realistic way, hence the

construction of useful data bases for the same,
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In the above example a possible implementation might be to
maintain only two relations M and F as well as Fe, Ma’ D and B sets. It
could be deemed advisable to maintain further redundant relations
such as M;; should there be‘sufficient activity within the data base
usage.

Consider a simple update which may involve the addition of a
new pair (x, y) to the set M . The pair (x, y) can be.one of four
possible types listed below.

a) x 1is an item which is new in the sense that it does not already
appear in the domain of M , and similarly y is 3glso new in the
sense that it does not appear in the range of M .

b) x is a new item but y is an old item in the sense that vy already
does appear in the range of M .

¢) x 1is an old item and y is a new item.

d) x 1is an old item and y is an old item, i.e. (x, y) 1s already
in M.

Any data item incorporated in the relation M by an update
procedure must result in updated versions of M and F which must
satisfy exactly the same axioms which were used to geherate the state
transition diagram for the data base. Only
then the state transition diagram will remain applicable to the updated
relations. If the above conditions are satisfied then the update
procedﬁre will leave the composition structure of the data base invariant
and the use of the transition diagram will continue to yield correct

results.
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The procedure for updating M is given below. For convenience P
denotes {(x,y)} and M' and F' denote the updated versions of M and F
respectively.

It may be remarked at the outset that the set of axioms listed is
not irredundant. Thus if M;M = ¢ (axiom 9) is satisfied then §;§= ¢ is
also satisfied. Hence, even though a rather complete set of axioms are
listed, due to redundancy it is not necessary to test them all. The procedure
for the update is to validate the updated data in conjunction with the axioms.
1. Compute M' =M u P,

If M' = M then stop, because the pair (x,y) must be of type (d)
and is already in M; otherwise, continue with step 2.

2. Compﬁte M';ﬁ'.

Since axiom 11 asserts that ¥ is a function, its updated version
‘ﬁ' must also remain a function and must satisfy M';ﬁﬁ c 1",

If M';ﬁw ¢ 1' then the update must be rejected. This situation will
occur if (x,y) is of type (b): if such an update was allowed, then y will
appear twice in first positions of two ordered pairs in'iﬁ and Fﬁ would no
longer be a function.

If M';;ﬁ c 1' then proceed to step 3.

3. Compute M';M',

If M';M' # ¢ reject the update and stop (axiom 9); otherwise proceed

to step 4.
4, Compute F;EEP.
Since some axioms such as (7) or (8) establish connection between

M and F, hence a change in M may imply a change in F which must also be changed

to ensure the consistency of the data base.
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If F;ﬁEP = ¢ then the update cannot be completed solely in termé
of information available in (x,y), F and M, because F;ﬁ;P = ¢ indicates
the attempt to associate a father with y through y's mother has failed,
This can happen if (x,y) is‘of type (a) or (b). However, type (b) would
be rejected at step 2, hence (x,y) must be of type (a).

If F;‘fd‘;P # ¢, then Iupdate Fby F' =Fu (F;I’I‘;P) . This
will be the case if (x,y) is of type (c) and hence information about the
father of x's children is in the data base and hence a father can be

associated with a new child of x.

. It should be remarked that if a pair of type (a) was entered after
obtaining additional information then to guarantee the integrity of the data
base some other tests similar to those in step 3 (i.e. drawn from axioms (9)
and (10)) will have to be carried out.

This update procedure may be illustrated as follows:

M= {(3,1), (3,2), (4,51}

{(0,1), (0,2), (6,5}

N

F

{€0,3, (6,4}

o
=<
l
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The first case illustrates that (7?8) , a type (a) pair, should
not be incorporated in M unless further information enabling the update
of F is also made available. 1In such cases where partial information
is available the update is not rejected but only its completion is delayed
till mofe information becomes available.

In contrast in the fourth case (1, 7), a type (a) pair, and
in the second case (7, 2), a type (b) pair are rejected because in each
case the updated versions of M entail a negation of an axiom. Such
updates can only be completed if the underlying axiom system is changed, which
would imply a change in the state transition diagram. In this sense
such changes may be classified as those which imply a structural change
to the system.

In the remaining third and the fifth cases there is sufficient
information available and no structural changes are implied. Hence
updates pose no problems and are accepted.

By prohibiting updates which imply changes to the structure of
the data base and delaying those updates which require further informa-
tion for completion, the invariance of the structure of the data bases as
specified by the underlying axioms and représented by the state transi-
tion diagram can be guaranteed. This invariance implies that data base
operations which weré carrect prior to an update remain correct after the
update. Furthermore data incorporated into the data base by appealing
to the éxioms, guarantees that its consistency in so far as specified by
the axioms is preserved and the new data does not conflict with any data
that was already in the data base. It is in this sense that the integrity of

the data base is realized in this model.
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As an example of the use of the state transition diagram (or

the table) consider a query formulated as

There are at least three possibilities to process this query.

1. By direct computation of the query expression.

2. By first using the axioms to reduce the expression to a simpler form (i.e. F;;b
and then computing it. In this method the reduction of the 1éngth of the
expression by axioms is essentially a pattern matching operation

which can involve heuristics and adhoc procedures.

3. By using the state transition diagram (or table) fo reduce the
expression to F;§ and then computing it. This method requires
that the transition diagram be known, but once known it can be used in
a direct way to simplify query ex»ressions by reducing their
length. This method becomes impractical if the state diagram is too
large. It should be stated here that the axioms when used as equations
will result in a reduction in the number of states in the data base
automaton. In this sense the size of the automaton depends upon the
number of reduction resulting from the use of the axioms. To

illustrate this point the axiom 'M is a function" is expressed by
v
M;M c1” .

M . This equation implied by the

A 4
However this implies that M;M;M
axiom serves to reduce the number of states in the automaton, hence
in the state transition diagram. If the set of axioms are such that

no reduction in the number of statesis possible, then
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this method is inapplicable. A class of such applications in which the
set of axioms results in a significant reduction of states are those data

bases where the relations in it are functional in character.
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5.2.5. DBSA: Real Estate Directory.

In the following a data base model for a real
estate directory is considered. A real estate directory is
essentially a listing of owners and the properties they own
or persons living at various residences in a city. It is
essentially a many-many relation.

The relations normally termed as many—-many type are
rather algebraically indigent and hence as will be seen
special effort has to be made to introduce some algebraic

structure in the system,

PART I: ABSTRACT SYSTEM,
Consider a data base{D, B, ﬁ, A) such that B
is a collection of sets ﬁi I, and N all'subsets of D, ﬁ
contains two relations P and R and A is the set of following
assertions.
1. IAN = ¢
2. RgIx®
3. P Q‘X x N

4, R;R=¢

~
6. R;R;R =R
7. ‘P;P;P = P

8. Both R and P are functions.
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The set G is iR,E,P,;} and the distinct words of
G* may be computed in the usual manner. However here their
derivation is shown and arranged for convenlence in the form of
tables. In effect, each of these tables is a composition
table. In each table elements to be composed are elements
obtained in a previous table. The derivation is started by

constructing a table with elements in set G, The process

stops with the table in which no new elements are introduced.

(a)
- ~?
s R R P P
L 4
R @ R;R  R;P ¢
~ (¥4
R R;R ¢ ¢ )
(W
P ¢ ¢ ) P;P
(¥ wr
P ¢ P:R P;P ¢
Ib)
\» (¥ 4
3 R R P P
~ (W 4 (> 4
R;R 1] R R;R;P @
o
R;R R ¢ ¢ ¢
v 4
R;P ¢ ¢ @ R;P;P
hd (V]
P;P 1] ¢ )] P
J S
P;P g P;P;R 1)
W [y A%
PR P;R;R @ )
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The information in these tables is summarized in the
table in Figure 8. The first column of this table lists the
words of G*, which are coded in the second column which con-
stitutes a list of states., The remaining part of the table
with column 2 constitutes the tramsition table for the DBSA
associated with the data base under consideration. The

transition diagram appears in Figure 9.
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PART II: INTERPRETATION AND DISCUSSION

A real estate directory is a compilation of the following

two assoclations:
(L real estate property and its owner,
(2) individuals and their addresses,

which could be represented by two binary relations P and R respectively.

A real estate directory is a many-many relation. Normally
this type of data is organized in a dictionary fashion. A dictionary
implementation is a suitable ordered representation of the many-many
relation. Now this representation of the relation does not use any
redundancy that may be existing in any significant way. If a DBSA is
constructed without further structural examination of this relation, the
number of states in it tendsto increase rapidly. If the number of states
in DBSA is to be controlled the relation involved must be carefully
examined to discover and use any redundancy which may serve to structure
it, If the portion of directory denoted by R is interpreted to be the
association between én individual and the address of his principal residence,
then R becomes a function. However, P if interpreted to have as its
domain a subset of individuals then P becomes a many-many relation and
contributes to an "explogion" of states in DBSA. A solution is to consider
one or several owners of a real estate property to be a single entity - a set -
and attach a name to it. Then P also becomes a function and with such a P
the DBSA has a manageable number of states. R, P, I, N and ‘K be interpreted

as follows:
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I set of names of individuals

N set of names of property owners

set of names of properties

R xRy means individual x resides at property y

P xPy means property x is owned by y.

The axiomsof A are satisfied, provided the owners of a property are viewed
as a single entity with a name.

In this interpretation it is important to note that control over
the number of states in DBSA has essentially been achieved by clearly
separating syntactic and semantic primitives. I, N,'K, R and P without
interpretation provide names and relations on these names. What these names
stand for is established by a semantic process. For example, an n ¢ N is
the name of a set. However, at the syntactic level it is just a name similar
to i € I which is not the name of a set but that of an individual., That
that is the difference in the nature of these two names is established
by appealing to their meaning or intended use. Clearly, at the implementation
level an n € N will have a different type of representation than that of
i € I. It is in this sense the model being considered is more at a logical
level than at the implementation level. Thus in a model of a data base as
<D, B, ﬁ, A> the logical and algebraic relationships play a paramount role

and details of implementation are suppressed.



5.31

The system under discussion is capable of modeling
the following real estate relations encountered in pracgice,
XRy: x resides at y
“
xRy: x 1s the residence of v
xPy: x belongs to y
)
xPy: x owns y
g
XR3Ry: x resides at the same residence as y, i.e,
XY are occupants of a common residence
XR;Ry: ddentity on residences
xR;Ry: x's land lord is y
xP;Ry: x's tenant is vy.
v
xR;R;Py : resldence x belongs to v.
v b , 4
XR;R;P3Py : residence x belongs to owner of v, 1.e.

X,y belongs to the same owner and x is owner's

residence,
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CHAPTER VI CONCLUSIONS

For data bases there are a number of important ad-
vantages which result from adopting an algebraic point of view.
It éllows the structure of data base to be succinctly speci-
fied. This is so because it is usually possible to charac-
terize algebraic systems by only a few axioms. The structure
of a data base may be displayed explicitly using algebraic
methods thus facilitating better control and regulation,
This in turn allows an examination and understanding of the
consequences of the possible changes in the basic structure.
of a data base. Furthermore algebra provides a powerful lan-
guage and other formal tools to describe and study the prop-
erties of data base systematically. It also enhances clarity,
systematic growth and provides a scheme for data base seman-
tics., Again through the mechanism c¢f homomorphisms it pro-
vides links with other algebraic systems. These advantages
if fully realized make the algebraic approach a very powerful
tool for investigating data bases as abstract entities, Fi-
nally it must be noted that for most algebraic systems a well
developed decomposition theory already exists, If thé con~
nection between data bases and such algebras is successfully
established, this aspect will provide valuable insights into

the problem of data base organization and its structure.
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To specify the structure of relations an appropri-
ate language is required, There exist a number of languages
capable of handling relations as separate entities., Two
méjor categories may be noted. On the logical level there
are relation calculi and on the algebraic level there are al-
gebras such as relation algebras or cylindric algebras
[Henkin et al. 1971]. There languages provide formal means
of describing the structure of relations and hence also of

data bases,

Relation algebra is an algebraic system designed to
model the class of binary relations. The language provided
by this algebra is adequate to specify the structure of such
relationsand describe operations on them, Accordingly a data
base containing binary relations provides an application area
for these algebras. If a data base contains more complex re-—
lations such as n-ray relations then cylindric algebras are
appropriate. In any case algebraic approach to data bases

merit further study and investigation.

A data base as a system consisting of a collection
of data on which a community of relations is defined, models
the interrelationship among parts of the physical reality

represented by the data through the relations embedded in it.
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The properties of the objects represented must also be mod-
elled; This is done by the mechanisms of subsets. Each prop-
erty is used to induce a decomposition of data into subsets.’
These subsets then provide adequate attribute modelling capa-
bility. Thus in a data base there are data, their subsets

and relations defined on them.

The development of a data base consists of speci-
fying the explicit structure of the relations and the decompo-
sition of the data induced by the subsets in it, then using
these to provide facilities for performing data base opera-
tions and achieving data base objectives of security, integ-
rity and correctness algebraically. This notion of data base
development when exploited, as is done in this thesis, pro-
vides a formal model of data bases with its own algebras and

finite state systems.

The concept of data base as an abstract entity and
its relation to finite state systemssuggests the possibility
of direct hardware realization as sequential circuits. In
view of the fact that in a data base there may only be a few
relations but that each relation may have a very large under-
lying aggregate of data which will come into play when per-—

forming data base operations, some form of associative pro-
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cessing will be necessary., This aspect of the realization of
data base must be carefully examined because if the structure
of data base is to remaln invariant when data base operations
are performed, the underlying aggregate of data will play a
part in preserving the structure of the data base. If this
implies that large portions of this aggregate data have to be
examined, then associative or parallel processing becomes a

mandatory requirement, and requires further study,

The security of data in a data base may be achieved by
using its state transition diagram as a labelled graph. The
access to various states in the diagram may be controlled by label -
ing the arcs connecting the states. These labels may be used to
determine who may access a state and in what manner. This aspeét of

the data base requires further study and exploration.
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