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Abstract

Let A =B + C be a given sparse nonsingular matrix with

B1jcij = 0, and Tet LAUA’LBUB and LCUE be triangular factors of A, B and
1a,-1

C=1H+ LB

of solving Ax = b, we can factor A directly into LAUA and then compute x

CU% » computed using Gaussian elimination. Given the problem
by solving LAy = b and UAx = y. Alternatively, we can factor B and

then compute and factor C, obtaining the factorization A = LBLCUCUB
which can then be used to compute x. In this paper we show that over all
splittings of A, this Tatter strategy cannot be beneficial in terms of

reducing arithmetic or storage requirements.



1. Introduction

Consider using Gaussian elimination to solve the sparse non-

singular n by n linear algebraic system

(1.1) Ax = b,

where we assume A has a triangular factorization LAUA' Given LA and UA’
where LA is unit Tower triangular and Up is upper triangular, we obtain x
by solving the triangular systems LAy = b and UAx =y,

Alternatively, we might consider an additive splitting B + C of
A and solve (1.1) using Gaussian elimination as follows: (a) Factor B
into LBUB (assuming the factorization exists), (b) Calculate and
factor C = I + Lélcué1 into LzUg (assuming 1t exists), and (c) solve the
four triangular systems LBy1 = b, L(-:y2 = ¥» U(-:y3 = Yo and UBx = Y3 Here
and elsewhere, it is to be understood that inverses are not actually
computed; instead the appropriate triangular systems are solved, using
the standard back-substitution procedure.

Why contemplate such a procedure? Except in rather special circum-
stances, when Gaussian elimination is applied to a sparse matrix A, it
suffers "fi11"; that is, its triangular factors LA and UA typically have
nonzeros in positions which are zero in A. Sometimes the judicious removal
of a few strategic nonzeros in A can substantially reduce the amount of fill
that occurs. That is, in the above notation, a judicious choice of C,
involving only a very few components, can make LB + UB very much sparser
than LA + UA' However, the crucial question is whether the factors of C

and B together can have fewer nonzero components than the factors of A.



The purpose of this article is to show that the answer to this question is
no. We also show that this splitting technique cannot be beneficial in

terms of reducing the number of multiplications required to solve (1.1).

2. Notation, Assumptions, and Preliminary Results

Our introduction implies that the motivation for splitting in
this paper is to induce, in a judicious way, some sparsity in B. Thus,
throughout the article, when we refer to a splitting B + C of A, we

implicitly assume that B..C.. = O.

ij7ij
In subsequent sections, we require various items defining the

structure of vectors and matrices, such as the number of nonzero components

in a vector, or the positions of the nonzeros in a vector. In this connection,
we denote the number of nonzeros in A by p(A), where A may be a vector or
matrix, and we denote the i-th row and column of a given matrix M by Mi*

and M*i respectively. In order to discuss the positions of nonzero

components, we define the sets
Q(v) = {klvk # 0},
where v is a vector, and

a(M) = {(i.3)[m;; # 03,

where M is a matrix.

We denote the unit lower and upper triangular factors of a matrix
M, computed using Gaussian elimination, by LM and UM' In doing so, we
implicitly assume the existence of the factorization M = LMUM' (We will

sometimes drop the subscript when no confusion results.) In a practical



sense we require much more; Gaussian elimination applied to M should be
numerically stable. This will be true, for example, if A is diagonally
dominant, or symmetric and positive definite [3].

We assume throughout that whenever two nonzero quantities are added
or subtracted, the result is nonzero. That is, we ignore any zeros which
are created through exact cancellation. Such cancellation rarely occurs,
and in general it is difficult to predict, particularly in floating point
computation which is subject to rounding error. Thus, such accidental
zeros are not normally exploited in implementations. Moreover, there are
matrices for which it is possible to guarantee that no such cancellation
will occur. With this proviso, our measure of storage requirements js the
number of nonzero components in the factorizations.

We measure arithmetic requirements by the number of multiplicative
operations (multiplications and divisions). The majority of the arithmetic
performed in Gaussian elimination involves sequences of operations occurring
in multiplying-add pairs, so the number of additions and multiplications is
about the same. Thus, we contend that the multiplication count is a
reasonable measure of arithmetic requirements.

We now collect some results on operation counts which we need in
Section 3.

Lemma 2.1 (Bunch and Rose [1])
The calculation of the factorization LU of M, using Gaussian

elimination and avoiding operating on all zeros, requires 6(M) multiplications,

where

n=1
6(M) = _Z](P(L*1)~1)P(Ui*)-
i=



Lemma 2.2 1s simply a statement of the following observations.
Suppose LU and L'U' are factorizations of M and M', computed using Gaussian
elimination, where M' is obtained from M by adding to it a matrix N without
cancellation. (Thus, Q(M) < Q(M')). Since M' is nonzero wherever M is, and
we assume numerical cancellation doesn't occur, it follows that
Q(L+U) < Q(L'+U') and 6(M) < 6(M'),

Now if Nij 0= (L+U)1j # 0, (i.e., 2(N) < Q(L+U)), then the
addition of N to M cannot affect the structure of the factors of M, since
the positions in L+U corresponding to nonzero components of N were going
to be nonzero anyway. Thus, Q(L'+U') = Q(L+U), and 8(M) = 6(M') because 6
is a function of the structure of the factors of the matrix rather than
its own structure.

On the other hand, if Q(N) ¢ Q(L+U), then it is clear that
Q(L'+U') # Q(L+U), and therefore 6(M) < 6(M').

We state these observations as
Lemma 2.2

Let LU and L'U' be triangular factors of M and M' respectively,
computed using Gaussian elimination, where M' = M+N and Q(M) < Q(M').

Then Q(L+U) < Q(L'+U') and 6(M) < 6(M'), with equality occurring
if and only if Q(N) < Q(L+U). 0

It is helpful to be able to denote the number of multiplications
required to compute T"]Y, where T is a given n by n triangular matrix and Y
is an n by r matrix, r > 1. We denote this number by z(T,Y). The following

Temma defines this quantity for r = 1,



Lemma 2.3 (George [2])

Let T be a triangular matrix and let x be the solutjon to Tx = b,
computed using the standard back-substitution procedure for triangular
matrices. Then the number of multiplications required to compute x is

(2.2) (T,b) = (p(Typ)-1) s
; Qeé(x) P % "

where u = 0 unless T has a unit diagonal which is exploited, in which case
u=1.

The corresponding result for r > 1 is obvious. The next two
Temmas are immediate consequences of Lemma 2.3.
Lemma 2.4

Let T be a triangular matrix and let w and x be the computed

solutions to Tw = y and Tx = z respectively, where Q(y) = Q(z). Then

a) Q(W) = Q(X),

and
b) C(T9Y) = C(T;Z) - Z (p(T*g)'U)a
22(x)\2(w)
where 1y is as defined in Lemma 2.3 g
Lemma 2.5

Let T be an n by n triangular matrix and let W and X be the
computed solutions to TW = Y and TX = Z, where Y and Z are n by r matrices
and Q(Y) < @(Z). Then

a) W) ¢ a(X)
and

b) (T,Y) < ¢(T,Z). 0



In sectfon 3, we are faced with alternative ways of computing some
quantity, say P = T"1G, where G = Y + Z. One computation may yield F by
calculating W = T']Y and X = T"]Z, and then adding W and X, while the

“1g.

alternate computation may add Y and Z yielding G, and then compute F = T
Lemma 2.6 below states that this latter computation is always at least as
efftctent as the first one.
Lemma 2.6

Let T be an n by n triangular matrix and let W and X be the computed
solutions to TW = Y and TX = Z respectively. Let F be the computed solution

to TF = G, where G = Y + Z. Then

a) Q(F) = Q(X+W),
and
b) z(T,G) < ¢(T,Y) + ¢(T,Z).
Proof Let the lower case letter w denote the i-th column of W, and

similarly for X, F, Y, Z and G.
Since g = y+z, Q(y) < Q(g) = a(w) < o(f), by Lemma 2.4. Similarly,
Q(z) c a(g) = (x) < Q(f). Thus, since Q(x+w) = 2(x) u 2(w), we have

(2.3) Q(x+w) < Q(f).

We now want to show that Q(f) c Q(x+w), whence we can conclude
part a) of the lemma. For definiteness, we suppose T is Tower triangular;
the proof for T upper triangular is trivially different.

Let k € Q(f). Then

(2.4) £, Z Tiefe-
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Now f # 0= {1) g, # 0 or 1’1)3k1<k9fk1f0andik1fO}. If
1) prevails, then either Yi 20 (= Wi # 0) or z, £0 (= X # 0).
Otherwise, we repeat the argument with k replaced by k1. Ultimately, we

must find a k. for which f, # 0 (T #0)andg, #0= {w, # 0or x, # 0}.
r kr krnlkr kr kr kr
Suppose for definiteness that Wi # 0.
r\

But we have just established the existence of a sequence of sub-
scripts (kr-1’kr)’(kr—Z’kr—1)"'(k’k1) for which T is nonzero; this together

with wkr # 0= Wi # 0.

Thus, we have shown that k € Q(f) == {k « Q(x) or k e Q(w)}; i.e.
(2.5) Q(f) c a(x) v alw) = Q(x+w).

Relations (2.3) and (2.5) imply part a) of the lemma. Part b) follows

immediately from part a) and Temma 2.4, 0
3. Results

Recall that in the introduction, for a splitting B + C of A, we

defined the matrix C by

1ap-1

cu; .

(3.1) c=I+LB B

Recall also that the question of whether or not splitting is beneficial depends
on the number of nonzeros in the factors of A, compared to the total number

of nonzeros in the factors of B and €. 1In this section, we show that these
latter factors always collectively contain as many nonzeros as the factors

of A. We also show that the number of multiplications involved in using the

splitting is at least as great as that required to factor A.



In order to prove these results, it is helpful to be able to
rule out some splittings by showing that they can never be any better than
certain other splittings. This is the object of Theorem 3.1, which states
that there {s no point in cohsidering splittings for which Cij # 0 and
(LB+UB)ij # 0. Recall from section 2 that for our purposes, reference to a
splitting B + C of A implies that Bijcij = 0. In the theorem below, F is
defined by (3.1) with B and C replaced by E and F.
Theorem 3.1

Let B+ C and E + F be two splittings of A, where Q(C) < Q(F)

and Q(F) \ a(C) ¢ S’z(LE + UE). Then
a) a(C) < a(f),
and

b) The factorization of E and calculation of F requires at least as

many multiplications as the factorization of B and calculation of C.

Proof Notice first that since Bijcij =0, EijFij = 0, and Q(C) < Q(F),
we have B = E+(F-C) and Q(E) < Q(B). SettingM' =B, M=E, and N = F-C
in Lemma 2.2 and using the fact that Q(F-C) c Q(LE+UE), we have

(3.2) Q(LE+UE) = Q(LB+UB)

and

(3.3) 6(E) = 8(B).

Thus, (3.2) implies that the calculation of I+L§1CUE1 requires the same

Tap-1

number of multiplications as that required to compute I+LE » which (under

CUE
our no cancellation assumption) cannot be greater than the number required
to compute I+LE]FUE1 since Q(C) < Q(F). It follows from Lemma 2.4 that

2(C) < a(F). O



The above result allows us to simplify the proof of the theorem
which follows, by allowing us to make some assumptions about C.
Theorem 3.2

Let B + C be a splitting of a given n by n sparse matrix A, where

1

A, B, and C = I+LE CUé1 have triangular factorizations L,U,, LgUp and

LCUE respectively, computed using Gaussian elimination. Then

a)  plLptUy) < p(LgtUp) + p(LatUs),

and

b) ©(A) < e(B) + 6(C) + o(C),

where o(C) is the number of multiplications required to compute C, given

B’ UB and C.

L
Proof We assume C is computed as I+(L§]C)UE]; the modification of the
proof if C is computed as I+L§1(CU§1) is straightforward.

The proof is by induction on the order of the matrix. The result
obviously holds for 1 by 1 and 2 by 2 matrices, and we suppose it holds for
n by n matrices. Consider the splitting B' + C' of the (n+1) by (n+1)

matrix A' shown below. Since (LB'+UB')11 # 0, by Theorem 3.1 we can with no

loss of generality set Ci] = 0,

T

TOT T
(3.4) A'= ¢ u'f‘+V2 .—.( ‘ "2 >+< ° VZ) =B' +C'
u1+v1 B+C u1 B V1 C

First consider applying Gaussian elimination to A'. After one

step, we have the partial factorization.
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1 0 d  ustva
d"1(u]+y1) I 0 A

where

(3.6) A=B+C - d"](u1*nv])(u2+v2)'T

= ~1 T T T T
Thus, the number of nonzeros in the factors of A' is given by
(3.7) U= p(LA+UA) + p(u1+v1) * pluytvy) + 1.
The number of multiplications required to factor A' is given by

(3.8) v = 6(A) + p(u1+v1)(p(u2+v2) + 1)
< 8(A) + p(ug) + plvy) + pluplp(uy) + w,

where

(3.9) W= mih{p(u])p(vz) + p(v1)p(u2+v2),p(u1+v1)p(v2) + p(v1)p(u2)}.

The reason for defining w will be apparent later in the proof.

Now consider the use of the proposed splitting. Factoring B',

we have

1 0 d u;
(3.10) B' = ( 1 ,
d Uy LB 0 UB

where LBUB s the factorization of

e el T
(3.11) B=B -~ (d u1)u2.
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Some elementary matrix algebra yields

-1
1 v2UB

(3.12) €' = ( )
gy g et T V)T v uau]

where the parentheses indicate the order in which quantities are computed.
After one step of Gaussian elimination is applied to C', we obtain the

partial factorization

T =1

1 0 1 v2UB
(3.13) C' = ( ) ( )

1y -1 | -
d (LB v1) 1. 0 ¢

where
(3.18) € = 1+lLg (C-(d T upvp)~(a 7 g v dupdus - (a7 v ) (vjus ).

Applying Lemma 2.6 a number of times, we conclude C has the same structure

as it would have if it was computed as
(3.15) € = I+L71[C~d" " (uqvivqubtv, vD) JU7]
) B 1°2°"17°2 "1"2°°"B °

Now, by the induction hypothesis, the factors of C and the factors of B = LBUB

have in total as many nonzero components as the factors of the matrix
-1 T T T
B+C-~-d (u]v2+v]u2+v1v2)
= (B-d~ u]uz) + (C~d” (u v2+v1u2+v]v2))

which is just A (equation (3.6)). Thus, we conclude that
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(3.16) p(LB+UB) + pllgtUs) = plLytly).
Using (3.8), (3.10), (3.13), and (3.16), we conclude that the number of non-
zeros us in the factors of B' and C' satisfies

S
u

v

p(LgtUg) + p(LgtUz) + plug) + pluy) + plvq) + plvy) +1

1\

p(LA+UA) + p(u1+v]) + plvytuy) +1
= U,
This establishes part a) of the theorem.
Now consider the number of multiplications involved in utilizing

the splitting. The factorization of B' requires 6(B') multiplications,

where
(3.17)  o(B') = p(u1) + plugdp(u,) + 8(B).

The repeated application of Lemma 2.6 shows us that the number of multi-
plications required to compute C as indicated by (3.14) is at least as great

as that required to compute it as

= ~lyyg=]
(3.18) C=1H+ (LB w)UB R
where
_ ~1 T -1 T -1 T
(3.19)  W=2C~ (d"up)vy + (d1 v1)v2 + (d v1)u2.
Now the number of multiplications required to compute W, given d'1v1, d-]u1,

UysV, and C is at Teast w, which is defined by (3.9). Counting the divisions
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involved in calculating d—](Lé1v1) in C', which is at Tleast p(v1), and
Tetting o(C) be the cost of computing C given LB’ UB and W, we have that

the number of multiplications required to utilize the splitting is

<
v

S e(Bl) + w + p(v.l) + 9(6) + O'(E)

p(ug) + p(vy) + plugdpluy) + 6(B) + 6(C) + o(C) + w (using 3.17),

v - 8(A) + 6(B) + 6(C) + o(C), (using 3.8).

I\

But by the induction hypothesis, 6(A) < 6(B) + 6(C) + o(C), which implies
that v = v, concluding the proof. 0

To summarize, Theorem 3.2 tells us two things. First, part a)
says that for any splitting B + C of A, the number of nonzeros in the
factors of A cannot exceed the number of nonzeros in the factors of B and C.
Since this is our measure of storage requirements for solving (1.1), we
conclude that the splitting strategy cannot reduce storage requirements.
Second, part b) says that the number of multiplications required to factor
A cannot exceed the total number required to factor B, calculate C, and factor
C. It follows that the splitting scheme cannot reduce the number of multi-

plications required to solve (1.1).

4. Concluding Remarks

There are other ways to utilize the splitting A =B + C. For

1C, obtaining the factoriza-

example, we could compute and factor C = I + B~
tion A = LBUB LEUE which can then be used in solving Ax = b. It is not
difficult to construct an A for which this strategy can pay handsomely in

terms of storage and arithmetic reduction. However, numerous examples
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suggest that we can always find a permutation matrix P such that the
factorization or a block factorization of PAP' is as efficient as using
the splitting as described above. It appears to be difficult to prove or
disprove this conjecture. In this connection, however, it is easy to show
that Theorem 3.1 holds if € is defined as I + B™'C or I + CB™', and

similarly for F.
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